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Abstract

We consider a class of nonlocal viscous Cahn–Hilliard equations with Neu-
mann boundary conditions for the chemical potential. The double-well potential
is allowed to be singular (e.g. of logarithmic type), while the singularity of the
convolution kernel does not fall in any available existence theory under Neumann
boundary conditions. We prove well-posedness for the nonlocal equation in a suit-
able variational sense. Secondly, we show that the solutions to the nonlocal equation
converge to the corresponding solutions to the local equation, as the convolution
kernels approximate a Dirac delta. The asymptotic behaviour is analyzed by means
ofmonotone analysis andGamma convergence results, both when the limiting local
Cahn–Hilliard equation is of viscous type and of pure type.
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1. Introduction

The aim of the present paper is to study the well-posedness and the asymptotic
behaviour as ε ↘ 0 of a family of nonlocal viscous Cahn–Hilliard equations with
Neumann boundary conditions in the following form:

∂t uε − �με = 0 in (0, T ) × �, (1.1)

με = τε∂t uε + (Kε ∗ 1)uε − Kε ∗ uε + � ′(uε) − gε in (0, T ) × �, (1.2)

∂nμε = 0 on (0, T ) × ∂� , (1.3)

uε(0) = u0,ε in �, (1.4)

where � is a smooth bounded domain in R
d (d = 2, 3), T > 0 is a fixed final

time, and � ′ represents the derivative a double-well potential. Moreover, ε > 0
is a fixed parameter, τε > 0 is a positive viscosity coefficient, Kε : � × � → R

is a suitable symmetric convolution kernel, and gε represents a distributed forcing
term. The variables uε and με are referred to as “order parameter” and “chemical
potential”, respectively.

The evolution problem (1.1)–(1.4) is related to the gradient flow (in the H−1-
metric) associated to a nonlocal free energy functional of the form

Eε(ϕ) = 1

4

∫
�

∫
�

Kε(x, y)|ϕ(x) − ϕ(y)|2 dx dy +
∫

�

�(ϕ(x)) dx . (1.5)

Indeed, the contributions (Kε∗1)uε−Kε∗uε+� ′(uε) in the definition of the chem-
ical potential are obtained exactly from the (sub)differentiation of the functional
(1.5). The extra term τε∂t uε represents on the other side a viscosity regularization,
acting on the dissipation of the system.

The analysis of nonlocal models dates back to the early 90’s, when Giacomin
and Lebowitz investigated, in their seminal paper [36], a hydrodynamic limit of a
microscopic model for a d-dimensional lattice gas evolving via a Poisson nearest-
neighbor process. In that work, the authors derived a free energy functional in
nonlocal form (1.5), and proposed the corresponding gradient flow to model phase-
change in binary alloys. The viscous regularization in the definition of the chem-
ical potential was originally introduced in the context of the local Cahn–Hilliard
equation by Novick–Cohen in [50]. The mathematical literature on the nonlocal
Cahn–Hilliard equation is widely developed: we can mention, among many others,
the contributions [2,5,27,28,39] and the references therein.

The rapidly growing attention to the nonlocal Cahn–Hilliard equation is due
on the one hand to its microscopic justification, and on the other hand to its con-
nection with the corresponding local model. Indeed, at least in a formal way, the
nonlocal dynamics approach the local ones when the family of interaction kernels
(Kε)ε concentrates around the origin. The main issue we assess in this paper is
the asymptotic convergence of solutions to the nonlocal system (1.1)–(1.4) to the
corresponding local one, as the data (gε)ε approximate a new source g and the
coefficients τε converge to a certain new viscosity parameter τ . The local form of
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the limiting Cahn–Hilliard equation reads is

∂t u − �μ = 0 in (0, T ) × �, (1.6)

μ = τ∂t u − �u + � ′(u) − g in (0, T ) × �, (1.7)

∂nu = 0 and ∂nμ = 0 on (0, T ) × ∂� , (1.8)

u(0) = u0 in �, (1.9)

where τ � 0 is the limiting viscosity parameter, which is allowed to vanish. The
choices τ > 0 and τ = 0 correspond to the viscous case and pure case, respectively.

As its nonlocal counterpart, the local Cahn–Hilliard equation is related to the
gradient flow in the H−1 metric of the Ginzburg-Landau free energy functional

E(ϕ) = 1

2

∫
�

|∇ϕ(x)|2 dx +
∫

�

�(ϕ(x)) dx , (1.10)

in the sense that the contribution−�u+� ′(u) results from the subdifferentiation of
E . Again, the viscosity term τ∂t u acts on the dissipation of the system: if τ = 0, one
recovers the so-called pure Cahn–Hilliard equation, while if τ > 0 one obtains the
viscous Cahn–Hilliard equation. In our analysis, the nonlocal viscosity coefficients
(τε)ε are assumed to be strictly positive, while the local coefficient τ is allowed to
vanish.

The local Cahn–Hilliard equation was first proposed in [9] in relation to phase-
change in metallic alloys and to spinodal decomposition (see [44]). Nowadays, the
model is a widely used in various contexts such as diffuse interface modelling in
physics and biology, with several applications to tumor growth dynamics, image
processing, and population dynamics. From the mathematical point of view, the
local Cahn–Hilliard equation has been studied thoroughly in the last decades, also
in much more complex settings. We mention, among many others, the works [11–
13,15,16,18,37,43] on well-posedness also under more general dynamic boundary
conditions. Some studies on nonlinear viscosity contributions have been proposed
in [6,49,56].Wealso recall the contributions [14,19,20,23,40] dealingwith optimal
control problems, as well as [17,22,38] on asymptotics. The local Cahn–Hilliard
equation has also been widely studied recently in connection to diffuse-interface
models for fluid-dynamics: we refer to [1,3,10,29,30] and the references therein.

As has already been mentioned, the behaviour of the nonlocal Cahn–Hilliard
equation “approaches” the one of the local equation when the family of convolution
kernels is sufficiently peaked around 0. The study of nonlocal-to-local convergence
of energy functionals in relation to Sobolev spaces theory had been carried out
originally by by Bourgain et al. [7,8], and by Mazy’a and Shaposhnikova [45,46].
This asymptotic analysis was also extended by Ponce [51,52], with studies on
Gamma convergence and nonlocal Poincaré-type inequalities. A first criterion for
the convergence of gradient flows from the Gamma-convergence of the respective
energies was given by Sandier and Serfaty [55] in a abstract setting and for smooth
energies, with applications to Ginzburg-Landau functionals (see also [42,53,57]
for further details in this direction).
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In particular, the above-mentioned results [51,52] provide the pointwise con-
vergence

lim
ε↘0

Eε(ϕ) = E(ϕ) ∀ϕ ∈ H1(�)

as soon as the convolution kernels (Kε)ε are chosen as

Kε : � × � → [0,+∞) , Kε(x, y) := ρε(|x − y|)
|x − y|2 , x, y ∈ �, (1.11)

where (ρε)ε is a suitable family of mollifiers converging to a Dirac delta.
Building upon these variational convergences, in a previous contribution of

ours [24] we rigorously derived some nonlocal-to-local asymptotics of solutions to
Cahn–Hilliard equations in the setting of periodic boundary conditions and with no
viscosity effects. The periodic setting adopted in [24] was fundamental to overcome
the singular behaviour of the convolution kernel (1.11). Indeed, kernels in the form
(1.11) do not possess anyW 1,1 regularity (see for example [21, Remark 1]), which is
the usual minimum requirement in the whole literature on nonlocal Cahn–Hilliard
systems. This resulted in the impossibility of framing the nonlocal problem in any
available existence theory, and required an ad-hoc analysis. In this direction, the
arguments strongly relied on the assumption of periodic boundary conditions.

The results in [24] (see also [47] for a simpler case) are very satisfactory since
they provide a novel contribution in the direction of local asymptotics of Cahn–
Hilliard equations. Nevertheless, the most natural choice of boundary conditions in
phase-field modelling if of no-flux type. Consequently, it is crucial in this direction
to generalize the periodic framework to other settings more suited for applications.
The nonlocal-to-local convergence of pure Cahn–Hilliard equations with Neumann
boundary conditions was, to the authors’ knowledge, still an open problem. The
main novelty of the present paper is to finally extend some rigorous nonlocal-to-
local convergence results for Cahn–Hilliard equations to the case of homogeneous
Neumann boundary conditions.

Let us briefly describe now the main difficulties arising in the case of Neumann
boundary conditions. The first hurdle has been already anticipated and concerns the
regularity of the convolution kernel. Indeed, in the form (1.11) the kernel Kε is not
W 1,1, and not even L1 in dimensiond = 2. This results in the necessity of rigorously
formulate the nonlocal problem without relying on any available existence theory.
The main idea here is that even if the convolution operator ϕ 
→ Kε ∗ ϕ may be
ill-defined under (1.11), the nonlocal operator Bε : ϕ 
→ (Kε ∗ 1)ϕ − (Kε ∗ ϕ)

appearing in the equation (1.2) can be rigorously defined instead.
The second main problem consists in the (im)possibility of proving space regu-

larity for the solutions to the nonlocal equation (i.e. when ε > 0 is fixed). If the con-
volution kernel is W 1,1 this follows directly from the properties of the convolution,
i.e. formally shifting the gradient operator on the kernel as∇(Kε∗uε) = (∇Kε)∗uε.
However, for singular kernels as in (1.11) this procedure fails. Under periodic
boundary conditions (i.e. working on the d-dimensional flat torus) the main idea
to overcome this problem was to use a certain integration-by-parts formula, which
hinges in turn on some compatibility conditions between the convolution operator
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and the Laplace operator. More specifically, in [24] the periodic setting allowed to
prove a (formal) relation in the form ∇(Kε ∗ uε) = Kε ∗ ∇uε, from which one
could deduce H1-regularity of the nonlocal solutions. Nevertheless, under Neu-
mann boundary conditions (i.e. working on a bounded domain � ⊂ R

d ), in order
to prove an analogous compatibility relation one is forced to extend the nonlocal so-
lution uε to 0 outside �. Clearly, H1-regularity in � does not imply H1-regularity
on the whole R

d for such extension. This gives rise to several extra boundary
contribution terms which blow up as the approximating parameter vanishes.

The main consequence is that in the case of Neumann boundary conditions one
loses any H1-estimate on the nonlocal solutions. It follows that the natural varia-
tional setting to frame the nonlocal problem (1.1)–(1.4) is not the usual one given by
the triple (H1(�), L2(�), H1(�)∗), but instead an abstract one (Vε, L2(�), V ∗

ε ),
depending on ε, where Vε represents, roughly speaking, the domain of the nonlocal
energy contribution in (1.5). As the inclusion Vε ↪→ L2(�) is not compact, one
loses any reasonable compactness property on the approximated solutions in order
to pass to the limit in the nonlinearity. This issue is overcome by the introduction of
the viscosity term τε∂t uε. Indeed, if τε is strictly positive one can show “by hand” a
strong convergence in L2(�) for some regularized solutions, even without relying
on any H1 estimates.

The third main problem concerns the boundary conditions of Neumann type for
u in the limiting local problem. Indeed, while the nonlocal system is of order 2 in
space, hence it only needs one boundary condition (for the chemical potential), the
limiting local equation is of order 4 in space and requires two boundary conditions
instead: one forμ and one for u. One of themajor point is to understandwhich is the
natural extra boundary condition for u, and how this one emerges when ε ↘ 0. It is
clear that the Neumann boundary condition for the chemical potential is preserved
by the local asymptotics. On the other hand, the scenario for u is more subtle: the
answer is implicitly given by studying the Gamma convergence of the nonlocal
energies. Indeed, in [52] Ponce proved a Gamma convergence result in the form

lim
ε↘0

1

4

∫
�

∫
�

Kε(x, y)|ϕε(x) − ϕε(y)|2 dx dy

=
{

1
2

∫
�

|∇ϕ(x)|2 dx if ∇ϕ ∈ L2(�) ,

+∞ otherwise ,

whenever ϕε → ϕ in L2(�). Note that the limiting energy contribution on the right-
hand side is the potential associated to the negative Laplacian with homogeneous
Neumann boundary conditions. Hence, this implicitly reveals that the “correct”
choice of boundary condition arising for u in the local limit is of Neumann type.
Such idea is indeed proved rigorously performing the local asymptotics on the
variational formulation for the nonlocal problem (1.1)–(1.4). The advantage of
working using a variational approach is that the boundary conditions are implicitly
contained in the variational formulation itself, and they have not to be tracked
explicitly performing a pointwise analysis on the boundary.

We are now in a position to present the two main theorems that we prove in this
paper.
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The first main result is the well-posedness for the nonlocal system (1.1)–(1.4)
with Neumann boundary conditions when ε > 0 is fixed. Here, the viscosity co-
efficient τε is assumed to be strictly positive, the convolution kernel is of the form
(1.11), and the double-well potentialmaybe singular. In particular,we include in our
analysis all the typical examples of polynomial, logarithmic, and double-obstacle
potentials:

�pol(r) := 1

4
(r2 − 1)2 , r ∈ R ,

�log(r) := ϑ

2
[(1 + r) ln(1 + r) + (1 − r) ln(1 − r)] − ϑ0

2
,

r ∈ (−1, 1) , 0 < ϑ < ϑ0 ,

�doub(r) :=
{

c(1 − r2) if r ∈ [−1, 1] ,

+∞ otherwise ,
c > 0 .

In view of this, the derivative of � is interpreted as a subdifferential in the sense of
convex analysis, and equation (1.2) becomes a differential inclusion. The proof
of well-posedness is based on a suitable approximation of the problem, given
by a Yosida-type regularization on the nonlinearity and an additional elliptic lo-
cal regularization in the chemical potential. A novel abstract variational setting
(Vε, L2(�), V ∗

ε ) is introduced and uniform estimates on the approximated solu-
tions are obtained. Using the viscous contribution in the chemical potential, strong
compactness in L2 is recovered even with no H1-estimates on the solutions. Strong
convergences are then proved and a passage to the limit provides solutions to the
original nonlocal problem.

The second main result of this paper is the asymptotic analysis of the nonlocal
system as ε ↘ 0. Here, we assume that the forcing terms (gε)ε converge to a certain
source g, and that the viscosity coefficients satisfy

lim
ε↘0

τε = τ .

Here, the coefficient τ is allowed to be nonnegative: when τ > 0 we obtain then
nonlocal-to-local convergence of viscous Cahn–Hilliard equations, while if τ =
0 we obtain the local asymptotics of nonlocal viscous Cahn–Hilliard equations
with vanishing viscosities. The proof is based on uniform estimates in ε on the
nonlocal solutions. Here, the strong compactness in L2 is obtained by proving an
ad-hoc compactness inequality involving the family on functional spaces (Vε)ε>0.
The identification of the local limit −�u is obtained through the combination of
monotone analysis techniques and Gamma-convergence results for the nonlocal
energy functional (1.5).

We conclude by highlighting some possible applications of our results to phase-
field modelling. The relevance of nonlocal-to-local convergence of Cahn–Hilliard
equations with Neumann boundary conditions is significant: among many others,
we can mention here possible connections with optimal control of tumor growth
models. In the recent years, phase-field models have been widely used in tumor
growth dynamics, both in the local case (see [25,31–35] and the references therein)
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and in the nonlocal case (see [26] and [48,54] for nonlocal Cahn–Hilliard equa-
tions with reaction terms). One of the main advantages of the nonlocal setting is
that regularity results on the solutions are usually easier to obtain, not needing to
rely on elliptic regularity properties. As a consequence, the availability of rigorous
nonlocal-to-local convergence results would give the opportunity to approximate
solutions to local phase-field systemswith the solutions to the corresponding nonlo-
cal ones, which are indeed simpler to handle on themathematical side. For example,
refined regularity on the solutions are fundamental when dealing with optimal con-
trol problems, in order to write first-order conditions for optimality. Hence, possible
outcomes of nonlocal-to-local asymptotics concern refined analysis of optimal con-
trol of phase-field systems, in terms of passing to the (local) limit within first-order
conditions for optimality for the nonlocal system.

The paper is structured in the following way: in Sect. 2 we state the assump-
tions, and we introduce the abstract variational settings. Section 3 is devoted to
present the two main results. Section 4 contains the proof of well-posedness of the
nonlocal system (1.1)–(1.4), while Sect. 5 focuses on the proof of nonlocal-to-local
asymptotics.

2. Mathematical Setting

2.1. Assumptions

Throughout the paper, � is a smooth bounded domain in R
d , with d = 2, 3,

and T > 0 is a fixed final time. We will use the notation Qt := (0, t) × � for
every t ∈ (0, T ], and set Q := QT , and 
 := (0, T ) × ∂�. Moreover, (ρε)ε>0 is
a family of mollifiers with the following properties (see [51,52]):

ρε : R → [0,+∞) , ρε ∈ L1
loc(R) , ρε(r)=ρε(−r) ∀ r ∈R , ∀ ε>0 ;∫ +∞

0
ρε(r)rd−1 dr = 2

Cd
∀ ε > 0 ;

lim
ε↘0

∫ +∞

δ

ρε(r)rd−1 dr = 0 ∀ δ > 0 ,

whereCd := ∫
Sd−1 |e1 ·σ |2 dHd−1(σ ). We define the family of convolution kernels

as

Kε : � × � → [0,+∞) , Kε(x, y) := ρε(|x − y|)
|x − y|2 ,

for a.e. x, y ∈ �, ε > 0 . (2.1)

Throughout the paper,γ : R → 2R is amaximalmonotone graphwith 0 ∈ γ (0) and
� : R → R isC�-Lipschitz-continuouswith�(0) = 0. It follows in particular that
there exists a proper, convex, lower semicontinuous function γ̂ : R → [0,+∞]
with γ̂ (0) = 0 and ∂γ̂ = γ in the sense of convex analysis. Similarly, we set
�̂(s) := ∫ s

0 �(r) dr for every s ∈ R.With these notations, the double-well potential
� entering the system is represented by the sum γ̂ + �̂.
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2.2. Variational Setting and Preliminaries

We introduce the functional spaces

H := L2(�) , V := H1(�) , W :=
{
ϕ ∈ H2(�) : ∂nϕ = 0 a.e. on ∂�

}
,

endowed with their natural norms, and we identify H with its dual space in the
usual way, so that

W ↪→ V ↪→ H ↪→ V ∗ ↪→ W ∗

where all the inclusions are continuous, dense, and compact. The Laplace operator
with homogeneous Neumann conditions will be intended both as a bounded linear
operator

−� : V → V ∗ , 〈−�ϕ, ζ 〉V :=
∫

�

∇ϕ(x) · ∇ζ(x) dx , ϕ, ζ ∈ V ,

and as unbounded linear operator on H with domain W . For every ϕ ∈ V ∗, we use
the notation ϕ� := 1

|�| 〈ϕ, 1〉V for the mean value on �. As a direct consequence
of the Poincaré-Wirtinger inequality it holds that

−� : {ϕ ∈ V : ϕ� = 0} → {ϕ ∈ V ∗ : ϕ� = 0}
is a linear isomorphism. We will denote its inverse by

N : {ϕ ∈ V ∗ : ϕ� = 0} → {ϕ ∈ V : ϕ� = 0} .

For every ε > 0, we set

Vε :=
{
ϕ ∈ L2(�) :

∫
�

∫
�

Kε(x, y)|ϕ(x) − ϕ(y)|2 dx dy < +∞
}

,

Eε(ϕ) := 1

4

∫
�

∫
�

Kε(x, y)|ϕ(x) − ϕ(y)|2 dx dy , ϕ ∈ Vε .

Denoting by aε : Vε × Vε → R the natural bilinear form associated to Eε,

aε(ϕ, ψ) := 1

2

∫
�

∫
�

Kε(x, y)(ϕ(x) − ϕ(y))(ψ(x) − ψ(y)) dx dy, ϕ, ψ ∈ Vε,

we also define

Wε:=
{
ϕ ∈ Vε : ∃ f ∈ L2(�) : aε(ϕ, ψ) =

∫
�

f (x)ψ(x) dx for all ψ ∈ Vε

}
,

Bε(ϕ)(x) :=
∫

�

Kε(x, y)(ϕ(x) − ϕ(y)) dy , for a.e. x ∈ �, ϕ ∈ Wε .

Let us note that with such definitions the symmetry of Kε yields

(Bε(ϕ), ψ)H = 1

2

∫
�

∫
�

Kε(x, y)(ϕ(x)

−ϕ(y))(ψ(x) − ψ(y)) dx dy

= aε(ϕ, ψ) ∀ϕ,ψ ∈ Wε .
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We point out that Eε : Vε → [0,+∞) is convex and Bε : H → H is a linear
unbounded operator with domain Wε. Additionally, we define the maps

‖ · ‖Vε : Vε → [0,+∞) , ‖ · ‖Wε : Wε → [0,+∞)

as

‖ϕ‖Vε :=
√

‖ϕ‖2H + 2Eε(ϕ) , ‖ϕ‖Wε :=
√

‖ϕ‖2H + ‖Bε(ϕ)‖2H ,

and the bilinear forms

(·, ·)Vε : Vε × Vε → [0,+∞) , (·, ·)Wε : Wε × Wε → [0,+∞)

as

(ϕ1, ϕ2)Vε := (ϕ1, ϕ2)H

+ 1

2

∫
�

∫
�

Kε(x, y)(ϕ1(x) − ϕ1(y))(ϕ2(x) − ϕ2(y)) dx dy ,

(ϕ1, ϕ2)Wε := (ϕ1, ϕ2)H + (Bε(ϕ1), Bε(ϕ2))H .

We collect some properties in the next lemma.

Lemma 1. The following properties hold for every ε > 0:

(1) The spaces Vε and Wε, endowed with the norms ‖ ·‖Vε and ‖ ·‖Wε , respectively,
are complete.

(2) The bilinear forms (·, ·)Vε and (·, ·)Wε are scalar products on Vε and Wε in-
ducing the norms ‖ · ‖Vε and ‖ · ‖Wε , respectively. In particular, Vε and Wε are
Hilbert spaces.

(3) For every σ ∈ (0, 1] we have C0,σ (�) ↪→ Wε continuously, and there exists
Cε,σ > 0 such that

Bε(ϕ) ∈ L∞(�) , ‖Bε(ϕ)‖L∞(�) � Cε,σ ‖ϕ‖C0,σ (�) ∀ϕ ∈ C0,σ (�) .

(4) The following inclusions are continuous and dense:

Wε ↪→ Vε ↪→ H .

Moreover, Bε : D(Bε) ⊂ H → H, with D(Bε) = Wε, is maximal monotone
on H.

(5) The unbounded linear operator Bε : H → H extends to a bounded linear
operator Bε : Vε → V ∗

ε , and it holds that

‖Bε(ϕ)‖V ∗
ε

� ‖ϕ‖Vε ∀ϕ ∈ Vε .

Moreover, such extension coincides with the linear operator Aε : Vε → V ∗
ε

associated to the bilinear form aε, defined as

Aε(ϕ) := aε(ϕ, ·) , ϕ ∈ Vε .

(6) The map Eε : Vε → [0,+∞) is of class C1 and DEε = Bε : Vε → V ∗
ε .
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Proof. Step 1: properties (1)–(2). It is clear that ‖ · ‖Vε and ‖ · ‖Wε are norms on Vε

and Wε, respectively. Let now (yn)n be a Cauchy sequence in Vε: then in particular
it is a Cauchy sequence in H , so there exists y ∈ H such that yn → y in H . By
lower semicontinuity it follows that y ∈ Vε as well, and that yn → y in Vε. A
similar argument shows that Wε is complete as well. A direct computation shows
that (·, ·)Vε and (·, ·)Wε are scalar products inducing the norms above.

Step 2: property (3). For every ϕ ∈ C0,σ (�), we have

|Bε(ϕ(x))| �
∫

�

ρε(|x − y|) |ϕ(x) − ϕ(y)|
|x − y|2 dy � ‖ϕ‖C0,σ (�)

∫
�

ρε(|x − y|)
|x − y|2−σ

dy,

where∫
�

ρε(|x − y|)
|x − y|2−σ

dy =
∫

�−x

ρε(|z|)
|z|2−σ

dz �
∫
Rd

ρε(|z|)
|z|2−σ

dz =
∫

{|z|�1}
ρε(|z|)
|z|2−σ

dz

+
∫

{|z|>1}
ρε(|z|)
|z|2−σ

dz

� max
|r |�1

ρε(r)

∫
{|z|�1}

1

|z|2−σ
dz +

∫
{|z|>1}

ρε(|z|) dz .

The first term on the right-hand side is finite since 2 − σ < d, while the second
term can be written as

|Sd−1|
∫ +∞

1
ρε(r)rd−1 dr < +∞

by the assumptions on (ρε)ε. The thesis follows by the arbitrariness of x ∈ �.
Step 3: property (4). First of all the fact that the inclusionVε ↪→ H is continuous

is trivial by the definition of ‖·‖Vε . Second, for ϕ ∈ Wε, a direct computation shows
that

Eε(ϕ) = 1

4

∫
�

∫
�

Kε(x, y)|ϕ(x) − ϕ(y)|2 dx dy

= 1

2

∫
�

Bε(ϕ(x))ϕ(x) dx

� 1

2
‖Bε(ϕ)‖H ‖ϕ‖H ,

so that Wε ↪→ Vε continuously. The density of Vε in H follows from the density
of C0,σ (�) in H and the fact that C0,σ (�) ⊂ Wε ⊂ Vε.

The monotonicity of Bε is a direct consequence of its definition. We proceed
by showing that it is maximal monotone. Let ϕ ∈ H . For every λ, δ > 0 the elliptic
problem {

ϕδλ + λ�2ϕδλ + δBε(ϕδλ) = ϕ in �,

∂nϕδλ = ∂n�ϕδλ = 0 on ∂� ,
(2.2)

admits a unique weak solution ϕδλ ∈ W ↪→ C0,1/4(�) ↪→ Wε, in the sense that

(ϕδλ, ψ)H + λ(�ϕδλ,�ψ)H + δ(Bε(ϕδλ), ψ)H = (ϕ, ψ)H ∀ψ ∈ W .
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Taking arbitrary ψ ∈ C∞
c (�) in this variational formulation, we infer that

�2ϕδλ ∈ H in the sense of distributions. Consequently, the classical elliptic regu-
larity theory yields also that ϕδλ ∈ H4(�), with ∂n�ϕδλ = 0 almost everywhere
on ∂�. Fix now δ > 0. Testing (2.2) by ϕδλ and using the monotonicity of Bε and
the Young inequality, it follows that

‖ϕδλ‖2H + λ‖�ϕδλ‖2H + 2δEε(ϕδλ) � 1

2
‖ϕ‖2H + 1

2
‖ϕδλ‖2H ∀ λ > 0 .

Thus, there exists a positive constant M such that we have

‖ϕδλ‖2Vε
+ λ‖�ϕδλ‖2H � M ∀ λ > 0 .

Noting that for all ζ ∈ Vε, by the symmetry of the kernel Kε and the Hölder
inequality we have

(Bε(ϕδλ), ζ )H = 1

2

∫
�

∫
�

Kε(x, y)(ϕδλ(x) − ϕδλ(y))(ζ(x) − ζ(y)) dx dy

� 2‖ϕδλ‖Vε‖ζ‖Vε ,

the estimates just proved ensure also that

‖Bε(ϕδλ)‖V ∗
ε

� M .

We infer that there exist ϕδ ∈ Vε and ηδ ∈ V ∗
ε such that, as λ ↘ 0, λϕδλ → 0

in W , ϕδλ ⇀ ϕδ in Vε, and Bε(ϕδλ) ⇀ ηδ in V ∗
ε . It follows that

(ϕδ, ζ )H + δ〈ηδ, ζ 〉V ∗
ε ,Vε = (ϕ, ζ )H ∀ ζ ∈ Vε .

Now, for all ζ ∈ Vε, by the symmetry of Bε and the bilinearity of aε if holds
that

〈ηδ, ζ 〉V ∗
ε ,Vε = lim

λ→0
(Bε(ϕδλ), ζ )H = lim

λ→0
aε(ϕδλ, ζ ) = aε(ϕδ, ζ ) .

This shows that

δaε(ϕδ, ζ ) = (ϕ − ϕδ, ζ )H ∀ ζ ∈ Vε ,

so we conclude that ϕδ ∈ Wε and ηδ = Bε(ϕδ). Hence,

ϕδ + δBε(ϕδ) = ϕ ∀ δ > 0 . (2.3)

This proves that Bε is a maximal monotone operator on H (see [4, Thm. 2.2]).
Testing now (2.3) by ϕδ and using Young inequality it is immediate to see that

1

2
‖ϕδ‖2H + δaε(ϕδ, ϕδ) � 1

2
‖ϕ‖2H . (2.4)
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Let us note that since we have just proved that ϕδ ∈ Wε, in particular we have
that Bε(ϕδ) ∈ H . Hence, if additionally ϕ ∈ Vε, testing (2.3) by Bε(ϕδ) and using
Hölder and Young inequalities yields

2Eε(ϕδ) + δ‖Bε(ϕδ)‖2H = aε(ϕδ, ϕδ) + δ‖Bε(ϕδ)‖2H = (Bε(ϕδ), ϕ)H

= 1

2

∫
�

∫
�

Kε(x, y)(ϕδ(x) − ϕδ(y))(ϕ(x) − ϕ(y)) dx dy

� 2
√

Eε(ϕ)
√

Eε(ϕδ) � Eε(ϕδ) + Eε(ϕ) . (2.5)

We deduce that, as δ ↘ 0, δBε(ϕδ) → 0 in H . Hence, by (2.3), ϕδ → ϕ in H . By
combining (2.4) and (2.5), we obtain that ‖ϕδ‖Vε � ‖ϕ‖Vε for every δ > 0. As Vε

is uniformly convex, this implies that ϕδ → ϕ in Vε, so that Wε ↪→ Vε densely.
Step 4: property (5). For every ϕ ∈ Wε and ζ ∈ Vε, by the Hölder inequality

we have

(Bε(ϕ), ζ )H = 1

2

∫
�

∫
�

Kε(x, y)(ϕ(x) − ϕ(y))(ζ(x) − ζ(y)) dx dy

� 2
√

Eε(ϕ)
√

Eε(ζ ) .

This implies that for every ϕ ∈ Wε, the operator

ζ 
→ (Bε(ϕ), ζ )H , ζ ∈ Vε ,

is linear and continuous on Vε, and such that

‖ζ 
→ (Bε(ϕ), ζ )H ‖V ∗
ε

� ‖ϕ‖Vε ∀ϕ ∈ Wε .

Since Wε ↪→ Vε is dense, we deduce that Bε extends to a bounded linear operator
from Vε to V ∗

ε , and the thesis follows.
Step 5: property (6). We observe that Eε : Vε → [0,+∞) is convex and lower

semicontinuous. A direct computation also shows that DEε = Bε in the sense of
Gâteaux: since Bε : Vε → V ∗

ε is linear and continuous, the thesis follows. ��
The next lemma shows some boundedness properties of the family (Bε)ε, uni-

formly in ε.

Lemma 2. The following inclusion is continuous:

V ↪→ Vε ,

and there exists a constant C, independent of ε, such that

‖ϕ‖Vε � C‖ϕ‖V ∀ϕ ∈ V .

For every ϕ, ζ ∈ V , if holds that

lim
ε↘0

Eε(ϕ) = 1

2

∫
�

|∇ϕ(x)|2dx , lim
ε↘0

〈Bε(ϕ1), ϕ2〉Vε =
∫

�

∇ϕ1(x)·∇ϕ2(x) dx .

(2.6)
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Finally, for every ϕ ∈ H and for every sequence (ϕε)ε>0 ⊂ H with ϕε → ϕ in H,
we have

lim inf
ε↘0

Eε(ϕε) � E(ϕ) :=
{

1
2

∫
�

|∇ϕ(x)|2 dx if ϕ ∈ V ,

+∞ if ϕ ∈ H \ V .

In other words, (Eε)ε>0 �-converges to E with respect to the norm-topology of H.

Proof. By [52], there is a constant C > 0 independent of ε such that

Eε(ϕ) � C‖∇ϕ‖2H ∀ϕ ∈ V ,

from which the first part of the thesis follows directly. The first limit in (2.6) is also
a direct consequence of [52], the second limit in (2.6) can be proved by choosing
ϕ = ϕ1 ± ϕ2 in the first limit.

Finally, by the �-convergence result in [51, Thm. 8], we know that

lim inf
ε↘0

Eε(ϕε) � sc−Ẽ(ϕ) ,

where sc−Ẽ is the lower semicontinuous envelope of

Ẽ : H → [0,+∞] , Ẽ(ϕ) :=
{

1
2

∫
�

|∇ϕ(x)|2 dx if ϕ ∈ C1(�) ,

+∞ otherwise ,

i.e.

sc−Ẽ(ϕ) = inf
{
lim inf
n→∞ Ẽ(ζn) : ζn → ϕ in H

}
.

It is a standard matter to check that sc−Ẽ = E , so that the thesis follows. ��
The last result of this section is a compactness criterion involving the family

of operators (Eε)ε. The following lemma is fundamental as we do not have any
compactness properties for the inclusions of the spaces Vε and Wε. For the proof
we refer to [24, Lemma. 4].

Lemma 3. For every δ > 0 there exist two constants Cδ > 0 and εδ > 0 such that,
for every sequence (ϕε)ε∈(0,εδ) ⊂ Vε if holds that

‖ϕε1 − ϕε2‖2H � δ
(
Eε1(ϕε1) + Eε2(ϕε2)

) + Cδ‖ϕε1 − ϕε2‖2V ∗ ∀ ε1, ε2 ∈ (0, εδ) .

3. Main Results

Before stating our main results, we recall that the local Cahn–Hilliard equation
is well-posed in the following sense:
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Theorem 3.1. Let τ � 0 and

u0 ∈ V , γ̂ (u0) ∈ L1(�) , (u0)� ∈ Int D(γ ) , (3.1)

g ∈ L2(0, T ; H) , g ∈ H1(0, T ; H) if τ = 0 . (3.2)

Then, there exists a triple (u, μ, ξ) such that

u ∈ H1(0, T ; V ∗) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) , τu ∈ H1(0, T ; H) ,

(3.3)

μ ∈ L2(0, T ; V ) , τμ ∈ L2(0, T ; W ) , (3.4)

ξ ∈ L2(0, T ; H) , ξ ∈ γ (u) a.e. in Q , (3.5)

∂t u − �μ = 0 in V ∗ , a.e. in (0, T ) , (3.6)

μ = τ∂t u − �u + ξ + �(u) − g a.e. in Q , (3.7)

u(0) = u0 a.e. in � . (3.8)

Moreover, the solution component u is unique, and the solution components μ and
ξ are unique if γ is single-valued.

Proof. We refer to [18] for a proof in a more general setting. ��
The first result of this paper is the well-posedness of the nonlocal viscous Cahn–

Hilliard equation complemented byNeumann boundary conditions for the chemical
potential.

Theorem 3.2. Let ε > 0 and τε > 0 be fixed. Then for every (u0,ε, gε) with

u0,ε ∈ Vε , γ̂ (u0,ε) ∈ L1(�) , (u0,ε)� ∈ Int D(γ ) , (3.9)

gε ∈ L2(0, T ; H) , (3.10)

there exists a triple (uε, με, ξε) such that

uε ∈ H1(0, T ; H) ∩ L∞(0, T ; Vε) ∩ L2(0, T ; Wε) , (3.11)

με ∈ L2(0, T ; W ) , (3.12)

ξε ∈ L2(0, T ; H) , ξε ∈ γ (uε) a.e. in Q , (3.13)

∂t uε − �με = 0 a.e. in Q , (3.14)

με = τε∂t uε + Bε(uε) + ξε + �(uε) − gε a.e. in Q , (3.15)

uε(0) = u0,ε a.e. in � . (3.16)

Furthermore, there exists a positive constant Mε such that, for every sets of data
(u1

0,ε, g1
ε ) and (u2

0,ε, g2
ε ) satisfying (3.9)–(3.10), with (u1

0,ε)� = (u2
0,ε)�, and for

every respective solutions (u1
ε, μ

1
ε, ξ

1
ε ) and (u2

ε, μ
2
ε, ξ

2
ε ) satisfying (3.11)–(3.16), it

holds

‖u1
ε − u2

ε‖2C0([0,T ];V ∗) + τε‖u1
ε − u2

ε‖2C0([0,T ];H)
+ ‖Eε(u

1
ε − u2

ε)‖L1(0,T )

� Mε

(
‖u1

0,ε − u2
0,ε‖2V ∗ + τε‖u1

0,ε − u2
0,ε‖2H + ‖g1

ε − g2
ε‖2L2(0,T ;V ∗)

)
.

In particular, the solution component uε is unique, and the solution components
με and ξε are unique if γ is single-valued.
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Our second contribution concerns the nonlocal-to-local convergence. In partic-
ular, we show that, under suitable assumptions on the initial data (u0,ε)ε and on the
forcing terms (gε)ε, if the viscosities (τε)ε converge to a coefficient τ � 0, then
the solutions to the respective viscous nonlocal Cahn–Hilliard equations converge,
in suitable topologies, to the solutions to the limiting local Cahn–Hilliard equa-
tion with viscosity parameter τ � 0. Note that the viscosities (τε)ε are required
to be strictly positive for all ε > 0, whereas the limiting viscosity parameter τ

is also allowed to vanish. Hence, such result has a duplex formulation. Indeed, if
τ > 0 this shows the asymptotic convergence of the nonlocal viscous equation to
the corresponding local viscous equation, while if τ = 0 this proves the approx-
imability of solutions to the local pure equation by solutions to nonlocal equations
with vanishing viscosities.

Theorem 3.3. Assume that

τ � 0 , (τε)ε>0 ⊂ (0,+∞) , lim
ε↘0

τε = τ .

Let the data (u0, g) satisfy (3.1)–(3.2), and let the family (u0,ε, gε)ε>0 satisfy (3.9)–
(3.10) for all ε > 0. Assume also that there exists ε0 > 0 such that

sup
ε∈(0,ε0)

(
‖u0,ε‖2Vε

+ ‖γ̂ (u0,ε)‖L1(�)

)
< +∞ , (3.17)

(gε)ε∈(0,ε0) ⊂ H1(0, T ; H) and sup
ε∈(0,ε0)

‖gε‖2H1(0,T ;H)
< +∞ if τ = 0 ,

(3.18)

∃ [a0, b0] ⊂ Int D(γ ) : a0 � (u0,ε)� � b0 ∀ ε ∈ (0, ε0) , (3.19)

u0,ε ⇀ u0 in H as ε ↘ 0 , gε ⇀ g in L2(0, T ; H) as ε ↘ 0 . (3.20)

Let (uε, με, ξε)ε∈(0,ε0) be a family of solutions to (3.11)–(3.16) corresponding to the
data (u0,ε, gε) and viscosity τε, where uε is uniquely determined. Then, there exists
a solution (u, μ, ξ) to (3.3)–(3.8) corresponding to the data (u0, g) and viscosity
τ , where u is uniquely determined, such that, as ε ↘ 0,

uε → u in C0([0, T ]; H) ,

∂t uε ⇀ ∂t u in L2(0, T ; V ∗) ,

∂t uε ⇀ ∂t u in L2(0, T ; H) if τ > 0 ,

τε∂t uε → 0 in L2(0, T ; H) if τ = 0 ,

με ⇀ μ in L2(0, T ; V ) ,

με ⇀ μ in L2(0, T ; W ) if τ > 0 ,

ξε ⇀ ξ in L2(0, T ; H) .

4. Proof of Theorem 3.2

This section is devoted to the proof of well-posedness of the nonlocal viscous
Cahn–Hilliard equation. Throughout the section, ε > 0 and τε > 0 are fixed.
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4.1. Approximation

For every λ > 0, let γλ : R → R be the Yosida approximation of γ , having
Lipschitz constant 1/λ, and set γ̂λ(s) := ∫ s

0 γλ(r) dr for every s ∈ R. We consider
the approximated problem

∂t u
λ
ε − �μλ

ε = 0 in Q , (4.1)

μλ
ε = τε∂t u

λ
ε − λ�uλ

ε + Bε(u
λ
ε ) + γλ(u

λ
ε ) + �(uλ

ε ) − gε in Q , (4.2)

∂nuλ
ε = ∂nμ

λ
ε = 0 in 
 , (4.3)

uλ
ε (0) = uλ

0,ε in �, (4.4)

where the initial datum uλ
0,ε satisfies

uλ
0,ε ∈ V , uλ

0,ε → u0,ε in H as ε ↘ 0 , (4.5)

sup
λ∈(0,λ0)

(
λ‖uλ

0,ε‖2V + ‖γ̂ (uλ
0,ε)‖L1(�)

)
< +∞ (4.6)

for a certain λ0 > 0 (possibly depending on ε). The existence of an approximating
sequence (uλ

0,ε)λ satisfying (4.5)–(4.6) is guaranteed by assumption (3.1): for ex-
ample, one can check that the classical elliptic regularization given by the unique
solution to the problem

{
uλ
0,ε − λ�uλ

0,ε = u0,ε in �,

∂nuλ
0,ε = 0 in ∂� ,

is a possible choice. The existence of a unique approximated solution (uλ
ε , μ

λ
ε ) for

every λ > 0 relies on a fixed-point argument, as in [24, Section 3.1]. For every

v ∈ L2(0, T ; W ), since W ↪→ C0, 14 (�) by the Sobolev embeddings, thanks to the
properties of Bε proved in Lemma 1 we have that Bε(v) ∈ L2(0, T ; H). Hence,
by the classical literature on the local viscous Cahn–Hilliard equation (see again
[18]), the map

�λ
ε : C0([0, T ]; H) ∩ L2(0, T ; W ) → H1(0, T ; H) ∩ L∞(0, T ; V )

∩L2(0, T ; W ) , �λ
ε : v 
→ vλ

ε ,

is well-defined, where (vλ
ε , wλ

ε ) is the unique solution to the local viscous Cahn–
Hilliard equation

∂tv
λ
ε − �wλ

ε = 0 in Q ,

wλ
ε = τε∂tv

λ
ε − λ�vλ

ε + γλ(v
λ
ε ) + �(vλ

ε ) − (gε − Bε(v)) in Q ,

∂nuλ
ε = ∂nμ

λ
ε = 0 in 
 ,

vλ
ε (0) = uλ

0,ε in � .

Now, arguing as in [24, Section 3.1], exploiting the Lipschitz-continuity of γλ,
the Sobolev embeddings, and the properties of Bε contained in Lemma 1, we
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deduce that there exist constants Lλ
ε > 0 and σ > 0 such that, for every v1, v2 ∈

C0([0, T ]; H) ∩ L2(0, T ; W ), we have

‖�λ
ε (v1) − �λ

ε (v2)‖C0([0,T ];H)∩L2(0,T ;W ) � Lλ
ε T σ ‖v1 − v2‖L2(0,T ;W ) .

It follows that one can choose T0 ∈ (0, T ] sufficiently small so that �λ
ε is a con-

traction on the respective functional spaces defined in (0, T0). Performing then a
classical patching argument (we refer again to [24, Section 3.1] for details), we
infer that �λ

ε has a unique fixed point on the whole interval [0, T ]. This proves that
the approximated system (4.1)–(4.4) has a unique solution

uλ
ε ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) , μλ

ε ∈ L2(0, T ; W ) .

4.2. Uniform Estimates

Weprovehere someuniformestimates independently ofλ and ε. Inwhat follows
we will always assume that λ ∈ [0, 1]. Moreover, ε > 0 and τε > 0 are still fixed.

We start by fixing t ∈ [0, T ], testing (4.1) with μλ
ε , (4.2) with ∂t uλ

ε , taking the
difference, and integrating the resulting equation on (0, t). We obtain∫

Qt

|∇μλ
ε(s, x)|2 dx ds + τε

∫
Qt

|∂t u
λ
ε (s, x)|2 dx ds

+ λ

2

∫
�

|∇uλ
ε (t, x)|2 dx + Eε(u

λ
ε (t, ·)) +

∫
�

(γ̂λ + �̂)(uλ
ε (t, x)) dx

� λ

2

∫
�

|∇uλ
0,ε(x)|2 dx + Eε(u

λ
0,ε) +

∫
�

(γ̂λ + �̂)(uλ
0,ε(x)) dx

+
∫

Qt

|gε(s, x)||∂t u(s, x)|dx ds.

From the fact that∫
�

γ̂λ(u
λ
0,ε(x)) dx �

∫
�

γ̂ (uλ
0,ε(x)) dx for every λ > 0,

using the uniform bound (4.6) as well as the Young inequality, we get∫
Qt

|∇μλ
ε(s, x)|2 dx ds + τε

2

∫
Qt

|∂t u
λ
ε (s, x)|2 dx ds

+ Eε(u
λ
ε (t, ·)) + λ

2

∫
�

|∇uλ
ε (t, x)|2 dx

� Cε + τε

4

∫
Qt

|∂t u
λ
ε (t, x)|2 dx dt + 1

τε

∫ T

0

∫
�

|gε(t, x)|2 dx dt (4.7)

for every t ∈ [0, T ], where Cε > 0 is a constant independent of λ and depending
only on the initial datum u0,ε.

From the arbitrariness of t ∈ [0, T ] we deduce that, for every λ ∈ (0, 1),

‖∇μλ
ε‖L2(0,T ;H) � Cε , (4.8)

‖uλ
ε‖L∞(0,T ;Vε) + ‖uλ

ε‖H1(0,T ;H) + λ1/2‖∇uλ
ε‖L∞(0,T ;H) � Cε , (4.9)
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hence, in addition by comparison in (4.1),

‖�μλ
ε‖L2(0,T ;H) � Cε . (4.10)

Furthermore, noting that (uλ
ε )� = (uλ

0,ε)� = (u0,ε)�, we test (4.1) by N (uλ
ε −

(u0,ε)�), (4.2) by uλ
ε − (u0,ε)�, and sum: we obtain, for almost every t ∈ (0, T ),

〈∂t u
λ
ε (t),N (uλ

ε (t) − (u0,ε)�)〉V + τε〈∂t u
λ
ε (t), uλ

ε (t) − (u0,ε)�〉V

+ λ

∫
�

|∇uλ
ε (t, x)|2dx

+
∫

�

Bε(u
λ
ε )(t, x)uλ

ε (t, x) dx +
∫

�

γλ(uλ(t, x))(uλ
ε (t, x) − (u0,ε)�) dx

=
∫

�

(
gε(t, x) − �(uλ

ε )(t, x)
)
(uλ

ε (t, x) − (u0,ε)�) dx ,

where we have used that
∫
�

Bε(uλ
ε (t, x)) dx = 0 by the symmetry of the kernel

Kε. A classical argument shows that since (u0,ε)� ∈ Int D(γ ), then there are two
constants cε, c′

ε, only depending on the position of (u0,ε)�, such that

‖γλ(u
λ
ε (t, ·))‖L1(�) � cε

∫
�

γλ(u
λ
ε (t, x))(uλ

ε (t, x) − (u0,ε)�) dx + c′
ε ,

for a.e. t ∈ (0, T ) .

Arguing as in [24, Subsection 3.2], the estimates above and (4.8)–(4.9) yield then
a control on ‖γλ(uλ)‖L2(0,T ;L1(�)). In particular, by comparison in (4.2) we get an
estimate on (μλ

ε )� in L2(0, T ). Taking (4.8) and (4.10) into account, we deduce
then that

‖μλ
ε‖L2(0,T ;W ) � Cε . (4.11)

By comparison in (4.2) we infer that

‖ − λ�uλ
ε + Bε(u

λ
ε ) + γλ(u

λ
ε )‖L2(0,T ;H) � Cε .

Testing −λ�uλ
ε + Bε(uλ

ε ) + γλ(uλ
ε ) by γλ(uλ

ε ) and noting that, by monotonicity of
γλ,
∫

�

(−λ�uλ
ε (t, x) + Bε(u

λ
ε )(t, x))γλ(u

λ
ε )(t, x) dx

= λ

∫
�

γ ′
λ(u

λ
ε )|∇uλ

ε (t, x)|2 dx

+ 1

2

∫
�

∫
�

Kε(x, y)
(
γλ(u

λ
ε (t, x)) − γλ(u

λ
ε (t, y))

) (
uλ

ε (t, x) − uλ
ε (t, y)

)
dx dy � 0 ,

by the estimate above and the Young inequality we also deduce that

‖ − λ�uλ
ε + Bε(u

λ
ε )‖L2(0,T ;H) + ‖γλ(u

λ
ε )‖L2(0,T ;H) � Cε . (4.12)
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4.3. Passage to the Limit as λ ↘ 0

In this section we analyze the passage to the limit as λ ↘ 0, with ε > 0 and
τε > 0 still fixed. In view of the uniform bounds (4.8)–(4.12) and the Aubin-Lions
lemma, up to the extraction of (not relabeled) subsequences we have the following
convergences:

uλ
ε → uε in C0([0, T ]; V ∗) , (4.13)

uλ
ε

∗
⇀ uε in L∞(0, T ; Vε) ∩ H1(0, T ; H) , (4.14)

λuλ
ε → 0 in L∞(0, T ; V ) , (4.15)

μλ
ε ⇀ με in L2(0, T ; W ) , (4.16)

γλ(u
λ
ε ) ⇀ ξε in L2(0, T ; H) , (4.17)

�(uλ
ε ) ⇀ �ε in L2(0, T ; H) , (4.18)

−λ�uλ
ε + Bε(u

λ
ε ) ⇀ ηε in L2(0, T ; H) , (4.19)

for some

uε ∈ H1(0, T ; H) ∩ L∞(0, T ; Vε) , με ∈ L2(0, T ; W ) ,

ξε ∈ L2(0, T ; H) , �ε ∈ L2(0, T ; H) , ηε ∈ L2(0, T ; H) .

From (4.14) and the fact that Bε ∈ L (Vε, V ∗
ε ), it is readily seen that

Bε(u
λ
ε )

∗
⇀ Bε(uε) in L∞(0, T ; V ∗

ε ) .

Moreover, from (4.15) and (4.19), it follows by comparison that

Bε(u
λ
ε ) ⇀ ηε in L2(0, T ; V ∗) .

We deduce in particular that Bε(uε) = ηε ∈ L2(0, T ; H), so that also uε ∈
L2(0, T ; Wε). The strong convergence (4.13) implies also that uε(0) = u0,ε.

Passing to the limit in (4.1)-(4.4) in the weak topology of L2(0, T ; H), we
obtain

∂t uε − �με = 0 in L2(0, T ; H) , (4.20)

με = τε∂t uε + Bε(uε) + ξε + �ε − gε in L2(0, T ; H) , (4.21)

∂nμε = 0 in L2(
) , (4.22)

uε(0) = u0,ε in H . (4.23)

We proceed now providing an identification of the nonlinear terms ξε and �ε:
we adapt an argument performed in [22, Subsection 3.6]. To this end, since � is
Lipschitz-continuous, there exists α > 0 such that the operator

γ + � + ατε Id : R → 2R
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is maximal monotone. For example, one can choose α := 2
τε

‖�′‖L∞(R) (recall that
τε > 0 is fixed). Multiplying (4.2) by e−αt , we obtain

e−αtμλ
ε = τε∂t (e

−αt uλ
ε ) − λ�(e−αt uλ

ε ) + Bε(e
−αt uλ

ε ) + e−αt (γλ(u
λ
ε )

+�(uλ
ε ) + ατεuλ

ε − gε).

Thus, testing the previous equation by e−αt uλ
ε and integrating in time yields

lim sup
λ→0

∫
Q

e−2αs(γλ(u
λ
ε (s, x)) + �(uλ

ε (s, x)) + ατεuλ
ε (s, x))uλ

ε (s, x) dx ds

� lim sup
λ→0

[∫
Q

e−2αsμλ
ε(s, x)uλ

ε (s, x) dx ds − λ

∫
Q

e−2αs |∇uλ
ε (s, x)|2 dx ds

−τε

2

∫
�

e−2αT |uλ
ε (T, x)|2 dx + τε

2

∫
�

|uλ
0,ε(x)|2 dx

−2
∫ T

0
e−2αs Eε(u

λ
ε (s, ·)) ds

+
∫

Q
e−2αs gε(s, x)uλ

ε (s, x) dx ds

]
.

On the one hand, owing to (4.13) and (4.16),

lim
λ→0

∫
Q

e−2αs(μλ
ε (s, x) + gε(s, x))uλ

ε (s, x) dx ds

=
∫

Q
e−2αs(με(s, x) + gε(s, x))uε(s, x) dx ds .

On the other hand, by the weak lower semicontinuity of the norms, the convergence
(4.14), and the assumption (4.5), we have

lim sup
λ→0

[
−λ

∫
Q

e−2αs |∇uλ
ε (s, x)|2 dx ds

−τε

2

∫
�

e−2αT |uλ
ε (T, x)|2 dx + τε

2

∫
�

|uλ
0,ε(x)|2 dx

−2
∫ T

0
e−2αs Eε(u

λ
ε (s, ·)) ds

]

� −τε

2
lim inf

λ→0

∫
�

e−2αT |uλ
ε (t, x)|2 dx + τε

2
lim sup

λ→0

∫
�

|uλ
0,ε(x)|2 dx

− 2 lim inf
λ→0

∫ T

0
e−2αs Eε(u

λ
ε (s, ·)) ds

� −τε

2

∫
�

e−2αT |uε(T, x)|2 dx + τε

2

∫
�

|u0,ε(x)|2 dx

− 2
∫ T

0
e−2αs Eε(uε(s, ·)) ds .
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Hence, we deduce that

lim sup
λ→0

∫
Q

e−2αs(γλ(u
λ
ε (s, x)) + �(uλ

ε (s, x)) + ατεuλ
ε (s, x))uλ

ε (s, x) dx ds

�
∫

Q
e−2αs(με(s, x) + gε(s, x))uε(s, x) dx ds

− τε

2

∫
�

e−2αT |uε(T, x)|2 dx + τε

2

∫
�

|u0,ε(x)|2 dx

− 2
∫ T

0
e−2αs Eε(uε(s, ·)) ds . (4.24)

Testing (4.21) by e−2αt uε and integrating in time, the right-hand side of (4.24)
rewrites as

lim sup
λ→0

∫
Q

e−2αs(γλ(u
λ
ε (s, x)) + �(uλ

ε (s, x)) + ατεuλ
ε (s, x))uλ

ε (s, x)dx ds

�
∫ t

0

∫
�

e−2αs(ξε(s, x) + �ε(s, x) + ατεuε(s, x))uε(s, x) dx ds .

Since the bilinear form

(v1, v2) 
→
∫

Q
e−2αxv1(s, x)v2(s, x) dx ds , v1, v2 ∈ L2(Q) ,

is an equivalent scalar product on L2(Q), by the maximal monotonicity of γ +�+
ατε Id we conclude that

ξε + �ε + ατεuε ∈ (γ + � + ατε Id)(uε) a.e. in Q . (4.25)

This allows us to show the further strong convergences

uλ
ε (t) → uε(t) in H ∀ t ∈ [0, T ] , uλ

ε → uε in L2(0, T ; Vε) . (4.26)

Indeed, taking the difference between (4.2) and (4.21), multiplying again by e−αt ,
and testing by e−αt (uλ

ε − uε), we get

τε

2

∫
�

e−2αt |(uλ
ε − uε)(t, x)|2 dx + λ

∫
Qt

e−2αs |∇uλ
ε (s, x)|2 dx ds

+ 2
∫ T

0
e−2αs Eε((u

λ
ε − uε)(s, x)) ds

+
∫

Qt

e−2αs (
γλ(u

λ
ε ) + �(uλ

ε ) + ατεuλ
ε − (ξε + �ε + ατεuε)

)
(s, x)(uλ

ε − uε)(s, x) dx ds

= τε

2

∫
�

|uλ
0,ε(x) − u0,ε(x)|2 dx +

∫
Qt

e−2αs(μλ − μ)(s, x)(uλ
ε − uε)(s, x) dx ds

− λ

∫
Qt

e−2αs�uλ
ε (s, x)uε(s, x) dx ds .

We use now the notation J γ
λ := (Id + λγ )−1 : R → R for the resolvent of γ .

Summing and subtracting J γ
λ (uλ

ε ) in the last term on the left-hand side, rearranging
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the terms, and recalling that uλ
ε − J γ

λ (uλ
ε ) = λγλ(uλ

ε ), we infer that, for every
t ∈ [0, T ],

τε

2

∫
�

e−2αt |(uλ
ε − uε)(t, x)|2 dx + 2

∫ T

0
e−2αs Eε((u

λ
ε − uε)(s, x)) ds

+
∫

Qt

e−2αs
(
γλ(uλ

ε )+�(Jγ
λ (uλ

ε ))

+ατε Jγ
λ (uλ

ε )−(ξε+�ε+ατεuε)
)

(s, x)(Jλ(uλ
ε )−uε)(s, x) dx ds

� τε

2

∫
�

|uλ
0,ε(x) − u0,ε(x)|2 dx +

∫
Qt

e−2αs(μλ − μ)(s, x)(uλ
ε − uε)(s, x) dx ds

−
∫

Qt

e−2αs Bε(u
λ
ε (s, x)))uε(s, x) dx ds

+
∫

Qt

e−2αs(−λ�uλ
ε (s, x) + Bε(u

λ
ε (s, x)))uε(s, x) dx ds

+
∫

Qt

e−2αs
(
�(Jγ

λ (uλ
ε (s, x)))−�(uλ

ε (s, x))

+ατε(Jγ
λ (uλ

ε )−uλ
ε )(s, x)

)
(Jλ(uλ

ε )−uε)(s, x) dx ds

− λ

∫
Qt

e−2αs
(
γλ(uλ

ε ) + �(uλ
ε ) + ατεuλ

ε − (ξε + �ε + ατεuε)
)

(s, x)γλ(uλ
ε (s, x)) dx ds .

Recalling that γλ(r) ∈ γ (J γ
λ (r)) for every r ∈ R, by (4.25) and the monotonicity

of the operator γ + � + ατεId, the third term on the left-hand side is nonnegative.
Let us show that the right-hand side converges to 0, analyzing each term separately.
The first two terms on the right-hand side converge to 0 thanks to (4.5), (4.13) and
(4.16). Moreover, thanks to (4.14), (4.19), and the fact that uε ∈ L2(0, T ; Wε), we
have

−
∫

Qt

e−2αs Bε(u
λ
ε (s, x))uε(s, x) dx ds → −

∫
Qt

e−2αs Bε(uε(s, x))uε(s, x) dx ds

and ∫
Qt

e−2αs(−λ�uλ
ε (s, x) + Bε(u

λ
ε (s, x)))uε(s, x) dx ds

→
∫

Qt

e−2αs Bε(uε(s, x))uε(s, x) dx ds .

Finally, since (γλ(uλ
ε ))λ is bounded in L2(0, T ; H) by (4.12), using the Lipschitz-

continuity of Pi , the last two terms on the right-hand side can be handled by

λ‖γλ(u
λ
ε )‖L2(0,T ;H)

(‖J γ
λ (uλ

ε )‖L2(0,T ;H) + ‖uε‖L2(0,T ;H)‖
+‖γλ(u

λ
ε ) + �(uλ

ε ) + ατεuλ
ε − (ξε + �ε + ατεuε)‖L2(0,T ;H)

)
� Cελ → 0 .

Since t ∈ [0, T ] is arbitrary, the strong convergences (4.26) follows. In particular,
this readily implies that �ε = �(uε) and ξε ∈ γ (uε) almost everywhere in Q by
the Lipschitz-continuity of � and by the maximal monotonicity of γ , respectively.
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It is then clear that (uε, με, ξε) is a solution to the nonlocal viscous Cahn–
Hilliard equation in the sense of (3.11)–(3.16). This completes the proof of the first
assertion of Theorem 3.2.

4.4. Continuous Dependence

Let (u1
0,ε, g1

ε ) and (u2
0,ε, g2

ε ) satisfy the assumptions (3.9)–(3.10)with (u1
0,ε)� =

(u2
0,ε)�, and let (u1

ε, μ
1
ε, ξ

1
ε ) and (u2

ε, μ
2
ε, ξ

2
ε ) be any corresponding solutions to

(3.11)–(3.16).
We observe that their difference solves

∂t (u
1
ε − u2

ε) − �(μ1
ε − μ2

ε) = 0 in Q ,

μ1
ε − μ2

ε = τε∂t (u
1
ε − u2

ε) + Bε(u
1
ε − u2

ε) + ξ1ε − ξ2ε + �(u1
ε) − �(u2

ε) − (g1
ε − g2

ε ) in Q ,

∂n(μ
1
ε − μ2

ε) = 0 in 
 ,

(u1
ε − u2

ε)(0) = 0 in � .

By the assumption on the initial data, we have that (u1
ε − u2

ε)� = 0. Therefore,
we can test the first equation by N (u1

ε − u2
ε), the second by u1

ε − u2
ε , and take the

difference: by performing classical computations we get

1

2
‖(u1

ε − u2
ε)(t)‖2V ∗ + τε

2
‖(u1

ε − u2
ε)(t)‖2H + 2

∫ t

0
Eε(u

1
ε − u2

ε)(s) ds

+
∫

Qt

(ξ1ε − ξ2ε )(s, x)(u1
ε − u2

ε)(s, x) dx ds

= 1

2
‖(u1

0,ε − u2
0,ε)‖2V ∗ + τε

2
‖(u1

0,ε − u2
0,ε)‖2H

+
∫

Qt

(
g1
ε − g2

ε − �(u1
ε) + �(u2

ε)
)

(s, x)(u1
ε − u2

ε)(s, x) .

The last term on the left-hand side is nonnegative by the monotonicity of γ .
Hence, the continuous-dependence property stated in Theorem 3.2 follows from
the Lipschitz-continuity of � and the Gronwall lemma.

5. Proof of Theorem 3.3

This section is devoted to study the asymptotic behavior of solutions to the
nonlocal viscous Cahn–Hilliard equation as ε ↘ 0. Let us recall that the family
of data (u0,ε, gε)ε>0 are assumed to satisfy (3.17)–(3.20), while (uε, με, ξε) is a
corresponding solution to (3.11)–(3.16).

5.1. The Case τ > 0

We consider here the case τ > 0, so that τε → τ > 0. As a major consequence,
this implies that it is not restrictive to assume that

∃ τ∗ > 0 : τε � τ∗ ∀ ε ∈ (0, ε0) . (5.1)
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We test (3.14) by με, (3.15) by ∂t uε, take the difference, and integrate on Qt :
recalling (3.18) and using the Young inequality, we deduce that

∫
Qt

|∇με(s, x)|2 dx ds + τε

∫
Qt

|∂t uε(s, x)|2 dx ds + Eε(uε(t, ·))

+
∫

�

(γ̂ + �̂)(uε(t, x)) dx

� Eε(u0,ε) +
∫

�

(γ̂ + �̂)(u0,ε(x)) dx + τε

2

∫
Qt

|∂t uε(s, x)|2 dx ds

+ 1

τε

∫
Qt

|gε(s, x)|2 dx ds .

Note that 1
τε

� 1
τ∗ by (5.1). Hence, rearranging the terms and using (3.17) we infer

that there exists a constant C > 0, independent of ε, such that

‖∇με‖L2(0,T ;H) + ‖uε‖H1(0,T ;H)∩L∞(0,T ;Vε)
� C

hence also, by comparison in (3.14),

‖�με‖L2(0,T ;H) � C .

Now, we can proceed as in the previous Sect. 4.2. Since (uε)� = (u0,ε)�, we can
test (3.14) by N (uε − (u0,ε)�), (3.15) by uε − (u0,ε)�, and sum: we obtain, for
almost every t ∈ (0, T ),

〈∂t uε(t),N (uε(t) − (u0,ε)�)〉V + τε〈∂t uε(t), uε(t) − (u0,ε)�〉V + 2Eε(uε(t, x))

+
∫

�

ξε(t, x)(uε(t, x) − (u0,ε)�) dx

=
∫

�

(
gε(t, x) − �(uε)(t, x)

)
(uε(t, x) − (u0,ε)�) dx .

Again, by the estimates already performed, all the terms are bounded in L2(0, T )

except
∫

�

ξε(t, x)(uε(t, x) − (u0,ε)�) dx .

Thanks to assumption (3.19), there are two constants c, c′ > 0, independent of ε,
such that

‖ξε(t, ·)‖L1(�) � c
∫

�

ξε(t, ·)(uε(t, x) − (u0,ε)�) dx + c′ .

Hence, we deduce that

‖ξε‖L2(0,T ;L1(�)) � C ,

which implies, by comparison in (3.15), that

‖(με)�‖L2(0,T ) � C .
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We deduce that

‖με‖L2(0,T ;W ) � C .

Thus, by comparison in (3.15) and by monotonicity of γ , we obtain that

‖Bε(uε)‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) � C .

By the Aubin-Lions compactness theorem we infer that, up to the extraction of (not
relabeled) subsequences, as ε ↘ 0,

uε → u in C0([0, T ]; V ∗) , (5.2)

uε ⇀ u in H1(0, T ; H) , (5.3)

Bε(uε) ⇀ η in L2(0, T ; H) , (5.4)

με ⇀ μ in L2(0, T ; W ) , (5.5)

ξε ⇀ ξ in L2(0, T ; H) (5.6)

for some

u ∈ H1(0, T ; H) , μ ∈ L2(0, T ; W ) , ξ, η ∈ L2(0, T ; H) .

We proceed by showing the strong convergence

uε → u in C0([0, T ]; H) . (5.7)

To this end, we show that the sequence (uε)ε is Cauchy in C0([0, T ]; H). For any
arbitrary σ > 0, we apply Lemma 3 with the choice δ := σ

4C , where C > 0 is the
constant obtained in the estimates above. We deduce that there exists ε̄ = ε̄σ and
Cσ > 0 such that

‖(uε1 − uε2)(t)‖2H � σ

4C

(
Eε1(uε1(t)) + Eε2(uε2(t))

) + Cσ ‖(uε1 − uε2)(t)‖2V ∗

for every ε1, ε2 ∈ (0, ε̄σ ), for every t ∈ [0, T ]. Thanks to (5.2), there exists
ε̃σ ∈ (0, ε̄σ ) such that

‖uε1 − uε2‖2C0([0,T ];V ∗) � σ

2Cσ

∀ ε1, ε2 ∈ (0, ε̃σ ) .

Hence, taking the supremum in time and using the estimates above we infer that

‖uε1 − uε2‖2C0([0,T ];H)

� σ

4C

(‖Eε1(uε1)‖L∞(0,T ) + ‖Eε2(uε2)‖L∞(0,T )

) + Cσ ‖uε1 − uε2‖2C0([0,T ];V ∗)

� σ

4C
(C + C) + Cσ

σ

2Cσ

= σ

for every ε1, ε2 ∈ (0, ε̃σ ). Since σ > 0 is arbitrary, we obtain the strong conver-
gence (5.7).
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Now, from (5.7) and the Lipschitz continuity of �, it follows that

�(uε) → �(u) in C0([0, T ]; H) ,

while the strong-weak closure of γ readily ensures that ξε ∈ γ (uε) almost every-
where in Q.

To conclude the proof of the theorem, it remains to prove additional spatial
regularity for u and to provide an identification of η. First of all, note that since
(uε)ε is bounded in L∞(0, T ; Vε), by the Ponce criterion [51, Theorem 1.2] we
have that u ∈ L∞(0, T ; V ).

Let us identify now the term η. We first observe that by Lemma 1 there holds
DEε = Bε as operators on Vε. Thus, by Lemma 2, and by the continuous inclusion
of V into Vε, we deduce

Eε(z1) + 〈Bε(z1), z2 − z1〉V ∗
ε ,Vε � Eε(z2) ∀ z1, z2 ∈ V .

Hence, for all z ∈ L2(0, T ; V ) we deduce that

∫ T

0
Eε(uε(t, ·)) dt +

∫ T

0

∫
�

Bε(uε(t, x))(z(t, x) − uε(t, x)) dx dt

�
∫ T

0
Eε(z(t, ·)) dt. (5.8)

Owing to Lemma 2, and to the dominated convergence theorem, we have

∫ T

0
Eε(z(t, ·)) dt → 1

2

∫ T

0

∫
�

|∇z(x, t)|2dx dt .

On the one hand, (5.4) and (5.7) yield

∫ T

0

∫
�

Bε(uε(t, x))(z(t, x) − uε(t, x)) dx dt

→
∫ T

0

∫
�

η(t, x)(z(t, x) − u(t, x)) dx dt.

On the other hand, by the Gamma-convergence result in Lemma 2 and by Fatou’s
Lemma,

lim inf
ε→0

∫ T

0
Eε(uε(t, ·)) dt � 1

2

∫
Q

|∇u(t, x)|2 dx dt.

Letting ε → 0 in (5.8) and recalling that u ∈ L∞(0, T ; V ), we obtain the inequality

1

2

∫
Q

|∇u(t, x)|2 dx dt+
∫

Q
η(t, x)(z(t, x)−u(t, x)) dx dt � 1

2

∫
Q

|∇z(t, x)|2 dx dt

(5.9)
for every z ∈ L2(0, T ; V ), which in turn implies that −�u = η ∈ L2(0, T ; H).
Since u ∈ L∞(0, T ; V ) and �u ∈ L2(0, T ; H) in the sense of distributions for
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example, by [41, Thm. 2.27] the normal derivative ∂nu ∈ L2(0, T ; H−1/2(∂�)) is
well defined. We infer that, for almost every t ∈ (0, T ) and for every ϕ ∈ V ,

∫
�

∇u(t, x) · ∇ϕ(x) dx =
∫

�

η(t, x)ϕ(x) dx ,

from which it follows that

−
∫

�

�u(t, x)ϕ(x) dx + 〈∂nu(t, ·), ϕ|∂�〉H−1/2(∂�),H1/2(∂�) =
∫

�

η(t, x)ϕ(x) .

As −�u = η in L2(0, T ; H), we infer that

〈∂nu(t, ·), ϕ0〉H−1/2(∂�),H1/2(∂�) = 0 ∀ϕ0 ∈ H1/2(�) ,

hence ∂nu = 0 almost everywhere in
. Now, sincewehave that�u ∈ L2(0, T ; H)

and ∂nu = 0 ∈ L2(0, T ; H1/2(∂�)), by the elliptic regularity result [41, Thm. 3.2]
we infer that u ∈ L2(0, T ; W ). Eventually, letting ε ↘ 0 in the equations (3.14)–
(3.15) we obtain

∂t u − �μ = 0 in L2(0, T ; H)

and

μ = τ∂t u − �u + ξ + �(u) − g in L2(0, T ; H) .

This implies that u is a solution to the local Cahn–Hilliard equation according to
conditions (3.3)–(3.8), in the viscous case τ > 0. This concludes the proof of
Theorem 3.3 in the case τ > 0.

5.2. The case τ = 0

We consider here the case τ = 0, so that τε → 0.
We perform the first estimate as in the previous section: we test (3.14) by με,

(3.15) by ∂t uε, take the difference, and integrate on Qt : we obtain

∫
Qt

|∇με(s, x)|2 dx ds + τε

∫
Qt

|∂t uε(s, x)|2 dx ds + Eε(uε(t, ·))+
∫

�

(γ̂ + �̂)(uε(t, x)) dx

= Eε(u0,ε) +
∫

�

(γ̂ + �̂)(u0,ε(x)) dx +
∫

Qt

gε(s, x)∂t uε(s, x) dx ds .
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Using now the additional assumption (3.18) in the case τ = 0, we can integrate by
parts with respect to time in the last term on the right-hand side and use the Young
inequality as
∫

Qt

gε(s, x)∂t uε(s, x) dx ds

= −
∫

Qt

∂t gε(s, x)uε(s, x) dx ds +
∫
�

gε(t, x)uε(t, x) dx −
∫
�

gε(0, x)u0,ε(x) dx

� 1

2
‖gε‖2H1(0,T ;H)

+ 1

2

∫
Qt

|uε(s, x)|2 dx ds + σ

∫
�

|uε(t, x)|2 dx + 1

4σ
‖gε(t, ·)‖2H

+ 1

2
‖u0,ε‖2H + 1

2
‖gε(0, ·)‖2H

for every σ > 0. Moreover, note that by the generalized Poincaré inequality con-
tained in [51, Theorem 1.1], there exist constants C > 0 and ε̄ ∈ (0, ε0), indepen-
dent of ε and of t , such that

∫
�

|uε(t, x) − (uε(t, ·))�|2 dx � C Eε(uε(t, ·)) ∀ ε ∈ (0, ε̄) .

Since (uε)� = (u0,ε)�, rearranging the terms and choosing σ > 0 sufficiently
small (independently of ε), we infer that
∫

Qt

|∇με(s, x)|2 dx ds + τε

∫
Qt

|∂t uε(s, x)|2 dx ds + Eε(uε(t, ·)) + ‖uε(t, ·)‖2H

� C

(
Eε(u0,ε) + ‖u0,ε‖2H +

∫
�

(γ̂ + �̂)(u0,ε(x)) dx + ‖gε‖2H1(0,T ;H)

)

+
∫

Qt

|uε(s, x)|2 dx ds

for a certainC > 0 independent of ε. Recalling then the assumptions (3.17)–(3.18),
the Gronwall lemma yields

‖∇με‖L2(0,T ;H) + ‖uε‖L∞(0,T ;Vε) + τ 1/2ε ‖∂t uε‖L2(0,T ;H) � C ,

hence also, by comparison in (3.14),

‖∂t uε‖L2(0,T ;V ∗) � C .

At this point, we proceed exactly as in the previous Sect. 5.1, and infer that

‖ξε‖L2(0,T ;L1(�)) � C ,

which implies, by comparison in (3.15), that

‖(με)�‖L2(0,T ) � C .

We deduce then that

‖με‖L2(0,T ;V ) � C ,
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and again, by comparison with (3.15) and by the monotonicity of γ , that

‖Bε(uε)‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) � C .

The Aubin-Lions theorems ensure then that, up to not relabeled subsequence, as
ε ↘ 0,

uε → u in C0([0, T ]; V ∗) , (5.10)

uε
∗
⇀ u in H1(0, T ; V ∗) ∩ L∞(0, T ; H) , (5.11)

τεuε → 0 in H1(0, T ; H) , (5.12)

Bε(uε) ⇀ η in L2(0, T ; H) , (5.13)

με ⇀ μ in L2(0, T ; V ) , (5.14)

ξε ⇀ ξ in L2(0, T ; H) (5.15)

for some

u ∈ H1(0, T ; V ∗) ∩ L∞(0, T ; H) , μ ∈ L2(0, T ; V ) , ξ, η ∈ L2(0, T ; H) .

Arguing as in the previous Sect. 5.1 thanks to the Lemma 3, the convergence (5.10)
and the boundedness of (Eε(uε))ε in L∞(0, T ) imply the strong convergence

uε → u in C0([0, T ]; H) .

Hence, by the Lipschitz continuity of � we have

�(uε) → �(u) in C0([0, T ]; H) ,

while the strong-weak closure of γ yields ξε ∈ γ (uε) almost everywhere in Q.
Moreover, still arguing as in the previous section we obtain that u ∈ L∞(0, T ; V ),
η = −�u, and u ∈ L2(0, T ; W ) by elliptic regularity.

Passing to the weak limit in (3.14)–(3.15) we obtain then

∂t u − �μ = 0 in L2(0, T ; V ∗)

and

μ = −�u + ξ + �(u) − g in L2(0, T ; H) .

This concludes the proof of Theorem 3.3 also in the case τ = 0.
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