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ABSTRACT: An estimated 76% of global stream area is occupied by channels with widths above 30m. Sentinel‐2 imagery with
resolutions of 10m could supply information about the composition of river corridors at national and global scales. Fuzzy classifica-
tion models that infer sub‐pixel composition could further be used to compensate for small channel widths imaged at 10m of spatial
resolution. A major challenge to this approach is the acquisition of suitable training data useable in machine learning models that
can predict land‐cover type information from image radiance values. In this contribution, we present a method which combines
unmanned aerial vehicles (UAVs) and Sentinel‐2 imagery in order to develop a fuzzy classification approach capable of
large‐scale investigations. Our approach uses hyperspatial UAV imagery in order to derive high‐resolution class information that
can be used to train fuzzy classification models for Sentinel‐2 data where all bands are super‐resolved to a spatial resolution of
10m. We use a multi‐temporal UAV dataset covering an area of 5.25km2. Using a novel convolutional neural network (CNN) clas-
sifier, we predict sub‐pixel membership for Sentinel‐2 pixels in the fluvial corridor as divided into classes of water, vegetation and dry
sediment. Our CNN model can predict fuzzy class memberships with median errors from �5% to +3% and mean absolute errors
from 10% to 20%. We also show that our CNN fuzzy predictor can be used to predict crisp classes with accuracies from 95.5%
to 99.9%. Finally, we use an example to show how a fuzzy CNN model trained with localized UAV data can be applied to longer
channel reaches and detect new vegetation growth. We therefore argue that the novel use of UAVs as field validation tools for freely
available satellite data can bridge the scale gap between local and regional fluvial studies. © 2020 The Authors. Earth Surface Pro-
cesses and Landforms published by John Wiley & Sons Ltd
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Introduction

Fluvial remote sensing at sub‐metric resolutions has been the
focus of a significant body of research in recent years (e.g.
Marcus and Fonstad, 2008, 2010; Carbonneau et al., 2012;
Piégay et al., 2012, 2020; Bizzi et al., 2016; Dugdale
et al., 2019). Many of these ideas were inspired by work argu-
ing for an examination of rivers at very high resolutions and
over very large extents (e.g. Vannote et al., 1980; Fausch
et al., 2002). In this context, it has been argued that very
high‐resolution imagery, sometimes called hyperspatial imag-
ery (Carbonneau and Piégay, 2012), could allow for a
process‐based analysis of image data that could be used to
advance fundamental ideas in fluvial ecology and geomorphol-
ogy (Carbonneau et al., 2012). However, such
process‐focussed monitoring over regional, national or conti-
nental scales remains largely out of reach. Despite progress in

manned (e.g. Carbonneau et al., 2004; Dugdale et al., 2013,
2015; Frechette et al., 2018) or unmanned image acquisitions
(e.g. Tamminga et al., 2015; Woodget et al., 2015; Carbonneau
et al., 2018), image data for entire catchments and nations is
currently constrained to multi‐year surveys done by national
and/or regional environmental agencies and, at best, delivers
imagery with a spatial resolution on the order of 0.5m and tem-
poral resolutions of several years or decades. Sub‐metric spatial
resolution imagery acquired at daily or weekly temporal fre-
quency is available in the commercial realm but purchasing
costs for entire nations or continents are beyond the most gen-
erous budgets. A potential alternative is the use of public
domain multispectral satellite data such as the European Union
(EU) Copernicus Sentinel‐2 or the joint NASA/USGS Landsats 7
and 8. These offer a reasonable temporal repeat frequency but
at much lower spatial resolutions. Sentinel‐2 has four bands
acquired natively at a spatial resolution of 10m. Downing

EARTH SURFACE PROCESSES AND LANDFORMS
Earth Surf. Process. Landforms 45, 3120–3140 (2020)
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Published online 18 August 2020 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/esp.4955

https://orcid.org/0000-0001-8246-9491
https://orcid.org/0000-0002-6247-7619
https://orcid.org/0000-0003-2363-9176
https://orcid.org/0000-0002-0588-826X
mailto:patrice.carbonneau@durham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fesp.4955&domain=pdf&date_stamp=2020-08-18


et al. (2012) estimate that mean width of fifth‐order streams is
roughly 30m and that streams with orders 5–12 (the highest
order of the Amazon River) occupy 76% of global stream area.
Sentinel‐2 data should therefore at least be capable of detecting
such streams and thus be sensitive to most rivers of the world.
However, it is clear that medium to small streams (dimensions
below ~100m) will have few pixel samples that will leave a
coarse digital representation of these complex landscapes.
Fuzzy classification is a well researched topic that aims to infer
sub‐pixel scale compositions by assigning to each pixel a mem-
bership percentages for each available class (Foody and
Cox, 1994; Foody, 1997; Foody et al., 1997; Zhang and
Foody, 2001; Ling et al., 2019). Fuzzy classification
approaches could therefore be a way to mitigate for the rela-
tively low spatial resolution of Sentinel‐2 data. Supervised clas-
sification, of either the fuzzy or crisp (i.e. assigning a single
integer class number to each land‐cover type representing the
semantic class of a landform) variety, of large‐scale river corri-
dors does pose logistic challenges. Traditionally, ground‐truth
played a critical part in supervised classification of remotely
sensed imagery (Curran and Williamson, 1985; Steven, 1987).
However, the obvious logistic implications of large‐scale
ground‐truth data acquisition has somewhat weakened this
practice and we find an increasing usage of on‐screen image
interpretation as the basis for the production of training areas
for supervised classification algorithms (e.g. Thanh Noi and
Kappas, 2018). Low‐cost drones, unmanned aerial vehicles
(UAVs), might provide a cost‐effective approach to the acquisi-
tion of ground‐truth data for satellite data analysis. Carbonneau
et al. (2018) have demonstrated that low‐altitude imagery could
be used as ground‐truth data for grain size mapping algorithms.
Similar to this idea, this article proposes to use UAV imagery in
order to derive suitable training data for fuzzy classification
algorithms applicable to Sentinel‐2 imagery.
Using one of the largest UAV datasets in the published litera-

ture, we have developed a novel convolutional neural network
(CNN) fuzzy classification algorithm tailored to Sentinel‐2
imagery. We focus mainly on the fuzzy classification of river
corridors and consider three end‐member classes: water, vege-
tation and dry exposed sediment. In a series of experimental
scenarios, we show that our CNN fuzzy classifier can predict
the membership percentage of the dominant class, i.e. the class
with the highest membership, for each Sentinel‐2 pixel of a
river corridor with median errors ranging from �5.5% to
2.4% and mean absolute errors ranging from 14.2% to
20.7%. In the case of the sub‐dominant class, i.e. the class with
the second highest membership, median errors range from
0.7% to 2.5% and mean absolute errors range from 10.9% to
17.9%. Also, we show that if we use our fuzzy CNN model to
predict ‘crisp’ class (i.e. the semantic class: water, vegetation
or dry exposed sediment), we can reach accuracies of 95.5%
to 99.9%. We show that performance at this level is possible
in a range of scenarios. CNN models trained with
UAV‐derived labels from a given year perform well on imagery
acquired in the previous year. CNN models trained with
UAV‐derived labels from two rivers can be satisfactorily trans-
ferred to two new rivers, imaged on two separate Sentinel‐2
tiles. Finally, CNN models trained on one part of a given river
perform well when classifying other parts of the same river. Fur-
thermore, we have tested comparator methods such as linear
unmixing and dense neural network (DNN) fuzzy classifiers
and have made two important findings. First, models that are
trained with UAV‐derived label data always perform better than
models trained without the benefit of field data. Second, linear
unmixing and DNN fuzzy predictors cannot match the perfor-
mance of our novel CNN approach. As a final demonstration
of the potential of our novel approach, we give the reader

access to fuzzy classifications for 294 linear kilometres along
the river corridors of our study rivers. We use a smaller portion
of this data to show how fuzzy classification can be used to
monitor sub‐pixel vegetation growth and establish net change
over a oneyear period. The methods developed here therefore
deliver a successful integration of UAV and Satellite data and
provide a pragmatic way forward for cost‐effective,
large‐scale studies of fluvial systems.

Methods

Drone acquisitions and Sentinel‐2 imagery

Ground‐truth data are derived from 16 UAV surveys carried out
in Italy using a DJI Phantom 4 Pro drone. The data were
acquired during 2017 and 2018 and spread across eight sites
located on four rivers. In northern Italy, imagery was acquired
for two sites on the River Sesia, near the towns of Arborio and
Caresana. The River Sesia starts in the Alpine foothills as an
island‐braiding channel and then, nearer its confluence with
the Po, evolves into a single thread meandering channel. For
the River Po, we have one sampling site. The River Po is the
longest river in Italy and consists of a single‐thread channel
with local wandering. In central Italy, imagery was acquired
for three sites on the River Paglia in Umbria. This river is a small
single‐thread channel with rare occurrences of localized wan-
dering. In southern Italy, imagery was acquired for two sites
on the River Bonamico in Calabria. This is a medium river with
a high sediment load and active braiding. Figure 1 shows all the
rivers used in this study within a national context. Each site, on
each river, has one repeat survey. For each acquisition, we use
15–20 ground targets surveyed to centimetre‐accuracy with a
Trimble R10 RTK‐GPS (real‐time kinematic global positioning
system) deriving its differential correction from mobile services.
The images were acquired at 80% forward overlap and 50%
sidelap and the flight patterns also included oblique views
and multiple altitudes as recommended in Carbonneau and
Dietrich (2017). Photogrammetric processing was accom-
plished with Agisoft Metashape. In relation to the work pre-
sented here, the primary outputs were orthomosaic images
with a spatial resolution of 10cm. If we consider repeat visits
as separate acquisitions, the total area covered by the UAV sur-
veys is 5.25km2. This is one of the largest UAV data acquisi-
tions reported in the published literature. Typically, UAV data
are collected for areas near or below 1km2 (e.g. de Haas
et al., 2014; Tamminga et al., 2015; Woodget et al., 2015;
Lindner et al., 2016; Rossini et al., 2018; Rusnák et al., 2018).
At the upper limit, Immerzeel et al. (2014) report a survey area
of 7.96km2 on a glacier surface performed with a fixed wing
UAV capable of long‐range flights. To our knowledge, the data
used in this work represents the largest UAV survey area
reported in fluvial remote sensing. We do not find other pub-
lished works with repeat UAV surveys of eight sites located on
four different rivers.

In addition to the UAV imagery, Sentinel‐2 data was
downloaded from the European Space Agency (ESA)
Open‐Access Copernicus hub. First, we identify suitable cloud
free imagery, nearest in time within a maximum 15days of the
drone acquisition. Second, we verify the discharge from the
nearest upstream gauging station and precipitation records in
order to avoid rain threedays prior to acquisition (dry land)
and to control hydraulic conditions. Once these conditions
are met, we download the full Sentinel‐2 tiles at level 2A (with
full atmospheric correction). In total, eight tiles were needed to
match all the UAV surveys. Within these tiles, we discard
Sentinel‐2 bands designed to sample atmospheric quantities
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and we will only use bands 2, 3, 4, 5, 6, 7, 8, 8A, 11 and 12
(total of 10 bands). In terms of area, the UAV surveys overlap
a total of 52543 Sentinel‐2 pixels (@ 10m spatial resolution)
which form our raw Sentinel‐2 samples. Figure 1 shows the
location of the study sites and associated Sentinel‐2 tiles within
Italy. Table 1 gives a summary of the locations and dates of the
primary data acquisition.

Fuzzy label production

The core idea behind this work is to use centimetre‐scale reso-
lution UAV data in order to generate high quality training data

for machine learning models. We therefore use a manual
object‐based image analysis (OBIA) approach to derive high
quality land‐cover classifications for the UAVorthoimagery that
will be used to provide fuzzy training labels for our models.
The manual OBIA classification applied to the 10‐cm resolu-
tion UAV imagery was capable of identifying and discriminat-
ing between spatial units with similar textural and spectral
characteristics that are known to constitute key geomorphic
macro‐units as described by Belletti et al. (2017): water, vegeta-
tion or dry exposed sediment. Such units represent the coarse
assemblage, the external envelop, of geomorphic units of the
same type (e.g. in a meandering river, a ‘dry exposed sediment’
macro‐unit can include a ‘point bar’ and a dry ‘chute off

FIGURE 1. (A) Location of the Sentinel‐2 tiles. Sesia River sites are located in tile TMR. Po River sites are located in tile TMQ. Paglia sites are located
in tile TQN and Bonamico sites are located in tile SWC. (B) River corridors within regional topographic settings. (C) Google Earth imagery of the sites
showing the diversity of river corridors. i, River Sesia; ii, River Po; iii, River Paglia; iv, River Bonamico. [Colour figure can be viewed at
wileyonlinelibrary.com]

Table 1. Drone and Sentinel‐2 acquisition sites and dates. We use UAV data from 16 acquisitions in 2017 and 2018. The total area of the UAV
surveys was 5.25km2 sampling a total of 52543 Sentinel‐2 pixels

Site (River, location) UAV acquisition date Sentinel‐2 acquisition date Sentinel‐2 tile

Po, Nicorvo 16 September 2017 24 September 2017 TMQ
Paglia, Acquapendente 20 September 2017 21 September 2017 TQN
Paglia, Allerona 18 September 2017 21 September 2017 TQN
Paglia, Orvieto 19 September 2017 21 September 2017 TQN
Bonamico, upstream 15 November 2017 21 November 2017 SWC
Bonamico, downstream 16 November 2017 21 November 2017 SWC
Sesia, Arborio 18 April 2018 17 April 2018 TMR
Sesia, Caresana 16 April 2018 17 April 2018 TMR
Sesia, Arborio 21 September 2018 24 September 2018 TMR
Sesia, Caresana 22 September 2018 24 September 2018 TMR
Po, Nicorvo 20 September 2018 24 September 2018 TMQ
Paglia, Acquapendente 17 July 2018 20 July 2018 TQN
Paglia, Allerona 16 July 2018 20 July 2018 TQN
Paglia, Orvieto 17 July 2018 20 July 2018 TQN
Bonamico, upstream 24 October 2018 22 October 2018 SWC
Bonamico, downstream 23 October 2018 22 October 2018 SWC
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channel’ geomorphic units). Readers should note that from
here onwards, we will refer to the ‘dry exposed sediment’ class
merely as ‘sediment’. For each orthoimage, we used the i.seg-
ment routine included with GRASS GIS 7.6 in order to segment
the RGB data into spatially contiguous groups with common
brightness characteristics. Trial and error was used to set the i.
segment parameters in order to create relatively small but not
too fragmented and consistent objects, i.e. belonging to the
same class (i.e. water versus vegetation versus sediment).
Parameter values for minsize and threshold, were set between
4000 and 8000 and between 0.3 and 0.85, respectively. This
step allowed a first and objective delineation of riverine
objects. Once segmented, the UAVorthoimages were classified
by geographic information system (GIS) photointerpretation at a
scale between 1:400 and 1:2000. A further manual modifica-
tion of the form of some segments was occasionally performed
to improve their delineation during the photointerpretation
stage (e.g. to separate vegetation from water or sediment from
water). Each segment was then attributed one of the three clas-
ses described earlier. All the labelled objects of a same class
were then merged into semantic classes and the result exported
in class raster format where each pixel holds the value of the

land‐cover class. Figures 2 and 3 show detailed examples of
this classification process.

This manual OBIA process was extremely labour‐intensive
(1.5days per orthoimage on average) but it has allowed for 10
cm resolution classifications which we will approximate as
being error‐free. We obviously recognize that such a process
driven by human interpretation cannot be error‐free. One chal-
lenge is the assignment of all features of the riverine landscape
to one of only three classes. Using three classes is a design
decision and we did consider using extra classes such as senes-
cent vegetation. However, this feature is present as a minority
in the data and experience with CNN training suggests that
severely under‐sampled classes do not produce a satisfactory
response during CNN training and such classes are better
merged with the most appropriate similar class. For example,
on the bottom right of Figure 3, we see an area of vegetation
that is a composite of dry senescent grasses and small (fresh/
green) trees. Obviously the reflectance properties of senescent
vegetation are not identical to those of fresh vegetation, but
the vegetation class remains the most appropriate for senescent
vegetation. However, we argue that such errors will have a neg-
ligible outcome on our results. First, we have classified in

FIGURE 2. Example 1 of UAV image classification outputs for the Sesia Caresana site. [Colour figure can be viewed at wileyonlinelibrary.com]
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excess of 525 million UAV pixels with this method and we
approximate that any classification errors leading to some con-
fusion as to which brightness levels can be associated to a
given class will average out over this large sample. Second,
we intend to use this data to train deep neural networks and
these have been found to be very robust to noise in the training
data (Rolnick et al., 2018).

Sentinel‐2 image super‐resolution

In order to extend the reach of this method to the smallest pos-
sible rivers, Sentinel‐2 bands with 10m resolution are most rel-
evant. Since only four Sentinel‐2 bands were natively acquired
at 10m, we must consider a pan‐sharpening or super‐resolution
approach. Given that Sentinel‐2 has no panchromatic band,
traditional pan‐sharpening methods are not appropriate
(Brodu, 2017). However, a range of new methods are emerg-
ing, some of which are based on deep learning (e.g. Lanaras
et al., 2018; Gargiulo et al., 2019). Close inspection of these
methods reveals either that source code is not publicly avail-
able, or the methods are not quite integrated into a normal

spaceborne remote sensing workflow that includes atmo-
spheric correction. In our application, full compatibility with
atmospheric correction is essential since we will rely on the
Sen2Cor atmospheric processor used by the ESA to standardize
brightness values across multiple Sentinel‐2 tiles (Main‐Knorn
et al., 2017). Brodu et al. (2017) describe a super‐resolution
method which is fully compatible with atmospherically
corrected Sentinel‐2 imagery. Their approach uses geometric
features which are not band‐dependent in order to meaning-
fully re‐sample the 20m and 60m bands in Sentinel‐2 data to
10m. This method is available as the Sen2Res plugin for the
ESA SNAP open‐source software designed for the processing
and analysis of ESA products. The plugin delivers all 12 image
bands stacked in a single tif file. However, in this work it was
decided not to use bands 1 and 10 which were designed to
detect atmospheric quantities and work a maximum of 10
bands. Pixels in the tif file have values normalized from 0 to 1
which is convenient for the modelling steps that will follow.
At this stage, the only obvious drawback of this
super‐resolution approach is computational cost, it took
approximately sixhours to produce super‐resolved bands
cropped to our 16 survey areas. For the production of the larger

FIGURE 3. Example 2 of UAV classification outputs for the Sesia Arborio site. [Colour figure can be viewed at wileyonlinelibrary.com]
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scale data (i.e. the full river corridor for all our sampled rivers),
we needed to invest over 50hours of computing time. The
computational cost of this super‐resolution method is therefore
not trivial and its necessity is evaluated in this work. However,
the outputs of the process do appear to be very satisfactory, if
computationally expensive (Figure 4).

Data preparation

We begin this step by assessing the co‐registration between the
satellite and drone data. This task is not straightforward. Nor-
mally, positional accuracy of satellite is assessed with relatively
large stable, often man‐made, features. No such features are
available in the drone imagery. We therefore limit ourselves
to a qualitative check that the landform contours in both drone
and Satellite imagery overlap in the same Sentinel‐2 pixel.
However we note that even this determination is not simple
as partial occupancy pixels can raise questions as to the exact
location of a boundary in the Sentinel‐2 data. However, a val-
idation of the UAV‐derived orthoimage with additional data
from the RTK‐GPS gives an average positional accuracy for
the drone orthoimagery of 0.09m. Co‐registration was therefore
deemed adequate.
In order to compare the classification performance of models

trained with UAV‐derived models to those trained without field
data, we first generate a set of so‐called ‘desk‐based’ polygons.
In this case we use photo‐interpretation of the Sentinel‐2
images themselves in order to delineate areas falling within
our three classes. This is simply done in QGIS 3.4 by displaying
the Sentinel‐2 image in false‐colour with an infrared compo-
nent and using a polygon shapefile to manually digitize class
samples. These vector class samples are then rasterized to out-
puts where each pixel holds the class value. Areas that were not

digitized are coded as 0 and will eventually be ignored. We
will refer to this data as the desk‐based label raster. After this
step, we organize the data by cropping the UAV‐derived labels,
the Sentinel‐2 imagery and the desk‐based class rasters to small
areas around the study sites. Therefore for each of the 16 UAV
acquisitions, we have three small georeferenced rasters: a
Sentinel‐2 sub‐image (10 bands), a UAV‐derived label raster
(1 band) and a desk‐based label raster (1 band). Fuzzy member-
ship class values for each Sentinel‐2 pixel can now be deter-
mined by extracting the map coordinates of the Upper Left
(UL) and Lower Right (LR) corners of each Sentinel‐2 pixel.
Within this bounding box, we extract the associated 10000
classified pixels from the 10cm ×10cm UAV‐derived labels
and then calculate membership percentage for each class in
each Sentinel‐2 pixel.

Finally, the data is prepared for machine learning. For
readers less familiar with machine learning, we recommend
Burkov (2019) as a concise text leading to more advanced texts
(e.g. Goodfellow et al., 2016; Chollet, 2017). The models used
here will require two types of label data: crisp semantic classes
and fuzzy classes. We aim to use CNNs as our main classifica-
tion algorithm. CNNs have a huge range of applications across
all fields of science (e.g. language processing, time series, video
processing, biochemistry, etc.). In this work we intend to use
CNN models specific to ‘multiband’ imagery (i.e. multiple
two‐dimensional (2D) rasters repeated for several spectral
bands), we will therefore format our GIS data as
four‐dimensional (4D) tensors immediately ready for CNN pro-
cessing. The tensors used for CNN processing are 4D digital
objects that store multiple images, usually having several
bands, in a single digital object. Video files are an example of
a tensor as they store multiple static RGB images together and
display them according to a fourth dimension, time. In the case
of CNN data, the fourth dimension is merely an indexed list of

FIGURE 4. Example of (A) UAV‐derived label data and corresponding Sentinel‐2 imagery at (B) 10m of spatial resolution and (C) 20 m of spatial
resolution. [Colour figure can be viewed at wileyonlinelibrary.com]
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images and there is no implication of time. The tensor format is
therefore a convenient way of stacking multiple images in a sin-
gle digital file. In the case of large images, CNN can be used to
model local information such as semantic class (e.g. Buscombe
and Ritchie, 2018). However, such image‐specific CNN
models usually require the use of a small tile which gives a
local sub‐sample of the image. In our case of sub‐pixel fuzzy
classification, we will initially assume that the exact size of this
local region is small and will determine the optimal size later.
We therefore use Python to create and format our data as 4D
tensors of small image tiles. We scan each Sentinel‐2 image
and for each pixel extract an (S, S, 10) sub‐image tile where S
is the size of the tile, in pixels, and 10 is the number of bands.
We only use odd numbers for S in order to have a unique cen-
tral pixel for each extracted image tile. These tiles are compiled
as tensors of dimension (Ns, S, S, 10) where Ns is the number of
samples, i.e. the number of extracted tiles. In parallel to the tile
extraction, we extract the class information associated to the
central pixel of each tile. In the case of crisp classes, we have
two options: we can use the desk‐based labels or we can con-
vert the UAV‐derived fuzzy labels. Desk‐based labels are
already in crisp format. For the UAV‐fuzzy labels used as crisp
classes, we keep only those pixels with a pure class which we
define as those pixels where the highest membership percent-
age is >95%. This class becomes the crisp class. Therefore for
the crisp classes, each tile in the tensor has an associated inte-
ger value of 1 to 3 giving the class of the central pixel. This
information is stored in a separate file. In the case of fuzzy clas-
ses, each tensor tile is associated to three floating point values
giving the membership fraction (0–1) for each of three classes
(water, vegetation, sediment) as sampled at the central pixel
of the tile. This information is also stored in a separate file. In
addition, we use a data augmentation procedure to increase
our sample sizes. Data augmentation is common in deep learn-
ing and consists in creating new samples based on small mod-
ifications of existing samples (Chollet, 2017). In our case, for
each sampled tile, we perform three rotations of 90°, 180°
and 270°. After each rotation, we add a small amount of noise
generated separately for each image pixel. For example, in the
case of a 5 × 5 × 10 image tile, we generate 250 samples of
noise. The noise values ranged 1E‐4 to 1E‐3 and are added to
pixel values normalized from 0 to 1 by the super‐resolution
process. Each combination of rotation and noise addition is
considered as a new sample. In the preliminary stages of this
work, we found that the addition of noise was crucial to the
numeric stability of model training process. The augmentation
therefore allows us to generate four effective samples from each
tile initially extracted from the Sentinel‐2 imagery. Each of the
four samples will have the same class labels, but the image tiles
will be rotated and have very slightly different values. The
results are a total of 210172 tile samples extracted from our
UAV‐derived labels and 79650 samples extracted from the
desk‐based labels. These augmented samples will be used to
enhance the training of our models. However, when we vali-
date these models, the augmentation will always be removed
and we will only use raw data.

CNN model selection

We now select a CNN model for use in this work from a range
of possible designs. We use the Python coding language and
the Tensorflow library (Abadi et al., 2015). The tile size men-
tioned earlier must be selected. In addition, there is a very long
list of tunable parameters to be adjusted and architecture
choices to be made. We tested a total of 102 candidate models
that spanned a range of values for the tile size, the depth of the

neural networks, the number of convolution filters (discussed
later) and the optimal input bands to use from the possible 10
Sentinel‐2 bands intended to sample surface characteristics.
For brevity we only present summary findings here. The full
analysis is available in the Supporting Information document
accompanying this article. Our model selection procedure
arrives at three conclusions. First, the use of 10 bands of
super‐resolved image data delivers performance improvements
that are statistically significant when compared to the limited
use of four bands natively acquired at 10m of spatial resolution.
We must therefore conclude that the computationally expen-
sive super‐resolution process is justified. Second, deeper neural
network architectures with a larger number of trainable param-
eters did not deliver statistically significant performance
improvements when compared to smaller networks. Third, a
model using image tiles of 5×5 pixels across Sentinel‐2 bands
2, 3, 4, 5, 6, 7, 8, 9, 11 and 12 with 32 convolution filters deliv-
ered best performance and was significantly better than the
other candidate models (in the statistical sense). In our model
selection analysis we also examine model performance as a
function of the number of training epochs and find that our
optimal model can be trained for 200 epochs with a learning
rate of 5E‐4 without overfitting (Burkov, 2019). Figure 5 (right)
shows the final CNN model architecture. In total the model
has 12931 trainable parameters. This number of trainable
parameters is relatively low compared to other CNN models.
The CNN models that are the basis of media headlines and
set benchmarks for tasks such as facial recognition often have
in excess of one million parameters. For example, Buscombe
and Ritchie (2018) use the MobileNetV2 CNN which has in
excess of 3.7 million trainable parameters. Given that our
model is much smaller, we will refer to our model as a compact
convolutional neural network (cCNN) as in Samarth
et al. (2019). In parallel to our cCNN, we wish to test a
non‐convolutional DNN since such networks have been used
in the past for fuzzy classification (Foody, 1997). We therefore
use a similar architecture to our cCNN where the only differ-
ence is the removal of the 2D convolution layer (Figure 5, left).
Our DNN model has 3362 trainable parameters. The DNN
model will not use tensors as input. By construction, this model
can only accept single pixel brightness values in the training
process. We refer to this as a ‘pixel‐based’ operation. This data
can easily be extracted from the tensor format as the central
pixel (in the XY plane) of the 4D tensor object. Interestingly,
both these architectures can be used for crisp and fuzzy classi-
fication with minimal modifications. Neural networks are in
fact inherently fuzzy classifiers. Any neural network designed
for classification, of any type, will terminate in a layer that
has as many nodes as classes in the label data. In a traditional
crisp classification problem, a trained neural network will take
a new sample and output a likelihood of class membership in
each node. For example, in a three class problem, the network
terminates with three nodes. When a sample returns the highest
membership in node 2, the sample is predicted as class 2. In
order to move between fuzzy and crisp classification we only
need to change the activation function of the final layer to train
the network with either integer (crisp) or float (fuzzy) numeric
values and when final classes are attributed, fuzzy classifica-
tion does not require the determination of the class from the
highest membership and all three class membership predic-
tions are saved. Both the DNN and cCNN are trained for 200
epochs with a low learning rate of 5E‐4. We used an NVIDIA
GTX‐1070 GPU to accelerate training. Given the relatively
low number of parameters in our models, training is completed
in less than two minutes. We also tested the training duration
on a smaller laptop with no graphics processing unit (GPU)
acceleration and an i5 processor. This unit completed the 200
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epochs of training in fourminutes for the cCNN. GPU support is
therefore desirable but not essential for this work.
A crucial aspect of our model selection procedure was an

examination of the cCNN filter patterns. A CNN filter is a con-
volution filter, sometimes called a template or a kernel. During
convolution, the kernel scans the image raster and for each ker-
nel position within the image, a dot‐product is performed and
the result is mapped to a new raster. In cases where the convo-
lution kernel has the same size as the image, the convolution
output is a single scalar value. Readers familiar with image pro-
cessing may recall that by organizing the values in a convolu-
tion kernel, we can engineer filter operations that detect lines
along preferential orientations or basic shapes. Deep learning
with CNN obviates this engineering step by allowing the values
in the convolution to be learned during network training. It
therefore becomes possible to examine the resulting filter
values and assess the CNN performance. Readers should note
from Figure 5 and from the Supporting Information document
that our optimal model uses a filter size which is the same as
the size of our image tiles. Therefore, since we use 32 filters,
each filter will produce a single scalar value passed to the sub-
sequent densely connected layers. In effect, the CNN operation
will produce one new predictor per filter. In our case, the local
image area of the small 5×5 tile (through 10 bands) will be
transformed into 32 new predictors via the convolution opera-
tion. We can examine the convolution filter values in order to
get a better understanding on exactly how the CNN is
converting the 5×5 spatial neighbourhood into new predictors.
Figure 6 summarize Figure S4 from the Supporting Information
document. Here we see the two dominant patterns resulting
from the training of our final model. On the left, we see a pat-
tern where the central pixel has the highest value and will

therefore control the output of the convolution dot‐product.
With this pattern, this CNN filter is using the brightness of the
central pixel to contribute to the final prediction. Readers are
reminded that during tensor construction, the label information
for each tensor is in fact the label data for the central pixel in
the tensor. This use of the central pixel therefore amounts to a
pixel‐based classification. Our cCNN has learned to behave
like a DNN. Additionally, Figure 6 (right) shows an opposite
pattern where the central pixel weight is minimized and where
the outer pixels of the filter make the largest contribution. The
cCNN is therefore also using the outer pixels in the template
to contribute to the final prediction. This is clear evidence of
exactly how our cCNN can use both the central pixel and an
image tile neighbourhood to contribute to predictions.

Experimental structure

We structure this work around three experiments. These use our
available data in different partitions of training and validation
samples that will allow us to test and demonstrate key aspects
of model performance. The main condition in all these experi-
ments is that data used to train models will never be used to
validate these models. There will always be a clear separation
of time and/or space between training and validation datasets.
Readers are also reminded that our initial 52543 samples have
undergone a data augmentation procedure and that we now
have a total of 210172 samples at our disposal for training
UAV‐based models and 79650 samples to train desk‐based
models. However, for both UAV‐ and desk‐based models in
validation, we remove the augmented samples and only use
raw data. Our first experiment aims to test temporal resilience

FIGURE 5. Neural network architectures. (Left) Dense neural network (DNN) architecture with three main node layers of 64, 32 and 16 nodes with
a batch normalization layer. This network has 3362 trainable parameters. (Right) Optimal compact convolutional neural network (cCNN) chosen dur-
ing the sensitivity analysis show in the Supporting Information. This cCNN uses a single convolution layer and has 12931 trainable parameters. Both
networks can be made to deliver fuzzy or crisp classification with a change of the activation function in the three node output layer.
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of trained models. We use label data acquired in 2018 to train
models that will be validated against data acquired in 2017.
Our second experiment aims to test the multi‐river spatial trans-
ferability of models. We use label data acquired for the Rivers
Sesia (2018) and Bonamico (2017 and 2018) to train models
that will be validated with data from the Rivers Po (2017 and
2018) and Paglia (2017 and 2018) and imaged on separate
Sentinel‐2 tiles. The third experiment tests local spatial transfer-
ability of models. We wish to assess if local label data acquired
from one or two sites could be used to classify whole, but sin-
gle, rivers. This experiment is therefore separated in three parts
(Rivers Sesia, Paglia and Bonamico) and we use label data from
one or two sites to train models validated against an additional
separate site. Table 2 summarizes the three experiments and
gives the number of available samples for each.

Benchmark methods

We compare our CNN model to other more established
methods. This aspect of our work has two linked objectives:
we wish to assess if the field‐effort and cost required to collect
the UAV imagery is justified and; if our novel CNN actually
delivers better performance than established methods. In the
case of crisp classification performance, we will use the DNN
as presented in Figure 5 (left) as a comparator method. Training
and validation site selection follows Experiments 1–3 (Table 2).

But here we use different combinations of desk‐based and
UAV‐derived labels as follows: (1) we use the desk‐based labels
to train a model validated with desk‐based labels (from other
sites as per Table 2); (2) we use desk‐based labels to train a
model validated with UAV‐derived labels; (3) we use
UAV‐derived labels to train models validated against
UAV‐derived labels. For the fuzzy classification tests, we use
two comparator methods: linear unmixing and the DNN from
Figure 6. We implement linear unmixing with the Orfeo Tool-
box used as a plugin for QGIS 3.4 (Grizonnet et al., 2017). This
workflow starts by determining endmembers with the auto-
mated method of Nascimento and Dias (2005). Here we input
three classes. Then, the abundance fraction of each component
(the fuzzy classification) is estimated with an unmixing proce-
dure using the Minimum Dispersion Constrained Nonnegative
Matrix Factorization algorithm (Huck et al., 2010). This is a
fully unsupervised procedure and it runs on individual images.
It was therefore executed on each Sentinel‐2 cropped image of
our original dataset and we produced a total of 16 outputs, one
output for each line of Table 1. As this is a fully unsupervised
process, the three classes are not necessarily in the same order
as per our classification scheme. We therefore used visual inter-
pretation of each output to map the linear unmixing class
scheme to our own scheme. Furthermore, because this output
is unsupervised, training data is not relevant. When used in
the experiments described earlier, we will collate the results
of linear unmixing results for the validation sites only, the

Table 2. Summary of the three main experiments. Sample numbers include data augmentation which transforms the initial 52543 samples to an
augmented possible maximum of 210172 samples. Each experiment uses of a portion of the data to train models and reserves the rest for
validation. In the case of validation samples, we do not use augmentation and the data corresponds to the actual Sentinel‐2 pixel samples

Description

UAV‐based Desk‐based

Training
[#]

Validation
[#]

Training
[#]

Validation
[#]

Experiment 1 All data from 2018 in training, all data from 2017 in validation. 150996 14794 53630 6505
Experiment 2 Rivers Sesia and Bonamico in training, Rivers Po and Paglia in

validation.
112676 24375 38813 10231

Experiment 3a Bonamico downstream in training, Bonamico upstream in validation. 47271 3380 11932 1985
Experiment 3b Paglia Acquapendente + Orvieto in training, Paglia Allerona in

validation.
25069 4472 8835 1624

Experiment 3c Sesia Arborio in training, Sesia Caresana in validation. 35808 4021 8427 2633

FIGURE 6. Example of CNN filter patterns showing two key responses. Patches in light blue/white have the strongest response and those in dark
blue have the weakest response. (Left) Central pixel dominates the response, this filter uses the central pixel to contribute to the fuzzy membership
prediction. (Right) Outer pixels dominate the response. This filter uses the spatial neighbours to contribute to the prediction of fuzzy membership. This
is a key function that a DNN cannot perform. [Colour figure can be viewed at wileyonlinelibrary.com]
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training sites are not relevant to this output. The DNN and CNN
are trained with two different types of data and we once again
use our desk‐based labels to assess the value of UAV fieldwork.
We will use the desk‐based labels to train fuzzy DNN and CNN
models. The desk‐based labels do not have any fuzzy values
(all are assumed pure classes) but we can convert this data to
100% membership values (i.e. fraction of 1.0) and let the
models infer fuzzy composition from the end‐member values.
Also, we will use the UAV‐derived label data to train and vali-
date models according to the experiments in Table 2. In sum-
mary, for each experiment described earlier, we have three
sets of results. First, we present crisp classification perfor-
mances using a mix of desk‐based and UAV‐based data. Sec-
ond, we have a set of fuzzy classification results from linear
unmixing, DNN and CNN models that have not used any field
data as training inputs but which will still be validated against
the UAV‐based data. These are uniformly described as ‘desk‐
based’ results/approaches. Finally, we have a set of fuzzy clas-
sifications outputs from the DNN and CNN that were both
trained and validated with UAV‐based data. These will be
described as UAV‐based results/approaches.

Error metrics

We quantify the earlier results with the following error met-
rics. For crisp classification we use a simple accuracy metric
defined as the percentage of pixels having the correctly pre-
dicted class. In reporting fuzzy classification errors, other
works such as Foody et al. (1997) use an overall root‐
mean‐square (RMS) value as a main reported error and then
subdivide this into class errors. We argue that this is overly
optimistic, the overall RMS value includes many small error
predictions from the minority class that will draw the RMS
error down and therefore cannot be used as a single metric
to characterize fuzzy prediction errors across a whole image.
We therefore propose two new error categories: dominant
and sub‐dominant class errors. We define the dominant class
as the class that has the highest membership fraction for each
pixel and the sub‐dominant class as the class which has the
second highest membership fraction. The dominant class
error is calculated by finding the dominant class of a pixel
in the ground‐truth data (UAV‐derived labels) and differenc-
ing it from the predicted membership fraction in the same
class. A dominant class error of �1 means that the predicted

membership fraction is 0 while the actual observed member-
ship fraction is 1. A similar calculation can be made for the
sub‐dominant class errors. In terms of actual error metrics
and quantification, we will report error distributions, the
mean absolute error, the median error (useful for statistical
tests) and the error variance. We find that this new
dominant/sub‐dominant conceptualization of errors has sev-
eral advantages. It is a uniform error metric that can be
applied to all the pixels in an image irrespective of
land‐cover type. In the Supporting Information, we compared
the values for dominant/sub‐dominant errors to error values
explicitly calculated for each class (see Table S5 and
Figure S6). We find similar but statistically different error dis-
tribution. Crucially, the dominant error is higher than each
individual class error and therefore provides a more conser-
vative error estimate. This can be understood since the dom-
inant class selection process concentrates the largest
classification errors into a single category. Unlike the overall
RMS values reported by works such as Foody et al. (1997),
our dominant class median and mean absolute errors can
be applied to any pixel in a fuzzy prediction raster and we
have confidence that our dominant class error does not
under‐estimate the actual error. This of course assumes that
over‐estimating errors is preferred to under‐estimating errors.
We also find that the dominant class error is more suited to
change detection research by allowing us to directly establish
thresholds for meaningful detections of a sub‐dominant class
overtaking a dominant class such as cases where vegetation
colonizes a stable bar of river sediment.

Results

Table 3 presents the results for crisp classification performance.
We note some key overall patterns. When we compare the
accuracies of desk‐based models validated with desk‐based
data against the accuracies of desk‐based models validated
with UAV data, we see that desk‐based validation always
over‐estimates the quality of a classification, sometimes by as
much as 16%. The use of a fuzzy classifier to predict pure crisp
classes gives the best performance. Our cCNN outperforms the
DNN with accuracies ranging from 95.5% to 99.9% and per-
forms above 90% in each experiment. In terms of performance
across the different experiments, Experiment 2 has slightly
lower results. This shows that the task of classifying new rivers

Table 3. Crisp classification results. The term ‘desk‐based’ refers to the use of on‐screen image interpretation and digitization of regions‐of‐interests
with specified pure class areas defined by a human user. These regions of interest can be used as training data or as validation data. The terms ‘UAV
training’ or ‘UAV valid.’ refer to the use of our UAV‐derived labels in either training or validation. Final column presents results of the UAV‐based
method. Fuzzy training means that we train the classifier with fuzzy membership and then crisp the results to obtain classes that are predicted to
be 95% pure

Desk‐based training: Desk‐based
valid.

Desk‐based training: UAV
valid.

UAV training: UAV
valid.

Fuzzy training: UAV
valid.

DNN Experiment 1 85.6 82.4 93.2 99.2
Experiment 2 87.5 82.9 91.5 97.8
Experiment 3a 90.4 82.3 86.4 89.1
Experiment 3b 97.6 83.6 96.5 98.1
Experiment 3c 80.6 76.8 89.5 97.7

CNN Experiment 1 83.4 82.5 94.0 99.3
Experiment 2 79.9 72.1 88.9 95.5
Experiment 3a 86.0 81.0 89.4 98.8
Experiment 3b 97.0 81.0 94.7 99.9
Experiment 3c 82.6 68.7 90.7 96.9
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Table 4. Validation results for desk‐based approaches. Left: results for the Linear Unmixing method (LuM) which is purely unsupervised and has no
training data. The classes of the outputs were interpreted and correctly associated to our class labelling for water, vegetation and sediment. Middle:
results of a fuzzy DNN trained with the desk‐based image interpretation. Right: results of a fuzzy CNN trained with desk‐based polygons. When
training a fuzzy classifier from desk‐based data, we treat the digitized classes as pure class and attribute them a 100% membership for their given
class observation. The network is left to infer partial memberships from these endmembers. We give the mean absolute error (MAE), the median
error (MDE) and the error variance (EVAR) expressed in percentages

LuM DNN CNN

MAE MDE EVAR MAE MDE EVAR MAE MDE EVAR

Dominant class errors
Experiment 1 51.6 �52.9 4.2 20.9 �0.1 10.5 24.4 �2.8 13.1
Experiment 2 71.2 �67.6 4.8 26.2 �5.5 11.3 25.5 �5.0 12.4
Experiment 3a 60.1 �64.4 5.1 24.2 �3.9 10.5 57.1 �56.9 3.0
Experiment 3b 75.0 �81.3 4.5 22.8 �2.1 10.1 57.0 �50.3 2.7
Experiment 3c 65.1 �68.2 2.9 52.8 �56.9 16.2 71.6 �73.9 3.3
Sub‐dominant class errors
Experiment 1 24.2 �22.3 5.4 11.1 0.4 5.4 11.2 0.6 5.6
Experiment 2 13.7 �20.2 4.4 10.6 0.0 4.7 10.5 0.0 5.6
Experiment 3a 20.2 �18.5 3.1 16.7 0.4 7.1 10.7 2.3 2.4
Experiment 3b 17.6 �8.4 3.2 10.2 0.5 9.5 9.0 2.2 1.9
Experiment 3c 12.3 15.7 2.5 13.0 0.1 4.0 8.3 1.2 1.9

FIGURE 7. Dominant class error histograms from desk‐based methods. Horizontal axes give probability density and the vertical axes give the error
expressed as a fraction from �1 to 1. An error of �1 signifies that the predicted dominant class membership value for a pixel is 0 with associated
ground‐truth observation of 1. Desk‐based models are fuzzy models trained with the manually digitized polygons.
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not seen in the training data is the most difficult. However, our
reported accuracy of 95.5% can still be considered as a state‐
of‐the‐art performance.
We now consider fuzzy classification results. Table 4 pre-

sents the error statistics for the desk‐based approaches where
UAV‐derived data are not used to train models. Figure 7 pre-
sents the error distributions for the associated dominant class
errors. Figure 8 presents the error distributions for the associ-
ated sub‐dominant class errors. Table 4 shows that the linear
unmixing approaches performed very poorly with dominant
class prediction errors as high as 75%. Visual checks of the
data confirm that whilst the overall pattern seems correct,
actual membership predictions are small and clearly under‐
estimated. This is confirmed by the fact that the median
errors for linear unmixing are strongly negative. If we look
at Figure 7 we see that the dominant class prediction error
distributions have modal peaks well below 0. In the case of
sub‐dominant errors for linear unmixing, the median errors
remain large. Dominant class errors for the desk‐based fuzzy
DNN are somewhat better with the exception of Experiment
3b which again has a very high median error. However if

we look at the error distributions for the desk‐based DNN
in the middle column of Figure 7, we see that they are often
characterized by a strong modal peak for errors of 0 and then
a nearly uniform distribution of errors between �1 and 0.
The peak at errors of 0 is encouraging, and strongly impacts
the statistics in Table 4. However, the quasi‐uniform portion
of this distribution is problematic. It means that where the
error is not 0, the actual magnitude of the error has a nearly
equal probability of having any value from 1 to 0. Ideally, we
would prefer to have error distributions closer to a normal
curve where low magnitude errors are more probable than
high magnitude errors. The subdominant class errors reported
in Figure 8 show similar behaviour. The performance of the
desk‐based CNN is in fact worse than that of the
desk‐based DNN. Dominant and sub‐dominant class errors
for Experiment 3 are all very high. Overall, we again find that
Experiment 2 seems to be the hardest case.

We now consider the performance of fuzzy models trained
with the benefit of UAV‐derived field labels. Table 5 gives error
statistics and Figures 9 and 10 give error distributions for dom-
inant and sub‐dominant classes, respectively. In Table 5, we

FIGURE 8. Sub‐dominant class error histograms from desk‐based methods. Horizontal axes give probability density and the vertical axes give the
error expressed as a fraction from �1 to 1. An error of �1 signifies that the predicted dominant class membership value for a pixel is 0 with associated
ground‐truth observation of 1. Desk‐based models are fuzzy models trained with the manually digitized polygons.
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note the absence of catastrophic errors. The highest mean abso-
lute error in Table 5 is 23% for the DNN model. The highest
magnitude median error is 11.3% again for the DNN model.
The error distributions of Figures 9 and 10 show a much more

desirable pattern when compared to the desk‐based DNN
outputs (reproduced in Figures 9 and 10 from Figures 7 and
8, respectively) with low magnitude errors being more probable
than higher magnitude errors. In Table 5, the CNN generally
performs better with the exception of Experiment 2 where the
DNN has slightly out‐performed the CNN.

In order to add context to the statistical results presented ear-
lier, we will now examine a sample of fuzzy class rasters in
map format (Figures 11‐13). Figure 11 shows a sample from
Experiment 1. We show the original cropped Sentinel‐2 image,
the UAV‐derived labels, the fuzzy class obtained by the
desk‐based DNN and the fuzzy class obtained by the
UAV‐based DNN. Here we clearly see that despite seemingly
encouraging error statistics (see Table 4), the performance of
the desk‐based model is not acceptable in the case of this sin-
gle image (one of six validation sites for Experiment 1). In terms
of areas, the desk‐based model has successfully predicted the
large area of sediment and some of the vegetated area. But
the prediction has a high percentage of vegetation in the wetted
perimeter which is clearly wrong. The error statistics are domi-
nated by the large area of correctly predicted pixels, but the
outcome of the desk‐based model cannot be reliably used in
any subsequent analyses. Figure 12 shows an example from

Table 5. Validation results for UAV‐based approaches. Results for
fuzzy DNN and CNN models trained with the UAV‐derived fuzzy
labels. Mean absolute error (MAE), the median error (MDE) and the
error variance (EVAR) are expressed in percentage

DNN CNN

MAE MDE EVAR MAE MDE EVAR

Dominant class errors
Experiment 1 18.5 �11.3 4.0 14.2 �4.2 4.6
Experiment 2 17.2 �3.8 6.1 18.0 �5.5 5.9
Experiment 3a 23.0 �10.9 8.1 20.7 �4.6 7.6
Experiment 3b 21.0 �10.4 5.0 14.8 �2.4 4.1
Experiment 3c 19.0 �10.0 4.8 17.0 �5.0 6.2
Sub‐dominant class errors
Experiment 1 13.8 4.7 3.5 11.4 2.2 3.6
Experiment 2 13.3 1.8 4.3 13.8 2.5 3.1
Experiment 3a 20.0 6.8 7.3 17.9 1.8 6.0
Experiment 3b 11.7 4.2 2.1 10.9 0.7 3.1
Experiment 3c 14.4 10.2 2.6 11.2 1.6 3.1

FIGURE 9. Dominant class error histograms from UAV‐based methods. Desk‐based DNN method results from Figure 7 are reproduced for compar-
ison. Horizontal axes give probability density and the vertical axes give the error expressed as a fraction from �1 to 1.
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Experiment 2. In this case, the error statistics shown in Table 5
show that the DNN model had a slightly better performance.
However, Figure 12 shows both the UAV‐based DNN and
CNN models. Close examination will show a systematic
narrowing of the sediment banks and an under‐estimation of
the wetted perimeter. In Figure 12, the CNN model predictions
are much closer to the UAV‐derived ground‐truth labels. Simi-
larly, Figure 13 shows an example from Experiment 3. Here
we can see that the CNN fuzzy predictor has produced a closer
semblance of the actual pattern of channels. Both Figures 12
and 13 show examples of small errors that do not have a large
weight in the calculation of statistics but which are dispropor-
tionately important for fluvial geomorphology studies.
Finally, we show how fuzzy class rasters produced with our

cCNN model can be deployed at larger scales. We trained a
master model using all 210172 training samples. We then
applied it to produce a total of 294 linear kilometres of river
corridor classifications for the Po, Sesia, Paglia and Bonamico
Rivers as imaged in 2018 by Sentinel‐2. These cannot be
clearly displayed in static format, but they have been made
available to the reader in the online data and can be opened
by any GIS package. In order to demonstrate a large‐scale
application, we use a 10km stretch of the River Paglia and

show how our approach can detect meaningful net change
over a oneyear period. Figure 14 (along the diagonal) shows
this 10km reach of the Paglia for years 2017 and 2018.
Figure 14 also shows insets for three sediment bars, A, B and
C, where vegetation growth can be seen. Figure 15 shows
membership distributions for the dominant and sub‐dominant
classes of vegetation and sediment for each bar and for 2017
and 2018. Bar A is included in the Paglia Allerona UAV acqui-
sition site. Bars B and C were not included in any UAV survey.
From the UAV data for bar A, we count the number of pixels (@
10cm) as a percentage of the total for each class. Bar A had
36% sediment pixels in 2017 and 21% in 2018. Vegetation
pixels occupy 57% in 2017 and 73% in 2018. For the fuzzy
model predictions for bar A, the median sediment membership
for 2017 is 34% (�2% error) and 16% (�5% error) for 2018.
Vegetation membership was 62% (+5% error) in 2017 and
79% (+6% error) in 2018. In the case of the fuzzy predictions
for bar A, a Mann–Whitney U‐test confirms that the medians
of these distributions are significantly different with a p‐value
of 5E‐28 for the 2017/2018 sediment membership pairing and
1E‐18 for the 2017/2018 vegetation membership pairing. We
now consider fuzzy predictions for bars B and C and use
U‐tests to establish significance of the observed changes. For

FIGURE 10. Sub‐dominant class error histograms from UAV‐based methods. Desk‐based DNN method results from Figure 8 are reproduced for
comparison. Horizontal axes give probability density and the vertical axes give the error expressed as a fraction from �1 to 1.
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bar B, median sediment membership in 2017 was 46% and
27% in 2018 (p‐value ¼ 6E‐40). Vegetation median member-
ship was 50% in 2017 and 66% in 2018 (p‐value ¼ 1E‐11).
For bar C, median sediment membership was 75% in 2017
and 59% in 2017 (p‐value ¼ 2E‐03). Vegetation median mem-
bership was 24% in 2017 and 40% in 2018 (p‐value ¼ 1E‐03).

Discussion

We have demonstrated that classification models, both crisp
and fuzzy, trained with the benefit of ground‐truth data derived
from low‐altitude UAV flights systematically deliver better per-
formance. Our cCNN, trained with UAV‐derived label data,
delivers optimal performance for both crisp and fuzzy classifi-
cation of Sentinel‐2 data and it can identify pure class pixels
with an accuracy up to 99.9%. Similar models trained with
desk‐based data, not having the benefit of field observations,
identify pure class pixels with a reduced accuracy of 81%. In
terms of fuzzy classifications, we find that our cCNN delivers
the optimal error statistics (Table 4) confirmed by well struc-
tured error distributions (Figures 9 and 10) and visually accu-
rate fuzzy classification outputs (Figures 11–14). Conversely,
any modelling approach that did not benefit from the
UAV‐derived labels had markedly degraded performances
(Table 3), poorly structured error distributions (Figures 7 and
8) and unsatisfactory fuzzy classification outputs (Figure 11).

Similarly, Feng et al. (2018) note that linear mixing approaches
do not always give consistent and easy to interpret results when
predicting class memberships.

Our findings therefore support the continued importance of
fieldwork as a primary data source (Lane, 2020). In this first
published example of UAV imagery applied to the problem
of satellite image classification, we show that drone surveys
can be used as a cost‐effective tool to extend the value of
local fieldwork to regional scales. We have evidenced three
possible application scenarios where we attempt to predict
fuzzy membership for the main land‐cover elements of the
river corridor: water, vegetation and sediment. In our first
experiment we show that UAV surveys acquired at multiple
sites and for multiple rivers can satisfactorily predict fuzzy
memberships for the same sites and rivers, but acquired in
the previous year (median error of �4.2% and mean absolute
error of 14.2%). This demonstrates that fuzzy models can
transfer to different Sentinel‐2 tiles of the same location, but
for different times. This is an interesting finding for regional
studies aiming to monitor/characterize several rivers over a
period of several years. As a consequence, it is not necessary
to fund annual field survey, but it is sufficient to guarantee a
biennial UAV acquisition to achieve a good model
performance.

In our second experiment we show that UAV surveys
acquired at for two rivers can produce models that can satisfac-
torily predict fuzzy memberships for two new rivers as imaged

FIGURE 11. Example of results from Experiment 1. The four sub‐plots have the same scale, orientation and extent. Colour bars give the legend for
two‐class mixture ratios with fuzzy memberships expressed as 0–1 fractions. Despite seemingly encouraging statistics, the desk‐based DNN approach
has performed poorly when predicting areas dominated by water and vegetation. [Colour figure can be viewed at wileyonlinelibrary.com]
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in two separate Sentinel‐2 tiles (median error of 5.5% and
mean absolute error of 18.0%). The obvious caveat here is that
all our field sites are in Italy. Whilst Italy does have a very wide
range of river types with strong north–south gradients of tem-
perature, hydrology and geology, our data obviously does not
include tropical rivers, arctic rivers, bedrock rivers, etc. There-
fore, from a global perspective, our data spans a relatively sim-
ilar range of conditions. However, whilst the Rivers Po and
Sesia are in the same catchment and are arguably similar, the
Rivers Paglia and Bonamico are markedly different with the
Paglia being a small single thread channel with exposed
paleo‐marine clays in the central Appenines and the Bonamico
being an actively braiding channel with high sediment supply
and transport rates in the Southern Appenines but also with a
very episodic hydrology characterized by periods of flash
floods contrasted with extreme, almost ephemeral, low flows
(Figure 1). Nevertheless both the statistics and the visual
appraisal of outcomes were satisfactory. This finding therefore
shows that classification models trained from localized UAV
survey data can be extended on a regional scale. Our first
two experiments used in excess of 100k augmented samples
in training supplied by 8 to 10 UAV surveys.
In our third experiment we explored the lower limit of training

requirements by testing the classification of single rivers based
on only one or two UAV acquisitions. The median errors range
from �5% to 2.4% and mean absolute errors range from
14.8% to 20.7%. Interestingly, within Experiment 3, the ranking
of errors follows the same order as that of the number of training

samples. However this does not hold for the overall results. The
errors for Experiment 3 are similar to those reported for Experi-
ments 1 and 2 and we conclude that successful fuzzy classifica-
tionmodels can be producedwith a one or, preferably two, UAV
surveys. In terms of surface area, Experiment 3 uses surveys cov-
ering from 0.6km2 to 1.1km2. We therefore propose a rule of
thumb that for a given river at a given time, UAV surveys totalling
~1km2 offer a reliable training sample for classification models
applicable to Sentinel‐2 imagery. With the current generation
of low‐cost drones and associated flight planning software apps,
this target is readily achievable in a single day. Given that
Sentinel‐2 tiles are 100km wide, this local acquisition has the
potential to train a classification model applicable to river corri-
dor lengths in excess of 100km. However, if the river corridor
undergoes significant morphological transitions within the
Sentinel‐2 tile, we recommend caution and the deployment of
additional drone surveys. If several square kilometres of UAV
surveys are available, the methods presented here are capable
of large‐scale surveys and they can deliver nuanced change
detection analysis. Even at smaller scales, we see repeated
evidence that the fuzzy classification approach does partially
mitigate for the resolution of the Sentinel‐2 data with smaller,
pixel‐scale, features readily visible in fuzzy class rasters
(Figures 12 and 13). Similarly, the results shown in Figure 15
could not be derived from a traditional crisp, semantic, classifi-
cation workflow. Here we see the growth of vegetation and
cases where vegetation overtakes sediment as the dominant
class of the bar (bars A and B), or alternatively, where the

FIGURE 12. Sample results from Experiment 2. The four sub‐plots have the same scale, orientation and extent. Despite the DNN have slightly better
outcome statistics, we see that in this case, the wetted area of the channel seems under‐estimated. This is a small area which mitigates the impact of
the errors on the statistics, but for fluvial studies, this is an important error. [Colour figure can be viewed at wileyonlinelibrary.com]
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vegetation class increases in membership but marginally
remains as the sub‐dominant class of the bar (bar C).
A first limitation to note in this work is the lack of significant

seasonal variability in our data. Surveys in central and northern
Italy were carried out in a window from late spring to late sum-
mer and the climate in southern Italy displays less variation
across the year. The models and results we present here must
only be considered as valid during summer and thus useable
for the monitoring of net annual change. In the case of applica-
tions where seasonal changes are required, especially if vegeta-
tion and/or snow classification is important, we recommend
additional drone survey deployment in order to sample sea-
sonal changes and the addition of extra classes in the models
as appropriate. Another limitation to this work has been the
requirement for computationally expensive super‐resolved
Sentinel‐2 imagery. In the Supporting Information, we find that
the use of 10 Sentinel‐2 bands delivered the best performance.
However, we did find that some models using only Sentinel‐2
bands 2, 3, 4 and 8 (natively acquired at 10m of spatial resolu-
tion) could deliver median errors below 10% and mean abso-
lute errors below 20% (Table S2, Supporting Information). If
the computational overhead of super‐resolution is not an
option, the methods presented here can still be used with the
2, 3, 4 and 8 band combination with an acceptable sacrifice
of data quality. When evaluating the performance of this lim-
ited band‐set, we recommend using multiple approaches. Dur-
ing this work it was observed that scalar error statistics are not
entirely reliable if taken alone. In addition to the mean absolute
error, median error and error variance we also experimented

with the RMS error and the standard deviation of error. We con-
sidered these errors for each individual class and also for our
newly developed dominant/sub‐dominant class approach. All
of these metrics have strong and weak points. Similarly to other
authors, we found that the RMS was too heavily influenced by a
small percentage of classification errors which lead to incorrect
rankings of overall model performances (Willmott and
Matsuura, 2005, 2006). But we found that using median error
and error variance were effective because median values can
readily be tested for significant change with a standard
Mann–Whitney U‐test and variance with a Brown–Forsyth test.
We found that using class‐specific error statistics made it diffi-
cult to rank overall model performance and were not practica-
ble in the determination of the optimal CNN architecture and
parametrization. In fact, we found that the production of a sin-
gle error statistic based on a concatenation of all the
class‐based error predictions gave mean absolute and median
errors that were artificially small and which under‐estimate
the error a user can expect from a fuzzy class prediction
(Table S6 of Supporting Information). Therefore, in the end,
we decided to use dominant and sub‐dominant class median
errors, mean absolute errors and error variances but to accom-
pany the scalar statistics with a display of error distributions and
an explicit examination of some actual fuzzy classification out-
puts. Overall, the errors reported here appear slightly higher
than reported by Foody et al. (1997). These authors use Landsat
7 data at 20 m in a similar three‐class problem in order to
develop a fully fuzzy model for AVHRR data with a resolution
of 1.1km. We note that for the testing data, these authors find

FIGURE 13. Sample result from Experiment 3a. The four sub‐plots have the same scale, orientation and extent. In this case the DNN mean absolute
error was 3% lower than for the CNN. Nevertheless, we see errors that are small in scale but potentially very important in the context of fluvial study.
For example, the small water body on the bottom has been interpreted as an equal mixture of water and sediment. [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 14. Fuzzy classifications for a 10km reach of the River Paglia for years 2017 and 2018. We show three sediment bars, A, B and C, where
new vegetation growth is visible. Bar A is included in the Paglia Allerona UAV acquisition site. Bars B and C were not included in any UAV survey.
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15. Membership histograms for sediment and vegetation classes of bars A, B and C from Figure 14. [Colour figure can be viewed at
wileyonlinelibrary.com]
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a best RMS error of roughly 8% to 9%. We argue that this differ-
ence in quality can be explained by the resolution of the label
data. When using Landsat data at 30m spatial resolution, the
scale of the Landsat pixel remains much larger than the small
features such as individual trees and channels. The Landsat
acquisition at 30m will have the usual smoothing effect on
the edges of natural features smaller than 30m. In our case,
the use of hyperspatial UAV‐derived label data at 10cm implies
that our training data approaches the full spatial variability
found in our study landscape. This will increase the scatter in
the fuzzy models because small isolated patches as small as
10cm ×10cm can make a contribution to the fuzzy member-
ship calculation even if they do not impact the reflected inten-
sity of radiation.
Finally, we note that alternate sources of training data may be

acceptable. In the Supporting Information document, task 8,
we present a brief analysis of the effect of resolution. Using a
local median filter, we have downsampled our UAV‐derived
labels to spatial resolutions of 50cm, 1m and 3m. Whilst the
effect of downsampling was to systematically degrade the qual-
ity of the fuzzy class rasters (see Table S7 and Figure S8 in
Supporting Information), we find mean absolute errors in the
area of ~20 to 25% which might be deemed acceptable for cer-
tain applications. This opens the way for other sources of train-
ing data such as lower resolution airborne surveys or
inexpensive satellite data such as Ikonos or Planet Scope.

Conclusion

We have demonstrated a workflow where low‐cost drone data
is integrated to satellite imagery. By leveraging new
super‐resolution algorithms and the sub‐pixel information
made available through fully fuzzy classification models
trained with UAV‐derived label data, our method delivers con-
tinuous metric‐scale information from freely available satellite
imagery which is suited to fluvial geomorphology investiga-
tions. For example, a loss of pure‐class sediment pixels accom-
panied with an increase of the vegetation class membership for
a gravel bar indicates re‐colonization of this bar by young
plants and hence the creation of potential new habitats
(Figures 14 and 15). Fuzzy classification allows us to detect
growing vegetation well before it becomes dominant and shifts
the crisp class of the pixel. This in turn has implications for the
stability and age of the bar surface. In future applications, we
expect the labour intensive manual OBIA element of the
workflow to be replaced with emerging deep learning classi-
fiers that are now achieving pixel‐level classification perfor-
mances as high as 99% (Buscombe and Ritchie, 2018;
Carbonneau et al., 2020). Furthermore, the cost of the method
could be lowered by developing advanced co‐registration
methods which could correct for the expected metric‐scale off-
sets that occur when using direct georeferencing drone surveys
as presented in Carbonneau and Dietrich (2017). We also per-
ceive a need for progress in the area of deep learning based
super‐resolution algorithms (e.g. Lanaras et al., 2018), specifi-
cally trained to atmospherically correct Sentinel‐2 data for flu-
vial corridors, this would facilitate the mass‐production of
Sentinel‐2 data with 10m of spatial resolution across all bands.
All these elements of progress are incremental and should not
represent a major challenge. This work therefore opens a path-
way to operationalized fluvial remote sensing suitable for both
research and management applications at regional and
national scales.
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Data S1 Document.

Figure S1. Convolutional neural network (CNN) architectures.
(Left) The basic CNN architecture used in this work. Ns is the
number of samples, S is the X‐Y size of the image tile and Nb
is the number of image bands used. Note that this network
has a single convolutional layer with the filter size equal to
the tile size. This returns 1 scalar value per filter and therefore
creates 1 new predictor per filter. (Right) Deeper network archi-
tectures. These networks use an increasing number of convolu-
tion layers as tile size S increases and always with 3 × 3 × Nb
size filters. For example, for tile sizes of 9, we use a total of 4
convolution layers. The final result is again a single scalar pre-
dictor for each convolution filter. Note that we do not use
image padding after the convolution filters because for such
small tiles, the padded area (e.g. 2 pixels out of a width of 9
pixels) would represent a significant portion of the image.

Figure S2. Training performance of compact architectures. Top:
model using 5 × 5 pixel tiles and 128 filters with 10 bands. Bot-
tom: model using 7 × 7 pixel tiles and 128 filters with 10 bands.
Both models have a single convolution layer.

Figure S3. Training performance of deep architectures. Top:
model using 5 × 5 pixel tiles and 128 filters with 10 bands. This
model has two convolution layers. Bottom: model using 7 × 7
pixel tiles and 128 filters with 10 bands. This model has three
convolution layers.

Table S1. Long‐list model selection results. We use five‐fold
cross‐validation scored with the mean absolute error. The table
gives the mean of the five‐folds with standard deviation of the
five‐folds in brackets. Entries highlighted in yellow have a
mean absolute error of < 0.10 and an interfold standard devia-
tion < 0.01. These models are kept for the next step.

Table S2. Dominant class error and number of parameters for
long‐list models. Model names are coded following their
parameters: D or C for deep or compact, 5, 7 or 9 for the size
of the image tiles, 8, 32, 128 or 512 for the number of filters
and 4B or 10B for the 4 band or 10 band cases. For example,
the compact architecture model using 7 × 7 image tiles, 8 filters
and 4 bands will be notated: S_7_8_4B. We give mean abso-
lute error (MAE), median error (MDE) and error variance
(EVAR).

Table S3. Mann–Whitney p‐values for short‐listed models A–
AB, p‐values of less than 0.01 are notated as 0.00. Results in
red highlight model pairs which are not significantly different
in median rank at the 99% level. Model pairs highlighted in
blue fail at the 99% level, but pass at the 95% level. Two top
performing models are highlighted in green.

Table S4. Brown–Forsythe p‐values for short‐listed models A–
O, p‐values of less than 0.01 are notated as 0. Results in red
highlight model pairs which are not significantly different in
variance at the 99% level. Model pairs highlighted in blue fail
at the 99% level, but pass at the 95% level. Two top performing
models are highlighted in green.

Figure S4. Filter responses for the selected compact model
using 5 × 5 image tiles, 32 filters and 10 bands.

Figure S5. Filter responses for the selected deep model using 9
× 9 image tiles, 128 filters and 10 bands.

Table S5. Comparison of error metrics for the dominant and
sub‐dominant classes to error metrics for each individual class
in the case of Experiment 1.

Table S6. Overall class‐based median errors (MDE) and mean
absolute errors (MAE) for all experiments.

Figure S6. Class errors. This figure compares the dominant and
sub‐dominant class error distributions to those associated to
each specific class.

Figure S7. Results of naive experiment with all sites of the Po
basin (i.e. Rivers Sesia and Po) acquired in 2017 used as both
training and validation. Data from sites on the Sesia River pre-
sents abnormalities and were discarded from further analysis.

Table S7. Mean absolute errors for downsampling scenarios.
Fuzzy classifications were produced with the optimal compact
convolutional neural network (CNN) model using a tile size of
5 × 5 pixels and 32 filters. In the yellow highlighted area, we
reproduce values from Table 5 in the main article produced
from the original unmanned aerial vehicle (UAV) class rasters
at 10 cm spatial resolution.
Figure S8. Effect of resolution. Distributions for the mean abso-
lute dominant class error for optimal compact convolutional
neural network (CNN) fuzzy predictions based on unmanned
aerial vehicle (UAV) data downsampled from 10 cm to
50 cm, 100 cm and 300 cm. Distributions for Experiments 3b
and 3c are poor, but in other cases, the pattern of errors is rea-
sonable indicating that this data may be an acceptable
compromise.
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