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Abstract
We prove existence of invariant measures for the Markovian semigroup generated by the
solution to a parabolic semilinear stochastic PDE whose nonlinear drift term satisfies only
a kind of symmetry condition on its behavior at infinity, but no restriction on its growth rate
is imposed. Thanks to strong integrability properties of invariant measures μ, solvability
of the associated Kolmogorov equation in L1(μ) is then established, and the infinitesimal
generator of the transition semigroup is identified as the closure of the Kolmogorov operator.
A key role is played by a generalized variational setting.
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1 Introduction

Our goal is to study the asymptotic behavior of solutions to semilinear stochastic partial
differential equations on a smooth bounded domain D ⊆ R

n of the form

dXt + AXt dt + β(Xt ) dt � B(Xt ) dWt , X(0) = X0. (1.1)

Here A : V → V ′ is a linear maximal monotone operator from a Hilbert space V to its dual
V ′, and V ⊂ H := L2(D) ⊂ V ′ is a so-called Gelfand triple; β is a maximal monotone
graph everywhere defined on R; W is a cylindrical Wiener process on a separable Hilbert
space U , and B takes values in the space of Hilbert-Schmidt operators from U to L2(D).
Precise assumptions on the data of the problem are given in Section 2 below. The most
salient point is that β is not assumed to satisfy any growth assumption, but just a kind of
symmetry on its rate of growth at plus and minus infinity – see assumption (vi) in Section 2
below. Well-posedness of Eq. 1.1 in the strong (variational) sense has recently been obtained
in [17] by a combination of classical results by Pardoux and Krylov-Rozovskiı̆ (see [12,
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19]) with pathwise estimates and weak compactness arguments. The minimal assumptions
on the drift term β imply that, in general, the operator A + β does not satisfy the coercivity
and boundedness assumptions required by the variational approach of [12, 19]. For this
reason, questions such as ergodicity and existence of invariant measures for Eq. 1.1 cannot
be addressed using the results by Barbu and Da Prato in [4], which appear to be the only
ones available for equations in the variational setting (cf. also [18]). On the other hand, there
is a very vast literature on these problems for equations cast in the mild setting, references
to which can be found, for instance, in [7, 8, 20]. Even in this case, however, we are not
aware of results on equations with a drift term as general as in Eq. 1.1. Our results thus
considerably extend, or at least complement, those on reaction-diffusion equations in [6–8],
for instance, where polynomial growth assumptions are essential. More recent existence and
integrability results for invariant measures of semilinear equations have been obtained, e.g.,
in [10, 11], but still under local Lipschitz-continuity or other suitable growth assumptions on
the drift. Another possible advantage of our results is that we use only standard monotonicity
assumptions, whereas in a large part of the cited literature one encounters assumptions of
the type

〈Ax + β(x + y)z〉 ≤ f (‖y‖) − k‖x‖
for some (or all) z belonging to the subdifferential of ‖x‖, where f is a function and k

a constant. Here A actually stands for the part of A in a Banach space E continuously
embedded in L2(D), 〈··〉 stands for the duality between E and its dual, and the condition is
assumed to hold for those x, y for which all terms are well defined. Often E is chosen as
a space of continuous functions such as C(D). This monotonicity-type condition on A and
β is precisely what one needs in order to obtain a priori estimates by reducing the original
equation to a deterministic one with random coefficients, under the assumption of additive
noise. Using a figurative but rather accurate expression, this methods amounts to “subtract-
ing the stochastic convolution”. Our estimates are obtained mostly by stochastic calculus,
for which the standard notion of monotonicity suffices. Among such estimates we obtain
the integrability of (the potential of) the nonlinear drift term β with respect to the invariant
measure μ, which is known to be a delicate issue, especially for non-gradient systems (cf.
the discussion in [10]). These results allow us to show that the Kolmogorov operator asso-
ciated to the stochastic Eq. 1.1 with additive noise is essentially m-dissipative in L1(H, μ).
This implies that the closure of the Kolmogorov operator in L1(H,μ) generates a Marko-
vian semigroup of contractions, which is a μ-version of the transition semigroup generated
by the solution to the stochastic equation. It is worth mentioning that the variational-type
setting, while allowing for a very general drift term β, gives raise to quite many technical
issues in the study of Kolmogorov equations, for instance because test functions in function
spaces on V and V ′ naturally appear.

We conclude this introductory section with a brief description of the structure of the
paper and of the main results. In Section 2 we state the basic assumptions which are in
force throughout the paper, and recall the well-posedness result for Eq. 1.1 obtained in
[17]. For the reader’s convenience we collect in Section 3 some tools needed in the sequel,
such as Prokhorov’s theorem on compactness of sets of probability measures, and the
Krylov–Bogoliubov criterion for the existence of an invariant measure for a Markovian
transition semigroup. Section 4 is devoted to auxiliary results, most of which should be
interesting in their own right, that underpin our subsequent arguments. In particular, we
prove two generalized versions of the classical Itô formula in the variational setting for
Eq. 1.1: one for the square of the norm, and another one extending a very useful but
not-so-well known version for more general smooth functions, originally obtained by
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Pardoux (see [19, p. 62–ff]). Furthermore, we establish results on the first and second-order
differentiability with respect to the initial datum, both in the Gâteaux and Fréchet sense,
of (variational) solutions to semilinear equations with regular drift and additive noise. In
Section 5 we prove that the transition semigroup P generated by the solution to Eq. 1.1
admits an ergodic invariant measure μ, which in also shown to be unique and strongly
mixing if β is superlinear. These results follow mainly by a priori estimates (which, in
turn, are obtained by stochastic calculus) and compactness. Finally, Section 6 deals with
the Kolmogorov equation associated to (1.1) with additive noise. In particular, we charac-
terize the infinitesimal generator −L of the transition semigroup P on L1(H, μ) as the
closure of the Kolmogorov operator −L0. After showing that L0 is dissipative and coin-
cides with L on a suitably chosen dense subset of L1(H, μ), we prove that the image of
I + L0 is dense in L1(H,μ), so that the Lumer-Phillips theorem can be applied. Due to
the variational formulation of the problem, the latter point turns out to be rather delicate,
even though the general approach follows a typical scheme: we first introduce appropri-
ate regularizations of L0, for which the Kolmogorov equation can be solved by established
techniques, then we pass to the limit in the regularization’s parameters. Here the generalized
Itô formulas and the differentiability results proved in Section 4 play a key role.

2 General Assumptions andWell-Posedness

Before stating the hypotheses on the coefficients and on the initial datum of Eq. 1.1 that will
be in force throughout the paper, let us fix some notation.

2.1 Notation

Given two Banach (real) spaces E and F , the space of bounded linear operators from E

to F will be denoted by L (E, F ). When F = R, we shall just write E′. If E and F are
Hilbert spaces, L 2(E, F ) stands for the ideal of L (E, F ) of Hilbert-Schmidt operators.
The Hilbert space L2(D) will be denoted by H , and its norm and scalar product by ‖ ·
‖ and 〈··〉, respectively. For any topological space E, the Borel σ -algebra on E will be
denoted by B(E). All measures on E are intended to be defined on its Borel σ -algebra,
unless otherwise stated. The spaces of bounded Borel-measurable and bounded continuous
functions on E will be denoted by Bb(E) and Cb(E), respectively.

2.2 Assumptions

Let V be a separable Hilbert space densely, continuously and compactly embedded in H =
L2(D). The duality form between V and V ′ is also denoted by 〈··〉, as customary. We assume
that A ∈ L (V , V ′) satisfies the following properties:

(i) there exists C > 0 such that 〈Avv〉 ≥ C‖v‖2
V for every v ∈ V ;

(ii) the part of A in H can be uniquely extended to an m-accretive operator A1 on L1(D);
(iii) for every δ > 0, the resolvent (I+δA1)

−1 is sub-Markovian, i.e. for every f ∈ L1(D)

such that 0 ≤ f ≤ 1 a.e. on D, we have 0 ≤ (I + δA)−1f ≤ 1 a.e. on D;
(iv) there exists m ∈ N such that (I + δA1)

−m ∈ L (L1(D), L∞(D)).

Let us now consider the non-linear term in the drift. We assume that

(v) β ⊂ R × R is a maximal monotone graph such that 0 ∈ β(0) and D(β) = R.
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Let j : R → R+ be the unique convex lower semicontinuous function such that j (0) = 0
and β = ∂j , i.e. β is the subdifferential of j in the sense of convex analysis.1 We assume
that

(vi) lim sup
|r|→∞

j (r)

j (−r)
< ∞.

This hypothesis is obviously satisfied if j is even (or, equivalently, if β is odd). For example,
the function j : R � r �→ |r|p , with p ≥ 1, satisfies (vi). More generally, (vi) is satisfied
by any convex polynomial function with even leading coefficient. The absence of growth
conditions on j allows us to deal also with functions whose rate of growth at infinity is faster
than polynomial, such as j (r) = er2

. Examples of superpolynomial functions j satisfying
(vi) without being even can be easily constructed, for instance

j (x) :=
⎧
⎨

⎩

e|x| − 1, x ≤ 0,

0, x ∈ [0, 1],
e|x| − e, x ≥ 1.

Denoting the convex conjugate of j by j∗, it is well known that the hypothesis D(β) = R

is equivalent to the superlinearity of j∗ at infinity (see, e.g., [3, Proposition 1.8]), i.e.

lim|r|→∞
j∗(r)
|r| = ∞.

We are going to need the following property implied by assumption (vi): there exists a
strictly positive number η such that, for every measurable function y : D → R, j∗(y) ∈
L1(D) implies j∗(η|y|) ∈ L1(D). In fact, from (vi) we deduce that there exist R > 0 and
M1 = M1(R) > 0 such that j (r) ≤ M1j (−r) for |r| ≥ R. Since j ≥ 0, one can choose
M1 > 1 without loss of generality. Setting M2 := max{j (r) : |r| ≤ R}, which is finite by
continuity of j , we deduce that

j (r) ≤ M1j (−r) + M2 ∀r ∈ R.

Taking convex conjugates on both sides we infer that

j∗(r) ≥ M1j
∗(−r/M1) − M2 ∀r ∈ D(j∗).

Setting η := 1/M1 < 1 and recalling that j∗(0) = 0, hence j∗ is positive on R and
increasing on R+, one has

j∗(η|y|) = j∗(ηy)1{y≥0} + j∗(−ηy)1{y<0}
≤ j∗(y)1{y≥0} + ηj∗(y)1{y≥0} + ηM2

≤ j∗(y) + M2 ∈ L1(D).

The assumptions on the Wiener process W and the diffusion coefficient B are standard:
let U be a separable Hilbert space and W a cylindrical Wiener process on U , defined on a
filtered probability space (�,F , (Ft )t∈[0,T ],P) satisfying the so-called usual conditions.2

We assume that

(vii) B : H → L 2(U, H) is Lipschitz-continuous, i.e. that there exists a positive
constants LB such that

‖B(x) − B(y)‖L 2(U,H) ≤ LB‖x − y‖ ∀x, y ∈ H .

1All notions of convex analysis used throughout the paper can be found, e.g., in [3, Chapters 1–2].
2Expressions involving random elements are always meant to hold P-a.s. unless otherwise stated.
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Note that this readily implies that B has linear growth, as

‖B(x)‖L 2(U,H) ≤ ‖B(x) − B(0)‖L 2(U,H) + ‖B(0)‖L 2(U,H)

≤ ‖B(0)‖L 2(U,H) + LB‖x‖.

Finally, the initial datum X0 is assumed to be F0-measurable and such that E ‖X0‖2 is
finite. All hypotheses just stated will be tacitly assumed to hold throughout.

The following well-posedness result for Eq. 1.1 is a refined version, proved in [15], of
the main result of [17], where the diffusion coefficient B can also be random and time-
dependent.

Theorem 2.1 There is a unique pair (X, ξ), with X a V -valued adapted process and ξ an
L1(D)-valued predictable process, such that

X ∈ L2(�; C([0, T ]; H)) ∩ L2(�;L2(0, T ;V )), ξ ∈ L1(� × (0, T ) × D),

j (X) + j∗(ξ) ∈ L1(� × (0, T ) × D), ξ ∈ β(X) a.e. in � × (0, T ) × D,

and

X(t) +
∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +

∫ t

0
B(X(s)) dW(s) ∀t ∈ [0, T ], P-a.s.

in V ′ ∩ L1(D). Moreover, the solution map

L2(�;H) −→ L2(�; C([0, T ]; H)) ∩ L2(�; L2(0, T ; V ))

X0 �−→ X

is Lipschitz-continuous.

Remark 2.2 Theorem 2.1 was proved in [17] under the stronger assumption that j is even,
which was later removed in [15] (see also [16] for a more general setting). In particular, the
symmetry of j was only used in [17, p. 1483, p. 1492] to infer that if a measurable function
v : D → R is such that j (v) ∈ L1(D), then one also has j (−v) ∈ L1(D). As is easily
checked, the argument continues to hold assuming only that j (−r) � 1+j (r) for all r ∈ R.
By continuity of j , this is the case if j satisfies condition (vi) above. Similarly, in [17] the
solution was only shown to be pathwise weakly continuous, while the strong continuity of
trajectories was obtained in [15]. In the latter work it is also shown that well-posedness
continues to hold under local Lipschitz-continuity and linear growth assumptions on B.

3 Preliminaries

3.1 Compactness in Spaces of Probability Measures

The set of probability measures on E is denoted by M1(E) and endowed with the topology
σ(M1(E), Cb(E)), which we shall call the narrow topology. We recall that a subset N of
M1(E) is called (uniformly) tight if for every ε > 0 there exists a compact set Kε such that
μ(E \ Kε) < ε for all μ ∈ N . The following characterization of relative compactness of
sets of probability measures is classical (see, e.g., [5, §5.5]).

Theorem 3.1 (Prokhorov) Let E be a complete separable metric space. A subset of M1(E)

is relatively compact in the narrow topology if and only if it is tight.
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3.2 Markovian Semigroups and Ergodicity

A family P = (Pt )t≥0 of Markovian kernels on a measure space (E,E ) such that Pt+s =
PtPs for all t, s ≥ 0 is called a Markovian semigroup. We recall that a Markovian kernel on
(E,E ) is a map K : E × E → [0, 1] such that (i) x �→ K(x,A) is E -measurable for each
A ∈ E , (ii) A �→ K(x,A) is a measure on E for each x ∈ E, and (iii) K(x, E) = 1 for
each x ∈ E. A Markovian kernel K on (E,E ) can naturally be extended to the space bE of
E -measurable bounded functions by the prescription

f �−→ Kf :=
∫

E

f (y) K(·, dy).

Then K : bE → bE is a linear, bounded, positive, σ -order continuous map. Similarly, K

can be extended to positive measures on E setting

μ �−→ μK(·) :=
∫

E

K(x, ·) μ(dx).

The notations Ptf and μPt , with f E -measurable bounded or positive function and μ

positive measure on E , are hence to be understood in this sense. We shall also assume that
P0 = I and that (t, x) �→ Ptf (x) is B(R+) ⊗ E -measurable.

A probability measure μ on E is said to be an invariant measure for the Markovian
semigroup P if

∫

E

Ptf dμ =
∫

E

f dμ ∀f ∈ bE , ∀t ≥ 0,

or, equivalently, if μPt = μ for all t ≥ 0. If P admits an invariant measure μ, then it can be
extended to a Markovian semigroup on Lp(E,μ), for every p ≥ 1.

The invariant measure μ is said to be ergodic for P if

lim
t→∞

1

t

∫ t

0
Psf ds =

∫

E

f dμ in L2(E,μ) ∀f ∈ L2(E,μ),

and strongly mixing if

lim
t→+∞ Ptf =

∫

E

f dμ in L2(E,μ) ∀f ∈ L2(E,μ).

We recall the following classical fact on the structure of the set of ergodic measures: the
ergodic invariant measures for P are the extremal points of the set of its invariant measures.
In particular, if P admits a unique invariant measure μ, then μ is ergodic.

In order to state a criterion for the existence of invariant measures, let us introduce, for
any probability measure ν ∈ M1(E), the family of averaged measures (μν

t )t≥0 defined as

μν
t := 1

t

∫ t

0
νPs ds.

Theorem 3.2 (Krylov and Bogoliubov) Let (Pt )t≥0 be a (time-homogeneous) Markovian
transition semigroup on a complete separable metric space E. Assume that

(a) (Pt )t≥0 has the Feller property, i.e. that it maps Cb(E) into Cb(E);
(b) there exists ν ∈ M1(E) such that the (μν

t )t≥0 ⊂ M1(E) is tight.

Then the set of invariant measures for (Pt )t≥0 is non-empty.

74



Ergodicity and Kolmogorov Equations for Dissipative SPDEs...

Note that if x ∈ E and ν is the Dirac measure at x, then νPs = Ps(x, ·). Then condition
(b) is satisfied if there exists x ∈ E such that the family of measures

(
1

t

∫ t

0
Ps(x, ·) ds

)

t≥0

is tight. It is easily seen that this latter condition is in turn satisfied if (Pt (x, ·))t≥0 ⊂ M1(E)

is tight.

4 Auxiliary Results

To prove the main results we shall need some auxiliary results that are interesting in their
own right, and that are collected in this section. In particular, we recall or prove some Itô-
type formulas and provide conditions for the differentiability of solutions to equations in
variational form with respect to the initial datum.

4.1 Itô Formulas

The proof of the following version of Itô’s formula for the square of the H -norm in a
generalized variational setting follows from the proof of [17, Proposition 6.2].

Proposition 4.1 Assume that an adapted process

Y ∈ L0(�;L∞(0, T ; H)) ∩ L0(�; L2(0, T ; V ))

is such that

Y (t) +
∫ t

0
AY(s) ds +

∫ t

0
g(s) ds = Y0 +

∫ t

0
G(s) dW(s)

in L1(D) for all t ∈ [0, T ], where Y0 ∈ L0(�,F0; H), G is a progressive L 2(U, H)-
valued process such that

G ∈ L2(� × (0, T );L 2(U, H)),

g is an adapted L1(D)-valued process such that

g ∈ L0(�; L1(0, T ; L1(D))),

and there exists α > 0 for which

j (αY ) + j∗(αg) ∈ L1(� × (0, T ) × D).

Then

1

2
‖Y (t)‖2 +

∫ t

0
〈AY(s), Y (s)〉 ds +

∫ t

0

∫

D

g(s, x)Y (s, x) dx ds

= 1

2
‖Y0‖2 + 1

2

∫ t

0
‖G(s)‖2

L 2(U,H)
ds +

∫ t

0
Y (s)G(s) dW(s) ∀t ∈ [0, T ].

We shall also need a simplified version of an Itô formula in the variational setting, due to
Pardoux, for functions other than the square of the H -norm. For its proof (in a more general
context) we refer to [19, p. 62-ff.].
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Proposition 4.2 Let Y ∈ L0(�; L2(0, T ; V )) be such that

Y (t) = Y0 +
∫ t

0
v(s) ds +

∫ t

0
G(s) dW(s)

for all t ∈ [0, T ], where Y0 ∈ L0(�,F0,P; H) and

v ∈ L0(�; L1(0, T ; H)) ⊕ L0(�; L2(0, T ; V ′))
is adapted and G ∈ L2(�× (0, T );L 2(U, H)) is progressively measurable. Then, for any
F ∈ C2

b(H) ∩ C1
b(V ), one has

F(Y (t)) = F(Y0) +
∫ t

0
DF(Y (s))v(s) ds +

∫ t

0
DF(Y (s))G(s) dW(s)

+1

2

∫ t

0
Tr

(
G∗(s)D2F(Y (s))G(s)

)
ds

for every t ∈ [0, T ], P-almost surely.

The previous Itô formula can be extended to processes satisfying weaker integrability
conditions, in analogy to Proposition 4.1.

Proposition 4.3 Let Y ∈ L0(�; L2(0, T ; V )) ∩ L0(�; L∞(0, T ; H)) be such that

Y (t) = Y0 +
∫ t

0
Av(s) ds +

∫ t

0
g(s) ds +

∫ t

0
G(s) dW(s)

for all t ∈ [0, T ], where Y0 ∈ L0(�,F0,P; H) and

v ∈ L0(�; L2(0, T ; V )), g ∈ L0(�; L1(0, T ; L1(D)))

are adapted and G ∈ L2(� × (0, T );L 2(U,H)) is progressively measurable. Then, for
any F ∈ C2

b(H) ∩ C1
b(V ′) ∩ C1

b(L1(D)), one has

F(Y (t)) = F(Y0) +
∫ t

0
〈Av(s),DF(Y (s))〉 ds +

∫ t

0

∫

D

g(s)DF(Y (s)) ds

+
∫ t

0
DF(Y (s))G(s) dW(s) + 1

2

∫ t

0
Tr

(
G∗(s)D2F(Y (s))G(s)

)
ds

for every t ∈ [0, T ], P-a.s..

Proof Since the resolvent of A1 is ultracontractive by assumption, there exists m ∈ N such
that

(I + δA1)
−m : L1(D) → H ∀δ > 0.

Using a superscript δ to denote the action of (I + δA1)
−m, we have

Y δ(t) = Y δ
0 +

∫ t

0
Avδ(s) ds +

∫ t

0
gδ(s) ds +

∫ t

0
Gδ(s) dW(s) ∀t ∈ [0, T ],

where Avδ + gδ ∈ L0(�; L1(0, T ; H)) ⊕ L0(�; L2(0, T ; V ′)). Hence, by Proposition 4.2,
for every δ > 0 we have

F(Y δ(t)) = F(Y δ
0 ) +

∫ t

0
〈Avδ(s),DF(Y δ(s))〉 ds +

∫ t

0

∫

D

gδ(s)DF(Y δ(s)) ds

+
∫ t

0
DF(Y δ(s))Gδ(s) dW(s) + 1

2

∫ t

0
Tr

(
(Gδ)∗(s)D2F(Y δ(s))Gδ(s)

)
ds
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for every t ∈ [0, T ], P-almost surely. Let us pass to the limit as δ → 0 in the previous
equation. It is clear from the fact that Y (t), Y0 ∈ H and the continuity of F that

F(Y δ(t)) → F(Y (t)), F (Y δ
0 ) → F(Y0).

Moreover, since vδ + δAvδ = v in V , taking the duality pairing with Avδ ∈ V ′, we have

〈Avδ, vδ〉 + δ‖Avδ‖2 = 〈Avδ, v〉 ≤ ‖A‖L (V ,V ′)‖vδ‖V ‖v‖V ,

from which, by coercivity of A,

‖vδ‖V ≤ ‖A‖L (V ,V ′)
C

‖v‖V ∀δ > 0.

Taking into account that v ∈ L2(0, T ; V ), we deduce that vδ → v weakly in L2(0, T ; V ).
Since Y δ → Y in L2(0, T ; H), by continuity of A and the fact that DF ∈ Cb(H, V ), we
have Avδ → Av weakly in L2(0, T ; V ′) and DF(Y δ) → DF(Y ) in L2(0, T ; V ), hence

∫ t

0
〈Avδ(s),DF(Y δ(s))〉 ds −→

∫ t

0
〈Av(s),DF(Y (s))〉 ds.

Furthermore, since Y δ(t) → Y (t) in H for every t ∈ [0, T ], recalling that DF ∈
Cb(H, L∞(D)) and gδ → g in L1(0, T ; L1(D)), we have (possibly along a subsequence)

∫

D

gδ(s)DF(Y δ(s)) −→
∫

D

g(s)DF(Y (s)) for a.e. s ∈ (0, T ).

Taking into account that
∫

D
gδDF(Y δ) ≤ ‖DF‖Cb(H,L∞(D))‖g‖L1(D) ∈ L1(0, T ), by the

dominated convergence theorem we then have

∫ t

0

∫

D

gδ(s)DF(Y δ(s)) ds −→
∫ t

0

∫

D

g(s)DF(Y δ(s)) ds.

Moreover, since Y δ(t) → Y (t) in H for every t ∈ [0, T ], recalling that D2F ∈
C(H,L (H)) and Gδ → G in L2(�;L2(0, T ;L 2(U, H))), we have (possibly along a
subsequence)

Tr
(
(Gδ)∗(s)D2F(Y δ(s))Gδ(s)

) → Tr
(
G∗(s)D2F(Y (s))G(s)

)
for a.e. s ∈ (0, T ).

Since Tr
(
(Gδ)∗D2F(Y δ)Gδ

) ≤ ‖D2F‖C(H,L (H))‖G‖2
L 2(U,H)

∈ L1(0, T ), the dominated
convergence theorem yields

∫ t

0
Tr

(
(Gδ)∗(s)D2F(Y δ(s))Gδ(s)

)
ds −→

∫ t

0
Tr

(
G∗(s)D2F(Y (s))G(s)

)
ds.
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Finally, by the Burkholder-Davis-Gundy inequality (with exponent equal to one) and by the
ideal property of Hilbert-Schmidt operators, we have

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
DF(Y δ(s))Gδ(s) dW(s) −

∫ t

0
DF(Y (s))G(s) dW(s)

∣
∣
∣
∣

� E

(∫ T

0
‖DF(Y δ(s))Gδ(s) − DF(Y (s))G(s)‖2

L (U,R) ds

)1/2

� E

(∫ T

0
‖DF(Y δ(s))‖2‖Gδ(s) − G(s)‖2

L 2(U,H)
ds

)1/2

+E

(∫ T

0
‖DF(Y δ(s)) − DF(Y (s))‖2‖Gδ(s)‖2

L 2(U,H)
ds

)1/2

≤ ‖DF‖C(H,H)‖Gδ − G‖L2(�;L2(0,T ;L 2(U,H)))

+E

(∫ T

0
‖G(s)‖2

L 2(U,H)
‖DF(Y δ(s)) − DF(Y (s))‖2 ds

)1/2

,

where the first term on the right-hand side converges to 0 because

Gδ → G in L2(�; L2(0, T ;L 2(U,H))).

Similarly, since DF(Y δ) → DF(Y ) a.e., it follows by the dominated convergence theorem
that the second term on the right-hand side converges to zero as well. Therefore, passing to
subsequence if necessary, one has

∫ t

0
DF(Y δ(s))Gδ(s) dW(s) −→

∫ t

0
DF(Y (s))G(s) dW(s).

4.2 Differentiability with Respect to the Initial Datum for Solutions to Equations
in Variational Form

Let g ∈ C2
b(R) and consider the equation

dX + AX dt = g(X) dt + GdW, X(0) = x,

in the variational sense, where A satisfies the hypotheses of Section 2, G ∈ L 2(U,H), and
x ∈ H . Note that throughout this subsection the diffusion coefficient G is independent of X,
so that we are considering only the case of equations with additive noise. For compactness
of notation we shall write E in place of C([0, T ]; H) ∩ L2(0, T ;V ). The above equation
admits a unique variational solution Xx ∈ L2(�; E). Here and in the following we often
use superscripts to denote the dependence on the initial datum. We are going to provide
sufficient conditions ensuring that the solution map x �→ Xx belongs to C2

b(H ; L2(�;E)).
The problem of regular dependence on the initial datum for equations in the variational
setting does not seem to be addressed in the literature. On the other hand, several results
are available for mild solutions (see, e.g., [6, 8, 14]), where an approach via the implicit
function theorem depending on a parameter is adopted. Here we proceed in a more direct
and, we believe, clearer way. The results are non-trivial (and probably not easily accessible
via the implicit function theorem) in the sense that the solution map is Fréchet differentiable
even though, as is well known, the superposition operator associated to g is never Fréchet
differentiable unless g is affine. The first and second Fréchet derivative of the solution
map shall be denoted by DX and D2X, respectively. These are maps with domain H and
codomain L (H,L2(�; E)) and L2(H ; L2(�; E)), respectively. Here and in the following
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we denote the space of continuous bilinear mappings from H × H to a Banach space F by
L2(H ; F).

We begin with first-order differentiability.

Theorem 4.4 The solution map x �→ Xx : H → L2(�; E) is continuously (Fréchet)
differentiable with bounded derivative. Moreover, for any h ∈ H , setting Yh := (DX)h,
one has

Y ′
h + AYh = g′(Xx)Yh, Yh(0) = h, (4.1)

in the variational sense.

Proof Classical (deterministic) results imply that Eq. 4.1 admits a unique solution Yh ∈ E

for P-a.e. ω ∈ �. Since Xx is an adapted process and h is non-random, it follows that Yh

is itself adapted. Alternatively, and more directly, one can apply the stochastic variational
theory to Eq. 4.1, deducing that Yh ∈ L2(�; E) is adapted.

Let us set, for compactness of notation,

Xε := Xx+εh, zε := 1

ε
(Xε − X) − Yh,

where ε is an arbitrary real number. Elementary calculations show that

zε(t) +
∫ t

0
Azε(s) ds =

∫ t

0

(1

ε

(
g(Xε(s)) − g(X(s))

) − g′(X(s))Yh(s)
)

ds.

Writing
g(Xε) − g(X) = g(X + εYh) − g(X) + g(Xε) − g(X + εYh)

yields

1

ε

(
g(Xε) − g(X)

) − g′(X)Yh = 1

ε

(
g(X + εYh) − g(X)

) − g′(X)Yh

+1

ε

(
g(Xε) − g(X + εYh)

)

=: Rε + Sε .

By the integration-by-parts formula applied to the equation for zε we get

1

2
‖zε(t)‖2 +

∫ t

0
〈Azε(s), zε(s)〉 ds =

∫ t

0
〈Rε(s), zε(s)〉 ds +

∫ t

0
〈Sε(s), zε(s)〉 ds,

where 〈Sε, zε〉 ≤ ‖Sε‖‖zε‖ and, by the Lipschitz continuity of g,

‖Sε‖ ≤ ‖g‖Ċ0,1
1

ε
‖Xε − X − εYh‖ = ‖g‖Ċ0,1‖zε‖,

so that 〈Sε, zε〉 ≤ ‖g‖Ċ0,1‖zε‖2. Since 〈Rε, zε〉 ≤ (‖Rε‖2 + ‖zε‖2
)
/2, we are left with

1

2
‖zε(t)‖2 +

∫ t

0
〈Azε(s), zε(s)〉 ds ≤ (

1/2 + ‖g‖Ċ0,1

)
∫ t

0
‖zε(s)‖2 ds + 1

2

∫ t

0
‖Rε(s)‖2 ds.

For an arbitrary t > 0 one has, by the coercivity of A,

1

2
‖zε‖2

C([0,t];H)+C

∫ t

0
‖zε(s)‖2

V ds ≤ (
1+2‖g‖Ċ0,1

)
∫ t

0
‖zε‖2

C([0,s];H) ds+
∫ t

0
‖Rε(s)‖2 ds,

hence also, by Fubini’s theorem and Gronwall’s inequality,

E ‖zε‖2
C([0,T ];H) ≤ e(2+4‖g‖

Ċ0,1 )T
E

∫ T

0
‖Rε(s)‖2 ds.
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It is clear from the hypotheses on g and the definition of Rε that Rε → 0 in L0(�×[0, T ]×
D) as ε → 0 for every s ∈ [0, T ]. Moreover, it follows by the Lipschitz continuity of g

and elementary estimates that |Rε| � ‖g‖Ċ0,1 |Yh|‖, where Yh ∈ L2(� × [0, T ] × D). The
dominated convergence theorem thus yields

lim
ε→0

E

∫ T

0
‖Rε(s)‖2 ds = 0.

Since

CE

∫ T

0
‖zε(s)‖2

V ds ≤ (
1 + 2‖g‖Ċ0,1

)
T E ‖zε‖2

C([0,T ];H) + E

∫ T

0
‖Rε(s)‖2 ds,

we conclude that
lim
ε→0

‖zε‖L2(�;E) = 0.

This proves that the solution map is differentiable in every direction of H , and that its
directional derivative in the direction h ∈ H is given by the (unique) solution Yh to Eq. 4.1.
It is then clear that the map h �→ Yh is linear. Let us prove that it is also continuous: in
analogy to computations already carried out above, the integration-by-parts formula yields

1

2
‖Yh(t)‖2 +

∫ t

0
〈AYh(s), Yh(s)〉 ds = ‖h‖2 +

∫ t

0
〈g′(Xx(s))Yh(s)‖Yh(s) ds,

from which one infers

‖Yh‖2
C([0,t];H) + ‖Yh‖2

L2(0,t;V )
� ‖h‖2 +

∫ t

0
‖Yh‖2

C([0,s];H) ds,

hence also, by Gronwall’s inequality and elementary estimates,

‖Yh‖E � ‖h‖.

It is important to note that this inequality holds P-a.s. with a non-random implicit constant
that depends only on T and on the Lipschitz constant of g, but not on the initial datum x.
From this it follows that

‖Yh‖Lp(�;E) �T ‖h‖ ∀p ≥ 0,

hence, in particular, that h �→ Yh is the Gâteaux derivative of x �→ Xx . Setting Yx := h �→
Yh, we are going to prove that the map

H −→ L (H, L2(�; E))

x �−→ Yx

is continuous. This implies, by a well-known criterion (see, e.g., [2, Theorem 1.9]), that
x �→ Xx is Fréchet differentiable with Fréchet derivative (necessarily) equal to Yx . Let
(xn) ⊂ H be a sequence converging to x in H , and write for simplicity Xn := Xxn ,
Yn := Yxn , X := Xx , and Y := Yx , with a subscript h to denote their action on a fixed
element h ∈ H . One has

Yn
h (t) − Yh(t) +

∫ t

0
A(Yn

h (s) − Yh(s)) ds = xn − x +
∫ t

0

(
g′(Xn)Y n

h − g′(X)Yh

)
(s) ds,

for which the integration-by-parts formula yields

1

2
‖Yn

h (t) − Yh(t)‖2 + C

∫ t

0
‖Yn

h (s) − Yh(s)‖2
V ds

≤ 1

2
‖xn − x‖2 +

∫ t

0
〈g′(Xn)Y n

h − g′(X)YhY
n
h − Yh〉(s) ds,
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where

〈g′(Xn)Y n
h − g′(X)Yh, Y

n
h − Yh〉 = 〈g′(Xn)(Y

n
h − Yh), Y

n
h − Yh〉

+〈(g′(Xn) − g′(X))Yh, Y
n
h − Yh〉,

so that, by elementary estimates,

‖Yn
h (t) − Yh(t)‖2 + 2C

∫ t

0
‖Yn

h (s) − Yh(s)‖2
V ds

≤ ‖xn − x‖2 + (
2‖g‖Ċ0,1 + 1

)
∫ t

0
‖Yn

h (s) − Yh(s)‖2 ds

+
∫ t

0
‖(g′(Xn(s)) − g′(X(s))

)
Yh(s)‖2 ds.

Taking the supremum in time, Gronwall’s inequality implies

‖Yn
h − Yh‖E � ‖xn − x‖ + ‖(g′(Xn) − g′(X))Yh‖L2(0,T ;H),

where the implicit constant depends on C, T and on the Lipschitz constant of g. Further-
more, since, as observed above, h �→ Yh is a linear bounded map from H to C([0, T ]; H)

P-a.s. with non-random operator norm, i.e.

sup
‖h‖≤1

‖Yh‖C(0,T ];H) �T ,g 1,

one has

E sup
‖h‖≤1

‖(g′(Xn) − g′(X))Yh‖L2(0,T ;H) � E ‖g′(Xn) − g′(X)‖C(0,T ];H),

and the last term converges to zero as n → ∞ by the dominated convergence theorem,
because Xn → X in L2(�; C([0, T ]; H)) and g ∈ C2

b (in particular, g′ is Lipschitz-
continuous). It immediately follows that x �→ Yx is a continuous map on H with values
in L (H, L2(�;E)). Furthermore, since we have shown that ‖Yx

h ‖Lp(�;E) � ‖h‖ for all
p ≥ 0 with a constant independent of x, we conclude that x �→ Xx is of class C1

b from H

to L2(�; E).

To establish the second-order Fréchet differentiability of x �→ Xx , it is convenient to
consider the equation

Z′
hk + AZhk = g′(X)Zhk + g′′(X)YhYk, Zhk(0) = 0, (4.2)

where h, k ∈ H and Yh, Yk are the solutions to Eq. 4.1 with initial conditions h and k,
respectively. This is manifestly the equation formally satisfied by the second-order Fréchet
derivative of x �→ Xx evaluated at (h, k).

In order to prove that Eq. 4.2 is well-posed, we need the following lemma, which is
probably well known, but for which we could not find a reference, except for the classical
case where f ∈ L2(0, T ; V ′) (see, e.g., [13]).

Lemma 4.5 Let y0 ∈ H , f ∈ L1(0, T ; H), and  ∈ L∞((0, T ) × D). Then there exists a
unique

y ∈ C([0, T ]; H) ∩ L2(0, T ; V )

such that

y(t) +
∫ t

0
Ay(s) ds = y0 +

∫ t

0
(s)y(s) ds +

∫ t

0
f (s) ds ∀t ∈ [0, T ].
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Moreover, one has

1

2
‖y(t)‖2 +

∫ t

0
〈Ay(s), y(s)〉 ds = 1

2
‖y0‖2 +

∫ t

0

∫

D

(s)|y(s)|2 ds

+
∫ t

0
〈f (s), y(s)〉 ds ∀t ∈ [0, T ].

Proof Let (fn) be a sequence in L2(0, T ; H) such that fn → f in L1(0, T ; H) as n → ∞.
By the variational theory of deterministic equations, for every n ∈ N there exists a unique

yn ∈ H 1(0, T ; V ′) ∩ L2(0, T ;V ) ↪→ C([0, T ]; H)

such that

y′
n(t) + Ayn(t) = (t)yn(t) + fn(t) in V ′ for a.e. t ∈ (0, T ) , yn(0) = y0.

Therefore, for every n, m ∈ N, the integration-by-parts formula and an easy computation
show that

‖yn(t) − ym(t)‖2 + 2C

∫ t

0
‖yn(s) − ym(s)‖2

V ds

≤ 2‖‖L∞((0,T )×D)

∫ t

0
‖yn(s) − ym(s)‖2 ds + 2

∫ t

0
〈fn(s)

−fm(s), yn(s) − ym(s)〉 ds

≤ 2‖‖L∞((0,T )×D)

∫ t

0
‖yn(s) − ym(s)‖2 ds + 2‖yn

−ym‖C([0,t];H)‖fn − fm‖L1(0,T ;H)

for every t ∈ [0, T ]. By the Young inequality we infer then that, for every ε ≥ 0,

‖yn − ym‖2
C([0,t];H) + ‖yn − ym‖2

L2(0,t;V )

� ε‖yn − ym‖2
C([0,t];H) + 1

4ε
‖fn − fm‖2

L1(0,T ;H)
+

∫ t

0
‖yn − ym‖2

C([0,s];H) ds

for every t ∈ [0, T ], from which, thanks to Gronwall’s inequality,

‖yn − ym‖C([0,T ];H)∩L2(0,T ;V ) � ‖fn − fm‖L1(0,T ;H).

We deduce that there exists y ∈ C([0, T ]; H) ∩ L2(0, T ;V ) such that

yn → y inC([0, T ]; H) ∩ L2(0, T ;V ).

It clear follows from y ∈ L2(0, T ;V ) and A ∈ L (V , V ′) that Ay ∈ L2(0, T ; V ′) and
Ayn → Ay in L2(0, T ; V ′) as n → ∞. Moreover, we also have that

1

2
‖yn(t)‖2+

∫ t

0
〈Ayn(s), yn(s)〉 ds = 1

2
‖y0‖2+

∫ t

0

∫

D

(s)|yn(s)|2 ds+
∫ t

0
〈fn(s), yn(s)〉 ds

for all t ∈ [0, T ]. Hence the last assertion follows letting n → ∞. The uniqueness of y is a
consequence of the monotonicity of A.

In order to prove second-order Fréchet differentiability of the solution map x �→ Xx we
need to make the further assumption that V is continuously embedded in L4(D). This is

82



Ergodicity and Kolmogorov Equations for Dissipative SPDEs...

satisfied, for instance, if V = H 1
0 and d ≤ 4. In fact, by the Sobolev embedding theorem,

H 1
0 ↪→ L2∗

, where
1

2∗ = 1

2
− 1

d
for d ≥ 3 and 2∗ = +∞ otherwise.

We proceed as follows: first we establish well-posedness for equation Eq. 4.2, and then
we show that its unique solution identifies D2X.

Proposition 4.6 Assume that V is continuously embedded in L4(D). Then Eq. 4.2 admits
a unique variational solution Zhk for any h, h ∈ H . Moreover, the map

Zx : H × H → L2(�,E), (h, k) �→ Zx
hk

is bilinear and continuous for any x ∈H , and there exists a positive constantM >0 such that

‖Zx‖L2(H ;L2(�;E)) ≤ M ∀x ∈ H .

Proof Hölder’s inequality and the boundedness of g′′ yield

‖g′′(X)YhYk‖ ≤ ‖g′′‖Ċ0,1‖Yh‖L4(D)‖Yk‖L4(D) � ‖Yh‖V ‖Yk‖V ,

so that g′′(X)YhYk ∈ L1(0, T ; H) since Yh, Yk ∈ L2(0, T ; V ). Hence, by Lemma 4.5 there
is a unique

Zhk ∈ C([0, T ]; H) ∩ L2(0, T ; V )

such that

Zhk(t) +
∫ t

0
AZhk(s) ds =

∫ t

0
g′(X(s))Zhk(s) ds +

∫ t

0
g′′(X(s))Yh(s)Yk(s) ds

∀t ∈ [0, T ].
Let us show that (h, k) �→ Zhk is a continuous bilinear map. The bilinearity is clear from
Eq. 4.2. Moreover, testing by Zhk and using the coercivity of A we have that

‖Zhk(t)‖2 +
∫ t

0
‖Zhk(s)‖2

V ds � ‖g‖C1
b

∫ t

0
‖Zhk(s)‖2 ds

+‖g‖C2
b

∫ t

0
‖Yh(s)‖V ‖Yk(s)‖V ds

≤ ‖g‖C1
b

∫ t

0
‖Zhk(s)‖2 ds + ‖g‖C2

b
‖Yh‖L2(0,T ;V )‖Yk‖L2(0,T ;V )

�T ‖g‖C1
b

∫ t

0
‖Zhk(s)‖2 ds + ‖g‖C2

b
‖h‖‖k‖

and Gronwall’s inequality yields

‖Zx
hk‖L2(�;C([0,T ];H))∩L2(�;L2(0,T ;V )) � ‖h‖‖k‖ ∀h, k, x ∈ H,

from which the last assertion follows.

Theorem 4.7 Assume that V is continuously embedded in L4(D). Then the solution map
x �→ Xx is of class C2

b from H to L2(�; E).

Proof We are going to prove first that the Fréchet derivative of the solution map is Gâteaux-
differentiable, with Gâteaux derivative equal to Zx := (h, k) �→ Zx

hk , then we shall then
show that x �→ Zx is continuous and bounded as a map from H to L2(H ; L2(�;E)).
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Step 1. Let x ∈ H be arbitrary but fixed, and consider the family of maps zε ∈
L2(H ; L2(�; E)), indexed by ε ∈ R, defined as

zε : (h, k) �−→ zε
hk := 1

ε

(
Yx+εk

h − Yx
h

)
− Zx

hk .

Elementary manipulations based on the equations satisfied by Yx and Zx show that

zε
hk(t) +

∫ t

0
Azε

hk(s) ds =
∫ t

0

(g′(Xε)Y ε
h − g′(X)Yh

ε
− g′(X)Zhk − g′′(X)YhYk

)
(s) ds,

where the integrand on the right-hand side can be written as Rε + Sε , with

Rε =
(

g′(Xε) − g′(X)

ε
− g′′(X)Yk

)

Yh,

Sε =
(

g′(Xε)
Y ε

h − Yh

ε
− g′(X)Zhk

)

.

Further algebraic manipulations show that Rε = R′
ε + R′′

ε and Sε = S′
ε + S′′

ε , where

R′
ε :=

(
g′(X + εYk) − g′(X)

ε
− g′′(X)Yk

)

Yh,

R′′
ε := g′(Xε) − g′(X + εYk)

ε
Yh,

S′
ε := g′(X)zε

hk,

S′′
ε := (

g′(Xε) − g′(X)
)Y ε

h − Yh

ε
.

The integration-by-parts formula and obvious estimates yield

1

2
‖zε

hk(t)‖2 + C

∫ t

0
‖zε

hk(s)‖2
V ds ≤ ‖g‖Ċ0,1

∫ t

0
‖zε

hk(s)‖2
V ds +

∫ t

0
〈Rε + S′′

ε , zε
hk〉(s) ds,

Taking the supremum on both sides, one is left with, thanks to Young’s inequality,

‖zε
hk‖2

C([0,t];H) + ‖zε
hk‖2

L2(0,t;V )
� δ‖zε

hk‖2
C([0,t];H) +

∫ t

0
‖zε

hk‖2
C([0,s];H) ds

+1

δ
‖Rε + S′′

ε ‖2
L1(0,T ;H)

for all δ > 0, from which it follows, taking δ sufficiently small and applying Gronwall’s
inequality,

E ‖zε
hk‖2

E � E ‖Rε‖2
L1(0,T ;H)

+ E ‖S′′
ε ‖2

L1(0,T ;H)
.

We are going to show that the right-hand side tends to zero as ε → 0. Since g ∈ C2
b , it is

evident that R′
ε → 0 almost everywhere as ε → 0 as well as that

|R′
ε| ≤ 2‖g′′‖∞|YkYh|.

Since

sup
‖h‖≤1

‖YhYk‖L1(0,T ;H) � sup
‖h‖≤1

‖Yh‖L2(0,T ;V )‖Yk‖L2(0,T ;V ) � sup
‖h‖≤1

‖h‖‖k‖ ≤ ‖k‖,

the dominated convergence theorem yields

lim
ε→0

sup
‖h‖≤1

E ‖R′
ε‖2

L1(0,T ;H)
= 0.
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Moreover, we have

|R′′
ε | ≤ ‖g′′‖∞

∣
∣
∣
∣
Xx+εk − Xx

ε
− Yx

k

∣
∣
∣
∣ |Yx

h |,

so that

‖R′′
ε ‖L1(0,T ;H) �

∥
∥
∥
∥
Xx+εk − Xx

ε
− Yx

k

∥
∥
∥
∥

L2(0,T ;V )

‖Yx
h ‖L2(0,T ;V ),

where ‖Yx
h ‖L2(0,T ;V ) � ‖h‖, hence, by Theorem 4.4,

sup
‖h‖≤1

E ‖R′′
ε ‖2

L1(0,T ;H)
� E

∥
∥
∥
∥
Xx+εk − Xx

ε
− Yx

k

∥
∥
∥
∥

2

L2(0,T ;V )

→ 0

Finally, from

|S′′
ε | ≤ ‖g′′‖∞

∣
∣
∣
∣
Xx+εk − Xx

ε

∣
∣
∣
∣ |Yx+εk

h − Yx
h |

we deduce

‖S′
ε‖L1(0,T ;H) �

∥
∥
∥
∥
Xx+εk − Xx

ε

∥
∥
∥
∥

L2(0,T ;V )

‖Yx+εk
h − Yx

h ‖L2(0,T ;V ).

Since (Xx+εk − Xx)/ε → Yx
k in E as ε → 0 and x �→ Yx

h is continuous from H to E,
we infer that ‖S′

ε‖L1(0,T ;H) → 0. Moreover, it follows from

‖Yx+εk
h − Yx

h ‖L2(0,T ;V ) ≤ 2‖h‖
that

sup
‖h‖≤1

‖S′
ε‖L1(0,T ;H) �

∥
∥
∥
∥
Xx+εk − Xx

ε

∥
∥
∥
∥

L2(0,T ;V )

.

Recalling that, by Theorem 4.4, (Xx+εk − Xx)/ε → Yx
k in L2(�; E) as ε → 0, this

implies
lim
ε→0

sup
‖h‖≤1

E ‖S′′
ε ‖2

L1(0,T ;H)
= 0.

We thus conclude that

lim
ε→0

sup
‖h‖≤1

‖zε
hk‖L2(�;E) = 0 ∀k ∈ H,

i.e. the directional derivative of x �→ Yx : H �→ L (H,L2(�;E)) exists for all direc-
tions and is given by the map x �→ Zx : H → L2(H ; L2(�;E)). Since we have already
proved that (h, k) �→ Zx

hk is bilinear and continuous, we infer that x �→ Yx is Gâteaux
differentiable with derivative Zx .

Step 2. In order to conclude that x �→ Yx is Fréchet differentiable (with derivative neces-
sarily equal to Z) it is enough to show, in view of a criterion already mentioned, that the
map

x �−→ Zx

H −→ L2(H ; L2(�; E))

is continuous. Let (xn)n ⊆ H be a sequence converging to x in H . We have, writing Zn

in place of Zxn for simplicity,

(Zn
hk −Zhk)

′ +A(Zn
hk −Zhk) = g′(Xn)Zn

hk − g′(X)Zhk + g′′(Xn)Y n
h Y n

k − g′′(X)YhYk,
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with initial condition Zn
hk(0) − Zhk(0) = 0. The right-hand side of the equation can be

written as R = ∑
i≤4 Ri , with

R1 := g′(Xn)(Zn
hk − Zhk), R2 := (g′(Xn) − g′(X))Zhk,

R3 := g′′(Xn)(Y n
h Y n

k − YhYk), R4 := (g′′(Xn) − g′′(X))YhYk,

so that, by the integration-by-parts formula,

1

2
‖Zn

hk(t) − Zhk(t)‖2 + C

∫ t

0
‖Zn

hk(s) − Zhk(s)‖2
V ds ≤

∫ t

0
〈R,Zn

hk − Zhk〉(s) ds,

where ∫ t

0
〈R1, Z

n
hk − Zhk〉(s) ds ≤ ‖g′‖∞

∫ t

0
‖Zn

hk(s) − Zhk(s)‖2 ds,

and, for i �= 1, by Young’s inequality,
∫ t

0
〈Ri, Z

n
hk − Zhk〉(s) ds ≤ ‖Zn

hk − Zhk‖C([0,t];H)‖Ri‖L1(0,t;H)

≤ δ‖Zn
hk − Zhk‖2

C([0,t];H) + 1

δ
‖Ri‖2

L1(0,t;H)
.

By an argument based on the Gronwall’s inequality already used several times we obtain

‖Zn
hk − Zhk‖2

E � ‖R2 + R3 + R4‖2
L1(0,T ;H)

,

where ‖R2‖ ≤ ‖g′′‖∞‖(Xn − X)Zhk‖ and, by the bilinearity of Z,

‖(Xn−X)Zhk‖L1(0,T ;H)�‖Xn−X‖L2(0,T ;V )‖Zhk‖L2(0,T ;V )�‖Xn−X‖L2(0,T ;V )‖h‖‖k‖,
from which it follows

sup
‖h‖,‖k‖≤1

E ‖(Xn − X)Zhk‖2
L1(0,T ;H)

� ‖Xn − X‖L2(�;L2(0,T ;V )) → 0

because x �→ Xx is continuous from H to L2(�;E). Moreover, since ‖R3‖ ≤
‖g′′‖∞‖Yn

h Y n
k − YhYk‖, we have, recalling that V ↪→ L4,

‖R3‖L1(0,T ;H) ≤ ‖Yn
h −Yh‖L2(0,T ;V )‖Yk‖L2(0,T ;V ) +‖Yn

k −Yk‖L2(0,T ;V )‖Yn
h ‖L2(0,T ;V ),

where both terms on the right-hand side tend to zero because Yn
h → Yh in L2(0, T ; V )

for all h ∈ H . The estimate

‖Yn
h Y n

k − YhYk‖L1(0,T ;H) � ‖h‖‖k‖
then implies, by the dominated convergence theorem,

sup
‖h‖,‖k‖≤1

E ‖R3‖2
L1(0,T ;H)

� sup
‖h‖,‖k‖≤1

E ‖Yn
h Y n

k − YhYk‖2
L1(0,T ;H)

→ 0.

It remains to consider R4: it is clear that (g′′(Xn)−g′′(X))YhYk → 0 almost everywhere
by the continuity of g′′, and, as before,

‖(g′′(Xn) − g′′(X))YhYk‖L1(0,T ;H) � ‖g′′‖∞‖h‖‖k‖,
hence the dominated convergence theorem yields

sup
‖h‖,‖k‖≤1

E ‖R4‖2
L1(0,T ;H)

→ 0.

We have thus proved that, as n → ∞,

‖Zn − Z‖L2(H ;L2(�;E)) = sup
‖h‖,‖k‖≤1

‖Zn
hk − Zhk‖L2(�;E) → 0.
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Recalling that x �→ Zx is bounded on H , we conclude that x �→ Xx is twice Fréchet-
differentiable with continuous and bounded derivatives.

5 Invariant measures

Throughout this section, we consider Eq. 1.1 with X0 ∈ H . Since all coefficients do not
depend explicitly on ω ∈ �, it follows by a standard argument that the solution X to Eq. 1.1
is Markovian. Let P = (Pt )t≥0 be the transition semigroup defined by

(Ptϕ)(x) := Eϕ(Xx(t)) ∀x ∈ H, ϕ ∈ Cb(H).

Lemma 5.1 The transition semigroup P is Feller, i.e. Cb(H) is invariant under the action
of Pt for every t ≥ 0.

Proof Let ϕ ∈ Cb(H), t ≥ 0, x ∈ H , and (xn) ⊂ H be a sequence converging to x in H as
n → ∞. It is enough to show that (Ptϕ)(xn) → (Ptϕ)(x) as n → ∞, as the boundedness of
Ptϕ is immediate by definition of P . By the continuous dependence property with respect
to the initial datum established by Theorem 2.1, we have that

‖Xx − Xxn‖L2(�;C([0,T ];H)) � ‖x − xn‖,
hence, in particular, Xxn(t) → Xx(t) in L2(�; H). This in turn implies that Xxn(t) →
Xx(t) in probability, thus also, by continuity of ϕ, that ϕ

(
Xxn(t)

) → ϕ
(
Xx(t)

)
in probabil-

ity. Vitali’s theorem then readily yields that ϕ
(
Xxn(t)

) → ϕ
(
Xx(t)

)
in L1(�), from which

it immediately follows that

|(Ptϕ)(x) − (Ptϕ)(xn)| ≤ E |ϕ(Xx(t)) − ϕ(Xxn(t))| −→ 0

as n → ∞.

We shall assume from now on that the pair (A,B) satisfies the coercivity condition

〈Ax, x〉 ≥ 1

2
‖B(x)‖2

L 2(U,H)
+ C‖x‖2

V − C0 ∀x ∈ V, (5.1)

with C0 > 0 a constant.

Theorem 5.2 The set of invariant measures for the transition semigroup (Pt )t≥0 is not
empty.

Proof Let (X, ξ) be the unique strong solution to Eq. 1.1. For every t ≥ 0 one has, by
Proposition 4.1,

1

2
‖X(t)‖2 +

∫ t

0
〈AX(s),X(s)〉 ds +

∫ t

0

∫

D

ξ(s)X(s) ds

= 1

2
‖x‖2 + 1

2

∫ t

0
‖B(X(s))‖2

L 2(U,H)
ds +

∫ t

0
X(s)B(X(s)) dW(s).

Let us show that the stochastic integral M := XB(X) · W on the right-hand side
of this identity is a martingale. For this it suffices to show that E[M, M]1/2

T is finite:
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one has, by the ideal property of Hilbert-Schmidt operators and the Cauchy-Schwarz
inequality,

E[M, M]1/2
T = E

(∫ T

0
‖XB(X)‖2

L 2(U,R)
ds

)1/2

≤ E ‖X‖L∞(0,T ;H)

(∫ T

0
‖B(X)‖2

L 2(U,H)
ds

)1/2

≤
(
E ‖X‖2

L∞(0,T ;H)

)1/2
(

E

∫ T

0
‖B(X)‖2

L 2(U,H)
ds

)1/2

,

where the last term is finite thanks to Theorem 2.1 and the assumption of linear growth on
B. Therefore, recalling that, for any r, s ∈ R, j (r)+ j∗(s) = rs if and only if s ∈ β(r), one
has, taking the coercivity condition Eq. 5.1 into account,

CE

∫ t

0
‖X(s)‖2

V ds + E

∫ t

0

∫

D

j (X(s)) ds + E

∫ t

0

∫

D

j∗(ξ(s)) ds ≤ 1

2
‖x‖2 + C0t (5.2)

for all t ≥ 0. Let x = 0. For any t ≥ 0 the law of the random variable X(t) is a probability
measure on H , which we shall denote by πt . We are now going to show that the family of
measures (μt )t>0 on H defined by

μt : E �−→ 1

t

∫ t

0
πs(E) ds

is tight. The ball Bn in V of radius n ∈ N is a compact subset of H , because the embedding
V ↪→ H is compact. Moreover, Markov’s inequality and Eq. 5.2 yield

μt(B
c
n) = 1

t

∫ t

0
πs(B

c
n) ds = 1

t

∫ t

0
P
(‖X(s)‖2

V > n2) ds

≤ 1

tn2

∫ t

0
E ‖X(s)‖2

V ds ≤ 1

Ctn2
C0t = C0

Cn2
,

hence also

sup
t>0

μt(B
c
n) ≤ C0

Cn2
→ 0 as n → ∞.

It follows by Prokhorov’s theorem that there exists a probability measure μ on H and
a sequence (tk)k∈N increasing to infinity such that μtk converges to μ in the topology
σ(M1(H), Cb(H)) as k → ∞. Furthermore, μ is an invariant measure for the transition
semigroup P , thanks to the Krylov-Bogoliubov theorem.

We are now going to prove integrability properties of all invariant measures, which in
turn provide information on their support. We start with a (relatively) simple yet crucial
estimate.

Proposition 5.3 Let μ be an invariant measure for the transition semigroup (Pt ). Then one
has

∫

H

‖x‖2 μ(dx) ≤ K2C0

C
,

where K is the norm of the embedding V ↪→ H .
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Proof We are going to apply the Itô formula of Proposition 4.2 to the process X and the
function Gδ : x �→ gδ

(‖x‖2
)
, where gδ ∈ C2

b (R+) is defined as

gδ(r) = r

1 + δr
, δ > 0,

so that

g′
δ(r) = 1

(1 + δr)2
, g′′

δ (r) = − 2δ

(1 + δr)3
,

whence

gδ

(‖X(t)‖2) + 2
∫ t

0
g′

δ

(‖X(s)‖2)(〈AX(s),X(s)〉 + 〈ξ(s),X(s)〉) ds

−2
∫ t

0
g′′

δ

(‖X(s)‖2)‖X(s)B(X(s))‖2
L 2(U,R)

ds

= gδ

(‖x‖2) + 2
∫ t

0
g′

δ

(‖X(s)‖2)X(s)B(X(s)) dW(s)

+
∫ t

0
g′

δ

(‖X(s)‖2)‖B(X(s))‖2
L 2(U,R)

ds.

Since g′
δ > 0 and g′′

δ < 0, the coercivity condition Eq. 5.1 and the monotonicity of β imply

gδ

(‖X(t)‖2) + 2
∫ t

0
g′

δ

(‖X(s)‖2)(C‖X(s)‖2
V − C0

)
ds

≤ gδ

(‖x‖2) + 2
∫ t

0
g′

δ

(‖X(s)‖2)X(s)B(X(s)) dW(s).

Taking into account that |g′
δ| ≤ 1, the stochastic integral is a martingale, exactly as in the

proof of Theorem 5.2, hence has expectation zero, so that

EGδ(X(t)) + 2C E

∫ t

0
g′

δ

(‖X(s)‖2)‖X(s)‖2
V ds ≤ Gδ(x) + 2Ct .

By definition of (Pt ) we have PtGδ(x) = EGδ(X(t)), from which it follows, by the
boundedness of Gδ and by definition of invariant measure,

C

∫

H

E

∫ t

0
g′

δ

(‖X(s)‖2)‖X(s)‖2
V ds μ(dx) ≤ C0t .

Denoting the norm of the embedding V ↪→ H by K , we get
∫

H

∫ t

0
E

‖X(s)‖2

(
1 + δ‖X(s)‖2

)2
ds dμ ≤ K2C0

C
t .

Let fδ : r �→ r/(1 + δr)2, δ > 0, and Fδ := fδ ◦ ‖ · ‖2. Then

E
‖X(s)‖2

(
1 + δ‖X(s)‖2

)2
= PsFδ,

hence, by Tonelli’s theorem and invariance of μ,
∫

H

∫ t

0
E

‖X(s)‖2

(
1 + δ‖X(s)‖2

)2
ds dμ =

∫ t

0

∫

H

PsFδ dμ ds = t

∫

H

Fδ dμ ≤ K2C0

C
t .
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Taking the limit as δ → 0, the monotone convergence theorem yields
∫

H

‖x‖2 μ(dx) ≤ K2C0

C
.

In order to state the next integrability results for invariant measures, we need to define
the following subsets of H :

J := {
u ∈ H : j (u) ∈ L1(D)

}
,

J ∗ := {
u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and j∗(v) ∈ L1(D)

}
,

whose Borel measurability will be proved in Lemma 5.5 below.

Theorem 5.4 Let μ be an invariant measure for the transition semigroup P . Then one has
∫

H

‖u‖2
V μ(du) +

∫

H

∫

D

j (u)μ(du) +
∫

H

∫

D

j∗(β0(u)) μ(du) ≤ K2C0

2C
+ C0,

where K is the norm of the embedding V ↪→ H . In particular, μ is concentrated on V ∩
J ∩ J ∗.

Proof Let us introduce the functions �, �, �∗ : H → R+ ∪ {+∞} defined as

� : u �−→ ‖u‖2
V 1V (u) + ∞ · 1H\V (u),

� : u �−→
(∫

D

j (u)
)

1J (u) + ∞ · 1H\J (u),

�∗ : u �−→
(∫

D

j∗(β0(u))
)

1J ∗(u) + ∞ · 1H\J ∗(u),

as well as their approximations �n, �n, �∗n : H → R+ ∪ {+∞}, n ∈ N, defined as (here
Bn(V ) denotes the ball of radius n in V )

�n : u �−→
{ ‖u‖2

V if u ∈ Bn(V ),

n2 if u ∈ H \ Bn(V ),

�n : u �−→
{ ∫

D
j (u) if

∫

D
j (u) ≤ n,

n otherwise,

and

�∗n : u �−→
{ ∫

D
j∗(β1/n(u)) if

∫

D
j∗(β1/n(u)) ≤ n,

n otherwise.

One obviously has
∫

H

�n dμ =
∫ 1

0

∫

H

�n dμ ds,

as well as, by invariance of μ and boundedness of �n,
∫

H

�n dμ =
∫

H

Ps�n dμ,

thus also, by Tonelli’s theorem (�n ≥ 0 and P is positivity preserving, being Markovian)
∫

H

�n dμ =
∫ 1

0

∫

H

Ps�n dμ ds =
∫

H

∫ 1

0
E�n(X(s)) ds dμ.
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The same reasoning also yields
∫

H

�n dμ =
∫

H

∫ 1

0
E�n(X(s)) ds dμ,

∫

H

�∗n dμ =
∫

H

∫ 1

0
E�∗n(X(s)) ds dμ,

with

E�n(X(s)) = 7E
(‖X(s)‖2

V ∧ n2) ≤ E ‖X(s)‖2
V ,

E�n(X(s)) = E

(
n ∧

∫

D

j (X(s))
)

≤ E

∫

D

j (X(s)),

E�∗n(X(s)) = E

(
n ∧

∫

D

j∗(β1/n(X(s)))
)

≤ E

∫

D

j∗(ξ(s)),

where, in the last inequality, we have used the fact that for every r ∈ D(β) = R the
sequence {βλ(r)}λ converges from below to β0(r), where β0(r) is the unique element in
β(r) such that |β0(r)| ≤ |y| for every y ∈ β(r) (note that the uniqueness of β0(r) fol-
lows from the maximal monotonicity of β). Thanks to estimate (5.2) we have, by Tonelli’s
theorem,

C

∫ 1

0

(
E�n(X(s)) + E�n(X(s)) + E�∗n(X(s))

)
ds

≤ CE

∫ 1

0
‖X(s)‖2

V ds + E

∫ 1

0

∫

D

j (X(s)) ds + E

∫ 1

0

∫

D

j∗(ξ(s)) ds

≤ 1

2
‖x‖2 + C0,

therefore, integrating with respect to μ and taking the previous proposition into account,
∫

H

(
C�n + �n + �∗n

)
dμ ≤ 1

2

∫

H

‖x‖2 μ(dx) + C0 ≤ K2C0

2C
+ C0

uniformly with respect to n. Since �n and �n converge pointwise and monotonically from
below to � and �, respectively, the monotone convergence theorem yields

∫

H

� dμ ≤ C0(K
2 + 2C)

2C2
,

∫

H

� dμ ≤ C0(K
2 + 2C)

2C
,

hence, in particular, μ(V ) = μ(J ) = 1. Similarly, note that β1/n ∈ β((I + (1/n)β)−1) and
0 ∈ β(0) imply that |β1/n| converges pointwise to |β0| monotonically from below as n →
∞, hence the same holds for the convergence of j∗(β1/n) to j∗(β0) because j∗ is convex
and continuous with j∗(0) = 0. Therefore �∗n converges to � pointwise monotonically
from below as n → ∞. We conclude, again by the monotone convergence theorem, that
�∗ ∈ L1(H, μ), thus also that μ(J ∗) = 1.

As mentioned above, the sets J and J ∗ are Borel measurable.

Lemma 5.5 The sets

J := {
u ∈ H : j (u) ∈ L1(D)

}
,

J ∗ := {
u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and j∗(v) ∈ L1(D)

}
,

belong to the Borel σ -algebra of H .
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Proof Setting, for every n ∈ N,

Jn := {
u ∈ H :

∫

D

j (u) ≤ n
}
,

J ∗
n := {

u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and
∫

D

j∗(v) ≤ n
}
,

it is immediately seen that

J =
∞⋃

n=1

Jn and J ∗ =
∞⋃

n=1

J ∗
n .

Moreover, the lower semicontinuity of convex integrals implies that Jn is closed in H for
every n, hence Borel-measurable, so that J ∈ B(H). Let us show that, similarly, J ∗

n is also
closed in H for every n ∈ N: if (uk)k ⊂ J ∗

n and uk → u in H , then for every k there exists
vk ∈ L1(D) with vk ∈ β(uk) and

∫

D

j∗(vk) ≤ n ∀k ∈ N.

Since j∗ is superlinear at infinity, this implies that the family (vk)k is uniformly integrable
in D, hence by the Dunford-Pettis theorem also weakly relatively compact in L1(D). Con-
sequently, there is a subsequence (vki

)i and v ∈ L1(D) such that vki
→ v weakly in L1(D).

The weak lower semicontinuity of convex integrals easily implies that
∫

D

j∗(v) ≤ lim inf
i→∞

∫

D

j∗(vki
) ≤ n .

Let us show that v ∈ β(u) almost everywhere in D: by definition of subdifferential, for
every k ∈ N and for every measurable set E ⊆ D we have

∫

E

j (uk) +
∫

E

vk(z − uk) ≤
∫

E

j (z) ∀z ∈ L∞(D).

By Egorov’s theorem, for any ε > 0 there exists a measurable set Eε ⊆ D with |Ec
ε | ≤ ε

and uk → u uniformly in Eε . Taking E = Eε in the last inequality, letting k → ∞ we get
∫

Eε

j (u) +
∫

Eε

v(z − u) ≤
∫

Eε

j (z) ∀z ∈ L∞(D),

which in turn implies by a classical localization argument that

j (u) + v(z − u) ≤ j (z) a.e. in Eε, ∀z ∈ R.

Hence, by the arbitrariness of ε, v ∈ β(u) almost everywhere in D, thus also u ∈ J ∗
n . This

implies that J ∗
n is closed in H for every n, therefore also that J ∗ ∈ B(H).

The estimates proved above implies that the set of ergodic invariant measures is not
empty.

Theorem 5.6 There exists an ergodic invariant measure for the transition semigroup (Pt ).

Proof Recall that, as it follows by the Krein-Milman theorem, for a Markovian transition
semigroup the set of ergodic invariant measures coincides with the extreme points of the
set of all invariant measures (see, e.g., [1, Thm. 19.25]). Let I be the set of all invariant
measures for P : by Theorem 5.2, we know that I is not empty and we need to show that
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I admits at least an extreme point. Let us prove that I is tight. By Theorem 5.4, we know
that there exists a constant N such that

∫

H

‖x‖2
V μ(dx) ≤ N ∀μ ∈ I .

Therefore, using the notation of the proof of Theorem 5.2, by Markov inequality

sup
μ∈I

μ(Bc
n) = sup

μ∈I
μ

({x ∈ H : ‖x‖V > n}) ≤ 1

n2
sup
μ∈I

∫

H

‖x‖2
V μ(dx) ≤ N

n2
→ 0

as n → ∞. Hence I is tight, and thus admits extreme points.

Under a mild superlinearity condition one can also obtain uniqueness.

Theorem 5.7 If there exist c > 0 and δ > 0 such that

〈A(v1 − v2), v1 − v2〉 +
∫

D

(η1 − η2)(v1 − v2) dx − 1

2
‖B(v1) − B(v2)‖2

L 2(U,H)

≥ c

2
‖v1 − v2‖2+δ

for all v1, v2 ∈ V with (vi, ηi) ∈ β a.e. in D, then there exists a unique invariant measure
μ for the transition semigroup P . Moreover, μ is strongly mixing.

Proof By Proposition 4.1 applied to the difference Xx −Xy (see the proof of [17, Prop 6.2]
for further details) one has, with obvious meaning of the notation,

‖Xx(t) − Xy(t)‖2 + 2
∫ t

0
〈A(Xx − Xy),Xx − Xy〉(s) ds

+2
∫ t

0

∫

D

(
ξx − ξy

)(
Xx − Xy

)
(x, s) dx ds

= ‖x − y‖2 +
∫ t

0
‖B(Xx(s)) − B(Xy(s))‖2

L 2(U,H)
ds + Mt,

where M is the local martingale defined as

Mt :=
∫ t

0

(
Xx(s) − Xy(s)

)(
B(Xx(s)) − B(Xy(s))

)
dW(s).

By an argument entirely analogous to the one used in the proof of Theorem 5.2 it follows
that M is in fact a martingale. Taking expectation on the above identity, the superlinearity
assumption and Jensen’s inequality yield

E ‖Xx(t) − Xy(t)‖2 + c

∫ t

0

(
E ‖Xx(s) − Xy(s)‖2)1+ δ

2 ds ≤ ‖x − y‖2

Denoting the solution to the Cauchy problem

φ′ + φ1+ δ
2 = 0, φ(0) = φ0 ≥ 0,

by φφ0 , it is easily seen that
c(t) := sup

φ0≥0
φφ0(t)

is positive for every t ≥ 0 and tends to zero as t → ∞. By an elementary comparison
argument it follows that

E ‖Xx(t) − Xy(t)‖2 ≤ c(t) ∀t ≥ 0.
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Let μ be an invariant measure for P . For any ϕ ∈ C1
b (H) and x ∈ H we have

∣
∣
∣
∣Ptϕ(x) −

∫

H

ϕ(y)μ(dy)

∣
∣
∣
∣

2

≤ ‖Dϕ‖2∞
∫

H

E ‖Xx(t) − Xy(t)‖2 μ(dy) ≤ ‖Dϕ‖2∞c(t)

uniformly in x, and since C1
b(H) is dense in L2(H,μ), we deduce that
∣
∣
∣
∣Ptϕ(x) −

∫

H

ϕ(y) μ(dy)

∣
∣
∣
∣ −→ 0

as t → ∞ for every ϕ ∈ L2(H,μ). We have thus shown that P admits a unique invariant
measure, which is strongly mixing as well.

Remark 5.8 Let κ denote the norm in L (H) of the embedding V ↪→ H . The superlinearity
assumption of Theorem 5.7 is satisfied if C/κ2 ≥ LB/2 and β satisfies the superlinearity
condition

(yi − y2)(x1 − x2) ≥ c

2
|x1 − x2|2+δ

for all (xi, yi) ∈ β, i = 1, 2. In fact, the latter inequality obviously implies
∫

D

(η1 − η2)(v1 − v2) dx ≥ c

2
‖v1 − v2‖2+δ

for every (vi, ηi) ∈ β a.e. in D. Moreover, by assumptions (i) and (vii), one has

〈A(v1 − v2), v1 − v2〉 − 1

2
‖B(v1) − B(v2)‖2

L 2(U,H)

≥ C‖v1 − v2‖2
V − LB

2
‖v1 − v2‖2 ≥ (

C/κ2 − LB/2
)‖v1 − v2‖2 ≥ 0

for every v1, v2 ∈ V .

6 The Kolmogorov Equation

Throughout this section we shall assume that β is a function, rather than just a graph.
Let P = (Pt )t≥0 be the Markovian semigroup on Bb(H) generated by the unique solu-

tion to Eq. 1.1, as in the previous section, and μ be an invariant measure for P . Then P

extends to a strongly continuous linear semigroup of contractions on Lp(H,μ) for every
p ≥ 1. These extensions will all be denoted by the same symbol. Let −L be the infinitesi-
mal generator in L1(H,μ) of P , and −L0 be Kolmogorov operator formally associated to
Eq. 1.1, i.e.

[L0f ](x) = −1

2
Tr

(
D2f (x)B(x)B∗(x)

)+〈Ax,Df (x)〉+〈β(x), Df (x)〉, x ∈ V ∩J ∗,

where f belongs to a class of sufficiently regular functions introduced below. Our aim is
to characterize the “abstract” operator L as the closure of the “concrete” operator L0. Even
though this will be achieved only in the case of additive noise, some intermediate results
will be proved in the more general case of multiplicative noise.

Let us first show that L0 is a proper linear (unbounded) operator on L1(H,μ) with domain

D(L0) := {
f : V → R : f ∈ C1

b(V ′) ∩ C2
b(H) ∩ C1

b(L1(D))
}
.

Here f ∈ C1
b(V ′) means that, for any x ∈ V and v′ ∈ V ′, |Df (x)v′| ≤ N‖v′‖V ′ , with the

constant N independent of x and v′, and that x �→ Df (x) ∈ C(V ′, V ). Analogously, f ∈
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C1
b(L1(D)) means that, for any x ∈ V and k ∈ L1(D), there is a constant N independent of

x and k such that |Df (x)k| ≤ N‖k‖L1(D) and x �→ Df (x) ∈ C(L1(D), L∞(D)). For any
f ∈ C2

b(H), one has, recalling the linear growth condition on B,

Tr
(
D2f (x)B(x)B∗(x)

)
� ‖B(x)‖2

L 2(U,H)
� 1 + ‖x‖2,

and ‖ · ‖2 ∈ L1(H, μ). Moreover, since A ∈ L (V , V ′), one has ‖Ax‖V ′ � ‖x‖V , so that,
for any f ∈ C1

b(V ′),
|〈Ax, Df (x)〉| ≤ ‖Ax‖V ′ sup

x∈V

‖Df (x)‖V � ‖x‖V ,

hence x �→ 〈Ax,Df (x)〉 ∈ L1(H,μ) because ‖ · ‖2
V ∈ L1(H, μ). Similarly, writing

|〈β(x),Df (x)〉| ≤ ‖j∗(β(x))‖L1(D) + ‖j (Df (x))‖L1(D)

and recalling that x �→ ‖j∗(β(x))‖L1(D) ∈ L1(H, μ) by Theorem 5.4, it is enough
to consider the second term on the right-hand side: for any f ∈ C1

b (L1(D)), supx∈V

‖Df (x)‖L∞(D) is finite, hence, recalling that j ∈ C(R), j (Df (x)) is bounded pointwise
in D, thus also in L1(D), uniformly over x ∈ V . In particular, x �→ ‖j (Df (x))‖L1(D) ∈
L1(H,μ).

Let us now show that the infinitesimal generator −L restricted to D(L0) coincides with
the operator −L0 defined above. Indeed, by Proposition 4.3, for every g ∈ D(L0) we have

g(Xx(t)) +
∫ t

0
〈AXx(s),Dg(Xx(s))〉 ds +

∫ t

0
〈β(Xx(s)),Dg(Xx(s))〉 ds

= g(x) + 1

2

∫ t

0
Tr[B∗(Xx(s))D2g(Xx(s))B(Xx(s))] ds

+
∫ t

0
Dg(Xx(s))B(Xx(s)) dW(s),

from which we infer, taking expectations and applying Fubini’s theorem,

Ptg(x) − g(x)

t
= −1

t

∫ t

0
PsL0g(x) ds ∀ x ∈ V ∩ J ∗.

Since g ∈ D(L0), we have that L0g ∈ L1(H, μ), as proved above. Therefore, recalling that
P is strongly continuous on L1(H,μ), we have that t �→ PtL0g is continuous from [0, T ]
to L1(H, μ). Hence, letting t → 0, we have

Ptg − g

t
→ −L0g in L1(H,μ),

which implies that L = L0 on D(L0).
We are now going to construct a regularization of the operator L0. For any λ ∈ (0, 1), let

βλ : R → R, βλ := 1

λ

(
I − (I + λβ)−1),

be the Yosida approximation of β. Denoting a sequence of mollifiers on R by (ρn), the func-
tion βλn := βλ ∗ ρn is monotone and infinitely differentiable with all derivatives bounded.
Let us consider the regularized equation

dXλn + AXλn dt + βλn(Xλn) dt = B(Xλn) dW(t), Xλn(0) = x. (6.1)

Since βλn is Lipschitz-continuous, Eq. 6.1 admits a unique strong (variational) solution
Xx

λn ∈ L2(�;E), where, as before, E := C([0, T ]; H) ∩ L2(0, T ; V ). Furthermore, the
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generator of the Markovian transition semigroup P λn = (P λn
t )t≥0 on Bb(H) defined by

P λn
t f (x) := E f (Xx

λn(t)), restricted to C1
b(V ′) ∩ C2

b(H), is given by −Lλn
0 , where

[Lλn
0 f ](x) = −1

2
Tr

(
D2f (x)B(x)B∗(x)

) + 〈AxDf (x)〉 + 〈βλn(x)Df (x)〉, x ∈ V .

This follows arguing as in the case of L0 (even using the simpler Itô formula of
Proposition 4.2, rather than the one of Proposition 4.3).

Let us now consider the stationary Kolmogorov equation

αv + Lλn
0 v = g, g ∈ D(L0), α > 0. (6.2)

In view of the well-known relation between (Markovian) resolvents and transition semi-
groups, one is led to considering the function

vλn(x) := E

∫ ∞

0
e−αtg(Xx

λn(t)) dt,

which is the natural candidate to solve (6.2). If we show that vλn ∈ C1
b(V ′) ∩ C2

b(H), then
an application of Itô’s formula (in the version of Proposition 4.2) shows that indeed vλn

solves (6.2).
We are going to obtain regularity properties of vλn via pathwise differentiability of the

solution map x �→ Xλn of the regularized stochastic Eq. 6.1.
From now on we shall work under the following further assumptions:

(viii) the noise is of additive type, i.e. B ∈ L 2(U, H) is non-random and time-
independent;

(ix) V is continuously embedded in L4(D)

These are needed in order to apply the second-order differentiability results of
Section 4.2. In particular, assumptions (viii) and (ix) imply, thanks to Theorems 4.4 and 4.7,
that the solution map x �→ Xλn : H → L2(�;E) is Lipschitz continuous and twice Fréchet
differentiable. Moreover, denoting its first order Fréchet differential by

DXλn : H → L (H,L2(�; E)),

for any h ∈ H the process Yh := (DXλn)h ∈ L2(�; E) satisfies the linear deterministic
equation with random coefficients

Y ′
h(t) + AYh(t) + β ′

λn(Xλn(t))Yh(t) = 0, Yh(0) = h. (6.3)

Similarly, denoting the second order Fréchet differential of x �→ Xλn by

D2Xλn : H → L2(H ; L2(�; E)),

for any h, k ∈ H the process Zhk := D2Xλn(h, k) ∈ L2(�; E)) satisfies the linear
deterministic equation with random coefficients

Z′
hk(t) + AZhk(t) + β ′

λn(Xλn(t))Zhk(t) + β ′′
λn(Xλn(t))Yh(t)Yk(t) = 0, Zhk(0) = 0.

(6.4)
We shall need the following result on the connection between variational and mild

solutions in the deterministic setting. We recall that A2 denotes the part of A on H .

Lemma 6.1 Let F : [0, T ] × H → H be Lipschitz continuous in the second variable,
uniformly with respect to the first, with F(·, 0) = 0, and u0 ∈ H . If u ∈ C([0, T ]; H) ∩
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L2(0, T ; V ) and v ∈ C([0, T ]; H) are the (unique) variational and mild solution to the
problems

u′ + Au = F(·, u), u(0) = u0, and v′ + A2v = F(·, v), v(0) = u0,

respectively, then u = v.

Proof Let us first assume that u′ + Au = f and v′ + A2v = f , where f ∈ L2(0, T ; H).
Then we have

u(t) +
∫ t

0
Au(s) ds = u0 +

∫ t

0
f (s) ds,

v(t) = S(t)u0 +
∫ t

0
S(t − s)f (s) ds

for all t ∈ [0, T ], where S is the the semigroup generated on H by −A2. Let us show that
u = v. For m ∈ N, applying (I + εA2)

−m to the second equation we have (with obvious
meaning of notation)

v′
ε + A2vε = fε, vε(0) = uε

0

in the strong sense, since vε ∈ C([0, T ]; D(Am
2 )). In particular, vε is also a variational

solution of the equation

v′
ε + Avε = fε, vε(0) = uε

0.

By construction we have that vε → v in C([0, T ]; H); moreover, since fε → f in
L2(0, T ; H) and uε

0 → u0 in H , arguing as in the proof of Lemma 4.5 we have also that
vε → u in C([0, T ]; H)∩L2(0, T ; V ). Since mild and variational solutions are unique, we
conclude that u = v. We shall now extend this argument to the case where u and v are the
unique variational and mild solutions to the equations

u′ + Au = F(·, u), v′ + A2v = F(·, v), u(0) = v(0) = u0,

respectively. Setting f := F(·, v), the assumptions on F imply that f ∈ L2(0, T ; H),
hence v is a mild solution to v′ + A2v = f , v(0) = u0. It then follows by the previous
argument that v is also the unique variational solution to v′+Av = f , v(0) = u0. Therefore

u′ + Au = F(·, u), v′ + Av = F(·, v), u(0) = v(0) = u0

in the variational sense. Using the integration-by-parts formula, the Lipschitz continuity of
F , and Gronwall’s inequality, it is then a standard matter to show that u = v.

The following estimates are crucial. Recall that hypotheses (viii) and (ix) are in force.

Proposition 6.2 One has, for every x, h, k ∈ H and t > 0,

‖Yx
h ‖C([0,t];H)∩L2(0,t;V ) � ‖h‖,

‖Zx
hk‖C([0,t];H)∩L2(0,t;V ) �λ,n ‖h‖‖k‖,

‖Yx
h ‖C([0,t];L1(D)) ≤ ‖h‖L1(D).

RegardingA as an unbounded operator on V ′, assume that there exists δ ∈ (0, 1) and η > 0
such that H = D((ηI + A)δ). Then

‖Yx
h (t)‖H � (1 ∨ t−δ)‖h‖V ′ .
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Proof Let �′ ⊆ � with P(�′) = 1 be such that Eq. 6.3 holds true for all t ∈ [0, T ] and all
ω ∈ �′. Let ω ∈ �′ be fixed. Recalling that A is coercive and that β ′

λn is positive because
βλn is increasing, taking the scalar product with Yh(t) in Eq. 6.3 and integrating in time
yields

1

2
‖Yx

h (t)‖2 + C

∫ t

0
‖Yx

h (s)‖2
V ds ≤ 1

2
‖h‖2

for all t ∈ [0, T ], and the first estimate is thus proved. The second estimate follows
directly from Proposition 4.7. Furthermore, denoting the Yosida approximation of the
part of A in H by Aε, let Yx

hε ∈ C([0, T ]; H) be the unique strong solution to the
equation

Y ′
hε(t) + AεYhε(t) + β ′

λn(Xλn(t))Yhε(t) = 0, Yhε(0) = h.

Let (σk) be a sequence of smooth increasing functions approximating pointwise the (max-
imal monotone) signum graph, and σ̂k be the primitive of σk with σ̂k(0) = 0. Taking the
scalar product of the previous equation with σk(Y

x
hε) and integrating in time we get, for

every t > 0,
∫

D

σ̂k(Y
x
hε(t)) +

∫ t

0
〈AεY

x
hε(s)σk(Y

x
hε(s))〉 ds+

∫ t

0

∫

D

β ′
λn(Xλn(s))σk(Y

x
hε(s))Y

x
hε(s) ds

≤
∫

D

σ̂k(h).

Since, as k → ∞, σk(Y
x
hε) converges a.e. to a measurable function wε ∈ sgn(Y x

hε) and
σ̂ → | · |, letting k → ∞ we get, for every t ≥ 0,

‖Yx
hε(t)‖L1(D) +

∫ t

0
〈AεY

x
hε(s)wε(s))〉 ds ≤ ‖h‖L1(D) ∀t ∈ [0, T ].

Recalling that A2 extends to an m-accretive operator on L1(D), the second term on the
left-hand side is non-negative, and taking into account that Yx

hε → Yx
h in C([0, T ]; H)

as ε → 0, the third inequality follows. Finally, since Yh is the unique variational solu-
tion to Eq. 6.3, by Lemma 6.1 we have that Yh is also mild solution to the same
equation, i.e.

Yx
h (t) = S(t)h −

∫ t

0
S(t − s)β ′

λn(X
x(s))Y x

h (s) ds ∀t ∈ [0, T ], P-a.s.

Recall that −A generates an analytic semigroup on V ′ extending S, denoted by the same
symbol. Since H = D((ηI + A)δ), we have ‖S(t)h‖ � t−δ‖h‖V ′ for every t > 0. By the
contractivity of S in H we also have, for every t > 0,

‖Yx
h (t)‖ � t−δ‖h‖V ′ + ‖β ′

λn‖∞
∫ t

0 ‖Yx
h (s)‖ ds

from which Gronwall’s inequality implies

‖Yx
h (t)‖ � t−δ‖h‖V ′ + ‖β ′

λn‖∞
∫ t

0
s−δe‖β ′

λn‖∞(t−s)‖h‖V ′ ds.

Therefore we have, for every t ∈ [0, 1],

‖Yx
h (t)‖ � t−δ‖h‖V ′ + ‖β ′

λn‖∞e‖β ′
λn‖∞‖h‖V ′

∫ 1

0
s−δ ds =

(

t−δ + 11+δ

1 + δ

)

‖h‖V ′

� (1 + t−δ)‖h‖V ′
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as well as, for every t ≥ 1,

‖Yx
h (t)‖ ≤ ‖Yx

h (1)‖ � 1−δ‖h‖V ′ = ‖h‖V ′ ,

which implies the last estimate.

Lemma 6.3 Let α > 0 and g ∈ C1
b(V ′) ∩ C2

b(H) ∩ C1
b(L1(D)). For every n ∈ N and

λ ∈ (0, 1), the function vλn : H → R defined as

vλn(x) := E

∫ +∞

0
e−αtg(Xx

λn(t)) dt

belongs toD(L0) and solves (6.2). Moreover, there exists a positive constantM , independent
of λ and n, such that

‖vλn‖C1
b (H)∩C1

b (L1(D)) ≤ M (6.5)

for all n ∈ N and λ ∈ (0, 1).

Proof Since g ∈ C1
b(H), for any h ∈ H we have, by the first estimate of Proposition 6.2,

D
(
g(Xx

λn(t)
)
h = Dg(Xx

λn(t))DXx
λn(t)h = Dg(Xx

λn(t))Y
x
h (t)

≤ ‖Dg‖C(H ;H)‖Yx
h ‖C([0,T ];H) ≤ ‖Dg‖C(H ;H)‖h‖,

hence, by the dominated convergence theorem, vλn ∈ C1
b (H) and

Dvλn(x)h = E

∫ +∞

0
e−αtDg(Xx

λn(t))Y
x
h (t) dt . (6.6)

The uniform boundedness of ‖vλn‖C1
b (H) in λ and n follows directly from these computations.

Similarly, using the fact that g ∈ C2
b(H) and the second estimate of Proposition 6.2, we

have, for every k ∈ H ,

D(D(g(Xx
λn(t))h)k = D2g(Xx

λn(t))(Y
x
h (t), Y x

k (t)) + Dg(Xx
λn(t))Z

x
hk(t)

≤ ‖D2g‖C(H ;L2(H ;R))‖Yx
h ‖C([0,T ];H)‖Yx

k ‖C([0,T ];H)

+‖Dg‖C(H,H)‖Zx
hk‖C([0,T ];H)

�λ,n ‖g‖C2
b
‖h‖‖k‖,

hence, by the dominated convergence theorem, vλn ∈ C2
b (H) and

D2vλn(x)(h, k) = E

∫ +∞

0
e−αt

(
D2g(Xx

λn(t))Y
x
h (t)Y x

k (t) + Dg(Xx
λn(t))Z

x
hk(t)

)
dt .

(6.7)
Moreover, using the third estimate of Proposition 6.2 and the fact that g ∈ C1

b(L1(D)), it
follows by Hölder’s inequality and Eq. 6.6 that

Dvλn(x)h≤E

∫ +∞

0
e−αt‖Dg‖C(H ;L∞(D))‖Yx

h (t)‖L1(D) dt ≤ 1

α
‖Dg‖C(H ;L∞(D))‖h‖L1(D),

which implies that vλn ∈ C1
b(L1(D)) and the estimate (6.5). Finally, by the last estimate of

Proposition 6.2 and the fact that g ∈ C1
b (V ′), we have

Dvλn(x)h ≤ E

∫ +∞

0
e−αt‖Dg‖C(H ;V )‖Yx

h (t)‖V ′ dt

� ‖Dg‖C(H ;V )‖h‖V ′
∫ +∞

0
(1 ∨ t−δ)e−αt dt .
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Since t �→ (1 ∨ t−δ)e−αt belongs to L1(0,+∞), we have

Dvλn(x)h �λ,n ‖h‖V ′ ,

thus also vλn ∈ C1
b(V ′).

Let us show now that vλn solves (6.2). Indeed, since g ∈ C2
b(H) ∩ C1

b(V ′), by Itô’s
formula in the version of Proposition 4.2 we get

g(Xx
λn(t)) +

∫ t

0
〈AXx

λn(s)Dg(Xx
λn(s))〉 ds +

∫ t

0
〈βλn(X

x
λn(s))Dg(Xx

λn(s))〉 ds

= g(x) + 1

2

∫ t

0
Tr[B∗(Xx

λn(s))D
2g(Xx

λn(s))B(Xx
λn(s))] ds

+
∫ t

0
Dg(Xx

λn(s))B(Xx
λn(s)) dW(s)

for every t > 0. Thanks to the boundedness of Dg, taking expectations and using Fubini’s
theorem we deduce that, for every α > 0 and x ∈ V ,

e−αt
E g(Xx

λn(t)) + α E

∫ t

0
e−αsg(Xx

λn(s)) ds −
∫ t

0
P λn

s Lλn
0 g(x) ds = g(x).

Since g ∈ Cb(H), it is clear that, as t → +∞, the first and second term on the left-hand
side converge to zero and αvλn(x), respectively, hence, by difference, we deduce that

∫ t

0
P λn

s Lλn
0 g(x) →

∫ +∞

0
P λn

s Lλn
0 g(x) ds.

Letting then t → +∞ we infer that

αvλn(x) −
∫ +∞

0
e−αtP λn

t Lλn
0 g(x) dt = g(x),

hence
αvλn(x) − Lλn

0 vλn(x) = g(x) ∀x ∈ V .

Lemma 6.4 One has

lim
λ→0

lim
n→∞

∥
∥L0vλn − Lλn

0 vλn

∥
∥

L1(H,μ)
= 0.

Proof By definition of L0 and Lλn
0 , the claim amounts to showing that

lim
λ→0

lim
n→∞

∫

H

|〈βλn(x) − β(x)Dv(x)〉| μ(dx) → 0.

Since βλn is Lipschitz-continuous with Lipschitz constant bounded by 1/λ for every n ∈ N,
we have

|〈βλ(x) − βλn(x)Dv(x)〉| � 1

λ
‖x‖,

so that, recalling that ‖·‖ ∈ L2(H, μ) and βλn → βλ pointwise as n → ∞, the dominated
convergence theorem yields

lim
n→∞

∫

H

|〈βλ(x) − βλn(x)Dv(x)〉| μ(dx) = 0.

Since Dvλn(x) is bounded in L∞(D) uniformly over λ, n and x by estimate (6.5), one has

|(β(x) − βλ(x)) Dv(x)| � |β(x) − βλ(x)| ,
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hence
(β(x) − βλ(x))Dvλn(x) → 0

in L0(D) as λ → 0 for every x ∈ V .
Recalling the definition of η in Section 2, we deduce that j∗(η|β(x)|) ∈ L1(D).

Appealing to Young’s inequality in the form

a|b| ≤ j (a) + j∗(|b|) ∀a, b ∈ R,

we have
η|β(x)| + η|βλ(x)| ≤ 2j (1) + j∗(η|β(x)|) + j∗(η|βλ(x)|)

hence also, since j∗ is increasing on R+ and |βλ| ≤ |β|,
|(β(x) − βλ(x))Dvλn(x)| � j (1) + j∗(η|β(x)|).

which belongs to L1(D) for every x ∈ J ∗. Therefore, by the dominated convergence
theorem,

lim
λ→0

〈β(x) − βλ(x)〉 Dv(x) = 0

for every x ∈ H ∩ J ∗. Using again the uniform boundedness in L∞(D) of vλn(x) we also
have

|〈β(x) − βλ(x)Dvλn(x)〉| � 1 +
∫

D

j∗(δ|β(x)|),
where the right-hand side belongs to L1(H, μ) by Theorem 5.4. A further application of the
dominated convergence theorem thus yields

lim
λ→0

∫

H

|〈β(x) − βλ(x)Dvλn(x)〉| μ(dx) = 0.

We are now in the position to state and prove the main result of this section, that gives
a positive answer to the problem of L1-uniqueness for the Kolmogorov operator L0. The
question is whether the extension to L1(H,μ) of the transition semigroup P , generated by
the solution to the stochastic Eq. 1.1, is the only strongly continuous semigroup on L1(H, μ)

whose infinitesimal generator is an extension of the Kolmogorov operator L0. Recall that,
apart of the standing assumptions of Section 2, we are also assuming that β is a function,
B is non-random and does not depend on the unknown, V is continuously embedded in
L4(D), and H is the domain of a fractional power of (a shift of) A, seen as the negative
generator of an analytic semigroup in V ′.

Theorem 6.5 The generator L of the extension to L1(H, μ) of the transition semigroup P

is the closure of L0 in L1(H,μ).

Proof Since the extension of the transition semigroup P to L1(H, μ) is contractive, it fol-
lows by the Lumer-Phillips theorem that L is m-accretive. As L coincides with L0 on
D(L0), this implies that L0 is accretive in L1(H,μ), hence, in particular, closable. We
are going to show that the image of αI + L0 is dense in L1(H,μ) for all α > 0. Let
f ∈ L1(H,μ) and ε > 0. Since D(L0) is dense in L1(H,μ), there exists g ∈ D(L0) such
that ‖f − g‖L1(H,μ) < ε/2. Setting, for any n ∈ N and λ ∈ (0, 1),

vλn(x) :=
∫ ∞

0
e−αt

E g(Xx
λn(t)) dt,
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if follows by Lemma 6.3 that vλn ∈ D(L0) and that

αvλn(x) + Lλn
0 vλn(x) = g(x)

for every x ∈ V ∩ J ∩ J ∗, hence also

αvλn(x) + L0vλn(x) − g(x) = L0vλn(x) − Lλn
0 vλn(x).

Thanks to Lemma 6.4, there exist λ0 > 0 and n0 ∈ N such that
∥
∥
∥L0vλ0n0 − L

λ0n0
0 vλ0n0

∥
∥
∥

L1(H,μ)
< ε/2,

hence, setting ϕ := vλ0n0 ,

‖αϕ + L0ϕ − f ‖L1(H,μ) ≤ ‖αϕ + L0ϕ − g‖L1(H,μ) + ‖f − g‖L1(H,μ) < ε.

As ε > 0 was arbitrary, it follows that the image of αI +L0 is dense in L1(H, μ). Since L0
is closable, the Lumer-Phillips theorem implies that −L0, the closure of −L0 in L1(H, μ),
generates a strongly continuous semigroup of contractions in L1(H,μ). Recalling that L is
an extension of L0, it follows again by the Lumer-Phillips theorem that L = L0 (see, for
instance, [9, Theorem 1.12]).
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