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1. Introduction

The identification problemof systemof simultaneous equations
(SSE) lies at the heart of classical econometrics, see e.g. Koopmans
(1949). Rank (and order) conditions for identification of these
systems are well summarized in Fisher (1966) or Sargan (1988).

Simultaneous systems of cointegrating (CI) equations have re-
vived interest on SSE over the last three decades, especially for
variables integrated of order 1, I(1), see Engle and Granger (1987).
When identifying restrictions are placed only on the CI parameters,
the rank and order conditions for identification for I(1) simultane-
ous systems of CI equations, here indicated as I(1) SSE, coincide
with the classical ones for SSE, see e.g. Saikkonen (1993), Davidson
(1994) and Johansen (1995). The present paper discusses identi-
fication for SSE with integrated variables of order higher than 1,
when restrictions are only placed on the CI parameters, and shows
that the rank and order conditions have relevant differences in this
higher order case.
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CI SSE with variables integrated of order 2, or I(2) SSE, have
been used to accommodate models of stock and flow variables,
of inventories, and of consumption, income and wealth, see Klein
(1950), Hendry and von Ungern-Sternberg (1981) and Granger and
Lee (1989). A different rationale for I(2) SSE is provided by the
literature on integral control mechanisms in economics initiated
by Phillips (1954, 1956, 1957) in relation to the Error Correction
Mechanism, EC, see Haldrup and Salmon (1998).

In I(2) systems, CI equationsmay involve both stocks and flows;
these equations are called ‘integral control’ in the EC literature,
or ‘multi-cointegrating’ relations (multi-CI), see Granger and Lee
(1989). They are also a special case of ‘polynomial-cointegration’
relations, as introduced by Engle and Yoo (1991). A different type
of CI equations consists of linear combinations of flow variables
only; they represent balancing equations for flows, and they called
‘proportional control’ relations in the EC literature.

Identification of I(2) SSE has been addressed mostly through
‘normalization’ schemes, both in the parametric case, see Johansen
(1997), and in the semi-parametric approach of Stock and Watson
(1993), where the short-run dynamics are not estimated paramet-
rically.

The purpose of the present paper is to discuss the identification
problem in the I(d) SSE, with d = 2, 3, . . . , allowing for the
possibility of over-identification, giving rank and order conditions.

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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These conditions generalize the ones valid for I(1) SSE, to which
they reduce setting d = 1.

The rest of the paper is organized as follows: Section 2 gives
motivation via a simplemodel of inventories; Section 3 defines I(2)
SSE and discusses observational equivalence; Section 4 presents
rank and order conditions. Section 5 discusses identification for
higher order systems; Section 6 concludes. Proofs are placed in an
Online Appendix.

In the following a := b and b =: a indicate that a is
defined by b; (a : b) indicates the matrix obtained by horizontally
concatenating a and b. For any full column rank matrix H , col(H)
is the linear span of the columns of H , H̄ indicates H(H ′H)−1 and
H⊥ indicates a basis of the orthogonal complement of the space
spanned by the columns of H . Moreover PH := H(H ′H)−1H ′

indicates the orthogonal projection matrix on the columns of H ,
and PH⊥

= I − PH denotes the orthogonal projection matrix on
its orthogonal complement. vec is the column stacking operator,
⊗ is the Kronecker product, diag(A1, . . . , An) is a matrix with
A1, . . . , An as diagonal (non necessarily square) blocks and zeros
elsewhere.

The vector process Xt is said to be integrated of order d (with
integer d), I(d), when ∆dXt − mt = F(L)εt is a stationary linear
process, mt is a deterministic process, L is the lag operator, ∆ :=

1 − L and F(z) =
t

i=0 Fiz
i is convergent in the disk Ua := {z :

|z| < 1+ a}, a > 0. Here it is assumed that F(z) is of full rank over
Ua with the possible exception of z = 1, where the MA impact
matrix F(1) is assumed to be non-zero, see Johansen (1996). When
F(1) is of full rank, the process is said to be ‘non cointegrating I(d)’,
indicated as ncI(d).

2. Motivating example

This section reports a model of inventories taken from Granger
and Lee (1989), that motivates the derivations in the paper.
Let yt and wt represent sales and production of a (possibly
composite) good. Sales yt are market-driven and trending; in
particular Granger and Lee assume that they are I(1). Production
wt is chosen to meet demand yt , i.e. yt and wt have the same
trend. Hence zt := wt − yt , the change in inventory, is stationary.
This corresponds to a proportional control relationship among the
flow variables ∆Xt := (wt : yt)′; in other words ∆Xt is CI with
cointegrating vector (1 : −1)′, i.e.

(1 : −1)∆Xt = u1t , (2.1)

where u1t is a stationary process. The stock of inventories Zt =t
i=1 zi + Z0 can be expressed in terms of the cumulated produc-

tion, Wt =
t

i=1 wi + W0 and cumulated sales Yt =
t

i=1 si + Y0,
as Zt = Wt − Yt . Because wt and yt are assumed to be I(1),Wt and
Yt are I(2).

The principle of inventory proportionality anchors the inven-
tory stock Zt to a fraction of sales yt , i.e. it implies the multi-CI re-
lationship Zt = ayt+u0t , with u0t stationary,whichmay bewritten
as

(1 : −1 : 0 : −a)


Xt
∆Xt


= u0t . (2.2)

Observe that the CI relations (2.1) and (2.2) form an SSE of two
equations,
1 −1 0 −a
0 0 1 −1


Xt

∆Xt


= ut , (2.3)

where ut := (u0t : u1t)
′ is a stationary error term.

The present paper investigates the following question: is the
multi-CI vector in (2.2) unique (with or without the 0 restriction in
the third entry)? Pre-multiplication of (2.3) by the following 2× 2
matrix

Q =


1 b
0 1


(2.4)

with generic b, gives a system of equations with (1 : −1 : b :

−(a + b))′ in place of (1 : −1 : 0 : −a)′ as the first equation (the
multi-CI relation). Onemay expect that, when the third entry of the
multi-CI vector is restricted to 0, the first equation (as well as the
system) is identified.

This example, which motivates the derivations in the paper,
is deliberately very simple, with only one proportional control
relationship associated with the differenced (single) multi-CI
relation. In the general case, discussed in the following section,
there may be additional proportional control relationships.

3. I(2) simultaneous system of equations

This section introduces the I(2) SSE, discusses Observational
Equivalence (OE) and the class of Q transformations on the CI
parameters that induces OE. Let Xt be a p×1 vector of I(2) variables.
The multi-CI relations involving Xt are of the type

β ′Xt + υ ′∆Xt =


β ′ υ ′
  Xt

∆Xt


= µ0t + u0t (3.1)

where β and υ are p × r and β is of full column rank r , r < p, and
u0t is stationary. Here µ0t denotes a deterministic vector.

The first difference of Eq. (3.1), β ′∆Xt + υ ′∆2Xt , is also
stationary; this implies that β ′∆Xt is stationary, given that ∆2Xt is
stationary, because Xt is I(2).Moreover, other CI relations involving
only ∆Xt can be present in the form γ ′∆Xt where γ is p× s, of full
column rank and linearly independent from β , with s < p − r .
Taken together, the proportional control relations are given by

γ ′

β ′


∆Xt =


0 γ ′

0 β ′


Xt

∆Xt


= µ1t + u1t , (3.2)

where u1t := (u′

1γ ,t : u′

1β,t)
′ is a stationary process, u1β,t :=

∆u0t − υ ′∆2Xt , with (u′

0,t : u′

1γ ,t)
′ an ncI(0) process, and µ1t

denotes a deterministic vector.
Collecting (3.1) and (3.2), the following system of k := 2r + s

stationary SSE results

ζ ′


Xt

∆Xt


=


β ′ υ ′

0 γ ′

0 β ′


Xt

∆Xt


= µt + ut , (3.3)

where ζ ′ indicates the matrix of CI SSE coefficients, µt := (µ′

0t :

µ′

1t)
′ and ut := (u′

0t : u′

1t)
′ is stationary.

Eq. (3.3) is the relevant SSE for the discussion of identification
in I(2) cointegrated system. Note that ζ ′ contains 0 entries in the
lower left corner and presents cross-equation restrictions, given by
the presence of β ′ in the first and third block of rows.2

3.1. The identification problem

This subsection describes theQ transformation that gives rise to
the identification problem in the I(2) SSE. Consider pre-multiplying
ζ ′ in Eq. (3.3) by Q with

Q :=


Q00
r×r

Q0γ Q0β

0 Qγ γ
s×s

Qγ β

0 0 Q00

 (3.4)

2 Note that the CI SSE could be also written as ζ ′(X ′
t : ∆X ′

t−n)
′ for n = 1, 2, ...,

because ζ ′(X ′
t : ∆X ′

t−n)
′
− ζ ′(X ′

t : ∆X ′
t )

′
= (υ : γ : β)′(1 + L + · · · + Ln−1)∆2Xt is

stationary.
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whereQ00 andQγ γ are non-singular squarematrices of order r and
s; the number of generically non-zero elements of Q is given by
q := r2+(r+s)2. Pre-multiplying ζ ′ byQ gives rise to an equivalent
I(2) SSE; in fact observe that

Q ζ ′
=

Q00β
′

Q00υ

′
+ Q0γ γ ′

+ Q0ββ ′


0

Qγ γ γ ′

+ Qγ ββ ′


0 Q00β
′


=:

β◦′ υ◦′

0 γ ◦′

0 β◦′

 =: ζ ◦′ (3.5)

where β◦′
:= Q00β

′, γ ◦′
:= Qγ γ γ ′

+ Qγ ββ ′, υ◦′
= Q00υ

′
+

Q0γ γ ′
+Q0ββ ′. Notice that the number of integral-control relations

(r) and of proportional-control relations (r + s) is unaffected by
the Q transformation, and that ζ ◦′

:= Q ζ ′ has the same zero-
restrictions and cross-equation constraints as ζ ′ in (3.3). This is the
identification problem in SSE with I(2) variables.

This identification problem differs from the one encountered
in I(1) system where OE is associated with pre-multiplication by
any non-singular matrix Q , see Saikkonen (1993), Davidson (1994)
and Johansen (1995).

3.2. Observational equivalence

This subsection shows that (a) the Q transformation defines OE
values of the parameters in terms of the likelihood and (b) a similar
OE applies to the representation of Stock andWatson (1993),which
is used in semi-parametric models. This implies that the rank and
order conditions derived in the next subsection apply both in the
parametric and in the semi-parametric settings.

Consider first the EC representation of a VAR A(L)Xt = εt under
the conditions of the I(2) representation theorem of Johansen
(1992). Here A(L) = I −

h
i=1 AiLi is the AR polynomial, and it

is assumed that A(z) is convergent in the disk Ua and that A(z) is of
full rank over Ua with the possible exception of z = 1.

Johansen (1992) derived conditions under which a VAR process
satisfying these assumptions is I(2), see also Johansen (1996)
Chapter 4. These conditions are: (i) A(1) = −αβ ′ of reduced rank
r < p and (ii) Pα⊥

ȦPβ⊥
= α1β

′

1 of reduced rank s < p − r , and (iii)
P(α:α1)⊥( 1

2 Ä+Ȧβ̄ᾱ′Ȧ)P(β:β1)⊥ of full rank p−r−s, where Ȧ and Ä are
the first and second derivative of A(z) with respect to z, evaluated
at z = 1.

Under conditions (i) and (ii), it can be shown that theVARmodel
can be parametrized as the following EC3

∆2Xt = ηζ ′


Xt−1

∆Xt−1


+ Υ

 ∆2Xt−1
...

∆2Xt−h+2

+ εt ,

ζ :=


β 0 0
υ γ β


.

(3.6)

The parameters of the model are the unrestricted adjustment
matrix η, the CI matrix ζ , the short run dynamics matrix Υ and Ω ,
the variance–covariance matrix of εt . The Gaussian log-likelihood

3 Let ∆2Xt = ΠXt−1 + Γ ∆Xt−1 +
k−2

i=1 Υi∆
2Xt−i + εt , where condition (i)

implies Π = αβ ′ . Next define τ := (β : γ ) where γ is any matrix that satisfies
col(β : γ ) = col(β : β1) and consider Γ = Γ Pτ + Γ Pτ⊥ = λ⋆τ

′
+ αδτ ′

⊥

where λ⋆ := Γ τ̄ , δ := ᾱ′Γ τ̄⊥ because α′

⊥
Γ τ⊥ = 0 by condition (ii). Adding

and subtracting αcτ ′ one obtains Γ = λτ ′
+ αυ ′ where λ := λ⋆ − αc and

υ ′
:= δτ ′

⊥
+ cτ ′

= (c : δ) (τ : τ⊥)′ . Here η := (α : λ). Because (τ : τ⊥) is square
and nonsingular and no restrictions are placed on (c : δ), this shows that υ ′ is not
restricted to lie in any specific subspace.
ℓ associated with observations X1, . . . , XT and parameters ξ :=

(η, ζ , Υ , Ω) is proportional to ℓ(ξ) := −
1
2 (T log detΩ +T

t=1 ε′
tΩ

−1εt),when εt is taken to be iid N(0, Ω). The parameter
space for ξ := (η, ζ , Υ , Ω) is unrestricted, except for the
requirements on ζ to have the structure in (3.3) and on Ω to be
positive definite.

Consider next the square invertible matrix Q in (3.4) and insert
Q−1Q between η and ζ ′ in (3.6); it is simple to observe that ξ :=

(η, ζ , Υ , Ω) and ξ ◦
:= (ηQ−1, ζQ ′, Υ , Ω) produce the same

likelihood, ℓ(ξ) = ℓ(ξ ◦), i.e. that ξ is OE to ξ ◦. This shows that
the class of transformations Q creates OE in terms of the likelihood
of the EC (3.6).

The Q transformation in (3.4) has a similar effect on the
representation in Stock and Watson (1993). Let Xt be I(2) with MA
representation ∆2Xt = F(L)εt ; under the condition that F(z)−1

has a pole of order 2 at z = 1, there exists some ncI(0) process
H(L)εt and some square and nonsingular matrix B := (b2 : b1 : b0)
of order p, with bi of dimension p × ri, ri ≥ 0, such that one can
define yt := B′Xt = (y2′t : y1′t : y0′t )′, with yit = b′

iXt , and ∆2Ir2 0 0
−θ1

1,2∆ ∆Ir1 0
−θ1

0,2∆ − θ0
0,2 −θ0

0,1 Ir0


y2t
y1t
y0t

 = H(L)εt , (3.7)

see Stock andWatson (1993) eq. (3.2).4 Collecting termswith equal
order of differencing, one can write (3.7) as b′

2∆
2

γ ′∆

β ′
+ υ ′∆

 Xt = H(L)εt (3.8)

where ut := H(L)εt is ncI(0) andb′

2

γ ′

β ′

 :=

 Ir2 0 0
−θ1

1,2 Ir1 0
−θ0

0,2 −θ0
0,1 Ir0


b′

2

b′

1

b′

0

 ,

υ ′
:= −


θ1
0,2 0 0

b′

2

b′

1

b′

0

 .

(3.9)

Stock and Watson (1993) take B := (b2 : b1 : b0) to be a
permutation matrix of order p5; this restriction is not necessary,
and one can take B to be any appropriate nonsingular matrix,
where in particular bi and bj need not be orthogonal, i, j = 0, 1, 2;
see also Boswijk (2000). Note here that (b2 : γ : β) is square and
nonsingular, being the product of B, which is nonsingular, and
the block triangular matrix in (3.9) with identities on the main
diagonal, which is also nonsingular. Representation (3.8) is called
SW in the following.

The next theorem shows in what sense SW is Q -invariant.

Theorem 1 (Q-invariance of SW). Let Xt be I(2) with MA
representation ∆2Xt = F(L)εt where F(L)εt is I(0) and let (3.7) be
its SW, where H(L)εt is ncI (0). Then Xt also satisfies the SW b′

2∆
2

γ ◦′∆

β◦′
+ υ◦′∆

 Xt = H◦(L)εt (3.10)

4 The notation yd+1−i
t (respectively θ i−1

d+1−s,d+1−j) here corresponds to yit
(respectively θd−i

s,j ) in Stock and Watson (1993). Moreover, r0 = r , r1 = s, r2 =

p − r − s here correspond to k2, k1, k0 there.
5 I.e. a matrix obtained by rearranging the rows or columns of the identity matrix

of order p.



274 R. Mosconi, P. Paruolo / Journal of Econometrics 198 (2017) 271–276
where H◦(L)εt is ncI(0), β◦′
:= Q00β

′, γ ◦′
:= Qγ γ γ ′

+ Qγ ββ ′,
υ◦′

= Q00υ
′
+ Q0γ γ ′

+ Q0ββ ′ are the elements of ζ ◦′
= Q ζ ′

in (3.5) and Qij are the blocks of the Q matrix in (3.4), i, j = 0, γ , β .

4. I(2) identification conditions

This section considers the I(2) SSE (3.3) under general linear
restrictions on ζ . Consider the following linear restrictions

R′

⋆
m⋆×f⋆

θ = c⋆, θ
f⋆×1

:=

vec


β
υ


vec γ

 (4.1)

where f⋆ := p(2r + s). The next theorem gives rank and order
conditions for (4.1) to identify ζ .

Theorem 2 (Rank and Order Conditions for I(2) SSE). A necessary
and sufficient condition (rank condition) for the restrictions (4.1) to
identify ζ in the I(2) SSE (3.3) is that the matrix

R′

⋆ diag (Ir ⊗ ζ , Is ⊗ (γ : β)) (4.2)

is of full column rank q, where q = r2 + (r + s)2. A necessary but
not sufficient condition (order condition) for (4.2) to have full column
rank is that its number of rows is greater than or equal to its number
of columns, that is

m⋆ ≥ q. (4.3)

A few remarks are in order.

Remark 3 (No Integral Control Relations, r = 0). If r = 0, then
Ir ⊗ζ and β are dropped from (4.2) and the rank condition reduces
to rank R′

⋆ (Is ⊗ γ ) = s2. This is the usual rank condition for
identification in a standard I(1) SSE, see Johansen (1995), due to the
fact that the I(2) SSE simplifies into an I(1) SSE in first differences.

Remark 4 (No Additional Proportional Control Relations, s = 0). If
s = 0, then γ is dropped from ζ , which simplifies into

ζ =


β 0
υ β


, (4.4)

and Is ⊗ (γ : β) is dropped from (4.2). The rank condition
becomes rank R′

⋆ (Ir ⊗ ζ ) = 2r2. Note that this is not the usual rank
condition for identification in a standard I(1) SSE. The I(2) SSE (4.4)
in fact still involves υ and the β block is repeated in the upper left
and lower right corners.

Remark 5 (Practical Implementation of the Rank Condition). In
order to check the rank condition on matrix (4.2), consider the
restrictions (4.1) in explicit form, i.e. θ = H⋆ϕ+h⋆, whereH⋆ = R⋆⊥

and c⋆ = R′
⋆h⋆; here ϕ contains the unrestricted parameters in θ .

For given value of ϕ, ϕ◦ say, one can form θ◦ as θ◦
= H⋆ϕ

◦
+ h⋆,

and hence ζ ◦ and (γ ◦
: β◦) using the definition of θ . One can then

numerically find the rank of R′
⋆ diag(Ir ⊗ ζ ◦, Is ⊗ (γ ◦

: β◦)) e.g. by
computing its singular values.

One way to choose ϕ◦ can be for instance to generate this as a
random draw from some distribution with Lebesgue density, such
as the Gaussian. If the rank condition is satisfied outside a set of
Lebesguemeasure zero, then the probability of drawing an element
from this set is zero, see Boswijk and Doornik (2004).

Remark 6 (Role of the Order Condition). The order condition can be
used – as in classical SSE – as a preliminary check to control that
the number of restrictions in (4.1) is at least equal to q.
Next consider the rank and order conditions for equation-by-
equation constraints, where ith column of ζ is indicated as ζi and
the ith column of γ as γi. These constraints can be formulated as
follows

R′

i
mi×2p

ζi = ci, i = 1, . . . , r,

R′

i
mi×p

γi−r = ci, i = r + 1, . . . , r + s.
(4.5)

These restrictions are a special case of (4.1), with

R⋆ = diag(R1, R2),

where R1 = diag(R1, . . . , Rr) collects the first r equations and
R2 = diag(Rr+1, . . . , Rr+s) the next s equations (concerning γ ).
The following corollary specializes the rank and order conditions
to the case of equation-by-equation restrictions.

Corollary 7 (Identification, Equation-by-equation Restrictions). Let
the restrictions be given as in (4.5); then the ith column of ζ , i =

1, . . . , r, is identified if and only if

rank

R′

iζ


= 2r + s, i = 1, . . . , r; (4.6)

column number i− r in γ for i = r + 1, . . . , r + s is identified if and
only if:

rank

R′

i(γ : β)


= r + s, i = r + 1, . . . , r + s. (4.7)

The joint validity of rank conditions (4.6) for i = 1, . . . , r and (4.7) for
i = r + 1, . . . , r + s is equivalent to the full column rank of (4.2),
which can also be expressed equivalently as follows

rank

R′

1 (Ir ⊗ ζ )


= r (2r + s) and

rank

R′

2 (Is ⊗ (γ : β))


= s (r + s) .
(4.8)

Anecessary but not sufficient condition (order condition) for (4.6) is

mi ≥ 2r + s, i = 1, . . . , r. (4.9)

Similarly, a necessary but not sufficient condition (order condition)
for (4.7) is

mi ≥ r + s, i = r + 1, . . . , r + s. (4.10)

5. Systems of equations with integrated variables of higher
order

This section discusses the rank and order conditions for the
I(d) SSE, d = 1, 2, 3, . . .. In this section r and s of the previous
sections are indicated as r0 and r1 respectively, whileβ , γ andυ are
indicated here as γ0, γ1 and υ01. As shown in the Online Appendix,
the relevant I(d) SSE is given by

ζ ′

k×pd


Xt

∆Xt
...

∆d−1Xt

 =


ϕ′

0 υ ′

01 υ ′

02 . . . υ ′

0d−1
0 ϕ′

1 υ ′

12 υ ′

1d−1
0 0 ϕ′

2 υ ′

2d−1
...

. . .
. . .

...
0 . . . . . . 0 ϕ′

d−1




Xt
∆Xt
...

∆d−1Xt


= µt + ut (5.1)

where ut is I(0), ϕi := (γi : γi−1 : . . . : γ1 : γ0) = (γi : ϕi−1), of
dimension p × ki with ki :=

i
j=0 rj, k :=

d−1
i=0 ki, and ri ≥ 0

is the number of columns in γi, i = 0, . . . , d − 1; see Online
Appendix for details on the definition of other matrices. System
(5.1) is henceforth referred to as an I(d) SSE.

Restrictions on the SSE (5.1) are expressed as follows:

R′

m×f
vec ζ = c. (5.2)
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Here f := kpd. As for the I(2) case, let θ be the f⋆ × 1
vector containing the generically nonzero elements of ζ ; the linear
restrictions (5.2) can be equivalently expressed as

R′

⋆
m⋆×f⋆

θ = c⋆. (5.3)

Without loss of generality, one can assume that f − f⋆ of the
restrictions in (5.2) ensure that ζ ′ has a block-triangular structure
with cross-equation restrictions,6 while m⋆ := m − f + f⋆
are possibly (over-)identifying restrictions on θ . Because ζ and
θ contain the same parameter matrices, there exists some non-
singular matrix Awith entries equal to 0 or 1 that satisfies vec ζ =

Aθ .
The Q transformation that induces lack of identification in (5.1)

is of the form

Q =


Q00 Q01 . . . Q0,d−1
0 Q11 . . . Q1,d−1
...

. . .
. . .

...
0 0 0 Qd−1,d−1

 ,

Qjj
kj×kj

=


Qj,γj Qj,ϕj−1
0 Qj−1,j−1


, j = 1, . . . , d − 1,

(5.4)

where Q00, Qj,γj for j = 1, . . . , d − 1 are square and nonsingular;
hence also Q is square and nonsingular. The number of generically
non-zero elements of Q is still indicated by q, g denotes the q × 1
vector containing the generically non-zero elements of Q in (5.4)
and N indicates the (unique, 0–1) matrix that maps g into vec(Q ′),
i.e. such that vec(Q ′) = Ng .

One can now state the rank and order conditions for identifica-
tion of ζ in the I(d) SSE.

Theorem 8 (Rank and Order Conditions for the I(d) SSE). A necessary
and sufficient condition (rank condition) for the restrictions (5.2) to
identify ζ in an I(d) SSE (5.1) is that the matrix

R′(Ik ⊗ ζ )N (5.5)

is of full column rank q. A necessary but not sufficient condition (order
condition) for the rank condition to hold is

m⋆ ≥ q. (5.6)

For the case d = 2, the condition of full rank of (5.5) is equivalent to
the requirement of full rank of (4.2) and the order condition (5.6) is
equivalent to (4.3).

Remark 9 (Differences with the Rank Condition for Standard SSE).
The rank condition in (5.5) can be compared with the one obtained
for standard SSE, see e.g. Sargan (1988), Chapter 3, Theorem 1. The
matrix R′(Ik ⊗ ζ )N in the rank condition here is very similar to the
matrix R′(Ik ⊗ ζ ) in the standard case, the only difference being
the additional multiplicative factor N here. This is due to fact that
the class of matrices Q in (5.4) is different from the of square and
nonsingular matrices, which is the one that induces OE in standard
SSE.

Remark 10 (The I(1) Case is Covered). In the I(1) case, one has that
Q = Q00, N = I and the rank condition (5.5) reduces to the
standard one. Hence Theorem 8 covers also the case d = 1, and
it is hence an extension of it.

6 These concern the fact that ϕi−1 appears as one component in ϕi = (γi : ϕi−1)

for i = 1, . . . , d − 1.
6. Conclusions

This paper provides rank and order conditions for identification
in I(d) systems, d = 1, 2, . . . under general linear hypotheses on
the cointegrating vectors. The advantage of the present algebraic
approach in the discussion of identification of the I(d) SSE is
that it works for all approaches for which the Q transformation
induces observational equivalence, which includes parametric and
semiparametric specifications.

These results are relevant also when using sequential iden-
tification schemes. In fact, one could consider procedure that
first aims at identifying β through affine restrictions of the type
R′

◦
vecβ = c◦, and subsequently consider identification of υ, γ ,

with or without β fixed. The first-stage identification of β is stan-
dard, see Johansen et al. (2010), and the associated rank condition
is rank R′

◦
(Ir ⊗ β) = r2. When β is identified, the identification

problem for υ, γ is still associated with a Q transformation of the
type (3.4) with Q00 = Ir ; hence the present discussion of identifi-
cation is relevant also for this sequential procedure.

In particular, the identification analysis of the coefficients in
υ , i.e. the coefficients involving the flow variables in the multi-
CI equations, requires a joint non-standard analysis of υ , γ and β ,
since each columnofυ could be replacedwith a linear combination
of columns in υ , γ and β .
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Appendix A. Proofs

Proofs of Theorems are reported in the supplementary ma-
terial related to this article, which can be found online at
http://dx.doi.org/10.1016/j.jeconom.2017.01.007.
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