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Abstract—Safe and effective exploitation of Lithium Ion
batteries requires advanced battery management systems
(BMS). This paper proposes a computationally efficient,
control-oriented model of a Li-ion cell. The model describes
the spatial nature of both the chemical species and tem-
perature dynamics in a computationally efficient way. The
method takes advantage of the algebraic structure that
arises from the distributed nature of the model. We show
that, by discretizing the model partial differential equations
with a finite difference method, the coupling equations take
a semi separable structure for which an efficient algebra
exists. This approach yields an efficient modeling tool
that can be employed to design model-based estimation
and control algorithms. The proposed model is validated
against a high order computational fluid dynamics (CFD)
model showing accuracy and efficiency.

I. INTRODUCTION

Due to their chemical properties, Li-ion batteries require

battery management systems (BMS’s). BMS’s continuously

monitor and control the battery states: temperature, current,

voltage, amount of remaining energy, and battery degradation.

Many of these variables are not directly measurable.

There exist mainly two families of BMS’s: rule-based and

model-based. Rule-based BMS’s avoid critical conditions for

the battery by setting limits on measurable variables. Model-

based BMS’s exploit the knowledge of the internal dynamics

of the cell to estimate non measurable variables and control

their dynamics [1]. Model-based control and estimation out-

performs rule-based BMS’s and the more accurate the model

is, to the fuller the battery potential can be exploited.

Several models of Li-ion batteries exist. They are classified

according to their complexity (see for example [2]). The

simplest models a BMS can employ are static voltage and

current limits. The introduction of dynamics yields better

performance. The simplest dynamical models are the equiv-

alent circuit models (ECM’s) [3]. ECM’s are sufficiently

accurate for relatively low and constant currents; however they

fail to describe the cell dynamics for medium-high dynamic

currents; furthermore they offer no physical insight into the

electrochemical phenomena taking place inside the cell.

First-principle electrochemical models, or white-box models

overcome these limitations [4]. The pseudo 2-dimensional
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(P2D) electrochemical model, originally proposed in [5], [6]

and adopted in works such as [7]–[9], is widely recognized

as a valuable trade-off between detailed modeling and com-

putational cost. It assumes spherical active material particles

and it considers only two dimensions: the radial dimension, r,

and the cell film thickness, named x. The P2D model, relying

on partial differential algebraic equations (PDAEs), requires

particular care in the implementation. Several methods are

available in literature to find approximated and/or reduced-

order solutions [10]–[12].

The original formulation of the P2D model does not account

for thermal dynamics; however, a number of thermal models

have been developed for Li-ion cells [13]. A family of

approaches use lumped thermal models, see for example

[14]–[18], where the temperature gradient is neglected or

modeled with two states [19]. This hypothesis breaks under

high discharge rate [20]. Other models are not bidirectionally

coupled, in the sense that they account for the effect of the

electrochemical processes on the heat generation, but neglect

the converse effect [21]. This drawback is overcome in [22]

where the classical P2D model of a cylindrical cell is coupled

with a lumped thermal model, making the physiochemical

properties of the cell temperature dependent. The most com-

plete approaches consider the coupled electrochemical thermal

model [23], [24]. These methods are often not suited for

real-time applications and do not provide a model that is

mathematically manipulable for BMS design.

In this article, which extends the work presented in [25], we

present a new formulation of the P2D model for a cylindrical

cell. We focus on the following main contributions:

• We augment the standard P2D model with thermal

dynamics. The proposed coupling is bi-directional and

spatially distributed. The thermal model considers that

the heat generation mechanisms depend on the local

value of the electrochemical states. This overcomes the

limitation of the lumped approaches [14]–[18] as the

higher resolution of the distributed thermal model can

better capture the thermal dynamics especially during

high current events.

• We propose an efficient integration scheme. We recast

the nonlinear equations of the P2D model in a distributed

framework. This, with minor approximations, determines

the rise of specific algebraic structure, the semi separable

structure (SSS) [26]. For such systems, it is possible to

use an efficient structure-preserving arithmetic. Matrix
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Fig. 1. Layout of a cylindrical Li-ion cell.

Fig. 2. Sectional photograph of a cylindrical Li-Ion cell showing the
sandwich structure.

addition, multiplication, inversion and norm are com-

puted with O(N) or in some cases O(1) complexity;

for comparison, with classical arithmetics the same op-

erations would be carried out with O(N3) complexity.

The method represents a third way with respect to the

ones employed in the literature that are often based on

model reduction [27] or other approximation techniques

for partial differential equations [28].

• In addition to the computational efficiency, the SSS

approach has two additional advantages applicable to the

design of control and estimation algorithms: it yields

a closed form cell model that can be used to design

estimation and control algorithm as the variables retain

their original physical meaning and there exist efficient

techniques for the design of control and estimation algo-

rithms for SSS systems (see for example [29], [30]).

The paper is structured as follows. Section II recalls the

partial differential equations that determine both the elec-

trochemical and thermal dynamics. Section III presents the

discretization approach and the coupling between the thermal

and electrochemical parts. Section IV introduces the compu-

tationally efficient framework based on the semi separable

structure. Section V analyzes the model from the dynamic

and computational effort stand points.

II. LITHIUM ION CELL MODELING

We refer to the standard P2D model which considers only

the diffusion dynamics that take place across the battery film

thickness, x, and the diffusion dynamics inside the spherical

particles, along the radial direction r (see Fig. 1, 2 and 3). The

Fig. 3. Schematic representation of the P2D model and the dual
intercalation process.

dynamics of interest can be divided into the electrochemical

dynamics and the thermal dynamics.

A. Electrochemical Dynamics

This section recalls the fundamental characteristics of the

well-known P2D model. The reader is referred to [31] for a

more complete discussion and nomenclature. In what follows,

t represents the time, x the spatial coordinate along the x-

direction and r the spatial coordinate along the radius of the

active material sphere. ce(t, x) represents the Li+ concentration

in the electrolyte, cs(t, r, x) the concentration of Li in the solid

phase; φs(x, t) and φe(x, t) are respectively the potential in the

solid and electrolyte phases. is is the electronic current in solid

phase; ie is the ionic current in electrolyte phase; φs is the

potential of solid phase; φe is the potential of electrolyte phase.

Ds is the solid phase diffusion coefficient; F is the Faraday’s

constant; as is the specific interfacial area of an electrode;

Deff
e is the electrolyte phase effective diffusion coefficient;

t0+ is the transference number of Li+ (assumed constant);

σeff is the effective conductivity; keff is the effective ionic

conductivity, while k
eff
D is the effective diffusion conductivity

coefficient. A few geometrical quantities are defined as well: A

is the electrode plate area; δn, δs and δp are, respectively, the

thickness of the negative and positive electrodes and separator;

L = δn+δs+δp is the overall film thickness. T is the absolute

temperature. Fig. 5 summarizes the equations that describe the

electrochemical dynamics:

Mass balances. These PDE’s describe the conservation of Li

in the solid and electrolyte phases. The reaction current jLi

determines the coupling between the two phases.

Charge balances. These PDE’s, through modified Ohm’s

laws, describe the charge migration.

Kinetics. The above PDE’s are coupled by the Butler-Volmer

equation describing the reaction current at the solid/electrolyte

interface:

jLi (x) = asj0

[
exp

(
αaF

RT
η

)
− exp

(
−
αcF

RT
η

) ]
(1)

where αa and αc stand for the anodic and cathodic transfer

coefficients; R is the universal gas constant; j0 is the exchange

current density and η is

η = φs − φe − U (cs,e) . (2)

The equilibrium (open circuit) voltage U (cs,e) is evaluated as

a non linear empirical function of the surface stoichiometry.
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The electrochemical dynamics depend on the temperature;

in particular, j0, the diffusion coefficient in the solid phase Ds,

the diffusion coefficient in the electrolyte phase De and the

electrolyte ionic conductivity K depend on the temperature

following the Arrhenius equation:

Ψ(T ) = Ψref exp

[
EΨ

act

R

(
1

Tref

−
1

T

)]

where Ψ is the generic parameter taken into account, Ψref is

the value of the parameter at the reference temperature Tref ,

EΨ
act is the activation energy of the physiochemical property.

Terminal voltage. The cell potential is given by,

V = φs (x = L)− φs (x = 0)−
Rf

A
I (3)

where Rf is the film resistance of the electrodes surface and

I the cell current.

B. Thermal dynamics

We are considering a cylindrical cell obtained by wounding

a large sandwich of positive electrode, separator and negative

electrode. In this configuration, the current between the elec-

trode runs radially to the cell, we thus assume that the largest

temperature gradients develop along the radial direction r

(see [32], [33]); as a consequence, we can use the 1D heat

conduction in a cylinder:

ρcp
∂T

∂t
= kt

∂2T

∂2rc
+

kt

rc
∂T

∂rc
+Q (4)

with boundary conditions:

∂T

∂rc

∣∣∣∣
rc=0

= 0,
∂T

∂rc

∣∣∣∣
rc=Rc

= −
h

kt
(T − T∞). (5)

In the above equations, and using the SI units, T∞ is the

environment temperature, kt is the thermal conductivity, ρ is

the density, h is the convection heat transfer coefficient, cp is

the specific heat capacity, rc and Rc are the radial direction

and the radius of the cylinder. Considering a heterogeneous

cylinder, the heat capacity Cp is calculated as proposed in

[33]:

Cp = ρcp =
∑

i,k

δiεk,iρk,icp,k,i

L
(6)

where k indicates the phase (solid or electrolyte) and i the

component (negative electrode, separator, positive electrode).

Furthermore, δi is the thickness of the i-th component and

εk is the volume fraction of the k-th phase in the i-th

component. The volumetric heat generation rate, Q, is the sum

of three terms: the volumetric reaction heat Qj , the volumetric

ohmic heat Qo, the volumetric heat generated due to contact

resistance Qf :

Qj =
1

hc

∫ L

0

jLiη dx, Qf =
Rf

hc

(
I

A

)2

,

Qo =
1

hc

∫ L

0

σeff

(
∂φs

∂x

)2

+ keff
(
∂φe

∂x

)2

+

+ k
eff
D

(
∂ln(ce)

∂x

)(
∂φe

∂x

)
dx.

In the above expressions, Qj is due to the electrochemical

dual-intercalation reaction taking place at the active material

particles surface; Q0 is the heat generated by the conduction of

charges in materials with limited conductivity. Qf is the heat

generated by the contact resistance Rf between the electrodes

and the current collectors. Finally, hc is the height of the

cylinder. Note the dependency on electrochemical variables,

which determines the coupling between the two domains

(thermal and electrochemical).

III. DISCRETIZATION APPROACH

In a cylindrical cell, the electrochemical and the thermal

spatial distributions develop in two different directions. The

electrochemical equations have x and r as spatial dimensions

whereas the thermal PDE develops over the cell radius rc.

As a consequence, we cannot employ a single discretization

scheme. We will thus discuss the electrochemical equation

discretization first, then the thermal equation and finally the

coupling. In discretizing both domains, we opted to employ a

semi-discrete approach [34]. First, we discretize only in space

so to leave the problem continuous in time. In the second

stage, we integrate those equations in time using standard

ODE tools. The semi-discrete is versatile as it allows for more

freedom in choosing the spatial and temporal discretization

and integration techniques independently.

A. Electrochemical dynamics

Fig. 4 graphically describes how the model of Fig. 3 can

be discretized in a finite difference approach. The method

assumes that the positive and negative electrodes consist of

a series of spherical active material particles, each occupying

one slice of the discretization along x with step ∆x. The

negative electrode separator positive electrode

is,r−1
φs,r is,r

ce,r
φe,r

ie,rie,r−1

is,0

∆xjLi
r

cs,(r,1)

cs,(r,Nr)

cs,(r,p)

csep,i
φsep,i

isep,iisep,i−1

is,l−1
φs,l is,l

ce,l
φe,l

ie,lie,l−1

∆xjLi
l

is,Nr+Ns+Np

Fig. 4. Discretization of Li-ion cell along x and r dimensions.

second discretization axis is the radial dimension r of each

spherical active material particle. This discretization step is

∆r. Nr, Nn, Ns and Np are respectively the number of finite

elements of the sphere, of the negative electrode, of the

separator and of the positive electrode discretization. Each

discretized region has a lumped electrolyte phase Li+ concen-

tration ce and electrolyte phase potential φe (named csep and

φsep in the separator). Each sphere has a lumped solid phase

potential φs and a volumetric rate of electrochemical reaction,

jLi, while the solid phase Li concentration is distributed along

r. The currents, is and ie, exhibit a gradient along x. Fig.
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Species: solid phase

∂cs

∂ t
=

Ds

r2

∂

∂ r

(
r2 ∂cs

∂ r

) ċs,(k,p) =
Ds

(p∆r)2

[
2p∆r

(
cs,(k,p+1)−cs,(k,p)

∆r

)

+ (p∆r)2

(
cs,(k,p−1)−2cs,(k,p)+cs,(k,p+1)

∆r2

)]

∂cs

∂ r

∣∣∣∣
r=0

= 0

Ds
∂cs

∂ r

∣∣∣∣
r=Rs

=
− jLi

asF

cs,(k,1)−cs,(k,0) = 0

Ds

(
cs,(k,Nr+1)−cs,(k,Nr)

∆r

)
=

− jLi
k

asF

Species: electrolyte phase

∂εece

∂ t
=

∂

∂x

(
D

e f f
e

∂ce

∂x

)
+

1− t0
+

F
jLi

ċe,k =
D

e f f
e

εe

(
ce,k−1 −2ce,k +ce,k+1

∆x2

)
+

1− t0
+

F
jLi
k

∂ce

∂x

∣∣∣∣
x=0

= 0

∂ce

∂x

∣∣∣∣
x=L

= 0

ce,1 −ce,0 = 0

ce,Nn+Ns+Np+1 −ce,Nn+Ns+Np
= 0

Charge: solid phase

is =−σ e f f ∂φs

∂x
is,k =−σ e f f

(
φs,k+1 −φs,k

∆x

)

∂φs

∂x

∣∣∣∣
x=δn

=
∂φs

∂x

∣∣∣∣
x=δn+δs

= 0

−σ e f f ∂φs

∂x

∣∣∣∣
x=0

=−σ e f f ∂φs

∂x

∣∣∣∣
x=L

=
I

A

is,Nn
= is,Nn+Ns

= 0

is,0 = is,Nn+Ns+Np
=

I

A

Charge: electrolyte phase

ie =−ke f f ∂φe

∂x
−k

e f f
D

∂

∂x
ln(ce) ie,k =−ke f f

(
φe,k+1 −φe,k

∆x

)
−k

e f f
D

(
ln(ce,k+1)− ln(ce,k)

∆x

)

∂φe

∂x

∣∣∣∣
x=0

= 0

∂φe

∂x
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x=L

= 0
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= 0

Fig. 5. Electrochemical model equations and their discretization.

5 summarizes the governing equations and their discretized

versions. The model has (Nr + 1)Np + (Nr + 1)Nn + Ns

dynamic equations, coupled by jLi
k through a non-linear

algebraic system.

B. Thermal dynamics

The thermal dynamics are discretized with a finite difference

method along the radial direction. The cell is divided in a

number (Nc) of concentrical cylindrical cells with ∆rc step,

determined according to a constant volume approach. The

discretization of (4) results in:

ρcpṪz = kt

[
Tz−1 − 2Tz + Tz+1

(∆rcz)
2

]
+

kt

rcz

[
Tz+1 − Tz

∆rcz

]
+Qz

where the subscript z indicates the discretized cell. The term

∆rz is defined as: ∆rcz = rcz − rcz−1 where: rc0 = 0 and

rcNc
= Rc with boundary conditions

T1 − T0 = 0,
TNc+1 − TNc

∆rcNc

= −
h

kt
(TNc

− T∞).

C. Coupling

The two discretization approaches need to be mapped one

onto the others. Cylindrical cells are obtained by winding up

a thin sandwiched sheet in a cylinder (Fig. 1). The Li-ion

cell is thus viewed as Nc subcells in parallel where each

subcell is described by an electrochemical set of equations

and characterized by its own temperature. The thermal model

describes the heat diffusion through the different subcells.

The coupling is determined by the Arrhenius equation. The

discretized heat generation rate Qz of the z-th subcell is:

Qz = Qj,z +Qo,z +Qf,z, Qj,z =
1

hc

∑

i

jLi
i,zηi,z∆x

Qf,z =
Rf

hcA2
z

(
Îz

)2

Qo,z =
1

hc

∑

i

[
σeff

(
φs,i+1,z − φs,i,z

∆x

)2

∆x

]
+

+
1

hc

∑

i

[
keff

(
φe,i+1,z − φe,i,z

∆x

)2

∆x

]
+

+
1

hc

∑

i

[
k
eff
D

(
ln(ce,i+1,z)− ln(ce,i,z)

∆x

)

(
φe,i+1,z − φe,i,z

∆x

)
∆x

]

The term Îz represents the input current of the z-th subcell.

The parallel connection of the subcells impose that:

I =
∑

z=1...Nc

Îz (7)

The model has Nc [(Nr + 1)(Nn +Np) +Ns] ODE’s, that

are coupled by the Butler-Volmer equation in groups of

[(Nr + 1)(Nn +Np) +Ns] and a set of Nc − 1 constraint-

type-equations:

Vz+1 − Vz = 0 with z ∈ [1, Nc − 1] . (8)

The coupling of the impedance-like causality of the P2D

model with these constraints is not trivial. The following

section introduces a numerical efficient integration scheme to

treat the system.

T1

Σ1,1 Σ1,2 . . . Σ1,Nn
Σ1,Nn+1 . . . Σ1,Nn+Ns

Σ1,Nn+Ns+1 . . . Σ1,Nn+Ns+Np

Tz

Σz,1 Σz,2 . . . Σz,Nn
Σz,Nn+1 . . . Σz,Nn+Ns

Σz,Nn+Ns+1. . . Σz,Nn+Ns+Np

TNc
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. . .

1
v
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v
m
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v
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v
p
2
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v
m
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z
v
m
3

z
v
p
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z
v
p
2
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m
2
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m
3
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p
1

Ncv
p
2

. . .

}

}

}

negative electrode separator positive electrode

Fig. 6. Li-ion cell as spatially distributed string interconnected system.

IV. INTEGRATION SCHEME

The proposed integration scheme stems from considering

the discretized system as a Spatially Interconnected System.

The cells represent a series of dynamical systems that com-

municate through interface variables. The communication hap-

pens on different scales: each element of the electrochemical
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E =




O1 P1R2 P1Q2R3 P1Q2Q3R4
. . .

...

L2N1 O2 L2R3 L2Q3R4
. . .

...

L3M2N1 Bm
3 N2 O3 L3R4

. . .
...

L4M3M2N1 Bm
4 M3N2 Bm

4 N3 O4
. . .

...

. . .
. . .

. . .
. . .

. . . P
p
N−1NN

. . . . . . . . . . . . LNNN−1 ON




(12)

discretization communicates with the adjacent ones and each

string of cell is influenced by the other strings through the

thermal dynamics.

A. Spatially Interconnected Systems

Let us consider Fig. 6 and use the index k ∈ [0, ..., Ntot] to

indicate each subsystem in a string, and the index z to indicate

the row obtaining Σz,k as in figure. In addition, the superscript

m indicates the connecting variables from system k to k + 1,

whereas the superscript p refers to the connecting variables

from k + 1 to k. According to this structure, each subsystem

has its own state variables x, and dynamic equation f that

uses the interconnecting variables v as inputs, and three output

equations: to compute the interconnecting variables and one

(if present) the measurable outputs. If, to simply the notation,

we drop the row index notation, each system in a string can

be written as:

ẋk = fk (xk, v
p
k, v

m
k , uk)

v
p
k−1 = g

p
k (xk, uk, v

p
k, v

m
k )

vmk+1 = gmk (xk, uk, v
p
k, v

m
k )

yk = hk (xk, v
p
k, v

m
k , uk)

(9)

and take the name of spatially distributed string inter-

connected system [26]. Such systems can be either strictly

spatially proper or not depending on whether g
p
k and gmk are

dependent on vmk and v
p
k , respectively. Let us start considering

a strictly spatially proper system. In this case, the intercon-

necting variables can be easily eliminated through a process

called lifting; this yields a NtotNsub order system (Nsub being

the order of the subsystem). The computational complexity of

integrating the complete system with standard ODE solvers

grows as O
(
(NtotNsub)

3
)
.

On the other hand, preserving the distributed nature of the

system and simulating each subsystem independently yields an

improvement of computational efficiency. This idea is based

on sampling the interconnecting variables at frequency h. The

integration routine simulates the Ntot subsystems indepen-

dently at a shorter integration step and computes the interface

variables at a lower sampling rate. This approximation yields

a computational complexity to O
(
NtotN

3
sub

)
or even O

(
N3

sub

)

- if a parallel architecture with Ntot cores is available. Note

that the under sampling of the interconnecting variables may

introduce errors. The entity of the errors depend on how much

the internal dynamics are coupled to the dynamics of the

interconnecting variables.

In the case of non spatially strictly proper systems the

situation is more complex. If g
p
k or gmk are dependent on vmk

and v
p
k , it is, in general, not possible to write the subsystems

in explicit form. The case of linear dependency represents a

special case for which we propose an efficient method. Assume

that

ẋk = fk (xk, v
p
k, v

m
k , uk)

v
p
k−1 = gk1 (xk, uk) +W

p
k v

p
k + Zm

k vmk
vmk+1 = gk2 (xk, uk) + Z

p
kv

p
k +Wm

k vmk
yk = hk (xk, v

p
k, v

m
k , uk)

(10)

then the interconnecting equations can be arranged in a linear

system of the form Ev = b(x, u) where,

v =




v
p
1

vm2
v
p
2
...

vmN−1

v
p
N−1

vmN




b =




g12 (x1, u1)
g21 (x2, u2)
g22 (x2, u2)

...

g(N−1)1

(
x(N−1), u(N−1)

)

g(N−1)2

(
x(N−1), u(N−1)

)

gN1 (xN , uN )




.

(11)

The spatially distributed nature of the system makes E a

sequentially semi separable matrix [26] encoded as in (12)

(at the top of the page) where,

Ls =

[
I

0

]
∀s ∈ {2, 3, · · · , N − 1}, LN = I

Ms = 0 ∀s ∈ {2, 3, · · · , N − 1}
N1 = I, Ns =

[
0 I

]
∀s ∈ {2, 3, · · · , N − 1}

O1 = −Z
p
1 , ON = −Zm

N

Os =

[
−Zm

s −W p
s

−Wm
s −Zp

s

]
∀s ∈ {2, 3, · · · , N − 1},

P1 = I, Ps =

[
0
I

]
∀s ∈ {2, 3, · · · , N − 1}

Qs = 0 ∀s ∈ {2, 3, · · · , N − 1}
Rs =

[
I 0

]
∀s ∈ {2, 3, · · · , N − 1}, RN = I.

(13)
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Sequentially semi separable matrices (SSS) define an al-

gebra for which efficient algorithms exist. In particular, the

system of equations Ev = b(x, u) is solvable in O(Ntot).
If E is invertible the system is well posed [35] and the

interconnecting variables can be computed in a centralized

block before the integration of each subsystem.

The same approach can still be applied if the other strings

are added to the picture. The constraints imposed by the con-

nection between strings can be added to E. The augmentation

of E may change its structure; but we will show that these

constraints can still be managed efficiently.

In the remainder of the section, we will first show that

the single subcell can be cast into a string of interconnected

systems and subsequently we will address the inter-string

constraints.

B. Spatially Interconnected Li-ion Subcell Model

Let us consider the generic subcell of Fig. 6, Fig. 7 shows

the kth finite element with the definition of its state and

interfacing variables. The state equations for the subsystems

inputs:

outputs:

states

zvmk =
[

is,k−1 φe,k ce,k−1

]T

zv
p

k =
[

φs,k ie,k ce,k+1

]T

zvmk−1 =
[

φs,k ie,k−1 ce,k
]T

zv
p

k+1 =
[

is,k φe,k+1 ce,k
]T

zxk =
[

cs,(k,1), . . . , cs,(k,p), . . . , cs,(k,Nr), ce,k
]T

(k)(k-1) (k+1)

is,kis,k−1

cs,(k,Nr)cs,(k,Nr)

cs,(k,p)

ce,k−1 ce,k+1

φe,k−1 φe,k+1

ce,k

φe,k
∆xkLi

k

ie,k−1 ie,k

Fig. 7. A single discretized part of positive / negative electrode
interconnected with neighboring blocks delimited by dashed lines.

are the Nr dynamic equations for the solid and one for the

electrolyte diffusion. They depend on jLi
k . By eliminating

φsk from equation (1) using the charge balance in the solid

phase and then eliminating isk using the relation between the

volumetric rate of electrochemical reaction and the gradient

of the current in the solid phase, we get jLi
k as an implicit

function of states, inputs but also jLi
k itself. Its linearization

yields the explicit form (as also done in [36]):

jLi
k =

as

Rct

[
φsk − φek − U

(
cs(k,Nr)

)]
(14)

where,

Rct =
RT

j0F (αa + αc)

Fig. 8 plots the comparison between computing jLi by

solving the nonlinear nonlinear Butler-Volmer kinetics and by

using (14) for values of the overpotential covering the range

obtained in all the simulations discussed in the paper. The

analysis shows that the linearization error is of the order of

1% at most. Substituting the linearized jLi
k in the dynamic
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Fig. 8. Results of the transient current simulation: current, voltage and
temperature.

equations, we obtain the following state equations, that employ

the definitions of the variables given in Fig. 7

ẋk =




−α1 α1 0 ... 0
Ds

∆r2
−α2 α2 ... 0

... ... ... ... ...

0 ... Ds

∆r2
− Ds

∆r2
0

0 ... 0 0 −
2Deff

e

ǫe∆x2



xk

+




0
0
...

−Ω U (xk (Nr))
−γ U (xk (Nr))



+




0 0 0
0 0 0
... ...

Ω 0 0

γ 0
Deff

e

ǫe∆x2



v
p
k

+




0 0 0
0 0 0
... ...

Ω ∆x
σeff −Ω 0

γ ∆x
σeff −γ

Deff
e

ǫe∆x2



vmk

(15)

where

Ω = − 1
βRct

(
2

Nr∆rF
+ 1

∆rF

)
γ = as

βRct

(
1−t0+
F

)

β = 1 + ∆x2

σeff
as

Rct
αi =

(
2Ds

i∆r
+ Ds

∆r2

) (16)
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and, defining some constants

M1 = ∆xas

βRct
M2 = ∆x2

σeff
as

βRct

M3 = ∆x
σeff M4 = − ∆x

κeff KdK =
κ
eff
D

κeff ,
(17)

the output relation equations can be derived as

v
p
k−1 =




M2U (xk (Nr))
M1U (xk (Nr))
xk (Nr + 1)


+




(1−M2) 0 0
−M1 1 0
0 0 0


 v

p
k

+




M3 (1−M2) M2 0
−M2 M1 0
0 0 0


 vmk

(18)

vmk+1 =




M1U (xk (Nr))
KdK ln (xk (Nr + 1))

xk (Nr + 1)




+




−M1 0 0
0 M4 0
0 0 0


 v

p
k +




− (M2 − 1) M1 0
0 1 0
0 0 0


 vmk

+




0
−KdK ln (vpk (Nr))

0


 .

(19)

The separator and the interfaces between the terminals and

the electrodes and the electrodes are amenable to the same

procedure. One only needs to take special care to ground the

solid potential on any one cell, by imposing φs = 0. If this

is not done, the interconnected system looses well posedness

- see comment on invertibility of E above. This results in

a system in the form of (9). From the analysis of the above

system, two conclusions are due: (1) the interconnecting output

variables are only weakly coupled to the Li diffusion in the

active material; in fact only the last element xk(Nr) appears

in the above equations. (2) Although the subsystems are not

directly in the linear in interconnecting variables form, the

only nonlinear term in the equation depends on v
p
k (Nr) which

is a state of the neighboring block and is thus available for

solving the system Ev = b.

Following the above procedure, one gets to Nc independent

set of equations; each string has as inputs the current flowing

in that subcell (Îz) and the temperature, while its output is

the terminal voltage. At this stage the subcell current is still

undetermined. Recall now that the Nc cells are connected in

parallel, this imposes the constraints (7) and (8). Including

these constraints in the above formulation, one gets:



Etot 0Nc×Nc

Cv,tot CI,tot

01×Nc
11×Nc



[

vtot
Itot

]
=




btot
0Nc×1

I


 (20)

where the unknown vtot and Itot are respectively the stacked

vector of the v for each subcell and stacked vector of the

subcell currents. Similarly, btot is the stacked vector of all

b. Etot is the block-diagonal matrix of E defined above;

[Cv,tot CI,tot] is the (Nc − 1) × 2Nc matrix that selects the

potential of the first element of the negative and the last

element of the positive electrode and the current for pairs

of subcell according to (3) to impose the constraint (8). The

bottom row of (20) translates (7) in matrix form.

Inspection of (20) reveals that the addition of the parallel

constraints breaks the SSS structure; however one notices

that the equations are in the form of a block triangular

system of equations. This means that at each sampling time,

the SSS systems of equation of the form Ev = b can be

solved independently as in the case of the single subcell and

subsequently, the subcell currents can be computed solving the

bottom half of the system.

We thus define the integration routine summarized in Fig.

9: at each integration step, the state dependent parameters are

build E1 and b1

solve E1(t)v1(t) = b1(t)

ODE solver (1)

with step h2 < h

compute x(t+ h)

compute y(t+ h)

ODE solver (Ntot)

with step h2 < h

ODE solver (1)

with step h2 < h

ODE solver (Ntot)

with step h2 < h

compute x(t+ h)

compute y(t+ h)

build ENc
and bNc

solve ENc
(t)vNc

(t) = bNc
(t)

. . . . . . . . .

compute Iz

ODE solver for TNc

. . . . . . . . . . . .

Fig. 9. Graphical representation of the integration routine of the SSS
model.

updated according to the previously computed value of the

states; these values are entered in the Ez matrices and the bz
vectors. The SSS algebra is used to solve for the intercon-

nected variables v at a sampling step h. The interconnecting

variables v along with the other variables compute the current

through each subcell. The current through each subcell along

with the electrochemical variable available in v drives the

discretized thermal dynamics. After that, all the sub-systems of

each subcell can be simulated using an ODE solver of choice

keeping the interconnecting variables and subcell temperature

constant.

V. MODEL ANALYSIS AND RESULTS

This section analyzes the simulation results of the proposed

model. We focus on mainly two aspects: comparison with

the complete computation fluid dynamics (CFD) model and

computational efficiency analysis. The reference cell model is

the one in [15], [31].

A. Model Comparison

The proposed integration scheme requires some assump-

tions and simplifications. In order to assess the effects of

these simplifications, we compare the outputs and states of

our model against the experimentally validated CFD model

presented in [36] and using the same inputs for an easier

comparison. The choice of using a CFD model allows for

a more accurate comparison of the internal variables which

are not easily measurable. The model validation details three

main aspects terminal voltage, concentration gradients along

x, and response to transient currents. Being based on a finite
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difference approach, the discretization resolution affects com-

putation time and accuracy. One has to chose the discretization

based on the scope of the model and the computational

resources. The choice of the discretization level is a delicate

topic as a too coarse discretization can lead to inaccurate

results. In this work, we chose the proposed discretization

by trying progressively finer discretizations (and time steps)

until we observed that the terminal voltage and the solid phase

surface concentration converged to the same values. We then

used the coarser discretization that yields that convergence,

that is Nn = Np = 5, Ns = 3, Nr = 50, Nc = 6 and

h = 0.05s. The next subsection investigates the impact of the

discretization on the computational efficiency.

Fig. 10 plots the results of a constant current discharge

experiment performed from a fully charged battery with three

current levels. We consider two types of simulations, the first

one (solid line) neglects the temperature dynamics (consider-

ing all subcells at the same temperature). The second type of

simulation considers the entire model as described. The plot
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Fig. 10. Terminal voltage prediction at different C-rates: discretized
model neglecting the temperature dynamics (solid line), discretized
model considering temperature dynamics (dashed line), and CFD model
(o).

shows the terminal voltage in the top plot and the temperature

dynamics for each of the Nc subcells, in the bottom. The

terminal voltage is plotted with respect to the depth of

discharge (DoD), whereas the temperature is time-based. From

figure, a numbers of conclusions are due:

• the model is accurate in the entire DoD range for 1C;

for higher currents the accuracy range is reduced toward

the end of discharge. The error at higher currents is due

to the nonlinearity in the terminal voltage characteristic

U (cs,e). Because of that, small errors in cs,e result in

large errors in voltage.

• In the case of 1 C, the temperature dynamics do not play

an important role. 1 C is not enough to heat the battery.

As the C rate increases, we see that the temperature

dynamics considerably affect the discharge dynamics.

• For the higher C rates, as shown in the bottom plot of the

figure, a temperature gradient builds in the cell. At the

end of the discharge the temperature difference between

the core and the surface of the cell gets to 20 degrees.

One of the advantages of using an electrochemical model

resides in the possibility of accurately modeling the evolution

of the species gradients. Fig. 11 compares the proposed model

and the CFD model. The figure provides a snapshot during

a constant current (5 C) discharge of the electrochemical

reaction at the solid/ electrolyte interface jLi, the surface

concentration and the Li concentration in the electrolyte as

a function of the position. The model correctly describes the
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Fig. 11. Gradients along the x dimension. The continuous line is the
CFD model, whereas the circles represent our discretized model.

gradients along the x direction.

Fig. 12 plots the terminal voltage and the temperature

evolution for a series of current steps. Also in this case,

Fig. 12. Results of the transient current simulation: current, voltage
and temperature. In the last plot, z indicates the index of the thermal
subsystems.
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the model correctly captures the voltage dynamics. Note that

despite the extremely high currents, this short test does not

develop an appreciable temperature gradient.

Fig. 13 illustrates the advantages of a coupled bi-directional

and spatially distributed thermal model. It plots the comparison

of the surface concentration dynamics in the first element of

the negative electrode (top subplot) and in the last element of

the positive electrode (bottom subplot) for the lumped thermal

model (Nc = 1 - dashed line) and for the distributed model

(Nc = 6 - solid line); the darkest solid line refers to the

inner subcell, while the lighter solid line refers to the outer

subcell. The simulation considers a dynamic current request

characterized by alternating charging and discharging events -

this is reminiscent of what happens in hybrid electric vehicles

or, to a lesser extend, solar power battery packs.

The temperature affects the intercalation dynamics, there-

fore, if the internal temperature gradient is not negligible, the

lithium concentration is not uniform along the radial direction

rc.

B. Complexity Analysis

The use of the spatially interconnected framework enables

two computational advantages: 1) the coupling equations can

be solved in linear complexity with respect to the discretization

along x, and 2) the integration is amenable to a high degree of

parallelization. In fact, recalling Fig. 9, the integration of each

cell can be run in parallel. Fig. 14 shows the simulation time

ratio for different discretization levels of positive electrode,

negative electrode and separator keeping the discretization of

spherical active material particle constant and the computation

time for varying radial discretizations. The simulation time

ratio is the ratio between the time it takes to simulate a

given time interval and the duration of that time interval.

The figure compares this index for an implementation of

the model that does not exploit the spatially interconnected

framework and the proposed approach. It is worth noting

that the baseline against which our approach is compared

represents the computational complexity of the traditional P2D

model augmented with the distributed thermal model. From

figure, one can note that

• increasing the discretization along x causes a linear in-

crease in the simulation time. Whereas, in the traditional
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Fig. 14. Simulation time per step for different discretization levels.

approach, the increase in computation time is more than

linear.

• For low levels of discretization, the proposed method

comes with an overhead that makes the traditional ap-

proach more efficient. As a matter of fact, the largest gain

in terms of simulation time are reached for Nx above the

real time limit of the current hardware. Nevertheless, one

should focus on the order of the complexity.

• When the radial discretization increases, the simulation

time does not grow linearly as the method does not

exploit any structure in the r dimension.

• Considering the current computer, the proposed frame-

work allows the user to increase the real time limit

from Nx = 10 to Nx = 14, if Nr is kept constant or

from Nr = 40 to Nr = 50, if Nx is kept constant.

The increase on Nr is particularly appreciated because

it considerably improves the accuracy of the solid phase

diffusion phenomena of Li ions.

The above analysis indicates that the chosen discretization of

Nr = 50, Nn = 5, Np = 5, Ns = 3, and Nc = 6 is at the

limit of real time implementation.

VI. CONCLUSIONS

This work presents a coupled thermal-electrochemical cou-

pled, control-oriented electrochemical model of a Li-ion cell

that accounts for the thermal dynamics. The use of the

finite difference discretization scheme yields a spatially in-

terconnected system. Exploiting minor approximations, the

complexity of integrating the equation can be considerably

reduced. The proposed modeling approach, relying only on

two approximations (linearization of the Butler-Volmer Ki-

netics and the holding of the interconnecting variables), has

several advantages:

• It provides an efficient simulator that captures the mass

diffusion dynamics of the Li-ion cell and the thermal

gradients of the cell battery;

• it avoids any iterative solution of nonlinear equations,

thus improving efficiency and avoiding possible non

convergent behavior;

• when linearized, the state space model assumes an SSS

structure that can further exploited in the design and

implementation of control systems as shown in [26], [29],

[30] and thus makes it a control-oriented model;

• it is amenable to parallelization, thus improving even

further its computational efficiency.
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