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ABSTRACT

A blendedmodel for atmospheric flow simulations is introduced that enables seamless transition from fully

compressible to pseudo-incompressible dynamics. The model equations are written in nonperturbation form

and integrated using a well-balanced second-order finite-volume discretization. The semi-implicit scheme

combines an explicit predictor for advection with elliptic corrections for the pressure field. Compressibility is

implemented in the elliptic equations through a diagonal term. The compressible/pseudo-incompressible

transition is realized by suitably weighting the term and provides a mechanism for removing unwanted

acoustic imbalances in compressible runs.

As the gradient of the pressure is used instead of the Exner pressure in the momentum equation, the

influence of perturbation pressure on buoyancy must be included to ensure thermodynamic consistency.With

this effect included, the thermodynamically consistent model is equivalent to Durran’s original pseudo-

incompressible model, which uses the Exner pressure.

Numerical experiments demonstrate quadratic convergence and competitive solution quality for several

benchmarks. With the inclusion of an additional buoyancy term required for thermodynamic consistency, the

‘‘p–r formulation’’ of the pseudo-incompressible model closely reproduces the compressible results.

The proposed unified approach offers a framework for models that are largely free of the biases that can

arise when different discretizations are used. With data assimilation applications in mind, the seamless

compressible/pseudo-incompressible transition mechanism is also shown to enable the flattening of acoustic

imbalances in initial data for which balanced pressure distributions are unknown.

1. Introduction

Physical processes in the atmosphere feature a wide

range of spatiotemporal scales described by the fully

compressible nonhydrostatic flow equations. Accord-

ingly, nonhydrostatic fully compressible modeling ap-

proaches hold sway in atmospheric research codes and

in operational dynamical cores; for example, Icosahedral

Nonhydrostatic model (ICON; Zängl et al. 2014), Non-

hydrostatic Unified Model of the Atmosphere (NUMA;

Kelly and Giraldo 2012), (DUNE; Brdar et al. 2013), the

models in use at the National Center for Atmospheric

Research (NCAR; Wong et al. 2014), the European

Centre for Medium-Range Weather Forecasts (ECMWF;

Hortal 2002; Smolarkiewicz et al. 2014), the Met Office

(Davies et al. 2005; Wood et al. 2014), and others.

Despite very successful ongoing developments, the

proper treatment of multiple characteristic time scales

in atmospheric simulations remains a matter of scien-

tific research. Two of the biggest obstacles of multiple-

scale simulations are (i) the discretization of fast

processes in the governing equations and (ii) balanced

data assimilation.

Numerical stiffness is the source of the first remaining

obstacle. Except for inertia–gravity waves of long wave-

length, which are not considered here, quantities of me-

teorological interest propagate at low speed compared

with sound waves. Sound modes are said to be nearly

balanced and their effects are considered negligible for

atmospheric dynamics. The difference between the sound

and flow speeds stiffens the numerics of fully compress-

ible solvers rendering straightforward explicit schemes

impractical because of severe stability-related time step

constraints.

Filtering the data with respect to fast modes while

minimally distorting the ensuing dynamics is the second

remaining obstacle. Computational simulations never
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exactly track the evolution of the considered system.

Hence, data assimilation is needed for exploiting ob-

servational data at regular time intervals to set up initial

data for the next simulation period. However, importing

observed field data from local weather stations directly to

adjacent grid points would disregard the aforementioned

balances of the fast modes. For example, in the presence

of a low pressure system in the summer with high levels

of convection, the local vertical velocities would pro-

ject onto nonhydrostatic and compressible modes yield-

ing strongly unbalanced data on the numerical grid.

Efficiently controlling such modes remains a challenge

in data assimilation.

Numerical approaches aimed at overcoming the stiff-

ness are split-explicit, semi-implicit, and fully implicit

numerical time integrators for the fully compressible flow

equations. The first class of schemes subcycles a sim-

plified discretization of the fast wave processes at short

time steps and employs suitable synchronization pro-

cedures for coupling the results to large time steps of

the slower modes (Skamarock and Klemp 1994, 2008;

Jebens et al. 2009). Another option would be to adopt

a fully implicit approach that even overcomes the time

step restrictions associated with explicit discretizations

of advection. Because of their computational expense

these schemes have, to our knowledge, thus far not

found widespread application in meteorology. A no-

table exception is the work by Reisner et al. (2005).

The focus of the present work lies instead on semi-

implicit discretizations that invoke implicit integrators

for the terms in the equations representing the fast wave

modes while treating the slow modes explicitly. Many

approaches to semi-implicit discretization for atmo-

spheric flows have been reported (e.g., Bonaventura

2000; Gatti-Bono and Colella 2006; Restelli and Giraldo

2009; Jebens et al. 2011; Durran and Blossey 2012; Giraldo

et al. 2013; Wood et al. 2014; Smolarkiewicz et al. 2014;

Weller and Shahrokhi 2014). For all-speed flow discreti-

zations in computational fluid dynamics the reader is re-

ferred toCasulli andGreenspan (1984),Bijl andWesseling

(1998), Munz et al. (2003), and Kwatra et al. (2009).

An alternative to these numerical approaches to over-

coming the stiffness is to adopt a ‘‘soundproof’’ model.

These reduced dynamical models include a diagnostic

constraint on the velocity divergence and therefore do

not support sound waves. The divergence constraint

needs to be maintained numerically, which entails the

solution of an elliptic pressure equation. Soundproof

models suitable for atmospheric motions covering verti-

cal distances comparable to the pressure scale height are

the anelastic (Lipps and Hemler 1982; Bannon 1996) and

pseudo-incompressible models (Durran 1989; Klein and

Pauluis 2012).

Soundproof models have successfully been used to

simulate small to mesoscale flows, and their validity as

slow-flow limit models has recently been established

on theoretical grounds (Klein et al. 2010; Achatz et al.

2010). However, their applicability to large-scale mo-

tions is still under debate (Davies et al. 2003; Dukowicz

2013) despite recent successful large-scale simulations

for atmospheric (Smolarkiewicz and Dörnbrack 2008;
Smolarkiewicz et al. 2014) and astrophysical (Nonaka

et al. 2010; Smolarkiewicz and Charbonneau 2013)

applications.

In line with these observations, one of our goals is to

develop a numerical scheme for the fully compressible

equations that defaults to the pseudo-incompressible

limit for slow flows on small- to mesoscales. Such as-

ymptotically adaptive schemes have a substantial history

of studies (Klein 2000; Klein et al. 2001; Gatti-Bono and

Colella 2006; Cullen 2007; Haack et al. 2012) in which

the lowMach or low Froude number limits are discretely

recovered through careful identification and separate

discretization of the advection, acoustic, and/or buoy-

ancy terms in the fully compressible equations. In the

present work we suggest a particularly straightforward

approach of this type that is directly motivated by the

theoretical framework set out in Klein (2009, 2010).

More specifically, this paper documents the construc-

tion of a semi-implicit second-order accurate numerical

method for the simulation of weakly compressible at-

mospheric flows that shares the principal components

of the discretization with the soundproof solver by Klein

(2009). The time integration for the fully compressible

equations derives from that of the pseudo-incompressible

model and the required adjustments amount to no

more than adding a diagonal term to the matrix of the

elliptic pressure problem and synchronizing the cell-

centered and node-based pressures. This is similar in

spirit to parallel developments by Smolarkiewicz et al.

(2014) but technically different. In particular, these au-

thors do not address the possibility of a seamless blending

of models and they work with perturbation variables and

with the Exner pressure in the momentum equation.

Besides constructing the compressible flow solver, we

design the discretization such that it can be used directly

to solve a continuous family of weakly compressible

models that interpolate seamlessly between the fully

compressible and pseudo-incompressible ones. This is

realized by exploiting the close structural similarity of

these two limiting models when written in conservative,

nonperturbation form for the densities of mass, mo-

mentum, and potential temperature.

In the context of increasing computing resources and

ever smaller scales accessible in high-resolution weather

and climate simulations, it is of arguable interest to
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operate different analytical formulations within a single

numerical framework. Such a unified numerical scheme

becomes all the more desirable in the light of a recent

study (Smolarkiewicz and Dörnbrack 2008) that com-

pared the errors made by using different numerical

methods for the same model equations with those made

by considering different equation systems discretized

with nearly identical numerics. These authors found,

somewhat surprisingly, that the former errors exceeded

the latter, and this underlines the importance of com-

paring flow models within one and the same numerical

framework. In an interesting investigation of this type,

Smith and Bannon (2008) compared anelastic and com-

pressible models in a case of localized instantaneous di-

abatic warming.

A second motivation for implementing the seamless

model family lies in its potential use for balanced data

assimilation. By adjusting the model interpolation pa-

rameter accordingly from zero to unity, such a ‘‘blended’’

scheme can be tuned to perform a few time steps in

pseudo-incompressible mode and to then transition to

its fully compressible mode after a few further steps. As

we will show, this effectively reduces initial acoustic im-

balances. Considering the factors affecting predictability

of the simulated precipitation field in cloud-resolving

models, Hohenegger and Schär (2007) showed that un-

controlled small-scale acoustic perturbations may con-

tribute to rapid error growth at the mesoscale.

The scheme we propose has more potentially attrac-

tive features. One of these features is the formulation

in a nonperturbation form that does not rely on sub-

traction of a background state for accuracy. This is ach-

ieved for the present collocated finite-volume method by

a well-balanced discretization of the pressure gradient

and gravity terms following Botta et al. (2004) and Klein

(2009). Moreover, the scheme uses the gradient of the

thermodynamic instead of the Exner pressure, thereby

allowing for a conservative discretization of the momen-

tum flux induced by the pressure force. In addition, as

pointed out by Klein and Pauluis (2012), Durran’s origi-

nal formulation of the pseudo-incompressible model us-

ing Exner pressure cannot be easily extended to general

equations of state. One step toward overcoming this ob-

stacle is to adopt a formulation with pressure instead of

Exner pressure in the momentum equation as done in

this paper. Yet, this formulation is thermodynamically

consistent only if first-order density perturbations are

included in the gravity term in addition to Durran’s

‘‘pseudodensity.’’ For an ideal gas with constant spe-

cific heat capacities, Durran’s model and the present

thermodynamically consistent formulation are equiv-

alent as a short calculation using the transformations

p0 5 (p0/pref)
R/cp andp0 5 p0/(cpP0) shows. A second step

that is also necessary in extending to general equations

of state, but which is not pursued here, is a reformulation

of the velocity divergence constraint. This step is needed

because in this case the pressure equation can no longer

be easily cast into a simple conservation law (Almgren

et al. 2006a,b; Klein and Pauluis 2012).

Furthermore, the transition from the pseudo-

incompressible via the blending to the compressible

model is achieved by minimal code adjustments. These

involve reassigning certain weights in the grid stencil of

the elliptic correction equations and applying a weighted

superposition of pressure updates. These updates are

calculated from the elliptic equations and from the con-

servative balance of potential temperature.

The paper is structured as follows. Compressible,

pseudo-incompressible, and blended models are pre-

sented in section 2. Section 3 summarizes the numerics.

The results of numerical simulations in a number of two-

dimensional test cases are documented in section 4. Grid

convergence with the expected second-order rate is ver-

ified in a benchmark involving advection of a smooth

axisymmetric vortex. For the standard test cases of a ris-

ing hot air thermal, density current, and inertia–gravity

waves, we compare the predictions obtained with the

compressible and pseudo-incompressible models and

demonstrate the importance of the thermodynamic con-

sistency correction within the pseudo-incompressible

framework. Usage of the blended model for filtering

acoustic imbalances is demonstrated for both short

sound-resolving time steps and for time steps corre-

sponding to an advective Courant–Friedrichs–Lewy

(CFL) number of order unity. Section 5 provides the

conclusions and an outline of open issues and future

work.

2. Theoretical framework

a. Fully compressible equations

The dry, inviscid fully compressible equations (here-

after referred to as FC), describe conservation of mass,

momentum, and energy under the influence of gravity.

If we neglect rotational effects and use the transport

equation for potential temperature to describe the en-

ergy balance, they read in conservative form and in the

dry adiabatic case:

›r

›t
1$ � (rv)5 0, (1a)

›rv

›t
1$ � (rv+v1 pI)52rgk , (1b)

›P

›t
1$ � (Pv)5 0. (1c)
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Here, r denotes the fluid density, v is the velocity vector,

8 is the tensor product, g is the acceleration of gravity,

k is the vertical unit vector, and I is the identity tensor.

As in Klein (2009), we have introduced the equation of

state:

P5 ru5
pref
R

 
p

pref

!1/g
, (2)

where potential temperature is defined as

u5T

 
p

pref

!(12g)/g

and T5
p

rR
(3)

is the temperature. TheR is the gas constant for dry air and

g is the isentropic exponent. Hereafter, we take g 5 1.4

and R 5 287Nmkg21K21 throughout. For smooth

flows, (1c) can equivalently replace total energy con-

servation in a finite-volume discretization, which is

common in numerical meteorology, but which would

not be adequate for flows with shocks (LeVeque 2002).

Together, (1a) and (1c) describe mass conservation and

the advection of potential temperature, while (1c) is

equivalent to the pressure evolution equation pt1 v � $p1
gp$�v5 0. Thus, a discretization of (1c) directly controls

the pressure evolution, and this is central to the blended

compressible–soundproof formulation to be presented

below.

The system is closed by appropriate initial and bound-

ary conditions which we will specify in conjunction with

specific test cases below.

For later reference, using (2), we compute

›P

›p
5

1

Rg

 
p

pref

!(1/g)21

5
1

Rg

 
PR

pref

!12g

. (4)

b. The pseudo-incompressible approximation

The pseudo-incompressible model (Durran 1989) is

commonly derived from a compressible model that for-

mulates the pressure gradient term in the momentum

equation using the Exner pressure:

p5

 
p

pref

!(g21)/g

, (5)

so that, in view of (3), one finds

1

r
$p[ cpu$p . (6)

To retain flexibility of the developed code, in particular

with respect to generalizations of the equation of state,

we adopt the p–r formulation here (Klein and Pauluis

2012). When written in the latter form, extra care must

be taken in formulating the momentum equation to

ensure that it retains the influences of the pressure

perturbation up to first order.

As in Durran (1989) we start our derivations by as-

suming that the pressure does not vary much from its

hydrostatic background value and can be written as

p5p0(z)1 p0(x, t) , (7)

where p0/p0 � 1 and

›p0
›z

52r0g . (8)

Using (7) in the equation of state in (2) gives, with a

Taylor expansion:

r5
1

u

pref
R

 
p01 p0

pref

!1/g

’
1

u

pref
R

 
p0
pref

!1/g�
11

p0

gp0

�

5 r*

�
11

p0

gp0

�
,

(9)

where r* is called the pseudodensity and is defined as

the density calculated at the background pressure but

using the full potential temperature:

r*5
1

u

pref
R

 
p0
pref

!1/g

5 r( p0, u) . (10)

To filter sound waves we suppress the effect of pres-

sure perturbations on density to obtain

(r*)t 1$ � (r*v)5 0. (11)

However, in the momentum equation we want to keep

the effect of the pressure perturbations up to first order.

Using an expansion as in (10) we rewrite (1b) in non-

conservative form

vt 1 (v � $)v1 1

r*

�
12

p0

gp0

�
$(p0 1p0)52gk . (12)

Keeping terms in (12) up to first order in the pressure

perturbation and rearranging we get

vt 1 (v�$)v1 1

r*
$(p01 p0)52

�
11

1

r*

r0
gp0

p0
�
gk . (13)

We rewrite (13) in conservative form by multiplying by

r* and using (11):

DECEMBER 2014 BENACCH IO ET AL . 4419



(r*v)t 1$ � (r*v+v)1=p52

�
r*1

r0
gp0

p0
�
gk . (14)

Last, we redefine P as

P’ r*u5
pref
R

 
p0
pref

!1/g

5P0 (15)

and (1c) becomes

(P0)t 1$ � (P0v)5$ � (P0v)5 0. (16)

In (16) we have used that P is now a function of p0 only,

which allows us to drop the time derivative term and the

evolution equation becomes a divergence constraint.

This constraint enforces the pseudo-incompressible form

of the density equation in (11) thereby filtering the ef-

fect of pressure perturbations on the density and thus

filtering sound waves.

The complete pseudo-incompressible governing equa-

tions are given by

(r*)t 1$ � (r*v)5 0 (17a)

(r*v)t 1$ � (r*v+v)1$p52

�
r*1

r0
gp0

p0
�
gk (17b)

$ � (P0v)5 0. (17c)

Klein (2009) showed agreement between (17a)–(17c)

and the original formulation of Durran (1989) to leading

and first order in a perturbation expansion for small

pressure variations. Moreover, if Exner pressure vari-

ables are introduced so that p0 5 (p0/pref)
R/cp and p0 5

p0/(cpP0), a straightforward calculation shows that the

original formulation of Durran (1989) and the present

PItcr,p formulation are actually equivalent at the level of

the partial differential equations. An advantage of our

formulation is that it is more easily extended to in-

corporate more complex equations of state and that it is

‘‘thermodynamically consistent.’’ This notion refers to

the existence of well-defined thermodynamic potentials

describing the proper increase–decrease of an entropy

variable in the diabatic case (Klein and Pauluis 2012).

Note, however, that completing the extension to general

equations of state also requires a reformulation of the

divergence constraint (Almgren et al. 2006a,b; Klein

and Pauluis 2012).

c. A blended compressible/pseudo-incompressible
model

In Klein (2009) the task of incorporating the time de-

rivative term in (1c) and modeling the fully compressible

dynamics was left for future work. Here we aim to merge

the compressible, pseudo-incompressible, and ther-

modynamically consistent discretizations in the ‘‘p–r

formulation’’ for the momentum equation in a single

numerical model featuring

d a conservative discretization with respect to r, rv,

ru [ P,
d second-order accuracy,
d time steps independent of the sound speed,
d a continuous transition between pseudo-incompressible

and compressible forms, and
d a well-balanced discretization that does not rely on

subtraction of a background state.

The blended equations are given as follows, for a 2
f0, 1g:

rt 1$ � (rv)5 0, (18a)

(rv)t 1$ � (rv+v)1$p52gk

�
r1 (12a)b

r0
gp0

p0
�
,

(18b)

aPt 1$ � (Pv)5 0. (18c)

For a 5 0, the two pseudo-incompressible models with

the p–r formulation of the pressure gradient term are

retrieved. Then, setting b 5 1 selects the thermodynam-

ically consistent (PItcr,p) model whereas setting b 5 0 re-

trieves the ‘‘naive’’ pseudo-incompressible (PIr,p)

model. We note that in PIr,p and PItcr,p the density r takes

the role of the pseudodensity, which was denoted by r*

in (17b), and necessitates the additional term for ther-

modynamic consistency in the momentum equation in

(18b) for (a, b) 5 (0, 1). As the model parameter a is

adjusted from 0 to 1, the effect of pressure perturbations

on density is retrieved in a continuous fashion. This

formulation recovers the fully compressible (FC) dy-

namics for a 5 1. A summary of the model configura-

tions is given in Table 1.

The system in (18) features nonapproximate mass

and momentum equations for a 2 f0, 1g when b 5 1.

The reason is that the PItcr,p model is equivalent to

Durran’s original pseudo-incompressible model with the

TABLE 1. Model configurations used in the numerical scheme.

Model name Abbreviation (a, b)

Fully compressible FC (1, 0)

Thermodynamic consistent

pseudo-incompressible

PItcr,p (0, 1)

Nonthermodynamic consistent

pseudo-incompressible

PIr,p (0, 0)
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‘‘p–u formulation’’ of the pressure gradient term. Klein

et al. (2014) observe that the model satisfies an energy

conservation law with a definition of the total energy

that is an interpolation between those of the fully com-

pressible and the pseudo-incompressible models. The

model’s internal wave dispersion properties for realistic

stratifications are close to those of the limiting models.

This follows from related analyses for the limiting models

by Klein (2010) and the fact that the underlying Sturm–

Liouville problems depend smoothly on the defining data.

We also refer to Vasil et al. (2013) for related analysis and

relegate further discussion to a future publication.

In (18) the a and b parameters are introduced to

formulate the FC, PItcr,p, and PIr,pmodels conveniently in

one and the same set of equations. Only discrete values

a, b 2 f0, 1g make sense to begin with. Yet, let us con-

sider the resulting model equations for any a 2 [0, 1]. A

seamless discretization that allows integration of (18) for

any of these values can be used to our advantage in some

meteorologically interesting situation.

Suppose we are to initialize one of the well-known test

cases of a rising warm-air bubble or flow over a moun-

tain. As in ‘‘real meteorology,’’ we are not interested in

acoustic perturbations and would like to simulate acous-

tically balanced flows. Yet, we have no analytical way to

determine the balanced pressure distributions that would

be associated with given initial data for potential tem-

perature and velocity.

However, knowing that the pseudo-incompressible

models provide good approximations to compressible

flows free of sound waves, we can attempt to generate

reasonable approximations to the missing pressure fields

by starting a simulation pseudo-incompressibly witha5 0

for, say, S1 time steps. Within the next S2 time steps we

increase a continuously from 0 to 1, and after time step

S1 1 S2 we maintain a5 1 to operate the model in fully

compressible mode. This procedure should generate

a compressible flow simulation that is balanced with

respect to acoustic modes essentially from the start.

Promising related results for the rising bubble test are

discussed in section 4 below.

We conjecture that such a smooth blending of bal-

anced and unbalancedmodel equations within a common

discretization framework could substantially contrib-

ute to resolving similar balancing issues in the context

of data assimilation.

3. Numerical framework

A semi-implicit finite-volume method is used to ap-

proximate the dynamics of the blended model. The

scheme is a variant and extension of the soundproof

solver described in Klein (2009). An outline is presented

here, for more details see the appendix. The discrete so-

lution of (18) is obtained by the following time stepping

procedure, say from tn to tn11:

d An explicit predictor solves an auxiliary hyperbolic

system obtained by replacing the pressure gradient in

the momentum equation in (18b) with its value at time

level t n. This step yields second-order accurate r, u,

and P.
d A first elliptic corrector solves for the cell-centered

pressure time increment dp 5 pn11 2 pn by enforcing

consistency with the pressure equation in (18c). This

step also corrects the advecting fluxes in (18a) and (18b).
d The solution of a second elliptic problem is used to

correct the pressure-related momentum flux for fully

second-order accurate updates of the cell-centered

momenta.

For the time discretization we divide the simulation

time interval [0,T ] intoN subintervals, with t05 0, tn115
t n 1 (Dt)n for n 5 0, 1, . . . , N 2 1. For any variable X,

we denote Xn 5 X(tn) and (Dt)n 5O(T/N) denotes the

time steps. In the implementation, a dynamically adaptive

choice of the time step based on fixing the Courant

number is implemented, see the appendix for details. The

spatial domain is divided into primary computational cells

Ci,j (finite volumes) with i5 1, . . . ,N x, j5 1, . . . , N z, in

two dimensions according to a Cartesian grid ar-

rangement. The cells Ci,j are separated by interfaces

Ii11/2,j, Ii,j11/2 as shown in Fig. 1. The extension to three

dimensions is straightforward. The primary variables

r, r v, P are stored at the centers of the primary cells

Ci,j. Pressures are computed at centers of the primary

cells Ci,j in the first correction step and at the centers of

the dual cells Ci11/2,j11/2 shown in Fig. 1 in the second

correction step.

FIG. 1. Computational grid for the numerical scheme. Solid lines

define cells and dashed lines define dual cells, used for the second

correction. Dots, squares, and crosses denote cell centers, nodes,

and interface centers, respectively.
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a. Step 1: Predictor

In the first substep for a full time step tn / tn11, the

following auxiliary hyperbolic system, obtained from (18)

by freezing p and p0 at time level tn, is solved (Klein 2009):

›r

›t
1$ � (rv)5 0, (19a)

›rv

›t
1$ � (rv+v1 pnI)52gk

�
r1 (12a)b

r0
gp0

(p0)n
�
,

(19b)

›P

›t
1$ � (Pv)5 0. (19c)

A two-stage strong stability-preserving Runge–Kutta

method (Gottlieb et al. 2001) is used for time integration

here [Klein (2009) instead used a Monotonic Upstream-

centered Scheme for Conservation Laws (MUSCL) tech-

nique and directional operator splitting]. The spatial

discretization at any stage of the Runge–Kutta time in-

tegrator is performed with a finite-volume approach. That

is, discrete variablesXC, X5 r, rv , and P, are defined as

approximations of the cell averages set at the cell centers:

XC 5
1

jCj
ð
C
X dx1O(Dx2) , (20)

where jCj is the cell volume. To achieve second-order

accuracy in space, piecewise linear reconstruction of

P, v, and the advected quantities (1/u, v/u) is applied

within the grid cells. The reconstructed values are used

to determine any data required at the cell interfaces and

to evaluate the numerical flux functions. The pressure

variables pn and (p0)n are set at the grid nodes.

New values of XC are obtained from the old ones

subtracting the net outflow fluxes at the boundaries and

adding the contributions from the source terms:

rn11,*
C 5 rnC 2Dt[~$ � (Pvu21)]

n11/2,*
C , (21a)

(rv)n11,*
C 5 (rv)nC 2Dt[~$ � (Pv+vu211 pnI)]

n11/2,*
C

2Dtgk[P/u1 (r0)n]n11/2,*
C ,

(21b)

Pn11,*
C 5Pn

C 2Dt[~$ � (Pv)]n11/2,*
C , (21c)

where r0 5 (12 a)b(r0/gp0)p
0. The superscripts (�)n11/2,*

in (21) indicate effective time-averaged terms as they

emerge from the chosen time integrator, and the asterisk

indicates quantities evaluated in the course of the pre-

dictor step.

Note, we have rewritten the rg term in the momen-

tum equation in (21b) in terms of P and u using the

equation of state [given by (2) for the FC model and

(15) for the PIr,p and PItcr,p models] where in the pseudo-

incompressible cases Pn11/2,*[P0. In the compressible

case, in agreement with second-order accuracy we use

Pn11/2,*5Pn 1 (1/2)dp(›P/›p), where dp here is the

pressure increment computed in the correction step of

the previous time loop. The derivative of P with respect

to p is computed using the equation of state.

By writing rg in this way we were able to decouple

the buoyancy term from the small advective flux di-

vergence errors that arise in the predictor step. Potential

temperature effects can fully be accounted for in the

predictor, because potential temperature is accurately

advected and not affected by the divergence errors. How-

ever, the pressure does react to divergence errors. By re-

lying on accurate pressure information computed during

the previous time steps, the buoyancy term is shielded

from this effect. As a result, this formulation was found to

give models increased stability for larger time steps.

We have used the following symbolic notation to ab-

breviate the balance of a numerical flux, say q, across

gridcell boundaries:

~$ � qC 5
1

jCj �
I2I

C

qI � n5
1

jCj
þ
›C
q � n d‘1O(Dx2) . (22)

Here ›C is the boundary of cell C. See the appendix for

further details on the numerical scheme used in the

predictor.

Note that we discretize advection by consideringPv as

the carrier flux that transports (upwind) values of the

advected quantities (1/u, v/u, 1). This has turned out to

be advantageous in many respects; for example, in the

construction of a positivity preserving advection scheme

in Klein (2009) [see also Smolarkiewicz et al. (2014) and

references therein].

We consciously refrain from going into more detail

here because many different combinations of second-

order accurate finite-volume space discretizations and

time integrators can more or less interchangeably be

employed for the predictor step, provided they are used

in conjunction with a well-balanced discretization of

the pressure-gradient and gravity terms (see, e.g., Botta

et al. 2004; Klein 2009). The details of the scheme used to

generate the results of section 4 are given in the appendix.

At the end of the predictor step,

d the scalar variables r, u, and P are second-order

accurate (Klein 2009);
d the advecting fluxes (Pv)n11/2 do not comply with the

divergence constraint for a 5 0, and they do not

provide a stable update of P for a . 0; and
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d using the old time level pressure in the momentum

equation in (21b) prevents the scheme from being

fully second-order accurate.

Crucially, for all values of a the time step used is limited

by a CFL stability condition (Courant et al. 1928) in-

dependent of sound speed (see the appendix), so that

we sidestep the stiffness induced by sound waves.

b. Step 2: First correction

The first correction step, which is the first of two lin-

early implicit substeps, corresponds to the Marker and

Cell (MAC) projection in projection methods for in-

compressible flows (Bell et al. 1991). The advecting

fluxes Pv used in the predictor step do not abide by a

semi-implicit discretization of the P equation for the FC

model and by the divergence constraint for the PIr,p and

PItcr,p models. In the first correction, an elliptic equation

for a cell-centered pressure update dp 5 pn11 2 pn is

derived by approximating (18c) at the half time level

tn11/2, that is, by reconsidering

�
a

�
›P

›t

�
1$ � (Pv)

�n11/2

5 0. (23)

The predictor step is discretized with second-order ac-

curacy in time. As a consequence, the advecting fluxes

(Pv)n11/2,* already include a first-order accurate update

to the half time level according to the auxiliary equation

system in (19), and this is sufficient to maintain second-

order accuracy for advection. Yet, for stability reasons

an implicit correction is added that accounts for the in-

fluence of the new time level pressure gradient in the

momentum equation in the following form (Klein 2009):

(Pv)n11/2 5 (Pv)n11/2,*2
Dt

2
un11/2,*=dp . (24)

Again, the asterisk denotes predicted values. SinceDtdp5
Dt(pn11 2 pn) 5 O[(Dt)2], this correction does not affect

the second-order accuracy of advection. For a 6¼ 0, the

time derivative term is transformed as

�
›P

›t

�n11/2

5

�
›P

›p

›p

›t

�n11/2

5

�
›P

›p

�n11/2,*dp

Dt
1O[(Dt)2].

(25)

Using (24) and (25) in (23) we obtain the elliptic prob-

lem for any a 2 [0, 1],

2a

 
Cn11/2,*
H

Dt
dp

!
C

1 ~= �
�
Dt

2
un11/2,*=dp

�
C

5 ~= � [(Pv)n11/2,*]C , (26)

where

Cn11/2,*
H 5

�
›P

›p

�n11/2,*
. (27)

The expression in (26) is responsible for determining

stable time increments of P in the compressible model

(a 5 1), whereas it enforces the divergence constraint

for a 5 0.

With the solution of (26) dp at hand, the advecting flux

corrections read

dPv � n52
Dt

2
u$dp � n , (28)

and the predicted values are corrected by

rn11
C 5 rn11,*

C 2Dt~= � (dPvu21)C ,

(rv)n11,**
C 5 (rv)n11,*

C 2Dt~= � (dPv+vu21)C ,

Pn11
C 5Pn11,*

C 2Dt~$ � (dPv)C . (29)

where the advected variables u21 and vu21 are evaluated

at (�)n11/2,*. The second asterisk indicates that the ob-

tained value of the momentum is bound to receive

a second correction as described below.

Note that (26) turns into a standard Poisson pressure

projection equation for the pseudo-incompressible cases

when a 5 0. In these cases, the correction of P in (29)

automatically yieldsPn11[P0 up to the tolerance in the

divergence term with which the Poisson equation was

solved. Thus, in the pseudo-incompressible cases, the

pressure variableP is restored to its background value as

a result of the first correction as it should be.

Thus far we have stabilized the advecting fluxes by

incorporating an implicit pressure gradient contribution.

We have not yet corrected the first-order error com-

mitted in the predictor step for the momentum equation

by using the old time level pressure. This task is left to

the second correction.

c. Step 3: Second correction

The use of the old time level pressure in the mo-

mentum equation in (21b) makes the predictor step first

order accurate w.r.t. momentum. In a second correction

step, the pressure and the momentum flux are corrected

to achieve second-order accuracy and stability. Suppose

we have already calculated an appropriate pressure up-

date dp 5 pn11 2 pn, then the correction of momentum

reads

(rv)n11
C 5 (rv)n11,**

C 2
Dt

2
[~$ � (dpI)C 1 ksdp] , (30)
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where

s5 (12a)b
gr0
gp0

. (31)

Interpolating dp as computed in the first correction

from the cell centers to the cell interfaces and using

these data to evaluate (30) turns out to generate an

unstable update. We avoid this by solving a second

elliptic problem for a node-centered pressure variable

(see similar procedures in Almgren et al. 1998; Schneider

et al. 1999; Klein 2009; Vater and Klein 2009). To de-

rive the second elliptic equation, we multiply (30) by

un11 taking into account that the scalars r, P, and u

have already attained their final values after the first

correction and are unchanged in the second one. This

yields

(Pv)n11
C 5 (Pv)n11,**

C 2
Dt

2
un11
C [~$ � (dpI)C 1 ksdp] .

(32)

As in the first correction we insert (32) into

a

�
›P

›t

�n11/2

1$ �
�
22a

2
(Pv)n111

a

2
(Pv)n

�
5 0, (33)

where, for a 5 1, a second-order accurate midpoint

discretization with no off-centering is considered. After

node-centered space discretization of the divergence,

we obtain the elliptic problem:

2a

 
Cn11
H

Dt
dp

!
C

1 ~$�
�
(22a)Dt

4
un11($dp1 ksdp)

�
C

5 ~$�
�
22a

2
(Pv)n11,**1

a

2
(Pv)n

�
C

,

(34)

where Cn11
H is defined by (27) using the corrected value

of P.

As in the first correction, we obtain a Helmholtz

equation for a 5 1 where the zero-order term accounts

for compressibility. The difference between FC (a 5 1)

and PItcr,p (a 5 0) is a modified structure of the system

matrix.

We note that in the fully compressible case a back-

ward difference (BDF2) discretization can be used, as

done in Vater (2013). In that case, and for a5 1, (34) is

replaced with

2

 
3Cn11

H

2Dt
dp

!
C

1
2

3
Dt ~= � (un11~$dp)

C

5 ~$ � (Pv)n11
C

2

 
Cn11
H

2Dt
dpold

!
C

, (35)

where dpold 5 pn 2 pn21 denotes the old time level

pressure increment.

A nine-point stencil is used for the discretization of

the Laplacian equation in (34) or (35), which is obtained

as follows: the nodal values define continuous piecewise

bilinear pressure distributions on the primary control

volumes. We integrate their gradients analytically over

the boundaries of the dual cells that are centered on the

grid nodes. The solution dp is accordingly defined in the

centers of the dual cells, C. Straightforward numerical

integration of pressures over the primary cell interfaces

can thus be employed in evaluating the second mo-

mentum correction in (30). After the nodal pressures

have been updated to the new time level as well, all

variables are now second-order accurate and ready for

the next time step. See details of the discretization in

the appendix.

4. Numerical results

In this section, we present the results of the simula-

tions performed with our semi-implicit method. The

aim is to show that the model numerics produce results

in agreement with its theoretical properties in differ-

ent configurations. First, a convergence study in the FC

configuration is presented. Then, results with FC and

pseudo-incompressible (PIr,p) models are compared

on simulations of thermal perturbations. The impact of

the thermodynamic consistency (PItcr,p) term is also

evaluated.

The numerical model is implemented in an object

oriented C11 environment based on the SAMRAI

framework for mesh refinement (Hornung et al. 2006).

Krylov-type methods with algebraic multigrid pre-

conditioners as included in the Hypre library (Falgout

et al. 2006) are used to solve the linear systems in the

correction step. Our coding framework is fully paral-

lelized and 3D ready. However, an extensive analysis of

its parallel efficiency lies outside the scope of the pres-

ent work.

a. Convergence study

First, we assess the accuracy properties of the FC

model on a case of pure transport in a highly idealized

setting with g 5 0. The case (Kadioglu et al. 2008) con-

sists of a traveling rotating vortex in the doubly periodic
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unit-square-shaped domainV5 [0, 1]2m2. The vortex is

axisymmetric and rotates counterclockwise with unitary

velocity. Density is modeled by a smooth, nonconstant

function and a constant and unitary transport velocity

v5 (1, 1)T m s21 is superimposed. The vortex is an exact

solution for the zero Mach number incompressible

equations, to which PItcr,p and PIr,p reduce in the absence

of gravity (Klein 2009). With the pressure field correctly

initialized, it is an exact solution for the fully compressible

equations as well. We refer to Kadioglu et al. (2008) for

the initial data not reported here for brevity. Note that

some of the coefficients in the expression for initial pres-

sure were incorrectly reported in Kadioglu et al. (2008),

the correct expression is available upon request.

In the compressible case, the initial distribution for

P is derived via the equation of state in (3). Reference

physical quantities are set as follows:

rref 5 0:5 kgm23, pref 5 101 625Pa, Tref 5 706:098K,

(36)

corresponding to a maximum Mach number Mmax 5
max(kvkRMS

ffiffiffiffiffiffiffiffiffiffi
gp/r

p
)5 4:963 1023. The high value of

Tref is computed from pref and rref considered in

Kadioglu et al. (2008) and enables an easier comparison

with their results for the density.

The flow is simulated by running the FC semi-implicit

model (a[ 1) on a grid with 192 cells in both directions

at CFL5 0.45, that is, constant Dt5DtA 5 9.73 1024 s

and Dx 5 5.213 1023 m. These data correspond to

a sound-speed-based CFLS 5 CFL/Mmax ’ 90.72.

The vortex is transported by the background unitary

velocity. Because of the doubly periodic boundary, the

initial configuration is reproduced unchanged at time

T5 1 s (Fig. 2). Similar results (not shown) are obtained

for momentum and P in FC runs and for all variables

except for P (which is constant) in PItcr,p runs.

Furthermore, the numerical solution converges

quadratically in the maximum norm (Fig. 3). The ex-

perimental order of accuracy is in agreement with the

theoretical accuracy of the scheme presented in sec-

tion 3. Similar results are obtained with PItcr,p runs (not

shown).

The FC results shown above validate the use of the

fully compressible flow solver that extends the pseudo-

incompressible framework of Klein (2009).

b. Rising bubble

Next, we consider a warm air bubble test case in the

domain V5 (x, z) 2 [210, 10]3 [0, 10] km2. We set the

following initial data for a homentropic atmosphere

(Botta et al. 2004):

p(z)5pref

 
12G

grref
pref

z

!1/G

, r(z)5 rref

"
p(z)

pref

#1/g
,

rref 5
pref
RTref

,

(37)

where, in agreement with Klein (2009), rref, pref, g, and

Tref have the values 1 kgm23, 8.61 3 104Nm22,

10m s22, and 300K, respectively, and G5 (g2 1)/g. The

background potential temperature u is constant. The

homentropic setting in (37) is perturbed with a smoothed

cone-shaped thermal perturbation u0, given byKlein 2009:

u0(x, z)5

8<
: du cos2

�p
2
r
�

(r# 1)

0 otherwise

,

8>>>><
>>>>:

du5 2K

r5 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x
L

�2
1

�
z

L
2

1

5

�2
s

L5 10 km

. (38)

FIG. 2. Smoothed rotating vortex results: (left) density and

(right) pressure. (top) Initial data and (bottom) computed values at

T5 1 s with the FCmodel. Contours are plotted every 0.025 kgm23

(from 0.525 to 0.975 kgm23) for density and every 0.025Pa (from

20.025 to20.3 Pa) for pressure. The domain is discretized with 192

cells in each direction with CFL 5 0.45.
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The initial velocity is zero. Lateral boundary condi-

tions are periodic, with solid walls on top and bottom

boundaries.

We run our semi-implicit trapezoidal scheme on a grid

with Dx 5 Dz 5 125m (i.e., 160 3 80 cells) and CFL 5
0.5. In the first five steps a buoyancy-driven time step

(Dt 5 DtB ’ 21.69 s) is used. Because of growing veloc-

ities, the advection-driven time step is used for the re-

mainder of the simulation. Toward the end of the

simulation, values of Dt ’ 4.6 s are attained.

Driven by buoyancy, the warm bubble rises and rolls

up on the sides (Fig. 4). The amplitude of the thermal

perturbation at final timeT5 1000 s is in agreement with

the results in Klein (2009), as shown in Table 2.

However, the PIr,p bubble rises faster, is not as wide, and

exhibits a phase shift with respect to both the PItcr,p and

the FC models (Fig. 5).

The discrepancies in the PIr,p model come from ne-

glecting the effect of pressure perturbations on the

buoyancy. The extra buoyancy term present in the PItcr,p
model reduces buoyancy near the top of the bubble

because of an increase in pressure near the bubble top

and increases buoyancy at the two tails due to a pressure

decrease near the tails. Furthermore, the overall buoy-

ancy of the bubble decreases causing a decrease in the

phase speed. Therefore, the PItcr,p bubble is both lower

and wider than the PIr,p model and, as a result, re-

sembles the FC model more closely.

FIG. 3. Smoothed rotating vortex results: (left) density, (middle) momentum norm, and (right) pressure convergence plots. Errors are

shown in the maximum norm of computed solutions at T 51 s on grids with 642, 1282, 2562, and 5122 cells with respect to computed

solutions on a reference grid with 10242 cells. The numbers inside the graphs are the experimental rates of convergence between sub-

sequent grid refinements. The dashed–dotted line represents the quadratic slope.

FIG. 4. Rising bubble results. Potential temperature (top left) initial data and computed value at T5 1000 s with the (top

right) FC, (bottom left) PItcr,p, and (bottom right) PIr,p models. Contours are plotted every 0.25K starting at 300.25K.
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Results with PItcr,p as measured in a one-dimensional

cut of u0 at height z 5 7500 match the FC results within

a 2% error (Table 3).

Results with the PItcr,p model do not differ substantially

from FC results at the end of the simulation at T 5
1000 s. The different dynamics of the FC case can be

detected in the onset of sound waves in the initial stages

of the simulation. With the FC model (a5 1) the initial

potential temperature perturbation triggers acoustic

waves. These are visible in the top-left panel of Fig. 6,

which displays pressure increments at time t 5 26.6 s in

a run of the FC model with Dt 5 DtI 5 1.9 s. The oscil-

lations are due to the initial hydrostatic pressure distri-

bution from (37) not being acoustically balanced.

The presence of associated pressure oscillations is

confirmed by a time series over the first 350 s of the

pressure time increment values recorded at the point

(x, z)5 (27.5, 5) km marked with a cross in the top-left

panel of Fig. 6. The time series are shown in the top-

right, bottom-left, and bottom-right panels of Fig. 6. The

top-right and bottom-left plots are relative to simula-

tions at constantDt5DtI5 1.9 s. The simulation relative

to the bottom-right panel is at CFL ’ 0.5 as in Fig. 4.

The FC model results (solid lines in all plots) display

oscillations triggered by the initial pressure imbalance.

The amplitude of the acoustic oscillations in the small

time step case (top-right panel) is ninefold the ampli-

tude of the large time step runs (bottom-right panel).

The effect is suppressed in the PIr,p runs (dashed lines)

except for an initial transient. Note that in the large time

step run, the initial transient masks the amplitude of the

acoustics. Therefore, the data of the first time step was

removed in the bottom-right panel of Fig. 6.

In the case of the PIr,p model, pressure is determined

by the solution of a time-independent Poisson problem,

which describes the pressure field in the absence of

sound waves. The quantity PIr,p is considered because

the extra PItcr,p term does not modify the results as far as

acoustics are concerned. On the one hand, the re-

duction in the amplitude of the large time step acoustic

oscillations shows that the semi-implicit method is able

to handle acoustic oscillations at CFL numbers in-

dependent of the sound speed. On the other hand, the

effect of acoustics is not completely suppressed in the

large time step, either.

However, thanks to the blending feature, the code is

able to continuously transition from the PIr,p configu-

ration to the FC configuration. The bottom-left panel of

Fig. 6 shows the time series of pressure increments for

blended runs. We set the transition parameter a from

section 2 to zero for S1 time steps. Then, a increases

linearly to a 5 1 over S2 time steps. Starting at the time

step number S1 1 S2, the code runs compressibly with

a 5 1.

In the bottom-left panel of Fig. 6, the thin solid line

in the background denotes the fully compressible run.

The dashed–dotted curve and thick solid curves were

obtained with S2 5 20 and S2 5 40, respectively. There

are no disturbances for the first S1 5 10 pseudo-

incompressible steps in these two pressure graphs, and

the results coincide with those from the run of the PIr,p
model (dashed line in the right panels). Perturbations

TABLE 2. Rising bubble results: maximum temperature per-

turbation u0max, attained height zmax, and horizontal extension

xmax2 xmin at final time T5 1000 s for FC, PItcr,p, and PIr,pmodels.

The values refer to the external contour u05 0.25K.

u0max(K) zmax (m) xmax 2 xmin (m)

FC 1.64 8183 6637

PItcr,p 1.64 8187 6648

PIr,p 1.65 8469 6278

FIG. 5. Rising bubble results: potential temperature perturbation at final time T5 1000 s. (left) A horizontal cut of

the final u0 at height z 5 7500m for the FC (solid line), PItcr,p (cross-marked line), and PIr,p (dashed–dotted line).

(right) The difference from the FC cut of the PItcr,p cut (dashed–dotted line) and the PIr,p cut (solid line).
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arise in the transitional period and fully develop after

S1 1 S2 time steps. The oscillations’ amplitudes in the

blended runs are considerably lower than those of the

FC run and they are lower for the larger S2 value (i.e.,

the longer transitional period).

Results in the bottom-left panel of Fig. 6 demon-

strate the capabilities of the blended model. Acous-

tic perturbations are absent when the model runs in

pseudo-incompressiblemode with a5 0 and they emerge

significantly damped after the transition to a 5 1 in fully

compressible mode. Therefore, when blended continu-

ously with the compressible discretization, the sound-

proof limit discretization can be used to actively control

imbalances in the initial data. The oscillation amplitudes

are substantially reduced also when larger time steps are

employed as seen in the bottom-right panel of Fig. 6.

Finally, as in Almgren et al. (2006a), which presents

a pseudo-incompressible code for stellar hydrodynam-

ics, we compare plots of the Mach number in the initial

stages of FC, PIr,p, and blended runs. Results at time

t 5 21.66 s, that is, time step number 57 at Dt 5 DtI 5
0.38 s, are displayed in Fig. 7. The mushroom-shaped

FC result (left panel) reveals the initial onset of sound

waves due to pressure imbalances already inspected in

Fig. 6, while the PIr,p plot (middle panel) and blended

plot (right panel) show no perturbation away from the

TABLE 3. Rising bubble results: relative root-mean-square error

Erms
rel and maximum error Emax

rel on potential temperature pertur-

bation profile u0 and maximum error Emax
rel on the maximum per-

turbation amplitude u0max for the PItcr,p and PIr,p cuts at z 5 7500m

with respect to the FC cut as in Fig. 5.

Erms
rel (u

0) Emax
rel (u0) Emax

rel (u0max)

PItcr,p2 FC 0.017 0.018 1.07 3 1023

PIr,p 2 FC 0.57 0.57 3.61 3 1022

FIG. 6. Rising bubble results, nodal pressure time increment dp. (top left) Contours of dp every 0.6 Pa starting at

23 Pa, time step 14 (t 5 26.6 s) for the FC model. (top right) History of dp over the first 350 s measured at (x, z) 5
(27.5, 5) km for FC (solid line) and PIr,p (dashed line) configurations; constant time step Dt 5 1.9 s. (bottom left)

History of dp over the first 350 s measured at the same location. Blended runs at constantDt5 1.9 s with S15 10 initial

pseudo-incompressible steps and S2 5 20 (dashed–dotted line) and S2 5 40 (thick solid line) transition steps are

compared with the fully compressible run, S1 5 S2 5 0 (thin solid line). (bottom right) As in (top right), the dashed–

dotted line refers to a blended runwith S15 0, S25 3; the time step is determined byCFL5 0.5 (initialDt’ 21.69 s); and

the data for the first time step are removed.
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bubble. A very small time step was considered in this

case following Almgren et al. (2006a) in order to track

more closely the dynamics in the initial stages.

c. Density current

This test (Straka et al. 1993) consists of a negative

potential temperature perturbation in a [225.6, 25.6] 3
[0, 6.4] km2 homentropic atmosphere in (37),

T 05
	
0K if r. 1

215[11 cos(pr)]/2K if r, 1
, (39)

where r 5 f[(x2 xc)/xr]
2 1 [(z2 zc)/zr]

2g0.5, xc 5 0 km,

xr5 4km, zc5 3km, and zr5 2km. From u5 T(p/pref)
2G

we derive the potential temperature perturbation and

density distribution:

u0(x, z)5
T 0

12G
grref
pref

z
, r(z)5 rref

"
p(z)

pref

#1/g
uref

uref 1 u0
,

(40)

where uref 5 Tref. The boundary conditions are periodic

on the left and right boundary, with solid walls on the top

and bottom boundary. Furthermore, we add an artificial

diffusion term rm=2v to the right-hand side of the mo-

mentum equation (rm=2u in the P equation), with

m5 75m2 s21 as in Straka et al. (1993). The initial velocity

is set to zero, and the reference quantities are Tref 5

300K, pref 5 105 Pa, and rref 5 pref/(RTref).

The models are run with Dx 5 50m and CFL 5 0.5.

Thus, the time step is Dt 5 DtB ’ 4.65 s for the first

three steps and then the advective time step is used.

For the FC model, a backward difference approach

in the second projection is used, see (35). Because of

the symmetrical nature of the test case, only the plots

for the subdomain [0, 19.2] 3 [0, 4.8] km2 are shown.

Obtained values of the final thermal perturbation and

the front positions as calculated by the FC and PItcr,p
models (Fig. 8 and Table 4) are in line with results in

the literature (Straka et al. 1993; Restelli and Giraldo

2009). In contrast to the rising bubble case, the extra

buoyancy term in the PItcr,p model results in an overall

increase in the buoyancy of the bubble. This increase

in buoyancy causes the bubble to fall slower and re-

duces the phase speed when compared with the PIr,p
model. This can be seen in the farther front position

and in the horizontal cut at height z5 1200m (Fig. 9) of

the PIr,p model when compared to both the FC and

FIG. 7. Rising bubble results: Mach number M at time step 56 (T ’ 21.66 s for Dt 5 0.38 s). (left) FC model, S1 5 S2 5 0; (middle) PIr,p
model; and (right) PIr,p then FC model, S1 5 10, S2 5 40. Contours are plotted every 1024 in the range [0.0001, 0.002].

FIG. 8. Density current results: potential temperature perturbation. (top left) Initial data, FC results at (top right)

t 5 300 s, (bottom left) t 5 600 s, and (bottom left) t 5 900 s. Contours are plotted every 1K from 216.5 to 20.5K.
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PItcr,p models. As a result, the PIr,p model displays con-

siderable deviations (higher than 40%) relative to FC

runs (Table 5). For the PItcr,p model, the deviation from

FC is lower than 5%.

d. Inertia–gravity waves

Next, we consider a thermally stratified atmospherewith

stable stratification of potential temperature ›u/›z . 0.

In particular, as in Restelli and Giraldo (2009) and

Skamarock and Klemp (1994), we take

u(z)5Tref exp

�
N2

g
z

�
, (41)

where N denotes the buoyancy frequency. With N 5
0.01 s21, g 5 9.81m s22, and Tref 5 300K, we have u 2
[300, 332.19] K for z2 [0, 10] km. The other variables are

defined as

p(z)5 pref

(
12

g

N2
G
grref
pref

�
12 exp

�
2
N2z

g

��)1/G

,

(42)

r(z)5 rref

 
p(z)

pref

!1/g

exp

�
2
N2z

g

�
, rref 5

pref
RTref

,

(43)

with pref 5 105 Pa. On top of the background stratifi-

cation in (41)–(42), in a [0, 300] 3 [0, 10] km2 domain

we consider the perturbation [Skamarock and Klemp

(1994) and Fig. 10 left panel]:

u0(x, z, 0)5 0:01K
sin(pz/H)

11 [(x2 xc)/a]
2
, (44)

withH5 10 km, xc5 100 km, and a5 5 km. In addition,

there is a background horizontal flow u 5 20m s21.

The simulations are performed with at advective CFL 5
0.3, that is Dt 5 DtA ’ 3.75 s. The grid spacing is Dx 5
Dz 5 250m and the trapezoidal time integrator is

employed for the FC model. In agreement with pub-

lished work (Restelli and Giraldo 2009), the Coriolis

term is neglected here because of the small length of

the channel.

Unlike the previous test cases, here the dynamics is

chiefly wavelike rather than vertically buoyancy driven.

Inertia–gravity waves develop in the horizontal di-

rection (Fig. 10). As in the previous test case, only the

FC contour plots are presented in Fig. 10 as the PItcr,p and

PIr,p plots are visually indistinguishable.

A quantitative comparison between the FC, PItcr,p, and

PIr,p results and the results of Restelli and Giraldo

(2009) are reported on in Table 6. Maxima and minima

of perturbations of velocity components, potential

temperature, and Exner pressure at final timeT5 3000 s

are in line with published work.

The left panel of Fig. 11 shows a one-dimensional cut

of the potential temperature perturbation at z5 5000m.

As in the previous cases, the PIr,p model displays a

higher phase speed than the PItcr,p and FC models due to

the neglect of pressure perturbations in the buoyancy

term. The region of the leftmost crest is magnified in

Fig. 11 to highlight the difference in the phase speed of

FIG. 9. Density current results: potential temperature perturbation at final timeT5 900 s. (left) A horizontal cut at

height z5 1200m. (right) The difference from the FC profile of the PItcr,p profile (dashed line) and of the PIr,p profile

(solid line).

TABLE 4. Density current results: maximum temperature per-

turbation u0max and front position xmax at final time T 5 900 s. The

quantity xmax is the rightmost intersection of the 1-K contour with

the bottom boundary.

u0max(K) xmax (m)

FC 210.14 15 476

PItcr,p 210.17 15 456

PIr,p 29.96 15 676
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the PIr,p model (dashed–dotted line) with respect to the

PItcr,p model (asterisks) and the FC model (solid line).

The right panel of Fig. 11 shows the differences be-

tween the FC cut and the PItcr,p cut (dashed line) and

between the FC cut and the PIr,p cut (solid line). The

amplitude of the difference is larger in the latter case

due to the phase shift highlighted on the left panel. The

result is quantified in Table 7 which shows relative RMS

andmax errors of the FC cut with respect to the PItcr,p and

PIr,p cuts. Relative PIr,p2 FC errors are threefold those

of PItcr,p2 FC.

Finally, as in Restelli and Giraldo (2009) we define

conservation errors as

Cf 5
j(ftot)T 2 (ftot)0j

(ftot)0
, (45)

where ftot 5
Ð
Vf dx denotes the volumetric integral of

f in the domainV. Subscripts 0 and T denote initial and

final time, respectively. We expect our scheme to con-

serve density r and horizontal momentum density ru.

Though our model does not conserve total energy rE,

we report conservation scores for that variable, too. For

the FC model, results for P are also reported. Values of

the conservation error for r, ru, P, and rE are fairly low

for the three model configurations (Table 8). Note, in

Table 8 we define the total energy variable as

E5
1

r

p

g2 1
1

v2

2
1 gz , (46)

where p5 p0 in (46) for the PI
tc
r,p and PIr,p cases as shown

in Klein and Pauluis (2012). Numerical analysis of the P

conservation is only meaningful for the FC model, since

in the incompressible cases P 5 P0(z) holds.

5. Discussion and conclusions

We have presented a blended weakly compressible

computational model with seamless access to thermo-

dynamically consistent pseudo-incompressible dynam-

ics, these two representing the limiting cases of a family

of models depending on one parameter. For each

member of the model family, the numerical discretiza-

tion is the same up to certain weights in the stencil of the

implicit corrector invoked to enable advection-based

time steps in simulations of small to mesoscale systems.

This seamless and straightforward compressible-to-

soundproof model transition can be realized in any flow

solver that features the density and the mass-weighted

potential temperature as prognostic variables for the

thermodynamics, together with flux-based formulations

of their determining equations. Weak checkerboard

modes were observed in the runs of gravity-driven flows

for very small time steps. We attribute them to the fact

that the divergence of the cell-centered velocity is con-

trolled in the second correction through a discrete el-

liptic problem derived from the linearized acoustic

equations on theArakawaB grid with a standard stencil.

This grid arrangement allows for oscillatory modes with

phase vectors pointing roughly along the grid diagonals

(see Fig. 8 of Arakawa and Lamb 1977). These modes

might be controllable by adopting a staggered grid ar-

rangement (Arakawa C grid) or by adopting an inf-sup

stable discretization of the elliptic operator on the B grid

as in Vater and Klein (2009).

TABLE 5. As in Table 3, but for density current and cuts at z 5
1200m with respect to the FC cut as in Fig. 9.

Erms
rel (u

0) Emax
rel (u0) Emax

rel (u0max)

PItcr,p2 FC 0.046 0.090 1.93 3 1023

PIr,p 2 FC 0.441 0.584 0.026

FIG. 10. Inertia–gravity wave results: potential temperature perturbation. (left) Initial data, contours every 1023K.

(right) FC result at T 5 3000 s, contours every 5 31024K from 20.0015 to 0.003K. Thin lines denote negative

contours.
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The key observation enabling the blending is that, at

least for an ideal gas with constant specific heat capac-

ities, ru is a function of pressure alone. Thus, the

transport equation for ru is equivalent to the pressure

evolution equation and lends itself naturally for implicit

pressure formulations. Once available, such a seamless

framework can be used for a clean comparison of com-

pressible and soundproof models that is not affected by

sizeable differences between the respective model dis-

cretizations (see Smolarkiewicz and Dörnbrack 2008;
Smolarkiewicz et al. 2014 for comparable arguments).

As a further potentially attractive application of such

a modeling tool we suggest the filtering of unbalanced

initial data. For given initial data, a matching pressure

field and a related divergence correction that would

guarantee a nearly sound-free subsequent evolution are

generally not available. With a blended soundproof-

compressible framework, one can generate accurate

balanced pressure and velocity fields by running the

model in soundproof mode for a few time steps and then

making the transition to fully compressible over another

few steps. This idea may also be transferred to other

nearly balanced situations, such as hydrostatic and

geostrophic, but exploring this is left for future work.

In the framework of techniques for atmospheric data

assimilation (Rabier 2005), the resulting ability of a

computational model to manage and regularly embed

new, unbalanced input in a balanced fashion and with-

out invoking additional filtering procedures appears

quite attractive. This capability can also be more gen-

erally useful when one has to map externally obtained

data into a multidimensional finite-volume scheme as

analyzed in Zingale et al. (2002).

Besides the aforementioned blending features, there

are other noteworthy aspects of the scheme. First, we

discretize the equations in full form without subtraction

of a background state, maintaining accuracy by adopting

a well-balanced discretization of the pressure gradient

and gravity terms as discussed in Botta et al. (2004) and

Klein (2009). Second, we cast the momentum equation

in terms of pressure and density instead of the more

commonExner pressure and potential temperature. The

former choice guarantees conservation of momentum in

the absence of external forces and increases flexibility

with a view to implementing more general equations of

state (Klein and Pauluis 2012).

Code performance was assessed in a number of config-

urations. The second-order accuracy of the scheme was

verified on a smooth benchmark. Then, standard test cases

consisting of buoyant thermal perturbations were consid-

ered, where our data confirmed no substantial difference

between the compressible and pseudo-incompressible

TABLE 6. Inertia–gravity wave results: maxima and minima of horizontal velocity u, vertical velocity w, potential temperature

u, and Exner pressure p 5 Tu21 perturbations at final time T 5 3000 s in the present study and Restelli and Giraldo (2009, denoted

by REF).

u0max u0min w0
max w0

min u0max u0min p0
max p0

min

FC 1.054 3 1022 21.060 3 1022 2.739 3 1023 22.262 3 1023 2.808 3 1023 21.526 3 1023 7.75 3 1027 25.27 3 1027

PItcr,p 1.063 3 1022 21.063 3 1022 2.645 3 1023 22.424 3 1023 2.808 3 1023 21.526 3 1023 1.18 3 1025 26.56 3 1027

PIr,p 1.365 3 1022 21.362 3 1022 2.764 3 1023 22.471 3 1023 2.930 3 1023 21.709 3 1023 1.21 3 1025 25.36 3 1027

REF 1.064 3 1022 21.061 3 1022 2.877 3 1023 22.400 3 1023 2.808 3 1023 21.511 3 1023 9.11 3 1027 27.13 3 1027

FIG. 11. Inertia–gravity wave results: potential temperature perturbation at final time. (left) A horizontal cut at

height z5 5000m for the FCmodel (solid line), the PItcr,p model (asterisks), and the PIr,pmodel (dashed–dotted line).

The region of the leftmost crest is magnified to highlight the higher phase speed of the PIr,p model. (right) The

difference from the FC cut for the PItcr,p cut (dashed line) and the PIr,p cut (solid line).
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results. For the latter, including the linearized effect of

pressure on density in the gravity term results not only

in thermodynamic consistency (Klein and Pauluis 2012)

but also in improved accuracy. Our findings are consistent

with Davies et al. (2003) and Klein et al. (2010), thus con-

firming the validity of the pseudo-incompressible model

at small- to mesoscales and for realistic stratifications.

As previously mentioned, we are planning to extend

the present general stategy to include additional dom-

inant balances relevant for larger-scale flows, specif-

ically to the hydrostatic and geostrophic limits. This

goal appears feasible in view of recent related work.

For example, successful results have been achieved

by Eulerian–semi-Lagrangian fluid solver (EULAG)

model users (Prusa and Gutowski 2011; Szmelter and

Smolarkiewicz 2011; Smolarkiewicz et al. 2014) with com-

pressible, anelastic, and pseudo-incompressible models

on the synoptic and planetary scales. Furthermore,

alternatives have been explored to merge hydrostatic

models with fully compressible (Janjic et al. 2001) or

soundproof ones. Careful consideration will be needed

to identify the correct large-scale limiting model in the

light of recent suggestions of unified multiscale re-

duced models by Durran (2008), Arakawa and Konor

(2009), and Konor (2014).
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APPENDIX

Details of the Numerical Scheme

Here we elaborate on the aspects of the numerical

scheme omitted in the main text.

a. Predictor

We use a second-order accurate, explicit two-stage

strong stability-preserving Runge–Kutta method for

time integration (Gottlieb et al. 2001). For the ordinary

differential equation:

du

dt
5L(u) , (A1)

where L denotes a differential operator, the method

reads

u(1) 5 un 1DtL(un) , (A2)

un11 5
1

2
un 1

1

2
u(1) 1

1

2
DtL[u(1)] , (A3)

where u(1) denotes the first stage solution.

The spatial discretization is performed with a finite-

volume approach (see, e.g., LeVeque 2002). Discrete

variables are defined as approximations of cell averages

set at cell centers, with the exception of dynamic pres-

sure, set at cell nodes. The new cell-centered values are

obtained from the old ones subtracting the net outflow

flux at the boundaries and adding the contribution from

the source term [see (21a)–(21c) in the main text].

The discretization of the fluxes is performed according

to the following steps:

1) The velocity at the interfaces is determined by aver-

aging the neighboring leftmost and rightmost cell-

centered values vL and vR:

TABLE 7. Inertia–gravity wave results: relative root-mean-

square error Erms
rel and maximum error Emax

rel on potential temper-

ature perturbation profile u0 for the PItcr,p and PIr,p cuts at z 5
5000m with respect to the FC cut as in Fig. 11.

Erms
rel (u

0) Emax
rel (u0)

PItcr,p2 FC 0.039 0.055

PIr,p – FC 0.132 0.16

TABLE 8. Inertia–gravity wave results: conservation errors for

density, horizontal momentum density, P, and total energy density

(see text for definitions) in the present study and in Restelli and

Giraldo (2009, denoted by REF).

Cr Cru CP CrE

FC 1.15 3 1029 8.05 3 10211 5.68 3 1029 1.98 3 1029

PItcr,p 6.77 3 10210 9.66 3 10210 — 3.99 3 1029

PIr,p 8.90 3 10210 8.55 3 10210 — 4.21 3 1029

REF 1.67 3 1028 2.60 3 1027 — 1.64 3 1028

DECEMBER 2014 BENACCH IO ET AL . 4433



v5
1

2
(vL1 vR) , (A4)

where, for a second-order method, vL and vR have to

be linearly reconstructed/limited. Considering the

interface (xi11/2, yj), and omitting the subscript j for

simplicity, the reconstructed values of the horizon-

tal velocity u are

uL 5 ui 1
1

2
c(ui2 ui21, ui11 2ui) , (A5)

uR5 ui112
1

2
c(ui11 2ui,ui122 ui11) , (A6)

where

c(a,b)5
a1 b

2
(A7)

for centered slopes. Our implementation features

also an option for slope limiters, for which c would

have a different functional form. Upwind fluxes FP

for the P variable are computed by means of the

obtained velocity:

FP 5F1
P 1F2

P , (A8)

where

F1
P 5PL max(v, 0), F2

P 5PRmin(v, 0) , (A9)

and the subscripts L and R denote cell-centered

leftmost and rightmost values of the variable.

2) Fluxes for the remaining quantities are referred to

the carrier flux Pv and derived using (A9) as

Ff 5F1
P fL1F2

P fR , (A10)

where f 2 f1/u, v/ug. The contribution from the pres-

sure term is incorporated in the momentum flux add-

ing the pressure value at the center of the cell interface,

obtained via average of the adjacent nodal values.

b. Pressure update

The nodal pressure update at the end of the time step

proceeds as follows:

1) An auxiliary cell-centered pressure pc is computed

from P using the inverse of the equation of state in

(2). The result is then interpolated to the nodes:

pn11
c 5

 
Pn11,**

rrefTref

!g

pref 2 pref, pn11
c /pn11

EOS .

(A11)

2) The obtained value is weighted with the old time level

pressure update with the solution of (34) or (35), dp:

pn11 5apn11
EOS 1 (12a)(pn1 dp) . (A12)

When the model runs in pseudo-incompressible mode

with a 5 0, the node-centered pressure increment dp

is summed to the old time level value. In compressible

mode, with a5 1, the new nodal pressure is locked to

P imposing the equation of state at a discrete level.

Other solutions are possible and were tested. For

example, as a pseudo-incompressible update, an

interpolated value of the solution dpc of the first

correction equation in (26) can be summed to the

old time level pressure value. This was used in the

thermal perturbations simulated with the fully com-

pressible model initially run in pseudo-incompressible

mode. In that case the solution of the second Poisson

problem only serves as a correction to the momentum

flux, (30), not as an update for the nodal pressure value.

c. Time step choice

The explicit time integration method adopted in the

predictor step must be consistent with the CFL stability

condition for advection (Courant et al. 1928), and a

similar constraint for internal wave dynamics since these

processes are handled explicitly in our scheme. In par-

ticular, we dynamically compute the time step size at

each time loop according to

Dt5min(DtI ,DtA,DtB) , (A13)

where DtI is an externally imposed value of the time

step. Here DtA is the advective time step:

DtA 5
CFLDx

maxV(kvk2)
, (A14)

where CFL # 1 and k�k2 is the discrete L2 norm. Here

DtB is a buoyancy-dependent time step:

DtB 5CFL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxminVu

gmaxVDu

s
, (A15)

where maxVDu 5 maxVu 2 minVu is the maximum po-

tential temperature perturbation. Dynamically adaptive

time stepping is standard in computational fluid dynamics

and for two time level schemes its implementation is quite

straightforward (LeVeque 2002).

d. Well-balanced treatment of vertical pressure
gradient and gravity term

In the envisaged atmospheric applications, flow pat-

terns arise as perturbations around a hydrostatically
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balanced state, where the vertical pressure gradient off-

sets the gravitational force:

›p

›z
52rg . (A16)

Therefore, an essential characteristic of a numerical

method in this context is the capability of mimicking

the hydrostatic balance at the discrete level. This means,

for instance, that the numerical discretization should

introduce no perturbations on an initially motionless

atmospheric setting. The feature is especially nontrivial

for models as the ones presented here whose analytical

formulation relies on full variables, unlike other non-

hydrostatic fully compressible models (e.g., Skamarock

and Klemp 2008; Restelli and Giraldo 2009) wherein

the unknowns are themselves perturbations around a

background hydrostatically balanced reference state.

Here we adopt the approach of Botta et al. (2004),

who describe the implementation of a discrete Archi-

medes’ principle, and in the following we present the

parts of our implementation tuned to take into account

the hydrostatic balance.

e. Initialization

Since the problem is inherently one-dimensional, we

focus on the vertical coordinate for the moment. First,

let the initial data for pressure p(z) and density r(z) be

given in the form of a homentropic or stably stratified

atmosphere as in (37) or (42) above. Next:

d p(z) is initialized in cell centers zj, j5 1, . . . , N z and

nodes zj21/2, j5 1, . . . , N z 1 1 according to its analyt-

ical expression in (37) or (42);
d r(z) is initialized at zj using a discretized form of (A16):

r(zj)52
1

gDz
[p(zj11/2)2 p(zj21/2)], j5 1, . . . ,N z ,

(A17)

where Dz is the vertical grid spacing.

f. Predictor step

The value of the pressure at the center of the cell face

needed for the momentum flux computation in (19b) is

computed as follows:

p(zj)5
1

2
fp(zj11/2)1 p(zj21/2)

2 g[2f (zj)2 f (zj11/2)2 f (zj21/2)]g (A18)

for j5 1, . . . , N z, where

f (z)5

ðz
0
r(z0) dz0 (A19)

and the square bracket in (A18) represents a hydrostatic

modification of the simple average.

g. Boundary conditions

The so-called solid wall boundary conditions are

adjusted to take into account hydrostatic balance. As

customary in finite-differences and finite-volume

codes (LeVeque 2002), we implement fully reflect-

ing boundaries using ‘‘ghost cells.’’ The strategy in-

volves attaching two dummy cells to the boundary in

which the value of all the variables except for the

normal velocity is mirrored from the two innermost

cells, whereas the normal velocity value is taken with

the opposite sign.

We modify the process for the mirrored variables in

that we retrieve in the ghost cells the hydrostatically

consistent values. For instance, for the pressure in the

first lower ghost cell (cell 0) we have the following:

p(z0)5 p(z1)1 g

ðz
1

z
0

r(z) dz (A20)

and similar expressions hold for the upper values.

h. Final locking of pressure and P variables

The thirdmodification involves the interpolation from

nodes to cell centers or vice versa, which in the case

without gravity is a standard linear interpolation. Here,

a correction taking into account hydrostaticity is in-

troduced. In particular, for the cell-to-node interpola-

tion used in the pressure update in (A11) after the

second correction step:

d For the lower boundary nodes:

p(xi11/2, z1/2)5 0:5(pNW1 pNE), " i5 1, . . . ,N x ,

(A21)

where pNW and pNE denote the pressure values ob-

tained with analytical integration downward from the

hydrostatic pressure values in the adjacent top-left

and top-right cell, respectively.
d For the upper boundary nodes:

p(xi11/2,zN
z
11/2)50:5(pSW1pSE), " i51, . . . ,N x ,

(A22)

where pSW and pSE denote the pressure values ob-

tained with analytical integration upward from the

hydrostatic pressure values in the adjacent bottom-left

and bottom-right cell, respectively.
d For the internal nodes:
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p(xi11/2, zj11/2)5 0:25(pSW 1 pSE1 pNW 1 pNE),

" i5 1, . . . ,N x, j5 1, . . . ,N z2 1.

(A23)

Finally, we remark that issues due to neglect of hydro-

static balance at the discrete level manifest less in the

incompressible than in the fully compressible version of

our method. In the former, small spurious perturbations

due to inexact balancing, for instance, at the boundary

are projected away in the correction step, while in the

latter P and pressure are locked through the equation

of state, thus requiring a careful adjustment.
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