
Acta Crystallographica Section B    research papers 

IMPORTANT: this document contains embedded data - to preserve data integrity, please ensure where possible that the IUCr 
Word tools (available from http://journals.iucr.org/services/docxtemplate/) are installed when editing this 

document.  1 
 

Exploring charge density analysis in crystals at high pressure. Data 

collection, data analysis and advanced modelling 

 
Authors  

 
Nicola Casatia, Alessandro Genonib,c, Benjamin Meyerb,c, Anna Krawczukd and Piero Macchie* 
aSwiss Light Source, Material Science Beamline, Paul Scherrer Institute, Villigen, Switzerland 
b CNRS, Laboratoire SRSMC, UMR 7565, Boulevard des Aiguillettes BP 70239, Vandoeuvre-lès-

Nancy, F-54506, France 
c Université de Lorraine, Laboratoire SRSMC, UMR 7565, Boulevard des Aiguillettes BP 70239, 

Vandoeuvre-lès-Nancy, F-54506, France 
dFaculty of Chemistry, Jagellonian University, Krakow, Poland 
eDepartment of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, 3012, 

Switzerland 

 

Correspondence e-mail: piero.macchi@dcb.unibe.ch 

 

Synopsis This paper reports on the determination of charge density distributions from crystals 

compressed at high pressure. Although much less accurate than traditional charge density analysis, these 

studies provide valuable information because the electronic states of molecules confined in highly 

condensed space are not easily predictable by theory and therefore experimental validation is a must. 

Abstract The possibility to determine electron density distribution in crystals has been an enormous 

breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction 

at low temperature, by the development of simplified, though accurate, electron density models refined 

from the experimental data and by the progresses in charge density analysis often in combination with 

theoretical work. Many years after the first successful charge density determination and analysis, 

scientists face new challenges, for example: a) determination of finer details of the electron density 

distribution in the atomic cores, b) simultaneous refinement of electron charge and spin density or c) 

measuring crystals under perturbation. In this context, the possibility to obtain experimental charge 

density at high pressure has recently been demonstrated (Casati et al., 2016). This paper reports on the 

necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-

Biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data 

corrections are discussed in details, including warnings about possible shortcomings. At the same time, 

new modelling techniques are proposed, which could enable to extract, from the limited and less 
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accurate observations, specific information, like the degree of localization of double bonds, which is 

fundamental for the scientific case under examination.  

Keywords: X-ray constrained wave functions; multipolar model; high pressure diffraction; 
charge density 

 

1. Introduction  

Since the pioneering studies by Coppens (1967), Stewart (1970), Hirshfeld (1971) and many others, the 

field of experimental charge density analysis has grown enormously and reached a status of maturity, 

as certified by Coppens (2005). Although experiments to map the charge density cannot be considered 

“routine”, the efforts nowadays necessary to obtain a standard electron distribution from an X-ray 

diffraction experiment on single crystals are smaller than those necessary in the 1960s for “just” a 

crystal structure determination. In the charge density language, standard means high-quality, single 

crystal X-ray diffraction measurements, with a sufficient suitability factor (Stevens & Coppens, 1976), 

at liquid nitrogen temperature (and ambient pressure), collecting with sufficient redundancy a full 

sphere of data up to a resolution of at least d = 0.5 Å (i.e., sin/ = 1.0 Å-1) for organic/organometallic 

crystals with analytical correction of absorption effects, and a sufficiently high intensity/noise ratio. A 

higher resolution is necessary for metals, alloys and inorganic systems (Pillet et al., 2001; Schmøkel et 

al., 2013). Nowadays, these kinds of measurements can be carried out in laboratories (in ca. 24-72 

hours) or at synchrotron stations (within one shift of 8 hours). This improvement is due to the modern 

detecting technologies, the more intense sources available on laboratory equipment, or the superior 

brilliance of synchrotron light, the reliable cooling devices and the progresses in data correction and 

modelling.  

This achieved maturity is the evidence of progress that fostered more advanced investigations. For 

example, accurate studies at extremely high resolution (d < 0.35 Å, sin ϑ/λ > 1.4 Å-1) enable more 

accurate modelling of the core deformations and the radial density (Fischer et al., 2011). Combined X-

ray and polarized neutron diffraction experiments allowed the determination of charge and spin density 

simultaneously (Deutsch et al., 2014), or combined elastic and inelastic scattering experiments enabled 

the partial reconstruction of the first order reduced density matrix (Gillet, Becker & Cortona, 2001). 

Moreover, comprehensive data collections of chemically similar species may favour a multivariate 

analysis of the electron density descriptors, similar to the widely adopted structure correlation method 

proposed by Bürgi & Dunitz (1994). Finally, measurement of systems under some special perturbation, 

like electric field (Elsässer, 2012; Fertey et al., 2013), photo-excitation (Legrand et al., 2005), high 

temperature or pressure (Casati et al., 2016), return electron density distribution corresponding to 

electronic states that significantly deviate from the gas phase ground state of a molecule, therefore 

containing enormous source of information.  



Acta Crystallographica Section B    research papers 

3 

 

Having this in mind, some of us started a long-term project with the purpose of obtaining accurate 

information on electron distributions from molecular crystals under high-pressure conditions. The aim 

is to observe in details the changes occurring to the electronic structure of molecules embedded in 

volumes that are much smaller than those typical of crystals in thermodynamic equilibrium at ambient 

pressure. Upon compression, the molecules may modify their electronic states, and even react inside a 

crystal forming adducts (and eventually polymers) that are otherwise unstable.  

So far, only few studies reported on attempts to determine electron densities at high pressure, for 

example trying a multipolar model (Fabiani et al., 2011; Macchi & Casati, 2011) or a MEM (Yamanaka, 

Okada, & Nakamoto, 2009; Tse, et al. 2006) refinement.   

In a recent paper, some of us reported a complete multipolar model refined against data collected at 

high pressure, see Casati et al. (2016). The molecule under investigation is the syn-1,6:8,13-

Biscarbonyl[14]annulene, hereinafter BCA, see Figure 1. This compound was the subject of an accurate 

electron density study by Destro & Merati (1995) that attracted interest because of the unusual finding 

of a bond path linking the two C atoms of the bridging carbonyl group, which inaugurated a series of 

similar observations in many other molecules.  

The observed and calculated high pressure evolution of BCA is extremely interesting (Casati et al., 

2016), because the almost C2v molecular symmetry featured at ambient conditions evolves toward an 

asymmetric structure, which localizes the double bonds of only one of the two resonant configurations 

of the ideal aromatic system (see Figure 1). Noteworthy, because BCA crystallizes in P21/n at ambient 

conditions, the molecule necessarily sits on general position and the gradual changes occurring to its 

geometry are not accompanied by a solid state phase transition.  

In this paper, we report a detailed analysis of the collected data, of the derived multipolar models and 

of the X-ray constrained wave functions reported in Casati et al. (2016). Moreover, we add an additional 

analysis based on the use of extremely localized molecular orbitals (ELMOs). 

This experiment and data analysis enabled us to draw some general conclusions about the necessities 

and pitfalls of accurate electron density determination at high pressure, a field that could develop in the 

near future, especially thanks to the progress in the available equipment.  

 

2. Necessities and pitfalls of high pressure high resolution data collection 

As introduced above, a standard electron density determination requires: a) a suitable species; b) high 

quality crystals that could guarantee sufficient diffraction at high resolution; c) 100% completeness of 

the data collected at a resolution of at least d = 0.5 Å (sin ϑ/λ = 1.0 Å-1); d) accurate and precise 

measurement of the X-ray scattered intensities; e) accurate data correction, especially for the absorption 
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effects; f) sufficient low temperature (T  120 K for organic/organometallic species) for a better 

deconvolution of the static electron density from the displacement of atomic nuclei. 

In order to collect single crystal X-ray diffraction data at high pressure (at least above 0.1 GPa), a 

diamond anvil cell (DAC) is normally adopted (Boldyreva, 2008; Katrusiak, 2007). This equipment 

inherently hampers some of the above mentioned fundamental requirements for a standard electron 

density determination (see Figure 2). In particular, the reduced aperture of a DAC (typically < 90) 

hampers the possibility to collect a full sphere of data, even to a low resolution. In fact, depending on 

the symmetry of the crystal system, it is impossible to measure some unique reflections. For a resolution 

of d = 0.83 Å, using the conventional Mo Kα radiation, less than 40% of the reflections of a crystal of 

Laue class -1 are measurable and, anyway, no more than 85% even for a crystal of class m-3m (see 

Table 1). A second problem of DAC measurements is that the diamonds affect the diffraction. In fact, 

the path inside the diamonds of the incident beam and of the beam diffracted by the crystal is not the 

same for all reflections, and, therefore, some of them are more attenuated than others. Moreover, the 

diamonds scatter enormously (coherently and incoherently), but, because they are much larger than the 

incident beam and they are not centered with respect to the rocking axis, their Bragg reflections are very 

broad and not so easily predictable on the detector (therefore not automatically masked by a software). 

Last but not least, the diffraction of diamonds produces an additional attenuation of the incident or the 

diffracted beam (diamond dip) in certain orientation of the DAC (again not easily predictable).  

Furthermore, although applying low temperature to DAC is technically possible, the hydrostaticity of 

the pressure transmission medium could be affected, hampering the very high pressure, where the 

systems may actually show more interesting features. Therefore, ambient temperature is preferable.  

A final problem is the powder diffraction rings due to the metal gaskets that incorporate the samples 

(see Figure 2). This requires a careful modelling of the background. 

In order to overcome all these problems, we have planned a careful strategy for the data collection, 

including: a) two crystals oriented in different ways in the DAC, in order to maximize the data 

completeness; b) short wavelength, in order to guarantee sufficient coverage at high resolution, despite 

the inherent shadowing of the DAC; c) highly focused beam, in order to enable separate data collections 

on two crystals with different orientation, maximize the signal from the crystal with respect to the 

scattering of the diamond and avoid the scattering from the gasket; d) sufficient high pressure to 

minimize the atomic thermal motion. More details about the data collection are given below, and in part 

were previously reported in Casati et al. (2016). 

Of course other recipes could be adopted, but in general short wavelength and small crystals are 

mandatory.  
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3. Experimental and computational details 

BCA crystallizes in the monoclinic P21/n space group, with four molecules in the unit cell. According 

to the suitability factor S proposed by Stevens & Coppens (1976), BCA is perfectly ideal for a charge 

density study. In fact, the suitability S is 3.94 Å3e-2 and 2.98 Å3e-2 at ambient conditions and at 7.7 GPa, 

respectively (a higher S value corresponds to a more suitable species for a charge density study). The 

decreased suitability at higher pressure is due to the smaller unit cell volume, which implies that the 

information on the same number of electrons is spread over a smaller number of reflections, within the 

same resolution level. This is of course a common behaviour for all the species under compression and 

in general a volume decrease of 20-25% is expected for organic molecules compressed at ca. 7-10 GPa. 

Nevertheless, the suitability of BCA at 7.7 GPa remains higher than that of many organometallic 

molecules and of inorganic phases at ambient pressure (for which S can be even lower than 0.1 Å3e-2).  

The X-ray crystallographic coordinates and multipolar models for structures reported in this study have 

been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers: 

1438912-1438922. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. In the following we describe details of the data 

collection and modelling. 

3.1. Low Temperature data collections 

Single crystal X-ray diffraction data were collected at several temperatures, up to a resolution of d = 

0.67Å, using an Agilent SuperNova diffractometer, equipped with Mo Kα microsource X-ray tube, with 

Al filter (Macchi et al., 2011) and mirror optics. An Oxford Cryosystem Cryostream 700 was used for 

cooling the crystals. The most relevant crystallographic parameters of these data collections are 

summarized in Supplementary S1. The data collections at low temperature were useful to monitor the 

behaviour of the anisotropic thermal parameters of the compound and to compare them with the pressure 

evolution. Moreover, these experiments did not reveal any anomalous behaviour of the atomic 

displacement parameters, which indicates that no disorder between two localized configurations occurs. 

In fact, a hypothetical disorder between two localized configurations of BCA would imply quite large 

distances between disordered atomic positions, visible in anomalously large atomic displacement 

parameters, if only an "average" configuration was refined. In addition, the molecular structure 

calculated in the crystal at B3LYP/6-31G(d,p) level (which is inherently ordered) is in almost perfect 

agreement with the experimental model, see Casati et al. (2016). From these data, one can conclude 

that at ambient pressure, the molecule of BCA is genuinely based on a delocalized π system, taking also 

into account the accurate, very low temperature electron density study by Destro & Merati (1995). 
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3.2. High pressure data collection for charge density 

In keeping with the strategy outlined in section 2, high pressure X-ray diffraction experiments were 

carried out at the I15 beamline of Diamond Light Source using a pinhole defined monochromatic beam 

with 0.31 Å wavelength, an Oxford Diffraction Atlas CCD detector, a screw driven type DAC, equipped 

with 0.5 mm culet diamonds diamond anvil cell. The gasket was indented to ca. 70 μm, and the crystal 

samples were loaded in a gasket hole of 250 μm. The pressure transmission medium was a methanol 

ethanol 4:1 mixture, which guarantees hydrostaticity up to ca. 10 GPa. Several data collections were 

carried out at different pressures, in order to characterize the pressure dependence of the molecular 

geometry and intermolecular packing of BCA. The main results of the model refinements are 

summarized in supporting Information Figure S1 and Table S2. The charge density data collection was 

performed at 7.7 GPa (experiment EE7741-1), involving several ω and φ scans at 4 different χ positions 

(0°, 30°, 60° and 90°), using different θ positions for the detector, in order to measure with the best 

accuracy, the diffraction intensities and to reach the highest resolution (d=0.5 Å). In the context of this 

work, accuracy means: a) high data completeness (i.e. the portion of reciprocal space that is 

measurable), obtained using two crystals in the DAC; b) redundant measures of the diffracted intensities 

(with every ω and φ scan re-performed with a 2 degree offset of φ and ω respectively) in order to 

minimize random errors and therefore enable a multipolar expansion of the electron density. The chosen 

high-energy radiation reduces absorption effects and allows collection of higher-order reflections. A 

beam smaller than the crystal was selected by a 30 μm pinhole, in order to probe one crystal at a time 

and to maximize the sample/diamond diffraction intensity ratio. Data from the two difference crystals 

were linearly scaled and merged without any weighting scheme. The pressure was calibrated by 

measuring the fluorescence of two Ruby crystals, before and after the measurement. 

Data reduction was carried out using the program CrysalisPRO (Agilent, 2014), excluding the shaded 

areas from the integration by assigning a well-describing vector and opening angle to the cell. Diamond 

reflections were masked, as described by Casati, Macchi & Sironi (2007). Reflections that were outliers 

in data merging were carefully investigated and rejected if their intensity was significantly lower than 

their equivalents and lying on the border of the mask or otherwise if their intensity was significantly 

higher than their equivalents and lying on the tails of a diamond reflection. We rejected reflections on 

frames collected where a diamond dip occurred, as evidenced by a transmission scan of the cell in the 

angular range used, No data correction for absorption of the crystal or of the diamond was applied due 

to the very short wavelength adopting. 

As shown in Table 1, the best completeness at d = 0.5 Å resolution using a single crystal of 2/m Laue 

class is ca. 46%. Using two crystals with differently orientation, and the above described set up, we 

were able to obtain a data completeness of 70% at d = 0.5 Å, 89% at d = 0.83 Å and 91% at d = 1.2 Å.  

For sake of comparison, we remind that the experiment by Destro & Merati (1995) at T = 19 K and 

ambient pressure, was extended up to a resolution of d = 0.44 Å and data completeness of 54%. This 



Acta Crystallographica Section B    research papers 

7 

 

low value is due to the single point detector technique adopted: the data completeness was 100% for d 

> 0.77 Å, whereas, at higher angle, pre-scanned intensities below 10 counts per seconds were not 

measured [see details in Destro (1988)].  

 

3.3. Multipolar refinement of the data at 7.7 GPa 

The multipole refinement was performed using the XD2006 program package (Volkov et al. 2006) 

which adopts the Hansen & Coppens (1978) formalism to model the electron density using atom-centred   

multipoles: 

𝜌௔௧௢௠ሺ𝒓ሻ ൌ 𝜌௖௢௥௘ሺ𝒓ሻ ൅ 𝑃௩ 𝜅 𝜌௩௔௟௘௡௖௘ሺ𝜅 𝒓ሻ ൅ Δ𝜌ሺ𝒓ሻ           (1) 

where 

Δ𝜌ሺ𝒓ሻ ൌ ∑ 𝜅௟
ᇱ௟೘ೌೣ

௟ୀ଴  𝑅௟ሺ𝜅௟
ᇱ𝑟ሻ  ∑ 𝑃௟௠

ା௟
௠ୀି௟  𝑌௟௠ሺ𝜃,𝜑ሻ   (2) 

The radial part of 𝜌௖௢௥௘ሺ𝒓ሻ and 𝜌௩௔௟௘௡௖௘ሺ𝒓ሻ are expressed in terms of Slater-type orbitals computed by 

means of Roothaan-Hartree-Fock calculations, Clementi & Roetti (1974). Single-zeta orbitals with 

energy-optimized Slater exponents from Clementi & Raimondi (1963) are used for the radial part of the 

deformation terms Δ𝜌ሺ𝒓ሻ. The parameters 𝜅 and 𝜅௟
ᇱ enable the contraction or expansion of the density 

shells, whereas 𝑃௩ and 𝑃௟௠ represent the coefficients of the spherical valence and deformation density 

multipoles, respectively. The angular functions 𝑌௟௠ are density normalized real spherical harmonics.  

The function minimized in the least-squares procedure was ∑ 𝑤𝒉𝒉 ൫𝐹𝒉,௢௕௦ െ 𝜂 𝐹𝒉,௖௔௟௖൯
ଶ
, with the weight 

 𝑤𝒉 ൌ 1 𝜎 
ଶ൫𝐹𝒉,௢௕௦൯⁄ . Reflections with 𝐼𝒉,௢௕௦ ൐ 2𝜎𝒉,௢௕௦൫𝐼𝒉,௢௕௦൯ were included in the refinement. Given 

the small crystal samples and the very short wavelength, no extinction correction was necessary. The 

multipole expansion was truncated at the octupolar level (lmax = 3) for carbon and oxygen atoms. For 

hydrogen atoms, bond-directed dipoles and quadrupoles were applied.1 The refinement of quadrupoles 

was possible because the positions of hydrogen atoms were fixed using values of C-H distances 

computed through a periodic DFT calculation (at B3LYP/6-31G(d,p) level) at 7.5 GPa and the 

anisotropic displacement parameters (ADP) of the hydrogen atoms were determined from the ADPs of 

the carbon and oxygen atoms, assuming a rigid body motion of the molecule, using the software 

SHADE (Madsen, 2006). The coordinates and ADP’s of the hydrogen atoms were not refined, thus 

reducing the number of variables in the refinement.  

Several refinement strategies were tested using the above described model parameters. Because of the 

lower data completeness, it was found more appropriate refining the atomic positions and ADPs of the 

                                                      
1 In Casati et al. (2016) it is erroneously reported that only dipole functions for H atom were used. Anyway, in 
the Supporting Information of that paper, the multipole model is deposited and quadrupole coefficients are 
clearly reported for H atoms. 
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C and O atoms with high angle data (sinθ/λ > 0.7 Å-1; 163 parameters). This models was used to 

calculate the ADP’s and positions of hydrogen atoms. All atomic positions and displacement parameters 

were kept fixed for the final refinement of the multipolar coefficients (300 variables, plus the scale 

factor).2 H atoms correlated by pseudo-symmetry (see Figure 1) were constrained to have the same set 

of multipole coefficients. 𝜅 and 𝜅௟
ᇱ were refined independently for the carbon and oxygen atoms, using 

the same 𝜅௟
ᇱ for dipoles, quadrupoles and octupoles. For the hydrogen atoms, 𝜅 and 𝜅௟

ᇱ were fixed at the 

standard value of 1.2. This refinement produced correlation coefficients below 0.7 for all pairs of 

variables but for 𝜅 and Pv of O(1) and O(2) (0.82 in both cases). 

The high order refinement gave a quite satisfactory Hirshfeld (1976) rigid bond test, with only four 

bonds exceeding the limit of 1.0 10-3 Å2 amplitude difference with a maximum of 1.4 10-3 Å2 for the 

two C=O bonds. In Destro & Merati (1995), the Hirshfeld test was of course more successful with 

largest amplitude of 5.4 10-4 Å2. Because the atomic positions and thermal parameters were fixed during 

the following refinement steps, the Hirshfeld test remained identical. On the contrary, when the ADPs 

and the atomic coordinates were simultaneously refined with multipole parameters (464 variables 

overall, reflection/parameters = 7.7), the Hirshfeld rigid bond test was much less satisfactory (6 bonds 

exceeded the limit with differences up to 3.0 10-3 Å2), caused by a large correlation between uij and 𝜅 

parameters, without much improvement of the agreement indices. For these reasons, the model 

constructed with a high-order refinement of positions and thermal parameters and the subsequent 

refinement of multipoles was judged to be the most adequate. Noteworthy, this procedure is always 

recommended to better de-convolute electron density from thermal motion (see also Dos Santos et al. 

2014).   

 

3.4. Wave Function Calculations 

To further investigate the changes in the electron density distribution of BCA when pressure increases, 

wave function calculations have been also performed and different computational methods have been 

exploited to accomplish this task.  

First of all, we have carried out traditional X-ray constrained Restricted Hartree-Fock calculations. 

Since the works by Jayatilaka (1998) and Jayatilaka & Grimwood (2001), the Hartree-Fock X-ray 

Constrained Wave Functions (XCW) strategy has emerged as a valid alternative to traditional 

multipolar expansion models for the reconstruction of electron densities in molecular crystals. As we 

will see in the following dedicated subsections, the XCW technique practically consists in determining 

“experimental”3 wave functions by minimizing the electronic energy of the investigated system under 

                                                      
2 In Casati et al. (2016) it is erroneously reported that parameters were 302.  
3 A large debate is ongoing concerning the meaning of “experimental” wave function, see for example Jayatilaka 
(2012).  
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additional constraint of satisfactorily reproducing a set of experimentally observed X-ray diffraction 

intensities. Therefore, due to the complementary information provided by the quantum mechanical 

Hamiltonian of the system, the Jayatilaka method is especially valuable to determine the electron 

density distributions of molecular crystals when the X-ray data suffer from incompleteness, like for 

measurements in diamond anvil cells. 

At a second stage, due to the particular interplay between electronic configurations in BCA, we decided 

to exploit two other wave function based techniques: i) the strategy devised by Stoll et al. (1980) to 

determine single Slater determinant wave functions constructed with Extremely Localized Molecular 

orbitals (ELMOs); and ii) the recently developed X-ray Constrained ELMO-Valence Bond (XC-

ELMO-VB) method (Genoni, 2016; Genoni, 2017), which can be regarded as a first prototype of multi-

determinant X-ray constrained wave function approach.  

The theoretical background of the above mentioned techniques will be briefly explained in the next 

subsections. The details and the results of the calculations will be reported in section 4.2. 

 

3.4.1. The X-ray Constrained Restricted Hartree-Fock Technique 

In the XCW approach (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 2001; 

Bytheway et al., 2002a,b; Grimwood et al., 2003; Jayatilaka, 2012), we assume to work with a fictitious 

non-interacting molecular crystal, in which the wave functions describing the different crystal-units are 

formally identical and symmetry-related through the unit-cell symmetry operations (i.e., through the 

roto-translations ሼ𝑹௞ , 𝒓௞ሽ௞ୀଵ
ே೘ , with 𝑁௠ as the number of symmetry equivalent positions in the unit-

cell). This allows us to write the global electron density distribution of the crystal unit-cell only in terms 

of the electron density 𝜌଴ሺ𝒓ሻ of a reference molecular unit, namely: 

𝜌௖௘௟௟ሺ𝒓ሻ ൌ ෍𝜌௞ሺ𝒓ሻ

ே೘

௞ୀଵ

ൌ ෍𝜌଴ ቀ𝑹௞
ିଵ ሺ𝒓 െ 𝒓𝒌ሻቁ

ே೘

௞ୀଵ

    ሺ3ሻ 

and, consequently, only in terms of the associated wave function |Ψ଴⟩ for the same reference unit. 

According to the Jayatilaka philosophy, to guarantee that the global electron density of our fictitious 

non-interacting crystal is identical to the global electron density of the corresponding real interacting 

system, we look for the wave function |Ψ଴⟩ of the reference crystal unit that not only minimizes the 

corresponding molecular energy, but that also allows to reproduce as much as possible a set of 

experimental structure factors amplitudes. In other words, we search the wave function |Ψ଴⟩  that 

minimizes the usual Jayatilaka functional: 

𝐽ሾΨ଴ሿ ൌ  ൻΨ଴ห𝐻෡หΨ଴ൿ ൅ 𝜆 ሺ𝜒ଶሾΨ଴ሿ െ Δሻ     ሺ4ሻ 
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where 𝐻෡ is the non-relativistic Hamiltonian operator for the reference unit, 𝜆 is an external multiplier 

that gives the strength of the experimental constraints and that is manually adjusted during the 

calculations, Δ  is the desired agreement between calculated and experimental structure factors 

amplitudes, and 𝜒ଶ is the measure of the statistical agreement between computed and experimental 

values. Namely, we have: 

𝜒ଶ ൌ
1

𝑁௥ െ 𝑁௣
 ෍

൫𝜂ห𝐹𝒉
௖௔௟௖ห െ ห𝐹𝒉

௘௫௣ห൯
ଶ

𝜎𝒉
ଶ

𝒉

       ሺ5ሻ 

with 𝑁௥  as the number of considered X-ray diffraction data, 𝑁௣ as the number of adjustable parameters, 

𝒉 as the triads of Miller indices labelling the reflections, 𝜎𝒉 as the experimental error associated with 

the observed structure factor amplitude ห𝐹𝒉
௘௫௣ห, and 𝜂 as a scale factor that is determined to minimize 

𝜒ଶ. 

In the original and standard XCW Restricted Hartree-Fock approach (Jayatilaka, 1998; Jayatilaka & 

Grimwood, 2001; Grimwood et al., 2003), the chosen ansatz for the wave function |Ψ଴⟩  for the 

reference crystal unit is a simple, single Slater determinant of doubly occupied Molecular Orbitals. 

Starting from this ansatz, it is possible to show that finding the wave function |Ψ଴⟩ that minimizes 

functional (4) is equivalent to solving the following modified Hartree-Fock equations: 

𝐹෠௃ |𝜑௞⟩ ൌ 𝜖௞  |𝜑௞⟩     ሺ6ሻ       

where the Fock-Jayatilaka operator 𝐹෠௃ is: 

𝐹෠௃ ൌ 𝐹෠ ൅ 𝜆௃෍𝐾𝒉
𝒉

Re൛𝐹𝒉
௖௔௟௖ൟ 𝐼መ𝒉,ோ ൅  𝜆௃෍𝐾𝒉

𝒉

Im൛𝐹𝒉
௖௔௟௖ൟ 𝐼መ𝒉,௖      ሺ7ሻ 

with 𝐹෠ as the usual Fock operator and with the multiplicative constant 𝐾𝒉 expressed like this: 

𝐾𝒉 ൌ
2𝜂

𝑁௥ െ 𝑁௣
  
𝜂 ห𝐹𝒉

௖௔௟௖ห െ ห𝐹𝒉
௢௕௦ห

𝜎𝒉
ଶ  ห𝐹𝒉

௖௔௟௖ห
       ሺ8ሻ 

Finally, 𝐼መ𝒉,ோ and 𝐼መ𝒉,௖ are both hermitian operators corresponding to the real and the imaginary parts of 

the structure factor operator, respectively, which can be expressed as: 

𝐼መ𝒉 ൌ 𝐼መ𝒉,ோ ൅ 𝑖 𝐼መ𝒉,஼ ൌ ෍𝑒௜ଶగሺ𝑹ೖ𝒓ା𝒓𝒌ሻ∙ሺ𝑩𝒉ሻ      ሺ9ሻ

ே೘

௞ୀଵ

 

with B as the matrix of the reciprocal-lattice. 
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3.4.2. The unconstrained Extremely Localized Molecular Orbitals method 

The traditional ELMO technique proposed by Stoll et al. (1980) can be considered as a natural evolution 

of the pioneering group function method introduced by McWeeny since the 1960s (McWeeny 1959; 

McWeeny 1960; McWeeny, 1992). Furthermore, it is also strictly related to all those theoretical 

strategies that mainly aim at expressing the global electronic wave function of a system in terms of 

functions describing its smaller components (Adams, 1961; Huzinaga & Cantu, 1971; Gilbert, 1974; 

Matsuoka, 1977; Smits & Altona, 1985; Francisco et al., 1992; Ordejón et al., 1993; Couty et al., 1997; 

Fornili et al., 2003; Szekeres & Surján, 2003). 

Following Stoll, we assume to work with a closed-shell molecule composed of 2N electrons and we 

introduce a localization scheme that subdivides the system into f subunits (e.g., atoms, bonds and 

functional groups) that may overlap. We afterwards assign a local basis-set 𝛽௜ ൌ ൛ห 𝜒ఓ௜  ൿൟ
ఓୀଵ

ெ೔

 for each 

fragment, which is the set of basis functions centered on the atoms belonging to each subunit. 

Consequently, we expand the ELMOs corresponding to the generic i-th fragment over 𝛽௜ and we write 

the generic 𝛼-th ELMO as: 

ห 𝜑ఈ௜  ൿ ൌ ෍𝐶ఓఈ௜
ெ೔

ఓୀଵ

 ห 𝜒ఓ௜  ൿ    ሺ10ሻ 

According to Stoll, the wave function describing the 2N-electron closed shell system under exam is the 

single Slater determinant constructed with the Extremely Localized Molecular Orbitals localized on the 

different subunits in which we have previously subdivided the molecule of interest: 

|Ψா௅ெை⟩ ൌ ℳ 𝐴መ ቂ 𝜑ଵ
ଵ  𝜑തଵ

ଵ … 𝜑௡భ
ଵ   𝜑ത௡భ

ଵ …  𝜑ଵ
௙   𝜑തଵ

௙ … 𝜑௡೑
௙   𝜑ത௡೑

௙  ቃ      ሺ11ሻ 

where 𝐴መ is the antisymmetrizer, 𝑛௜ is the number of occupied ELMOs for the i-th fragment and 𝜑തఈ௜  is a 

spin-orbital with spatial part 𝜑ఈ௜  and spin part 𝛽 , and ℳ  is a normalization constant which can be 

expressed as follows: 

ℳ ൌ
1

ඥሺ2𝑁ሻ!𝑑𝑒𝑡ሾ𝑺ሿ
     ሺ12ሻ    

with 𝑑𝑒𝑡ሾ𝑺ሿ as the determinant of the overlap matrix between the occupied ELMOs. 

As the traditional Hartree-Fock molecular orbitals are obtained by minimizing the energy of the single 

Slater determinant built up with them, in the same way, the ELMOs are determined by variationally 

minimizing the energy corresponding to wave function (11). This is actually equivalent to solving the 

following eigenvalue-equation for each fragment: 

𝐹෠௜  ห 𝜑ఈ௜  ൿ ൌ  𝜀ఈ௜  ห 𝜑ఈ௜  ൿ     ሺ13ሻ 
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where 𝐹෠௜ is the modified Fock operator for the generic i-th subunit, namely: 

𝐹෠௜ ൌ  ቀ1 െ 𝜌ො ൅ 𝜌ො௜
ற
ቁ  𝐹෠ ൫1 െ 𝜌ො ൅ 𝜌ො௜൯     ሺ14ሻ 

with 𝐹෠ as the usual Fock operator, 𝜌ො௜ as the local density operator for fragment i, which depends only 

on the occupied ELMOs of the subunit, and 𝜌ො  as the global density operator, which couples the 

eigenvalue-equations associated with the different fragments because it depends on all the occupied 

ELMOs of the molecule under exam. 

Therefore, by solving equations (13) it is really possible to determine molecular orbitals that are strictly 

localized on chemically meaningful fragments (atoms, bonds, or functional groups) and, consequently, 

to obtain single Slater determinant wave functions that are closer to usual traditional chemical concepts, 

as the one of resonance structure (see section 3.4.3). 

For the sake of completeness, it is also worth noting that the original ELMO technique has been also 

recently extended in the framework of the X-ray constrained wave function strategy, giving rise to the 

new XC-ELMO method that allows the extraction of Extremely Localized Molecular Orbitals from 

experimental structure factors amplitudes (Genoni, 2013a,b; Dos Santos et al., 2014; Genoni & Meyer, 

2016). However, in this work, X-ray constrained ELMO calculations have not been used to investigate 

the partial rupture of aromaticity in BCA at high-pressures.  

 

3.4.3. The X-ray constrained ELMO Valence Bond Method technique 

As mentioned in subsection 3.4.1, the traditional XCW strategy works within the approximation of the 

single Slater determinant wave function ansatz, which is probably the main reason why the Jayatilaka 

method captures only partially the electron correlation effects on the electron density (Genoni et al., 

2017). The novelty of the new X-ray constrained ELMO-Valence Bond technique (Genoni, 2016; 

Genoni, 2017) consists in the fact that a multi-determinant wave function ansatz has been considered 

for the first time in the framework of the Jayatilaka approach. In particular, in the XC-ELMO-VB 

method the wave function |Ψ଴⟩ for the reference molecular unit is written as follows: 

| Ψ଴ ⟩ ൌ | Ψ௑஼ିா௅ெைି௏஻ ⟩ ൌ෍𝐶௝
௝

 | Ψ௝  ൿ     ሺ15ሻ 

where the wave functions | Ψ௝  ൿ  are Slater determinants associated with the possible resonance 

structures of the system under investigation. In particular, in the novel XC-ELMO-VB strategy, they 

are normalized ELMO wave functions resulting from simple, unconstrained ELMO calculations 

exploiting localization schemes that correspond to the different resonance structures of the system under 

exam. For instance, for the case studied in this paper (syn-1,6:8,13-Biscarbonyl[14]annulene molecule), 

the wave function | Ψ௑஼ିா௅ெைି௏஻ ⟩  has been written as linear combination of two ELMO wave 
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functions: i) one obtained by imposing a localization scheme with the fragments for the π electrons 

corresponding to bonds C14-C1, C2-C3, C4-C5, C6-C7, C8-C9, C10-C11 C12-C13 (resonance 

structure A of BCA, see Figure 1.A); ii) and the other one determined by exploiting a localization 

scheme with the fragments for the π electrons corresponding to bonds C1-C2, C3-C4, C5-C6, C7-C8, 

C9-C10, C11-C12, C13-C14 (resonance structure B of BCA, see Figure 1.B). 

In the current version of the XC-ELMO-VB method, the pre-determined unconstrained ELMO wave 

functions (or, in other words, the pre-computed unconstrained Extremely Localized Molecular Orbitals) 

are kept frozen, and, therefore, the new XCW techniques practically consists in determining the 

coefficients ൛𝐶௝ൟ of linear combination (15) that minimize functional (4). 

However, since the ELMO Slater determinants in expansion (15) are non-orthogonal between each 

other, the coefficients ൛𝐶௝ൟ do not give directly the weights of the associated resonance structures. The 

real weights are actually obtained by computing the Chirgwin-Coulson coefficients (Chirgwin & 

Coulson, 1950) ൛𝐾௝ൟ: 

𝐾௝ ൌ ห𝐶௝ห
ଶ
൅ ෍ 𝐶௝  𝐶௠ 𝑆௝௠

௠ஷ௝

     ሺ16ሻ 

with  𝑆௝௠ ൌ ൻΨ௝หΨ௠ൿ as the overlap integral between the pre-computed unconstrained ELMO wave 

functions | Ψ௝  ൿ and | Ψ௠ ⟩. 

In all the XC-ELMO-VB method the adjustable parameter 𝜆 is iteratively varied until the weights 

associated with the resonance structures converge, in particular until when the largest absolute variation 

of the Chirgwin-Coulson coefficients between two consecutive 𝜆-step is lower than 1.0 ∙ 10ିଷ.  

 

4. Results and discussion 

As reported in Casati et al. (2016), the most evident feature of the high pressure structure forms of BCA 

is the asymmetrization of the molecular geometry that significantly deviate from the ideal C2v symmetry 

observed at ambient pressure, and produces an inhomogeneous contraction of the C-C bonds of the 

annulene skeleton (see Supporting Information Table S2). From the geometrical point of view this can 

be rationalized as a loss of the perfect resonance between the configurations A and B (Figure 1) and a 

partial localization of one of them (namely A). The purpose of a charge density investigation was the 

analysis this very peculiar behaviour also from the point of view of the electron density accumulation 

in the bonds. As reported in Casati et al. (2016), many indicators, including the electron density at the 

bond critical points and the electron delocalization indices calculated from an X-ray constrained wave 

function, indicate that there is a partial localization of one of the two resonance forms.  



Acta Crystallographica Section B    research papers 

14 

 

The interpretation of the pressure induced modifications is not further discussed here. In the following 

paragraphs, instead, we analyse in details the electron density models refined or calculated for BCA at 

7.7 GPa, in order to assess the quality of the measurement and the significance of the extracted 

information. First, we report an analysis of the multipolar model, which also provides the basis for the 

X-ray constrained wave function calculations. Then, we will analyse the results of the various wave 

function methods, particularly focusing on the results obtained with the new XC-ELMO-VB strategy. 

 

4.1. Analysis of the refined Multipolar Model 

4.1.1. The Model Flexibility 

This topic is of fundamental importance in multipolar expansion, because the atom centred modelling 

of equation (1) implies a number of restrictions that may affect the results. The flexibility depends on 

three main factors: a) the atomic shells which are refined; b) the radial functions, c) the angular 

functions.  

The standard multipolar model implies a rigid core electron density and a refined valence shell. The 

population of the core is fixed and its radial function generally coincides with the core orbitals (1s 

orbitals for the carbon and the oxygen atoms in BCA, for example) of the Roothaan-Hartree-Fock 

atomic wave functions, such as those proposed by Clementi and Roetti (1974). Recently, an extended 

Hansen and Coppens model was proposed (Fischer et al. 2011), in which the core population and its 

radial function can be also refined. This procedure is similar to a strategy implemented in the program 

Valray (Stewart, Spackman, & Flensburg, 2000), although all atoms of a given element type usually 

shared the same core parameters, thus resulting in a rather rigid model. This was in fact the model 

adopted by Destro & Merati (1995). The quality of the high-pressure data does not allow any “shell” 

flexibility, which is anyway very difficult also for data collected at ambient conditions. Therefore, the 

refinement of BCA data is limited to the K shell of the hydrogen atoms and to the L shell of the carbon 

and oxygen atoms, which is anyway a rather typical multipolar refinement. In order to increase the 

data/parameter ratio, the H atoms were refined with a pseudo-symmetry constraint: only 3 of them were 

freely refined (namely H2, H3 and H7, see Figure 1), while the pseudo-equivalent ones were constrained 

to share the same set of multipoles. 

Apart from the treatment of the core, the radial functions of the valence orbitals can also be flexible, 

refining the  parameters of the multipolar expansion (1). The spherical valence is normally constructed 

by all valence orbital functions of a Roothaan-Hartree-Fock expansion. When a single  is adopted for 

the valence monopole, it implies that both the 2s and 2p orbitals contract or expand in the same way. 

On the contrary, for higher multipoles, the radial functions are normally single  Slater orbitals 

(Clementi & Raimondi, 1963). In principle, an individual scaling is possible for each pole l (or even for 
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each ml function) but this would produce a divergent refinement and only one ’ is typically refined in 

standard models, sometimes even applying a  = ’ constraint (Abramov, Volkov & Coppens, 1999) 

to avoid divergence or unphysical results, like a very diffuse valence shell of terminal atoms in a 

molecule. In our best model, we refined  and ’ separately for the carbon and oxygen atoms, but only 

one set of radial scaling was adopted for each element type. In fact, the two O atoms are of the same 

kind and also correlated by the molecular pseudo-symmetry (C2, Cs or C2v). On the contrary, all the C 

atoms are of sp2-type and involved in the aromatic ring or in the carbonyl bonds, therefore normally 

only one  set should be adopted. In fact, a tentative flexibility with the 4 “unique” C atoms in C2v 

pseudo-symmetry (or 7 unique atoms in C2 or Cs pseudo-symmetry) would result in a too flexible and 

not-stable refinement. No radial scaling was adopted for the hydrogen atoms.   

Concerning the angular flexibility, the order of the multipole expansion is normally fixed by the number 

of reflections usable for refining such quantities. Noteworthy, only low resolution data actually contain 

information on the valence electron density distribution. A drawback of high pressure is that the 

sampling of the low resolution is less dense, due to the volume contraction, and therefore the number 

of usable reflections to refine these parameters is lower. In fact, at the resolution d = 0.71 Å (sinϑ/λ = 

0.7 Å-1, where the scattering of L shell of O and C atoms becomes negligible), the number of theoretical 

reflections at 0.0 GPa is 3374, whereas at 7.7 GPa it is 2638 (of which, only 2236 were measured). This 

is the reason why the model was refined in two blocks: a) coordinates and ADPs using the high 

resolution data only (2455 reflections for 163 parameters) and then b) multipolar coefficients and radial 

scaling (using all data, but with 1863 “effective” low angle reflections for 301 parameters).  

In a standard multipolar model, H atoms are expanded only up to a dipolar level. Quadrupoles are 

refinable only if the anisotropic displacement parameters are also available (for example, from neutron 

diffraction or from rigid body motion calculations). Thanks to the estimation of the hydrogen atoms 

ADP’s made through SHADE (Madsen, 2006), the multipolar model of BCA could be extended up to 

quadrupolar functions for the hydrogen atoms, although only one dipole (z) and one quadrupole (3z2 -

1) were refined (z being the local coordinate coinciding with the C-H bond direction). Second row 

elements are usually treated at least up to l = 3. Octupoles are in fact fundamental for the treatment of 

sp2 hybridized C or O atoms, see for example Macchi (2013). For the C and O atoms, a full set of 

multipoles could be refined up to the octupolar level without chemical constraints.  

For sake of comparison, we note that Destro & Merati (1995), using the low temperature accurate data, 

could refine simultaneously the atomic positions, displacements and multipoles, using up to 385 

electron density parameters (instead of 301 in our model) and 163 position/thermal parameters and scale 

factor (coinciding with our model). The “effective” reflections for the electron density modelling were 

2963. Thus, the effective reflections/parameters ratio for the multipoles was 7.7 (=2963/385), compared 

to 6.2 (=1863/301) in our refinement. Destro & Merati (1995) also fixed positions and thermal 
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parameters of H atoms in the final model, using the generalized scattering factor approach (Stewart, 

Bentley & Goodman, 1975) implemented in VALRAY to initially refine the positions and they adopted 

an approach very similar to ours for the treatment of atomic displacement parameters. 

Noteworthy, given the constraints applied to H atoms and to the radial scaling, the parameters that 

describe deviations from the C2v pseudo-symmetry of the molecule are the coordinates, ADP’s and 

multipoles of the C atoms.  

 

4.1.2. Thermal parameters 

As introduced above, a general requirement of charge density studies is quenching the thermal motion 

in order to allow an easier deconvolution of the electron density. This is in keeping with the Born-

Oppenheimer and the adiabatic approximation, i.e. the electron density is only function of the nuclear 

configuration and it is not deformed along the coordinates of a vibrational mode. Of course, the 

temperature to achieve this condition strongly depends on the investigated species: for an organic 

molecular crystal, only low (ca. 100 K) or even very low (< 5-20 K) temperatures are necessary, whereas 

for a hard material, room temperature (or even above) is sufficient. One may take the Debye temperature 

D (the highest temperature that can be achieved due to a single normal vibration) as a reference to 

evaluate a sensible limit (T < ½ D) (Larsen, 1995). Anyway, this assumption holds true only at ambient 

pressure. On the contrary, for crystals compressed at high pressure, the reduced space available forces 

the atoms to reduce the amplitude of their motion, without reducing their thermal energy. As a result, 

the atomic anisotropic displacement parameters decrease like at low T and consequently the diffraction 

increases, especially at high diffraction angle, in keeping with the Debye-Waller formalisms. 

The data collected at different pressures or temperatures enabled us to evaluate the thermal parameters 

as a function of the thermodynamic variables. In Figure 3, we report a comparison between averaged 

atomic Ueq obtained from low T or from high-pressure experiments. It is interesting to observe that Ueq 

= f(P) or Ueq = f(T-3) behave very similarly, which leads us to conclude that a high pressure experiment 

on BCA at P = 7.7 GPa is similar (in terms of thermal motion) to an experiment carried out at T = 123 

K, i.e. at a temperature suitable for standard charge density data collections, although at the upper limit.  

Of course, this conclusion cannot be generalized, because the decrease of atomic thermal motion is not 

only a function of the pressure, but also of the crystal compressibility. BCA lacks of any strong 

intermolecular interaction and is therefore very compressible. For a system having both strong and weak 

intermolecular interactions, the same assumption could not be guaranteed. In fact, the strong 

intermolecular interactions would make the solid not much compressible, therefore the weakly bound 

part of the crystal will still move significantly even at high pressure. 
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4.1.3. Residuals and agreement indices 

A crystallographic structural model, as well as an electron density model, is normally judged from the 

agreement indices R (R1 and wR2) and residual electron densities, whereas the quality of the data is 

judged from the internal agreement of the equivalent intensities of the crystal Laue class (Rint). For our 

experiment in a DAC and the planned strategy, some warnings are necessary. First of all, the data 

completeness was obtained after merging dataset collected on two, differently oriented crystals. This 

inherently produces lower precision and higher Rint. Moreover, the very fine focused beam and small 

size of the crystals implies a critical reproducibility of equivalent intensities. For this reason, it is 

expected that the precision of the measurements is significantly lower than in standard charge density 

data collections. In addition, for synchrotron data collections, it is rather normal, to obtain larger Rint 

(see for example, Morgenroth et al., 2008), due to beam instabilities and other effects that may 

compromise a perfect reproducibility. This suggests that a large redundancy is a must in order to mediate 

all the effects. Last but not least, the very small size of the crystal samples implies very weak diffraction 

at high angle. It is therefore not surprising that Rint is large for the data collection at 7.7 GPa, see Table 

2 which summarizes the crystallographic data for this measurement. The same arguments hold also for 

the agreement indices, which are certainly larger than for standard charge density models, though not 

unusual for synchrotron data collections, see Morgenroth et al. (2008). On the other hand, the analysis 

of the residual electron densities is quite promising. In particular, two functions are important: the 

experimental deformation density (i.e. the Fourier transformation of the difference between the 

measured structure factors and those calculated with spherical atoms) and the residual electron density 

after the multipolar refinement. The experimental deformation density emphasizes the electron density 

in the bonds, which is not described by a spherical atom model. In Figure 4, we see that larger residuals 

occur in the middle of the C-C bonds, indicating that the data contain in fact the expected information. 

This would be a normal observation for standard electron density studies, but it is a surprisingly good 

result for a high-resolution data collection in a DAC. The residuals after multipolar analysis are also 

very promising, because they are not enormous (+0.55; -0.53 eÅ-3, using all data) although certainly 

higher than what expected in standard conditions. If analysed with the method proposed by Mendl & 

Henn (2008), the distribution of the residuals shows an almost perfect Gaussian distribution, thus 

indicating no systematic effects, in keeping with the residual map being noisy but without systematic 

features. Therefore, although the agreement indices of the multipolar model are not excellent and quite 

large compared to standard charge density data collections, the effect on the refined multipolar model 

is not so dramatic. 

For sake of comparison, we remind that the model by Destro & Merati (1995) returned R1 = 0.012 for 

I > 2(I) and d > 0.78 Å (the Cu Kα sphere, within which all data were collected), compared to 0.042 

of our model at the same resolution (with 87% data completeness). A comparison at higher resolution 

is not possible, given the strategy adopted by Destro & Merati (1995) for the data collection (see above), 
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which limited the measurement to the most intense reflections only. No residual electron density was 

reported in that study; anyway, using the deposited data and a consistent model, Δρmin,max =  0.23 eÅ-

3 was calculated. 

 

4.2. Analysis of the wave functions calculations 

Because of the data incompleteness and the rather low precision of the data, it was mandatory to double 

check the quality of the electron density of the multipolar model (and its interpretation) using also a 

wave function based method, as explained in the experimental section. For this reason, we first 

computed a standard X-ray constrained molecular wave function (Jayatilaka & Grimwood, 2001) for 

BCA at 7.7 GPa and then tested also the new methods with localized schemes. 

4.2.1. X-ray constrained Restricted Hartree-Fock computations 

The molecular orbital calculations were carried out at Hartree Fock level with a 6-31G(d,p) basis set, 

using a constraint to the experiment up to λmax = 1 (see equation 4), after verifying that no significant 

improvement in χ2 could be obtained. Table 3 summarizes the results of the fitting, showing a similar 

kind of agreement as for the multipolar model. As reported in Casati et al. (2016), the electron density 

calculated from this wave function enabled confirming the partial localization of the double bond 

character in the configuration A (Figure 1). An advantage of this electron density reconstruction is being 

less subject than the multipolar model to the noise of the diffraction data. Noteworthy, given the split 

refinement of the multipolar model (separating the coordinates and ADPs, refined only at high angle, 

from the multipoles), the constrained wave function calculation is a perfect alternative to the refinement 

of the multipoles. An additional advantage of a wave function determination is the possibility of 

calculating not only the one-electron density but also the density matrices and, therefore, the electron 

delocalization indices. This model is not further discussed here, because the focus of this work was in 

fact finding additional information from localized orbital models and pseudo valence bond treatment, 

as discussed in the next two paragraphs.  

 

4.2.2. Unconstrained ELMO calculations 

We have performed unconstrained ELMO calculations using i) the crystallographic structure of BCA 

determined at ambient pressure and low temperature (19K) (Destro &Merati, 1995) and ii) the crystal 

structure determined more recently at 7.7. GPa by Casati et al. (2016). 

In particular, for each structure, we have carried out three different unconstrained ELMO calculations 

corresponding to three different localization schemes (see Figure 5) for the π electrons of the 14-carbon 

atom ring of the molecule: i) a localization scheme with a unique fragment completely delocalized on 
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the 14 carbon atoms (from now on indicated as D-Scheme); ii) a localization scheme with the fragments 

for the π electrons corresponding to bonds C14-C1, C2-C3, C4-C5, C6-C7, C8-C9, C10-C11, C12-C13 

(from now on indicated as A-Scheme) and corresponding to resonance structure A of BCA in Figure 1; 

iii) a localization scheme with the fragments for the π electrons corresponding to bonds C1-C2, C3-C4, 

C5-C6, C7-C8, C9-C10, C11-C12, C13-C14 (from now on indicated as B-Scheme) and corresponding 

to resonance structure B of BCA in Figure 1. For the sake of completeness, we point out that a 

localization scheme corresponding to the traditional Lewis structure has been adopted for the remaining 

part of the molecule (i.e. core, lone-pairs, σ and πC=O electrons). Furthermore, three different basis-sets 

have been considered for our calculations: 6-31G, 6-31G(d,p) and cc-pVDZ. 

After performing the calculations described above, for each localization scheme, we have compared the 

unconstrained ELMO energies obtained for the ambient and the high-pressure structures. In other 

words, we have determined the following energy differences: 

∆𝐸௑ ൌ 𝐸ா௅ெைି௑
ு௉ െ 𝐸ா௅ெைି௑

஺௉        (17) 

where X indicates the localization scheme in exam (hence, 𝑋 ൌ 𝐷,𝐴 𝑜𝑟 𝐵) and where HP and AP 

stands for “High Pressure” and “Ambient Pressure”, respectively. 

The obtained values, which are collected in Table 4, show that a completely delocalized electronic 

structure is more energetically favourable at ambient pressure than at high pressure. Furthermore, in 

line with this result, we can also observe that for the electronic configurations represented by 

localization schemes A and B, we have opposite trends when external pressure increases. In fact, while 

configuration A becomes more favourable at high pressure, at 7.7 GPa configuration B is significantly 

less stable from the energetic point of view. All these results clearly suggest that, at high pressure, the 

two resonance structures depicted in Figure 1 should not equally contribute to the description of the 14-

electron Hückel system of the biscarbonyl[14]annulene molecule. Therefore, a completely delocalized 

representation of the 14 π-electron system of BCA is less and less adequate at higher pressures (in 

agreement with the result obtained adopting the D-Scheme as localization pattern). 

These observations are further confirmed by the differences, at ambient and high pressures, between 

the ELMO energies corresponding to localization schemes A and B: 

∆𝐸஺ି஻
௑ ൌ 𝐸ா௅ெைି஺

௑ െ 𝐸ா௅ெைି஻
௑        (18) 

where, in this case, X stands for AP (“Ambient Pressure”) or HP (“High Pressure”).  

From Table 5, it is easy to observe that, while at ambient pressure the two resonance structures of BCA 

are approximately energetically equivalent (structure A only slightly more favourable than structure B), 

at 7.7 GPa the resonance structure corresponding to localization scheme A becomes significantly more 

stable. This is another evidence of the fact that, when pressure increases, the contributions of the two 
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resonance structures in the description of electronic structure of BCA are no longer equivalent and that 

a partial rupture of aromaticity probably occurs. 

 

4.2.3. XC-ELMO-VB computations 

In order to find a confirmation of the trend observed for the unconstrained ELMO calculations and to 

estimate the weight of resonance structures A and B of BCA at ambient and high pressures, we have 

afterwards performed X-ray constrained ELMO-Valence Bond computations. 

As already mentioned in section 3.4.3, our XC-ELMO-VB wave functions have been written as linear 

combination of two pre-determined, unconstrained ELMO single Slater determinants: one 

corresponding to resonance structure A and another one corresponding to resonance structure B.  

As the ELMO calculations, also the XC-ELMO-VB computations have been performed considering the 

molecular geometries of BCA associated with the crystallographic structures determined at ambient and 

high (7.7GPa) pressures and using the standard basis-sets 6-31G, 6-31G(d,p) and cc-pVDZ. 

Furthermore, for all the X-ray constrained ELMO Valence Bond computations we have used unit cell 

parameters, Anisotropic Displacement Parameters (ADPs) and structure factors amplitudes deposited 

with the corresponding crystal structures. 

The results of the XC-ELMO-VB calculations at ambient and high pressures are shown in Tables 6 and 

7. In Table 6 we have reported the values of the Chirgwin-Coulson weights associated with resonance 

structures A and B, when the external parameter 𝜆 is set equal to 0.0 (namely, unconstrained ELMO-

VB computations). We can observe that, for all the basis-sets, at ambient pressure, resonance structure 

A is slightly more important than resonance structure B. On the contrary, at high pressure, structure A 

becomes largely predominant. Nevertheless, it is important to note that the unconstrained ELMO-VB 

calculations take into account only energetic aspects and practically confirm the results obtained by 

means of the simple unconstrained ELMO calculations discussed in Section 4.2.2. In fact, the ELMO 

Slater determinants that were used to expand the unconstrained ELMO-VB wave functions were the 

ones resulting from the unconstrained ELMO calculations and they were kept frozen during the 

optimization of the coefficients ൛𝐶௝ൟ in equation (15). 

In Table 7 we have reported the results of the real XC-ELMO-VB computations. By exploiting 

experimental structure factors amplitudes as external constraints, they allowed us to introduce electron 

density-related aspects in the determination of the weights associated with resonance structures A and 

B. In this case, for all the basis-sets taken into account, we can note that while, at ambient pressure, 

structures A and B equally contribute to the description of the Hückel system (perfect aromaticity), at 

high pressure, resonance structure A becomes slightly more important, thus partially breaking the 

aromaticity of the molecule. 
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For the sake of completeness, in the Supporting Information we have also reported how the statistical 

agreement 𝜒ଶ and the Chirgwin-Coulson coefficients vary in function of the external parameter 𝜆 for 

all the X-ray constrained ELMO-VB calculations that we have performed (see Figures S2-S6 in the 

Supporting Information).  

 

5. Conclusions 

In this paper, we reported an accurate analysis of the electron density models calculated or refined for 

the BCA molecule under high pressure. This is the first systematic investigation of accurate charge 

density distribution from high pressure X-ray diffraction data. It is interesting that the electron density 

study confirms the hypothesis of a partial localization of one of the two resonant electronic 

configurations when the species is compressed. This was anticipated by the geometry refined from X-

ray diffraction data and further confirmed by analysing: i) the multipolar electron density, ii) the 

computed X-ray constrained canonical Hartree-Fock Molecular Orbitals, iii) the results of the 

unconstrained ELMO calculations and, finally, iv) the weights of the resonance structures provided by 

the newly developed XC-ELMO-VB method, a new theoretical method which is particularly adequate 

for this chemical problem.  

Although very few accurate data sets have been collected at high pressure so far, one could envisage 

more data in the near future, thanks especially to the availability of synchrotron beam lines of very high-

energy and dedicated set-ups for the experimental requirement of high resolution data collection using 

diamond anvil cells. Of course, there is still room to improve the strategy of data collection and the data 

quality. Nevertheless, it is obvious that the accuracy of these measurements cannot match the charge 

density data collection carried out at ambient pressure and low temperature. For this reason, it is 

important to warn that only significant changes of the charge distribution are presently detectable. These 

changes are, for example, those associated with different electronic states of molecules (or polymers) 

or different electronic configurations that implying a significant transfer of electron density from one 

bond (or one atom/group) to another (as in BCA). On the other hand, it seems more difficult detecting 

smaller polarizations (in absence of a configurational change) caused by the crystal internal electric 

field modified by pressure.   

Having this in mind, we are currently planning experiments of species that, similarly to BCA, show 

severe rearrangements of the electron density distribution upon compression. For these species, 

experimental measurements are essential because theoretical calculations are themselves challenged in 

these conditions and experimental validations are vital.    
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Figure 1 Top: resonance structures A and B for the syn-1,6:8,13-Biscarbonyl[14]annulene molecule. 

Bottom: a picture of the molecular geometry at ambient pressure (left) and at 7.7 GPa (right) (atomic 

displacement parameters are drawn at 50% probability level).  

 

 

Figure 2 A schematic picture of the diffraction events associated with a diamond anvil cell 

(modified with permission from Lanza, 2016). The diamonds and their reflections are indicated with 

d; the gasket and the powder rings with g; the DAC body and its shadowing of the diffraction with b.  

 



Acta Crystallographica Section B    research papers 

23 

 

 

Figure 3  The average values of refined atomic Ueq (Å2) of C and O atoms in BCA from experiments 

at variable Pressure (red) or Temperature (blue). The abscissa is Pressure (GPa, for the red points) or 

the function 𝑓ሺ𝑇ሻ ൌ  1.5 ൈ 10଻ ሺ
ଵ

்య
െ

ଵ

ଶଽ଼య
ሻ (K-3, for the blue points), respectively. For T = 123 and 90 

K, 𝑓ሺ𝑇ሻ ൌ 7.5 and 20, respectively. If the correlation 𝑓ሺ𝑇ሻ 𝑣𝑠.𝑃 holds true also at higher P and lower 

T, a temperature of 20 K would correspond to a pressure of ca. 2 TPa (2000 GPa). This implies that in 

the pressure range of measurable single crystal X-ray diffraction experiments (namely, 0-20 GPa), the 

thermal parameters of BCA are always in the range of a liquid nitrogen temperature.     
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Figure 4 The experimental deformation density map (a), the residual electron density map after 

multipolar refinement (b), the static deformation map obtained from the multipolar refinement (c) and 

the distribution of residuals (d). The isosurface values are 0.35 eÅ-3 (positive values are green, 

negative values are red). 
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Figure 5 Schematic representation of the different localization schemes adopted for the 

unconstrained ELMO calculations. Localizations schemes A and B are associated with resonance 

structures A and B in Figure 1, respectively, while D represents the localization scheme with only one 

fragment for the 14 π electrons. 
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Table 1 The expected data coverage for data collection in a DAC for some selected Laue classes.(a) 

Resolution (d) Cell aperture Laue class λ = 0.71 Å λ = 0.56 Å λ = 0.30 Å 

0.83 Å 80° 

-1 37% 40% 53% 

2/m 39% 44% 54% 

mmm 42% 48% 56% 

4/mmm 69% 76% 86% 

m-3m 85% 93% 98% 

      

0.5 Å 

 -1 14% 24% 45% 

 2/m 15% 26% 46% 

80° mmm 18% 31% 48% 

 4/mmm 32% 53% 78% 

 m-3m 42% 68% 94% 

(a) The simulation was performed for the following unit cell a = b = c = 10 Å and α = β = γ = 90° 
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Table 2 Selected crystallographic data and refinement parameters for the extensive dataset 

collected at 7.7 GPa and used for the electron density refinement. 

a (Å) 8.6187(3) 

b (Å) 11.5861(6) 

c (Å) 8.6105(3) 

(°) 92.788(3) 

V (Å3) 858.80(6) 

Total reflections / unique / observed (I >2)  23698 / 5047 / 3554 

Rint (all data) 0.116 

Rint (I > 2σ(I)) 0.079 

Number of parameters for the spherical atom 

refinement1 
163 

R1 (I > 2σ(I)):  

sinθ/λ < 0.7 Å-1 0.073 

sinθ/λ > 0.7 Å-1 0.103 

all data 0.089 

 min/max (eÅ-3):  

sinθ/λ < 0.7 Å-1 -0.44/0.60 

all data -0.60/0.88 

  

Total number of parameters for the multipolar 

model2 
464 

R1 (I > 2σ(I)):  

sinθ/λ < 0.7 Å-1 0.0451 

all data 0.0676 

 min/max (eÅ-3):  

sinθ/λ < 0.7 Å-1 -0.30/0.29 

all data -0.53/0.55 

1 Using the XD2006 conventions and  𝑤௛ ൌ 1 𝜎 
ଶ൫𝐹௛,௢௕௦

ଶ ൯⁄  

2 The refinement was carried out in two steps: 1) high order spherical atom refinement of the position and 

thermal parameters for C and O atoms (163 parameters); 2) refinement of the multipole coefficients using all 

reflections (302 parameters). A scale factor was refined in both cases. 
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Table 3 Results of the X-ray constrained wave function calculations. 

R1 (I > 2σ(I)):  

sinθ/λ < 0.7 Å-1 0.055 

all data 0.066 

χ2 (I > 2σ(I)):  

sinθ/λ < 0.7 Å-1 1.42 

all data 2.33 

 

 

Table 4 Differences (in kcal/mol) between the ELMO energies at high pressure (7.7 GPa) and at 

ambient pressure for the three different localization schemes taken into account. All the acronyms are 

described in the text. 

 

 6-31G 6-31G(d,p) cc-pVDZ 

∆𝐸஽ 10.32 10.93 13.40 

∆𝐸஺ -9.24 -8.75 -5.79 

∆𝐸஻ 37.14 38.98 41.87 

 

 

Table 5 Differences (in kcal/mol) between the ELMO energies obtained with localization schemes 

A and B both at ambient and high (7.7 GPa) pressures. All the acronyms are described in the text. 

 

 6-31G 6-31G(d,p) cc-pVDZ 

∆𝐸஺ି஻
஺௉  -0.90 -1.03 -1.03 

∆𝐸஺ି஻
ு௉  -47.28 -48.76 -48.69 
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Table 6 Statistical agreements 𝜒ଶ and Chirgwin-Coulson coefficients obtained through the 

unconstrained ELMO-VB calculations (𝜆 =0.0) at ambient and high pressures. 

 

 

 

Basis-Set 

Ambient Pressure  High Pressure 

𝜒ଶ 𝐾஺ 𝐾஻  𝜒ଶ 𝐾஺ 𝐾஻ 

6-31G 5.88 0.546 0.454  6.31 0.989 0.011 

6-31G(d,p) 5.15 0.559 0.441  5.64 0.992 0.008 

cc-pVDZ 4.97 0.559 0.441  5.68 0.992 0.008 

 

 

Table 7 Statistical agreements 𝜒ଶ and Chirgwin-Coulson coefficients obtained through the X-ray 

constrained ELMO-VB calculations at ambient and high pressures. The value of the external 

multiplier 𝜆 at convergence is also shown. 

 

 

 

Basis-Set 

Ambient Pressure  High Pressure 

𝜆 𝜒ଶ 𝐾஺ 𝐾஻  𝜆 𝜒ଶ 𝐾஺ 𝐾஻ 

6-31G 0.05 5.88 0.504 0.496  0.77 6.18 0.593 0.407 

6-31G(d,p) 0.05 5.12 0.490 0.510  0.59 5.41 0.587 0.413 

cc-pVDZ 0.06 4.93 0.491 0.509  0.57 5.43 0.586 0.414 
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Supporting information  

 

Table S1 Selected crystallographic data and spherical atom refinement parameters for the low 

temperature data collections. The space group P21/n remains unchanged during the cooling. 

Resolution is 0.67 Å for all datasets. 

T (K) 90 123 183 243 298 

a (Å) 9.0425(1) 9.0481(1) 9.6081(1) 9.0759(1) 9.0915(1) 

b (Å) 12.6672(1) 12.6786(1) 12.7038(1) 12.7323(1) 12.7606(1) 

c (Å) 9.6675(1) 9.6881(1) 9.7292(1) 9.7769(1) 9.8227(1) 

(°) 94.337(1) 94.415(1) 94.501(1) 94.607(1) 94.706(1) 

V (Å3) 1104.11(2) 1108.10(2) 1116.45(2) 1126.14(2) 1135.72(2) 

Reflections: 

Total/unique 

 

13844/3582 

 

14231/3594 

 

14324/3620 

 

14464/3650 

 

14579/3686 

Rint 0.0252 0.0254 0.0263 0.0286 0.0285 

R1  0.0372 0.0371 0.0384 0.0399 0.0408 

 min/max (eÅ-3)  -0.24/0.39 -0.22/0.38 -0.21/0.32 -0.19/0.28 -0.16/0.23 

 

Table S2 Bond distances from the refined models of the high pressure experiments 

P(GPa) 1.8 4.35 5.8 7.71 7.95 9.5 

C1 - C14 1.383(5) 1.379(4) 1.374(4) 1.376(2) 1.368(4) 1.362(5) 

C1 - C2 1.408(5) 1.412(5) 1.411(4) 1.414(2) 1.412(4) 1.418(5) 

C2 - C3 1.366(6) 1.374(5) 1.359(5) 1.373(2) 1.359(4) 1.359(6) 

C3 - C4 1.417(6) 1.411(5) 1.422(5) 1.429(3) 1.430(5) 1.428(6) 

C4 - C5 1.376(6) 1.370(5) 1.372(4) 1.374(3) 1.367(4) 1.362(5) 

C5 - C6 1.393(5) 1.413(5) 1.403(4) 1.413(2) 1.411(4) 1.404(6) 

C6 - C7 1.400(5) 1.385(4) 1.388(4) 1.381(4) 1.376(4) 1.377(5) 

C7 - C8 1.388(5) 1.395(5) 1.395(4) 1.405(2) 1.393(4) 1.402(5) 

C8 - C9 1.405(5) 1.394(4) 1.391(4) 1.387(2) 1.383(4) 1.383(4) 

C9 - C10 1.385(6) 1.395(5) 1.382(4) 1.395(2) 1.395(4) 1.385(6) 

C10 - C11 1.396(6) 1.394(5) 1.393(5) 1.404(2) 1.387(5) 1.397(6) 

C11 - C12 1.383(5) 1.383(5) 1.381(4) 1.396(3) 1.385(4) 1.382(5) 

C12 - C13 1.404(5) 1.393(4) 1.391(4) 1.395(2) 1.392(4) 1.391(5) 

C13 - C14 1.402(5) 1.395(4) 1.392(4) 1.394(2) 1.389(4) 1.388(5) 

C1 - C15 1.467(6) 1.467(5) 1.466(5) 1.470(3) 1.464(5) 1.460(6) 

C6 - C15 1.476(5) 1.467(5) 1.476(4) 1.473(2) 1.468(4) 1.475(5) 

C8 - C16 1.474(5) 1.471(5) 1.470(4) 1.472(2) 1.464(4) 1.463(5) 
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C13 - C16 1.469(5) 1.462(5) 1.463(5) 1.473(3) 1.460(5) 1.461(6) 

C15 - O1 1.213(4) 1.212(4) 1.214(4) 1.215(2) 1.216(4) 1.223(4) 

C16 - O2 1.217(5) 1.221(4) 1.214(4) 1.215(2) 1.223(4) 1.225(5) 

C15 - C16 2.557(4) 2.543(4) 2.538(3) 2.539(3) 2.522(3) 2.525(4) 

1 From the multipolar refinement on high resolution data. These data are not directly comparable 
with those of the other refinements (all based on lower resolution data only), because the thermal 
motion is here better de-convoluted, giving in general slightly longer C-C distances for all bonds. 
For sake of homogeneity these data are not included in the plot 7. Anyway, the asymmetrical 
distribution of bonds follows the general trend observed at all pressures. 
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Figure S1 Relative compression / expansion of C-C bonds as a function of pressure (in GPa) from 

experimental modelling. Distances are normalized to the value at ambient pressure and temperature. 

Blue and red symbols refer to the double bonds of the electronic configurations A and B respectively 

(Figure 1 in the main text). 

 

 

Figure S2 Variation of the statistical agreement 𝜒ଶ in function of the external multiplier 𝜆 for the 

X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the 6-31G 

basis-set. 
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Figure S3 Variation of the statistical agreement 𝜒ଶ in function of the external multiplier 𝜆 for the 

X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the 6-

31G(d,p) basis-set. 

 

 

 

Figure S4 Variation of the statistical agreement 𝜒ଶ in function of the external multiplier 𝜆 for the 

X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the cc-

pVDZ basis-set. 
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Figure S5 Variation of the Chirgwin-Coulson coefficients in function of the external multiplier 𝜆 

for the X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the 

6-31G basis-set.  

 

 

Figure S6 Variation of the Chirgwin-Coulson coefficients in function of the external multiplier 𝜆 

for the X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the 

6-31G(d,p) basis-set.  
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Figure S7 Variation of the Chirgwin-Coulson coefficients in function of the external multiplier 𝜆 

for the X-ray constrained ELMO-VB calculations performed at ambient and high pressures with the 

cc-pVDZ basis-set.  

 

 

 

 

 


