
AAS 21-368

INDIRECT OPTIMIZATION FOR LOW-THRUST TRANSFERS WITH
EARTH-SHADOW ECLIPSES

Yang Wang*, Francesco Topputo†

An efficient indirect method is presented to solve optimal low-thrust Earth-orbit
transfers in presence of shadow eclipses. The key feature of our method is the
capability to offer accurate gradients of problem functions with respect to all de-
cision variables, which is pivotal for robust convergence. Particular attention is
paid to handling the discontinuity conduced by Earth-shadow eclipses. The state
transition matrix at shadow entrance and exit is compensated based on calculus
of variations. A systematic framework for solving both time-optimal and fuel-
optimal problems is established by combining analytic derivatives, switching time
detection and two-level continuation with an augmented integration flowchart. The
GTO to GEO transfers are simulated to illustrate the effectiveness and efficiency
of the method developed.

INTRODUCTION

The solar electric propulsion (SEP) enables the spacecraft to maneuver with higher specific im-
pulse and thus lower fuel consumption compared with chemical propulsion. The use of SEP as
the primary propulsion attracts increasing attentions. However, the SEP-based low-thrust trajectory
optimization for Earth-orbit transfers is a long-duration challenging task, because the low thrust-to-
mass radio usually requires long flight time, thus large number of spirals, to complete the transfer.
Moreover, the power generated from solar panels is insufficient to drive the engine when the space-
craft passes through the Earth-shadow eclipses, which makes this nonlinear optimal control problem
(NOCP) harder to solve.

Typically, two types of numerical solution methods dedicated to low-thrust trajectory optimiza-
tion, categorized as direct and indirect methods.1 Developing a robust indirect method is the context
of this work. Through transforming the NOCP to a two-point boundary value problem (TPBVP)
by first-order necessary conditions of optimality, indirect methods further solve the TPBVP as a
zero-finding problem, the solution of which is guaranteed to be a least extremal.2 However, few
works were dedicated to solving low-thrust optimization with Earth-shadow eclipses using indirect
methods. Ferrier and Epenoy3 showed that Earth-shadow constraints cannot be treated by classical
Pontryagin’s principle directly, and proposed to smooth the thrust modulus during shadow entrance
and exit to avoid the discontinuity. Cerf4 treated the Earth-shadow constraint as an interior-point
constraint, and solved the minimum-time transfer with Cartesian coordinate dynamics. Geffroy
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and Epenoy5 developed the average technique into indirect optimization, and solved nearly time-
optimal solution in the presence of Earth-shadow eclipses. Recently, Woollands and Taheri6 pre-
sented hyperbolic tangent smoothing technique, which gradually approaches fuel-optimal solutions
with broader convergence domain.

This work presents a robust indirect method featuring accurate gradients for low-thrust trajec-
tory optimization considering Earth-shadow eclipses. The gradients are computed through the state
transition matrix (STM) and the chain rule, where STM across discontinuity is compensated based
on calculus of variations. The integration flowchart in Zhang et al.7 is augmented to involve event
branches of shadow entrance and exit. In order to alleviate the numerical difficulty caused by dis-
continuity, two-level continuation is designed. The first level continues from the time-optimal and
energy-optimal solutions without shadow constraints to the solutions with shadow constraints. The
second level continues from the energy-optimal solution to the fuel-optimal solution. The solver
framework is established by combining analytic derivatives, continuation and switching detection
technique with the augmented integration flowchart. Both the time-optimal and fuel-optimal solu-
tions with accurate bang-bang control can be obtained without prescribing the bang-bang control
structure a priori. The GTO to GEO transfers are investigated to illustrate the effectiveness and
efficiency of the method developed.

The rest of the paper proceeds as follows. Section II presents dynamical equations of modified
equinoctial elements, the geometrical model of Earth-shadow eclipses and optimal control prob-
lem statement. Section III depicts the indirect method developed. In Section IV, simulations are
presented for the GTO to GEO transfers. Finally, Section V concludes the paper.

PROBLEM STATEMENT

Dynamical equations

The modified equinoctial elements (MEE) are used to describe the orbital dynamics of space-
craft since MEE are non-singular orbital elements and well behaved during one revolution8 . The
relationship between MEE and classical orbital elements is

p = a(1− e2)
ex = e cos (ω + Ω)

ey = e sin (ω + Ω)

hx = tan(i/2) cos Ω

hy = tan(i/2) sin Ω

L = ω + Ω + θ

(1)

where a is the semi-major axis, e is the eccentricity, i is the orbital inclination, Ω is the right ascen-
sion of the ascending node, ω is the argument of perigee, θ is the true anomaly, p is the semilatus
rectum and L is the true longitude. Denote the MEE vector as xmee = [p, ex, ey, hx, hy, L]> and the
state vector as x = [xmee,m] where m is the mass variable, equations of motion of the spacecraft
are

ẋ = f(t,x,α, u)⇒
(
ẋmee

ṁ

)
=

u Tmax

m
Bα+A

−Tmax

c
u

 (2)
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where u ∈ [0, 1] is the thrust throttle, α is the thrust pointing direction, c = Ispg0 is the exhaust
velocity, Isp is the specific impulse, g0 is the gravity acceleration at sea level and Tmax is the
maximum thrust magnitude. Isp and Tmax are assumed constant during the flight. In Eq. (2),

A = [0, 0, 0, 0, 0, κ]> (3)

B =



0
2p

ν

√
p

µ
0√

p

µ
sinL

√
p

µ
[(ν + 1) cosL+ ex]

1

ν
−
√
p

µ
[hx sinL− hy cosL]

ey
ν

−
√
p

µ
cosL

√
p

µ
[(ν + 1) sinL+ ey]

1

ν

√
p

µ
[hx sinL− hy cosL]

ex
ν

0 0

√
p

µ

s2

2ν
cosL

0 0

√
p

µ

s2

2ν
sinL

0 0
1

ν

√
p

µ
(hx sinL− hy cosL)



(4)

where µ is the gravitational parameter and

ν = 1 + ex cosL+ ey sinL, s2 = 1 + h2x + h2y, κ =
√
µp

(
ν

p

)2

(5)

The boundary conditions are

p(t0) = p0, ex(t0) = ex0, ey(t0) = ey0,
hx(t0) = hx0, hy(t0) = hy0, L(t0) = L0, m(t0) = m0

p(tf ) = pf , ex(tf ) = exf , ey(tf ) = eyf ,
hx(tf ) = hxf , hy(tf ) = hyf , L(tf ) = free, m(tf ) = free

(6)

The MEE elements are related to the Cartisian coordinate (r,v) through

r =


p

s2ν

(
cosL+ α2 cosL+ 2hxhy sinL

)
p

s2ν

(
sinL− α2 sinL+ 2hxhy cosL

)
2p

s2ν
(hx sinL− hy cosL)

 (7)

v =


− 1

s2

√
µ

p

(
sinL+ α2 sinL− 2hxhy cosL+ ey − 2exhxhy + α2ey

)
− 1

s2

√
µ

p

(
− cosL+ α2 cosL+ 2hxhy sinL− ex + 2eyhxhy + α2ex

)
2

s2

√
µ

p
(hx cosL+ hy sinL+ exhx + eyhy)

 (8)

where
α2 = h2x − h2y (9)

3



Earth-shadow eclipses

Two geometric shadow models, i.e., cylindrical model3, 4, 6 and cone model,9, 10 are mainly used
in literature. The cone model is adopted since it is more practical and accurate. When the spacecraft
passes through the umbra shadow, the solar energy is completely lost, while limited solar energy is
received when the spacecraft locates in the penumbra shadow. For simplicity, the engine switches
off when the spacecraft passes through either umbra or penumbra shadow. Since umbra shadow is
a portion of the penumbra shadow,10 only penumbra geometry in Fig. 1 is discussed.

p
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p
c

2
p
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S/C

d
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s
r

Sun
Earth

s
D

Penumbra

Orbit

Figure 1: The geometry of penumbra shadow.

In order to simplify the penumbra shadow model, several assumptions are made. Firstly, both the
Sun and the Earth are assumed spherical bodies, thus the penumbra shadow is conical projections.
Secondly, the Earth orbit is assumed planar and circular with respect to the Sun. Based on these
assumptions, the solar unit vector ŝ is analytical. In the ecliptic coordinate, the Sun-Earth angle
is approximated as θs = θs,0 + n(t − t0), where θs,0 is the initial Sun-Earth angle at t0 and n =
360◦/365.25. The solar unit vector under ecliptic coordinate is ŝec = [cos θs, sin θs, 0]>. Trans-
forming ŝec to equatorial coordinate, there satisfies ŝ = [cos(θs), cos(ie) sin(θs), sin(ie) sin(θs)],
where ie = 23.26◦ is the ecliptic obliquity.

In Fig. 1, Dp and Ds are diameters of the Earth and the Sun, δp,s is the distance between them,
and χp satisfies

χp =
Dp δp,s
Ds +Dp

(10)

The angle αp is

αp = sin−1
Dp

2χp
(11)

The projection of the spacecraft position vector on the solar unit position vector is

rs = (r · ŝ)ŝ (12)

The vertical vector between the center of the penumbra cone and the spacecraft is

δ = r − rs (13)
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The distance between the center of the penumbra cone and the penumbra terminator point at the
projected spacecraft location is

κ = (χp + ‖rs‖) tanαp (14)

The comparison of the magnitude of the vector δ with the distance κ, i.e.,

Sd(t, r) = ‖δ‖ − κ (15)

is introduced as the manually defined shadow switching function. The conditions for the spacecraft
to enter or exit the shadow are

• Penumbra terminator points are only feasible if r · ŝ < 0.

• Penumbra terminator points occur when Sd = 0, and the spacecraft is in the penumbra cone
if Sd < 0.

For easy discussion below, a signal variable ptype is defined to label the position of the spacecraft
with respect to the shadow region, as

ptype =

{
in, if Sd < 0 and r · ŝ < 0

out, if otherwise
(16)

Fuel-optimal problem

The performance index of the fuel-optimal (FO) problem is

Jf =
Tmax

c

∫ tf

t0

udt (17)

where t0 and tf are fixed initial and terminal time instants. In the FO problem, the optimal thrust
throttle u∗ profile reveals the bang-bang control structure.8 In order to alleviate the numerical
difficulty, a continuation technique7 is employed. The strategy is to solve energy-optimal (EO)
problem (ε = 1) first, and continues the solution manifold while gradually reducing the manually
embedded parameter ε, until the solution to the FO problem (ε = 0) is found. The performance
index of the energy-to-fuel-optimal (EO2FO) problem is

Jε =
Tmax

c

∫ tf

t0

[u− εu(1− u)] dt (18)

The Hamiltonian function reads

Hε =
Tmax

c
[u− εu(1− u)] + λLκ+ u

Tmax

m
λ>meeBα− λm u

Tmax

c
(19)

where λ = [λmee, λm] is the costate vector associate with x. By virtue of the Pontryagin minimum
principle (PMP),2 the optimal thrust direction satisfies

α∗ = − B>λmee

‖B>λmee‖
(20)

5



Substituting α∗ into Hamiltonian function Eq. (19) yields

Hε = λLκ+ u
Tmax

c
[Sε − ε(1− u)] (21)

where the throttle switching function Sε is

Sε = − c

m
‖B>λmee‖ − λm + 1 (22)

The optimal thrust throttle u∗ is determined by PMP and the Earth-shadow constraint as

u∗ =


0, if Sε > ε or ptype = in

(ε− Sε)/2ε if − ε < Sε < ε and ptype = out

1, if Sε < −ε and ptype = out

(23)

Note that an interior-point constraint should be addressed to ensure that Eq. (23) satisfies necessary
conditions of optimality, which will be discussed later.

Let y := [x,λ] ∈ R14 be the collection of state and costate vector, the motion of the spacecraft
is determined by integrating the following dynamics

ẏ = F (t,y, u,α)⇒



ẋmee =

[
∂Hε

∂λmee

]>
= u

Tmax

m
Bα+A

ṁ =
∂Hε

∂λm
= −Tmax

c
u

λ̇mee = −
[
∂Hε

∂xmee

]>
= −λL

[
∂κ

∂xmee

]>
− u Tmax

m

[
∂B>λmee

∂xmee

]>
α

λ̇m = −∂Hε

∂m
= u

Tmax

m2
λ>meeBα

(24)

Since the terminal true longitude and mass are free, there exists

λL(tf ) = 0, λm(tf ) = 0 (25)

Remark 1 Let y(t) = ϕε([x0,λ0], t0, t) be the solution flow integrated Eq. (24) from the initial
time t0 to the generic time t, using the optimal control u∗ in Eq. (23) and α∗ in Eq. (20). The
EO2FO problem is to find λ∗0 such that y(tf ) = ϕε([x0,λ

∗
0], t0, tf ) satisfies Eqs. (6) and (25).

Time-optimal problem

The performance index of the time-optimal (TO) problem is

Jt =

∫ tf

t0

1dt (26)

where tf in this case is free.

The Hamiltonian function reads

Ht = 1 + λLκ+ u
Tmax

m
λ>meeBα− λm u

Tmax

c
(27)
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The optimal thrust angle α∗ is the same as Eq. (20). Substituting Eq. (20) into Eq. (27) yields

Ht = 1 + λLκ+ u
Tmax

c
St (28)

where the throttle switching function St is

St = − c

m
‖B>λmee‖ − λm (29)

The optimal thrust throttle u∗ is determined by PMP and the Earth-shadow constraint as

u∗ =

{
0, if ptype = in

1, if ptype = out
(30)

The transversality condition at terminal time tf is

Ht(tf ) = 0 (31)

Remark 2 The dynamics for the TO problem is the same as Eq. (24). Let y(t) = ϕt([x0,λ0], t0, t)
be the solution flow integrated Eq. (24) from the initial time t0 to the generic time t, using the
optimal control u∗ in Eq. (30) and α∗ in Eq. (20). The TO problem is to find λ∗0 and t∗f such that
y(tf ) = ϕt([x0,λ

∗
0], t0, t

∗
f ) satisfies Eqs. (6), (25) and (31).

Interior-point constraint

From physical reality, the SEP engine switches on/off when the spacecraft exits/enters the Earth-
shadow eclipse. However, according to PMP, this operation may be not optimal. In order to satisfy
the necessary conditions of optimality, the events of shadow entrance and exit should be treated as
interior–point constraints.4 Suppose that there satisfies Sd(ts) = 0, and ptype switches between ’in’
and ’out’ at ts, then2

H(t−s ) = H(t+s )− π∂Sd
∂t

(32)

λ>mee(t
−
s ) = λ>mee(t

+
s ) + π

∂Sd
∂xmee

(33)

where t−s and t+s are time instants instantaneously before and after ts, and π is a scalar Lagrange
multiplier. In Eq. (33), costate λmee is discontinuous since Sd is the function of xmee. It is easy to
verify that

∂r

∂xmee
B = 03×3 (34)

Then we have

B>λmee(t
+
s ) = B>

[
λmee(t

−
s )− π

(
∂Sd
∂xmee

)>]
= B>λmee(t

−
s ) (35)

Thus the thrust angle α∗ in Eq. (20), throttle switching functions Sε in Eq. (22) and St in Eq. (29)
are continuous across ts. The time derivative of Sd is simplified as

Ṡd =
∂Sd
∂xmee

(
A+ u

Tmax

m
Bα

)
+
∂Sd
∂t

=
∂Sd
∂L

κ+
∂Sd
∂t

(36)
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Let πt and πε be the π variables for the TO and EO2FO problems, respectively, the discussions are
elaborated below.

1) For the TO problem, the Hamiltonian functions at t−s and t+s are

Ht(t
−
s ) = λL(t−s )κ+ u(t−s )

Tmax

c
St + 1 (37)

Ht(t
+
s ) = λL(t+s )κ+ u(t+s )

Tmax

c
St + 1 (38)

Combining Eqs. (32), (33), (37) and (38) yields

πt = ∆u
Tmax

c

St

Ṡd
(39)

where ∆u = u(t+s )− u(t−s ). Then λmee(t
+
s ) is calculated as

λ>mee(t
+
s ) = λ>mee(t

−
s )− πt

∂Sd
∂xmee

(40)

2) For the EO2FO problem, the Hamiltonian functions at t−s and t+s are

Hε(t
−
s ) = λL(t−s )κ+ u(t−s )

Tmax

c

(
Sε − ε+ εu(t−s )

)
(41)

Hε(t
+
s ) = λL(t+s )κ+ u(t+s )

Tmax

c

(
Sε − ε+ εu(t+s )

)
(42)

Combining Eq. (32), (33), (36), (41) and (42) yields

πε = ∆u
Tmax

c

Sε − ε+ (u(t+s ) + u(t−s ))ε

Ṡd
(43)

Then λmee(t
+
s ) is calculated as

λ>mee(t
+
s ) = λ>mee(t

−
s )− πε

∂Sd
∂xmee

(44)

INDIRECT METHOD

Analytic derivative

The analytical gradients are computed through state transition matrix (STM) and the chain rule.
The STM maps small variations in the initial conditions δy0 over t0 → t, i.e., δy = Φ(t0, t)δy(t0).
STM subjects to

Φ̇(t0, t) = DyF Φ(t0, t) (45)

where DyF is the derivative of dynamical equations Eq. (24) w.r.t. y, and Φ(t0, t0) = I14×14.

Let z := [y, vec(Φ)] ∈ R210 be the vector consisting of y and the columns of Φ converted by
’vec’ operator, there exists

ż = G(z)⇒

{
ẏ = F (y)

vec(Φ̇) = vec(DyF Φ)
(46)
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The Φ matrix integrated from Eq. (45) maps states and costates along a given continuous tra-
jectory. When the discontinuity is encountered at the switching time ts, the STM compensa-
tion Ψ(ts) across the discontinuity should be determined. Suppose there are N discontinuities
at t1, t2, · · · , tN , Φ(tf , t0) is calculated through the chain rule as

Φ(tf , t0) = Φ(tf , tN )Ψ(tN )Φ(t−N , t
+
N−1)Ψ(tN−1) · · ·Φ(t−2 , t

+
1 )Ψ(t1)Φ(t−1 , t0) (47)

Suppose the discontinuity detected at ts is indicated by a switching function S crossing a thresh-
old η, there are two possible cases:

1) S = Sε, ε = 0, η = 0 for the FO problem. In this case, y is continuous and ẏ is discontinuous.
The discontinuity is conduced by the throttle switching function. Thrust throttle u jumps between 0
and 1 at ts. Ψ(ts) is calculated as

Ψ(ts) =
∂y(t+s )

∂y(t−s )
= I14×14 +

(
ẏ(t+s )− ẏ(t−s )

) ∂Sε
∂y

/Ṡε (48)

2) S = Sd, u 6= 0, η = 0 for both TO and EO2FO problems. In this case, both y and ẏ are
discontinuous. The discontinuity is conduced by the shadow switching function. Thrust throttle u
jumps between a non-zero value and 0 at ts. Ψ(ts) is calculated as

Ψ(ts) =
∂y(t+s )

∂y(t−s )
= I14×14 +

∂∆y

∂y
+
(
ẏ(t+s )− ẏ(t−s )− ∆̇y

) ∂Sd
∂y

/Ṡd (49)

where ∆y = [07×1, ∆λmee, 0] and its time derivative is

∆̇y =
∂∆y

∂y
ẏ(t−s ) +

∂∆y

∂t
(50)

Switching Detection Techniques

The switching detection technique is used to compute accurately the throttle and shadow switch-
ing time instants, which is essential in twofold. Firstly, the Ψ(ts) at the switching time ts is in-
dispensable for the accuracy of gradient computation. Secondly, the integration error accumulates
across the discontinuity if the switching time is not explicitly detected. Consider a switching func-
tion S and the constant threshold η, the task is to find ts such that S(ts) = η. Suppose that at consec-
utive time instants tk and tk+1, there exists (Sk − η)× (Sk+1 − η) < 0, where Sk := S(tk,y(tk))
and Sk+1 := S(tk+1,y(tk+1)), the switching detection is then implemented (refers to Zhang et
al7). The switching detection method is embedded into the integration process, with the accuracy as
10−12.

Remark 3 It is assumed that the throttle switching time and shadow switching time do not coincide.

Two-level Continuation

The ε continuation from EO solution to FO solution benefits to alleviate the difficulty to solve
FO problem. However, the effect of shadow eclipse conduces the control and costate discontinuity,
which narrows the convergence domain to solve TO and EO problems. In order to effectively find
the solution, the another continuation level is designed to solve TO and EO problems.

9



TO and EO solutions 

without shadow 

constraints

        Continuationmax
N TO solution

EO solution      Continuatione FO solution

Figure 2: The continuation strategy.

Let Ns be the number of shadows that have been passed by the spacecraft, and Nmax be the
user-defined maximum number of shadows, the shadow is active only when Ns ≤ Nmax. For the
inactive shadow, it increases the Ns value, but the engine is not affected by the shadow. The idea is
to find the low-thrust transfers without shadow constraints first. Then the continuation proceeds by
gradually increasing Nmax, until Ns = Nmax is true for the corresponding optimal trajectory. The
two-level continuation strategy is shown in Fig. 2. The first level is Nmax continuation to solve TO
and EO problems, while the second level is ε continuation to solve FO problem.

Note that for the TO problem, the shooting method may fail using previous solution as initial
guess to solve the TO problem with new Nmax, since the guess transfer time is not close to the
new solution. In this case, the new initial guess with previous initial costate and increased transfer
time is attempted to solve the problem. The guess transfer time is gradually increased until a new
solution is found.

Integration flowchart

The integration flowchart presented in Zhang et al.7 is insufficient to solve low-thrust transfers
considering Earth-shadow eclipses. In this work, the flowchart is augmented to involve Earth-
shadow related branches.

For simplicity of discussion, let utype = {’on’, ’middle’, ’off’} be the status of engine, the logic
of which is

utype =


on, if u = 1

middle, if u ∈ (0, 1)

off, if u = 0

(51)

The augmented integration flowchart is presented in Fig. 3. The inputs required to execute one-
step integration are 1) tk, the kth time step; 2) hp, the size of time step predicted by previous step
of integration; 3) zk, the full 210-dimensional state; 4) utype, the engine status at kth step; 5) Ns,
the number of shadows that have been passed by the spacecraft; 6) ptype, defined in Eq. (16), labels
the position of the spacecraft with respect to the shadow at kth step; 7) p̃type, labels the position of
the spacecraft with respect to the active shadow at kth step, defined as

p̃type =

{
in, if Sd < 0 and r · ŝ < 0 and Ns ≤ Nmax

out, if otherwise
(52)

Thus p̃type = ptype if sufficiently large Nmax value is adopted. Here, ptype is used to compute Ns,
since p̃type fails to detect the inactive shadow. The command Ns ← Ns + 0.5 is implemented every
time when ptype switches its value.
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In Fig. 3, three branches separate at the beginning of integration according to utype. For each
integration block, a prediction on zk+1, i.e., zk+1 = ψRK(zk, tk, tk +hp, utype), is executed, using
variable-step seventh/eighth-order Runge-Kutta integration scheme. Note that zk+1 is the state
corresponding to tk+1 = tk + hf , where hf is the corrected time step according to the integration
accuracy which is set to 10−12 in the following.

For the utype being ’on’ or ’medium’, the execution blocks are similar. Take utype = ’on’ as an
example. The utype = ’on’ occurs only when p̃type = ’out’. Since the engine switches off when the
active Earth’s shadow is encountered, the first task after one-step integration prediction is to check
the logic variable p̃type,k+1 at tk+1, computed by Eq. (52). If p̃type,k+1 = ’out’ is returned, the thrust
throttle u is determined by the throttle switching function Sk+1 (S := St for the TO problem and
S := Sε for the EO2FO problem) at tk+1. The almost same execution block on the branch utype =
’on’ of the flowchart in Zhang et al.7 is implemented. The slightly difference is when Sk+1 > ε,
simultaneously ε 6= 0. In this case, since the solution point is not saved, hp is reduced and the
switch of ptype is checked. If ptype is switched, then Ns is rollback as Ns ← Ns − 0.5 and ptype is
rollback as the previous value.

Otherwise, if p̃type,k+1 = ’in’ is returned, indicating that the spacecraft enters into the active
shadow at tk+1, it is then required to determine the shadow switching time ts. Let Sc be the value
of the throttle switching function S at ts. If Sc < −ε, p̃type is updated to p̃type,k+1, STM is com-
pensated using Eq. (49) and utype is updated to ’off’. If Sc ≥ −ε which means that the switching
indicated by throttle switching function S exists within [tk, tk+1], hp is reduced, simultaneously, Ns

and ptype are rollback.

The most complex branch is the case when utype,k = ’off’. The first task after one-step prediction
is to check p̃type. If p̃type = ’in’ which indicates that the spacecraft locates inside the active shadow
at ktk step, the next task is to check whether the spacecraft still locates inside the active shadow
at tk+1. If p̃type,k+1 = ’in’, the spacecraft locates inside the shadow at tk+1 and the solution is
saved. Otherwise, if p̃type,k+1 = ’out’, it means the spacecraft flies out of the active shadow, then
the detection of shadow switching time ts is implemented. The u(t+s ) instantaneous after ts is
determined by the value of Sc. For example, if Sc < −ε, utype is updated to ’on’, p̃type is updated
to p̃type,k+1, and STM compensation is calculated using Eq. (49).

If p̃type = ’out’, it indicates that the spacecraft locates outside the active shadow and the engine
switches off due to S > ε. If p̃type,k+1 = ’in’ is returned, it means that the spacecraft flies inside
the shadow at tk+1. Thus the shadow switching time is detected. Since ∆u = 0, there is no need to
update STM, but the shadow status is updated if Sc > ε. Otherwise, if p̃type,k+1 = ’out’ is returned,
indicating that the Earth’s shadow is not encountered at tk+1, the almost same execution block on
the branch utype = ’off’ of the flowchart in Zhang et al.7 is implemented. The slightly difference
when Sk+1 < −ε and ε 6= 0 is the rollback of Ns and ptype.

NUMERICAL SIMULATIONS

The GTO to GEO transfers are simulated as a case study. The physical constants are listed in
Table 1, where LU is the Earth radius, VU =

√
µ/LU and TU = LU/VU. The initial and terminal

orbital elements are listed in Table 2. Since the terminal inclination and eccentricity are both set to
null, the definitions of Ω and w are invalid, thus they are set as free variables. Then the terminal
conditions in Eq. (6) are determined by Eq. (1). Moreover, m0 = 100 kg, Isp = 3100 s, Tmax = 0.5
N and θs,0 = 0 deg. All simulations are conducted under an Intel Core i7-9750H, CPU@2.6 GHz,
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Figure 3: The generic integration scheme.
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Windows 10 system with MATLAB R2019a.

Table 1: Physical constants.

Physical constant Value

Earth gravitational constant, µ 398600.4418 km3/s2

Gravitational field, g0 9.80665 m/s2

Length unit, LU 6378.1371 km
Time unit, TU 806.8111 s

Velocity unit, VU 7.9054 km/s
Mass unit, MU 100 kg

Earth diameter, Dp 2 LU
Sun diameter, Ds 1391020 km

Earth-Sun distance, δp,s 1.4959787069× 108 km

Table 2: Initial and terminal classical orbit elements.

Type a [km] e i [deg] Ω [deg] w [deg] θ [deg]

GTO 24505 0.725 7 0 0 0
GEO 42165 0 0 free free free

Table 3: The summary of simulation results.

Case Type (λ∗0)
> tf [days] mf [kg]

1 TO w/o [−379.267601,−1283.576320,−0.141068, 369.000865,−17.577798, 1.177378, 768.997700] 4.87 93.07
2 TO [−628.194423,−2412.755582, 30.900696, 403.082227,−414.850054, 2.807813, 1022.597380] 5.82 92.60
3 EO w/o [−0.042555,−0.115290, 0.000081, 0.052083,−0.001659, 0.000043, 0.101126] 6 93.77
4 EO [−0.060418,−0.066766, 0.004004, 0.112987,−0.043122,−0.000164, 0.209059] 6 93.03
5 FO [−0.045632,−0.052496, 0.002768, 0.086850,−0.029471,−0.000127, 0.158596] 6 93.15
6 EO 2ed [−0.062954,−0.062754, 0.004824, 0.117465,−0.059984,−0.000215, 0.231036] 6 92.86
7 FO 2ed [−0.048712,−0.049306, 0.003429, 0.093393,−0.042355,−0.000174, 0.180451] 6 92.95

The summary of numerical solutions is given in Table 3. With respect to the TO problem, the TO
solution without shadow eclipses is reported as case 1 in Table 3, while the TO solution considering
shadow eclipses is given as case 2 in Table 3. The total number of shadows that the spacecraft passes
through for case 2 is 7. From cases 1–2, it can be seen that the transfer time of TO solution with
shadow eclipses is longer than the one without shadow eclipses. At the same time, the corresponding
fuel consumption of the former is more than the later. The TO trajectory of case 2 is shown in
Figs. 4a. The TO variations of u, St and Sd are shown in Figs. 5a, where the red dash line is plotted
to indicate the threshold of Sd. The variations of costate are shown in Fig. 6a where the shadow
effect on the costate is apparent. The variations of a, e and i are shown as blue lines in Fig. 7.

The EO and FO solutions are summarized as cases 3–5 in Table 3, where the transfer time is
set to 6 days. Again, the EO solutions without shadow, as case 3, is solved first by random guess.
Through the two-level continuation, the EO and FO solutions are found, summarized as cases 4–5
in Table 3, respectively. For case 5, totally 9 shadows are passed through by the spacecraft. The FO
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(a) Time-optimal trajectory. (b) Fuel-optimal trajectory.

Figure 4: Time-optimal and fuel-optimal trajectories for cases 2 and 5 in Table 3, respectively.

trajectory for case 5 is shown in Figs. 4b, where the coast segments conduced by Sε exist around
perigee and the shadow region is around apogee. The FO variations of u, St and Sd are shown in
Figs. 5b. The variations of costate is shown in Fig. 6b. The variations of a, e and i are shown as red
dash lines in Fig. 7.

It is interesting that the EO and FO problems have multiple solutions. The second EO and FO
solutions are reported as cases 6–7 in Table 3. The FO trajectory and the variations of u, Sε and
Sd are shown in Fig. 8. Compared with the solution obtained by Woollands and Taheri,6 both FO
trajectories pass through 8 times of the shadow, and the variations of u are coincide with each other.
The final mass of FO solution obtained by Woollands and Taheri6 is 93.08 kg, while our solution
results in 92.95 kg. The mass difference is slightly different (0.13% w.r.t. m0). Compared with the
hyperbolic tangent smoothing method,6 the explicit dependence of time on the shadow is considered
in this work. Moreover, the solution with accurate bang-bang control can be obtained, without using
approximation.

CONCLUSION

This work considers the low-thrust optimization in presence of Earth-shadow eclipses. The devel-
oped method incorporates analytic derivatives, switching detection technique, and two-level contin-
uation with an augmented integration flowchart. The proposed continuation strategy enhances the
algorithmic robustness and efficiency. The advantages of the proposed indirect method include that:
1) there is no need to prescribe the thrust structure a priori; 2) it enables to find accurate bang-bang
solutions for both time-optimal and fuel-optimal problems; 3) it provides accurate gradients for
robust convergence. Finally, the GTO to GEO transfers are simulated to test the algorithm perfor-
mance.
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Figure 5: Time-optimal (case 2) and fuel-optimal (case 5) variations of u, St, Sε and Sd.
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Figure 6: Time-optimal (case 2) and fuel-optimal (case 5) costate variations.
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Figure 7: Variations of a, e and i for cases 2 and 5 in Table 3.

(a) Fuel-optimal trajectory.
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Figure 8: Fuel-optimal trajectory and the corresponding variations of u and Sε and Sd for the second
solution (case 7).
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