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We present a novel method that utilizes in-process measurements of product quality and models that relate those measurements with the underlying 
manufacturing process parameters to drive down the product quality errors via strategic adjustments of the controllable process parameters. Uniqueness 
of the new method is its robustness to inevitable inaccuracies in the underlying models, as well as the absence of traditional, but restrictive assumptions 
of Gaussianity and independence of measurement and process noise terms. The new approach was demonstrated using models and data from a laboratory-
scale machining process and a lithography overlay process from a modern semiconductor manufacturing plant. 

Model based control of quality in multistage manufacturing processes, inaccurate knowledge of noise characteristics, robust control 

1. Introduction 

Since the seminal paper [1], significant research efforts were 
dedicated to process control based on explicit models of the flow 
of product quality errors from one manufacturing operation to 
another in a multistage manufacturing processes (MMP). These so-
called Stream of Variation (SoV) models which established 
analytical connections between manufacturing process 
parameters and errors in product quality were used for 
identification of process-level sources of product quality errors, 
selection of the most informative measurements of product 
quality, as well as manufacturing systems analysis and design in a 
wide array of MMPs, including autobody assembly, machining of 
prismatic parts, sheet metal rolling and semiconductor 
manufacturing [2]-[5]. Most recently, the research in model-based 
process control focused on exploiting the analogies between SoV 
models and traditional control theory to facilitate active on-line 
control of outgoing product quality through automatic adjustment 
of controllable MMP parameters based on the information from 
distributed, in-process measurements within an MMP [4]-[6]. 

Nevertheless, almost all prior research on model-based process 
control assumed that the underlying SoV model was perfectly 
known. On the other hand, weather the model is pursued using 
first-principle physics based approaches, as in [4], or data-driven 
paradigm, as in [5], there will be inherent uncertainties in the 
estimates of model parameters and noise characteristics. A notable 
exception can be found in [7], where parametric uncertainties in 
the SoV model parameters were modelled as normally distributed 
random variables with zero means and known variances. 
Nevertheless, though [7] did not assume perfect knowledge of 
model parameters, the authors assumed Gaussianity and perfect 
knowledge of the random variables describing the model 
parameters, thus essentially still relying on Gaussian and Bayesian 
statistics. More recently, in [8], the problem of stochastic SoV 
model-based multistage process control was addressed in a way 
that delivered robustness to inaccurate knowledge of variance 
characteristics of the modelling noise terms. Nevertheless, 
structural model parameters were still assumed to be perfectly 
known, while noise terms were still modelled as normal, 
independent, identically distributed (NIID) random vectors. 

Besides the need to fully incorporate model-parametric 
uncertainties into SoV-model based MMP control approaches, let 
us also note that in highly sophisticated and safety critical MMPs, 
such as those we encounter in semiconductor or pharmaceutical 
manufacturing, control laws may be required to absolutely 
guaranty the system performance in spite of model parametric 
uncertainties and noise characteristics. This basically disqualifies 
Bayesian stochastic approaches, as well as normality and 
independence assumptions, which were in the foundations of [4]-
[8]. Hence, there is a great need for a robust method for automatic 
control of quality in an MMP, with the capability to bypass the need 
for perfect knowledge of model parameters, as well as the 
assumptions of normality, independence and known 
characteristics of the noise terms in the model. The goal of the 
paper at hand is to fill the abovementioned gap. 

2. Methods 

Following numerous papers in the realm of model-based process
control [2], let us assume that the SoV model of the flow of quality 
errors in an MMP follows the linear time-varying state space form 

𝒙(𝑖) = 𝐀(𝑖)𝒙(𝑖 − 1) +  𝐁ୡ(𝑖)𝒖௖(𝑖) + 𝐁୉(𝑖)𝒖ா(𝑖) + 𝒘(𝑖), 
𝒚(𝑖) = 𝐂(𝑖)𝒙(𝑖) + 𝐃ୡ(𝑖)𝒖௖(𝑖) + 𝐃୉(𝑖)𝒖ா(𝑖) + 𝒗(𝑖), 

𝒙(0) = 0;  𝑖 = 1,2 ⋯ , 𝑁                                  (1)  
where 𝑖 denotes the operation index, N is the total number of 
operations in the MMP, the state vector 𝒙(𝑖) consists of errors in 
the parameters that describe the workpiece after it is processed in 
operation 𝑖, output vector 𝒚(𝑖) contains errors in product quality 
measured after operation 𝑖, 𝒖௖(𝑖) denotes the vector of 
controllable process parameters that can be automatically 
actuated in operation 𝑖, 𝒖ா(𝑖) is the vector of uncontrollable 
process parameters at operation 𝑖, while 𝒘(𝑖) and 𝒗(𝑖) denote the 
vectors of plant and measurement noise terms, respectively. 

Just to give the reader a physical sense of various terms in the 
model (1), let us note that in the case of machining of prismatic 
parts, the state vector 𝒙(𝑖) consists of errors in the orientations 
and positions of planar features, as well as orientations, positions 
and diameters of cylindrical features of the workpiece [9], while in 
the case of lithography overlay, the state vector consists of 
misalignment errors in control points of the wafer corresponding 
to layer 𝑖 and the reference layer [4]. 



The problem of SoV model-based process control comes down 
to utilizing the measurements obtained up to any given operation 
k, history of past control actions, if available, as well as model (1) 
to strategically set controllable process parameters 𝒖௖(𝑘) in 
operation k in such a way that the outgoing quality errors 𝒚(𝑘) are 
minimized in some sense. Let us now assume the following for each 
operation 𝑖 ∈ {1,2, … , 𝑁}. 
 Structural matrices of the model (1) can be represented as 

𝐀(𝑖) = 𝐀ே௢௠(𝑖) + ∆𝐀(𝑖); 𝐁ୡ(𝑖) = 𝐁ୡ ಿ೚೘
(𝑖) + ∆𝐁ୡ(𝑖) 

𝐁୉(𝑖) = 𝐁୉ಿ೚೘
(𝑖) + ∆𝐁୉(𝑖); 𝐂(𝑖) = 𝐂ே௢௠(𝑖) + ∆𝐂(𝑖) 

𝐃ୡ(𝑖) = 𝐃ୡಿ೚೘
(𝑖) + ∆𝐃ୡ(𝑖); 𝐃୉(𝑖) = 𝐃୉ಿ೚೘

(𝑖) + ∆𝐃୉(𝑖) 
where 𝐀ே௢௠(𝑖), 𝐁ୡ ಿ೚೘

(𝑖), 𝐁୉ ಿ೚೘
(𝑖), 𝐂ே௢௠(𝑖), 𝐃ୡ ಿ೚೘

(𝑖) and 
𝐃୉ಿ೚೘

(𝑖) denote the corresponding nominal matrices, while 
∆𝐀(𝑖), ∆𝐁ୡ(𝑖), ∆𝐁୉(𝑖), ∆𝐂(𝑖), ∆𝐃ୡ(𝑖) and ∆𝐃୉(𝑖) respectively 
denote the uncertainties in those matrices, describing one’s lack 
of knowledge about model parameters. 

 All entries [∆ ∗ (𝑖)]௞భ,௞మ
 in the uncertainty matrices ∆ are 

assumed to be unknown, but residing within known bounds, i.e. 
ห[∆ ∗ (𝑖)]௞భ,௞మ

ห ≤ 𝜀௞భ,௞మ

∆∗(௜)   (2) 

where 𝜀௞భ,௞మ

∆∗(௜)  are all known. 
 All entries [𝒘(𝑖)]௝, [𝒗(𝑖)]௟  and [𝒖ா(𝑖)]௠ in vectors 𝒘(𝑖), 𝒗(𝑖) and

𝒖ா(𝑖) are unknown but lie within some known bounds, i.e. 
ห[𝒘(𝑖)]௝ห ≤ 𝜀௝

𝒘(௜); |[𝒗(𝑖)]௟| ≤ 𝜀௟
𝒗(௜); |[𝒖ா(𝑖)]௠| ≤ 𝜀௠

𝒖ಶ(௜)   (3) 
where all 𝜀 bounds are known. 

 The vector of controllable process parameters is modeled as 
𝒖௖(𝑖) = 𝒖ഥ௖(𝑖) + 𝒃ഥ(𝑖) + 𝜼(𝑖) 

where 𝒖ഥ௖(𝑖) is the vector of user-commanded values for 𝒖௖(𝑖), 
𝒃ഥ(𝑖) denotes the estimated bias vector associated with 
controllable parameters 𝒖௖(𝑖), and 𝜼(𝑖) denotes uncertainties 
associated with the execution of desired controllable process 
parameters 𝒖ഥ௖(𝑖) and the estimate of the bias vector 𝒃ഥ(𝑖). 

 All components [𝜼(𝑖)]௣ in the vector 𝜼(𝑖) satisfy

ห[𝜼(𝑖)]௣ห ≤ 𝜀௣
𝜼(௜)   (4) 

where bounds 𝜀௣
𝜼(௜) are known. 

Let us now note that, unlike what we see in the previous work, 
the assumptions above incorporate uncertainties in the model 
parameters and do not assume anything regarding the distribution 
form or independence of the terms characterizing the noise and 
actuation uncertainties. Instead, all uncertainties in the model are 
only assumed to be bounded within known bounds and nothing 
else. As for the last two assumptions describing the behavior of 
controllable process parameters, the bias vectors are used to 
describe longer term product-to-product or run-to-run (R2R) 
changes in the controllable parameters, usually caused by wear out 
Errore. L'origine riferimento non è stata trovata. or 
temperature induced offsets in machining and assembly systems 
Errore. L'origine riferimento non è stata trovata., or material 
build-up and equipment aging induced changes in semiconductor 
manufacturing [12]. These bias terms are usually tracked and 
compensated for using various types of R2R controllers, which 
themselves are not perfect. Imperfections of such bias-modelling 
approaches, as well as actuator noise associated with the 
controllable process parameters 𝒖௖(𝑖) are captured in the 
uncertainty terms 𝜼(𝑖), which again are not modelled via any 
specific distribution, but rather as an unknown parameter residing 
within some known bounds. Of course, if no R2R controller exists 
in the system of interest, the bias terms can be completely omitted 
and the vector of controllable parameters 𝒖௖(𝑖) could then 
comprise of only the vector of commanded values 𝒖ഥ௖(𝑖) and the 
associated uncertainties 𝜼(𝑖) that are bounded within some known 
(but perhaps wider) bounds. 

At any operation k, the control problem now comes down to 
utilizing upstream measurements of quality errors 𝒚(𝑖), 𝑖 =

1,2, … , 𝑘 − 1 and, if available, estimates of the bias terms 𝒃ഥ(𝑖), 𝑖 =
1,2, … , 𝑘 to determine the command vector 𝒖ෝ஼(𝑘) for controllable 
parameters in operation k that will minimize some weighted sum 
of squared errors in product quality measured in that operation, 
for the worst case scenario regarding all the model uncertainties. 
More formally, following robust control formalism [10], we pursue 
𝒖ෝ஼(𝑘) = argmin 

𝒖ഥ಴(௞)
max

∆∗(௜),𝒖ಶ(௜),𝜼(௜),𝒘(௜),𝒗(௜)

௜ୀଵ,ଶ,…,௞

𝒚୘(𝑘)𝚺 𝒚(𝑘) 

Subject to:  model (1) for 𝑖 = 1,2, … , 𝑘 
constraints (2)-(4) for 𝑖 = 1,2, … , 𝑘                    (5) 

where 𝚺 is a diagonal matrix of weights. Eq. (5) describes a large 
and complex optimization problem involving hundreds of decision 
variables and constraints, even for an MMP as simple as the one 
described in [9]. to solve it, let us follow [11] and respectively 
denote with 𝝓௨௕ and 𝝓௟௕ the upper and lower bounds on the 
uncertain parameters in (5), rendering (5) in the form 

𝒖ෝ஼(𝑘) =  argmin  
𝒖ഥ಴(௞)

max
𝝓

   J(𝑘) 

Subject to:  model (1) for 𝑖 = 1,2, … , 𝑘 
𝝓௟௕  ≤  𝝓 ≤  𝝓௨௕   (6) 

Let us now define the function 𝑓଴(𝝓௞) = min
𝝓ೖ

 −J(𝑘), and let 

𝑓ଵ(𝝓௞), … , 𝑓௠(𝝓௞) and 𝜎ଵ, … , 𝜎௠ be defined to represent each row 
of the constraints 𝝓 ≤ 𝝓௨௕  and −𝝓 ≤ −𝝓௟௕ as [𝑓ଵ(𝝓௞) … 𝑓௠(𝝓௞)]் 
≤  [𝜎ଵ … 𝜎௠]் . Further, based on these functions and variables, let 
us consider a function 

𝜓(𝜎଴) = ൜𝑚𝑖𝑛
𝝓ೖ

𝑚𝑎𝑥
଴ஸ௜ஸ௠

ቀ
௙೔(𝝓ೖ)

ఙ೔
ቁൠ − 1   (7) 

The inner maximization in (6) can then be solved by finding the 
root of  𝜓(𝜎଴) [11], transforming (6) into a much simpler and 
computationally feasible unconstrained optimization problem 

𝒖ෝ஼(𝑘) = −𝑎𝑟𝑔𝑚𝑎𝑥
𝒖ഥ಴(௞)

  𝑟𝑜𝑜𝑡൫𝜓(𝜎଴)൯    (8) 

3. Results

The newly proposed control method is evaluated using SoV 
models describing the flow of product quality errors in a cylinder 
head machining process used by a US car manufacturer, and a 
lithography overlay process in a modern semiconductor fab. 

3.1. Robust control of a Machining Process 
The robust model-based process control algorithm introduced 

in this paper was tested in control of dimensional errors in 
machining of the automotive cylinder head shown in Figure 1. The 
process is described in Table 1, while details of the SoV model of 
the flow of dimensional errors in this process can be found in [9]. 
Measurements of all features machined after setup 2 are assumed 
to be available, while fixture parameters in setup 3 are assumed to 
be controllable. Measurements available after setup 2 and, if 
available, information about the tooling bias in setup 3 are then 
used to adapt controllable parameters in setup 3 to minimize the 
squared distance between the Slot (S) and Joint Face (JF) planes. 

We randomly generated 100 trajectories of bias terms using 2nd 
order Kalman filter (KF) processes and within each of those 
simulations, we utilized a 1st order KF based R2R method [12] to 
track those bias terms. For each of the trajectories, the parametric 
uncertainties ∆ were assumed to be within 1%, 5%, 10% and 20% 
of the corresponding nominal values. Concurrently, increasing 
levels of uncertainty were assumed on the plant and sensor noise 
terms, as well as the actuator uncertainty and uncontrollable 
process parameters, thus simulating situations with progressively 
less accurate model knowledge. All uncertainties and random 
parameters were simulated using various distributions and we 
report here only the results obtained using uniform distributions 
within the uncertainty bounds, though similar observations could 
be made for all simulations we performed (this is not surprising 



because, once again, unlike the past research, the approach 
proposed here does not depend on any distribution assumptions). 

Figure 1. Automotive cylinder head machined in the process used to 
evaluate the newly proposed robust control approach. 

Table 1 Process plan for machining process considered in Sec. 3.1. 

Locating surfaces Operations 

Setup 
1 

Primary: Raw Datum X1, X2 and X3 
Secondary: Raw Datum Y1 and Y2 
Tertiary: Raw Datum Z1 

1. Mill the Cover Face
CF. 

Setup 
2 

Primary: Machined Cover Face CF 
Secondary: Raw Datum Y1 and Y2 
Tertiary: Raw Datum Z1 

2. Mill the Joint Face J. 
3. Drill the Hole B. 
4. Drill the Hole C. 

Setup 
3 

Primary: Machined Joint Face J 
Secondary: Machined Hole B 
Tertiary: Machined Hole C 

5. Mill the Slot S. 

For each of the uncertainty levels, the newly proposed controller 
(labeled as Robust multistage controller) was compared to the 
traditional KF-based R2R approach that just sets control 
commands to act opposite of the KF-based estimates of the bias 
term [12] (labeled as KF R2R controller), as well as the approach 
from [4], which combines the R2R bias estimates with a stochastic 
model-based controller that assumes NIID nature of all random 
terms, as well as perfect knowledge of all parameters (labeled as 
KF R2R + stochastic multistage controller). Figure 2 shows the 
distributions of worst-case outcomes for the distance between the 
JF and S planes, as observed over all simulations. It is clear that the 
newly proposed controller outperforms the controllers, with 
benefits increasing with increasing model uncertainties. Similar 
observations can be made from Figure 3, which shows the average 
controller performance obtained from the same simulations. 

Figure 2. Box and whisker plots depicting distributions of the worst 
observed distance between the JF and S planes, as observed from the 
simulations containing increasing model uncertainties. 

Figure 3. Box and whisker plots depicting distributions of the average of 
distances between the JF and S planes, as observed from the simulations 
containing increasing model uncertainties. 

3.2. Robust control of Lithography Overlay Errors 
The newly introduced process control was also evaluated in the 

control of overlay and stack up overlay errors in a 4-layer 
lithography process utilized in a major 300mm semiconductor 
factory. Overlay depicts alignment deviations between markers 
produced in strategic locations across a semiconductor wafer in 
order to control alignment of patterns in two neighboring layers of 
a microelectronic product.  whose fabrication ultimately leads to 
production of microelectronic circuits. Similarly, stack-up overlay 
errors depict accumulation of overlay errors between non-
neighboring layers and are defined as a vectorial sum of overlay 
errors between those two layers [4]. One must maintain angstrom 
level overlay accuracies over all of the marker points (100s of 
them), which are dispersed over a 300mm diameter wafer. It is 
therefore no surprise that controlling overlay and stack up overlay 
errors is the heart of the semiconductor fabrication process, 
demanding strictest guarantees of controller performance. 

Overlay errors and process control data from 30 consecutive 
wafers were used to build the layer-level overlay error models and 
combine them into a multistage model describing the progression 
of stack-up overlay errors in the form (1), as well as to estimate the 
distributions of process and measurement noise terms. More 
details about the modeling procedure and the process can be found 
in [13], though numerous details had to be withheld even there due 
to the highly proprietary nature of the data and process. Control 
bias terms evaluated based on those first 30 wafers were used to 
initiate the R2R controller in the form of a 1st order KF, after which 
measurement and control data from the next 60 wafers were used 
to determine the trajectories of process bias terms, as well as the 
distributions of the bias/actuator uncertainties. 

It was assumed that for each layer, measurements of its overlay 
errors, as well as stack-up overlay errors between that layer and 
the substrate (layer 0). Please note that in order not to reveal the 
highly proprietary relative importance of pattern layers in the 
process, this does not depict the actual measurements that were 
taken and that it is easy to consider some other weighted 
combinations of the overlay and stack-up overlay errors. 

The newly proposed controller was then again compared to the 
KF R2R controller, as well as to the purely Bayesian controller from 
[4]. As in the machining case study, structural model uncertainties 
∆ were assumed to be within 1%, 5%, 10% and 20% of the 
corresponding nominal parameters. Concurrently, uncertainty 



bounds on the plant and sensor noise terms, as well as the actuator 
uncertainty and uncontrollable process parameters were scaled 
up by the same percentages, relative to the bounds observed in the 
data. All uncertainties and random parameters were simulated 
using various distributions and, again, we report only the results 
obtained using uniform distributions within the uncertainty 
bounds, though similar observations were made for all simulations 
we performed. Figure 4 and 5 respectively illustrate the 
distributions of worst-case outcomes and average outcomes for 
the resulting objective function for all 4 layers, as observed over all 
simulations. Again, it is clear that the newly proposed controller 
outperforms the other controllers, with benefits increasing with 
increasing levels of model uncertainties. 

Figure 4. Box and whisker plots depicting distributions of the worst 
observed objective function values (sum of the scaled norm of the overlay 
and stack up overlay errors) for each of the 4 layers, as observed from the 
simulations containing increasing model uncertainties. 

Figure 5. Box and whisker plots depicting distributions of the average 
observed objective function values (sum of the scaled norm of the overlay 
and stack up overlay errors) for each of the 4 layers, as observed from the 
simulations containing increasing model uncertainties. 

5. Conclusions and future work 

In this paper, we describe a new method for robust model-based 
control of quality in MMPs. The method utilizes models of the flow 

of quality errors in a manufacturing system, without the need to 
perfectly know the model parameters, nor any assumptions 
regarding the distributions or independence of noise terms in the 
model. Instead, all model parameters and noise terms are assumed 
to be unknown, but within certain known bounds, while the 
control task is formulated as a min-max optimization problem that 
optimizes the worst-case controller performance regarding all 
model uncertainties. Performance of the newly proposed method 
for control of quality in MMPs was evaluated using a series of 
simulations based on the models describing the flow of 
dimensional errors in an automotive cylinder head machining 
process, as well as overlay errors in a lithography process utilized 
by a modern 300mm semiconductor fab. The results illustrate 
clear benefits of the novel controller over the traditional R2R 
approaches and the purely Bayesian stochastic controllers, with 
benefits becoming more pronounced when with increasing 
uncertainties in the underlying error flow models. 

As for future work, formulating a control law that is fully robust 
to model parametric uncertainties and noise characteristics was 
perhaps the key element that prevented model-based process 
control algorithms to gain wider acceptance in industry. Hence, 
research presented in this paper enables immediate industrial 
implementation that can now be pursued. As for further research 
extensions, one could link the research presented in this paper 
with the general problem of manufacturing systems design by 
exploring possibilities to strategically select measurements and 
controllable tooling capabilities that maximize one’s ability to 
deliver robust control performance.  
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