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ABSTRACT: Structures of strategic importance, such as bridges, require careful planning in terms of relia-

bility, durability and safety, qualities which must be guaranteed throughout the entire life cycle of the struc-

ture. However, due to the ageing of materials and to aggressive environmental actions which cause deteriora-

tion, the response of these structures, just like others, changes over time, resulting in a loss of performance. 

Yet it is important to maintain a satisfactory level of performance in a bridge throughout its service. To ensure 

such a performance it is important to apply properly planned maintenance strategies. Appropriate mainte-

nance strategies require knowledge of the process of deterioration and the consequent damages to be expected 

in order to schedule proper maintenance procedures. It would be fundamental to define a selective mainte-

nance plan which may involve only some parts of the structure, thus allowing bridge viability even during the 

maintenance activity. 

This paper proposes the study of strategies of selective maintenance for a steel bridge immersed in an aggres-

sive environment, starting from the simulation of each individual member. Simulation of deterioration is ob-

tained through the application of an appropriate damage law implemented with a Monte Carlo methodology, 

while the time prediction of occurrence of the deterioration is obtained through the application of a Markovi-

an probabilistic approach. The results of the Markovian approach were the starting point for choosing strate-

gies of selective maintenance, as the Markov process allowed the identification, in probabilistic terms, of the 

structure members with the highest risk of collapse and the timing for achieving levels of damage related to 

the possible collapse of compromised members. This timing was used to identify possible intervals of mainte-

nance. Proposed scenarios are compared with each other both in terms of associated risk, and in terms of life-

cycle cost effectiveness. 



 

1. INTRODUCTION  
 
In the last few decades scientific research has pointed out how it is important, when designing a structural 

system, to guarantee compliance of the performance requirements during the entire life cycle of the structure. 

This change of thought has led to the consideration, during planning, of factors of uncertainty such as the in-

crease in demand for performance, the presence of aggressive environmental factors, the inevitable human er-

rors, etc, which, over time, may compromise the safety of the entire structural system (Bontempi and Giuliani 

2010, Sebastiani et al. 2015). Recent studies have addressed the issue of uncertainty in structural planning, 

paying adequate attention to problems of reliability (Zhang et al. 2010, Zhu and Frangopol 2013, Barone and 

Frangopol 2014), robustness (Ghosn et al. 2010, Olmati et al. 2013), safety (Malerba et al. 2012, Arangio and 

Bontempi 2014) and developing study approaches based on statistical and probabilistic methods that consider 

the random aspects present in the potential causes of risk for the structure (Barbato et al. 2013, Beer et al. 

2013, Barbato et al. 2014, Olmati et al. 2014).  

Among the major causes of risk for structures such as bridges, designed to be immersed in the environment 

while showing their entire structural system, is certainly damage due to aggressive environmental factors 

(Strauss et al. 2008, Strauss et al. 2009, Malerba 2014). In fact, it is well known that during its life cycle, the 

characteristics of a structure are modified due to aging; such changes are often accelerated by aggressive envi-

ronmental actions which, causing a rapid deterioration of structural elements, lead to the inevitable and pro-

gressive loss of performance capabilities of the entire system (Ceravolo et al. 2009, Cavaco et al. 2013, 

Malerba and Sgambi 2014, Sgambi 2014). Such actions occur with a force and in a time period which cannot 

be predicted, therefore they become difficult to model. On this topic, the scientific community is facing the 

development of not only probabilistic-type, but also semi-probabilistic, combinatorial or fuzzy-type interven-

tion methods, making it possible to take due account of the uncertainties which afflict the occurrence of ag-

gressive environmental phenomena and the resulting uncertainties in structural response (Ma et al. 2013, Ga-

ravaglia and Sgambi 2014, Li et al. 2014). 

In strategic structures such as bridges, it is clear how important it is to maintain a satisfactory level of perfor-

mance throughout their service life. To ensure this performance, it is essential to apply properly planned 

maintenance strategies.  



Appropriate maintenance strategies require knowledge of the process of deterioration over time and the con-

sequent damages to be expected in order to schedule proper maintenance procedures. In literature, different 

authors have tackled the problem by developing probabilistic-type methods (Bocchini and Frangopol, 2011; 

Dong and Frangopol, 2015; Timashev and Bushinskaya, 2015; Dao and Zuo, in press) also associated with 

appropriate cost-benefit analyses (Kong and Frangopol 2003, Dao et al. 2014).  

Clearly, major maintenance interventions on bridges involve considerable discomforts and disruptions to 

large areas of the territory. Certainly selective maintenance interventions, which may involve only some parts 

of the structure, would be more adequate, thus allowing bridge viability even during maintenance. In litera-

ture, the most common approach to the issue of selective maintenance is the use of Monte Carlo simulations 

which imply a remarkable computational expenditure (Liu and Frangopol, 2005; Frangopol et al., 2009; 

Marseguerra, 2013). 

The scenario just described is one of the new frontiers in scientific research of interest for civil engineering 

and it is within this context that this work fits. Indeed, this work studies strategies of selective maintenance 

for an existing steel bridge immersed in an aggressive industrial environment. The starting point is simulation 

of the damage which each member of the bridge may suffer, over its useful life, due to aggressive environ-

mental attacks and changes in performance demand.  

The choice to proceed with the adoption of a rather flexible damage law, and the simulation of damage to 

structural members over time is necessary. Structures are rarely monitored frequently, even though monitor-

ing would be capable of providing sufficient experimental data to ensure a reliable statistical interpretation of 

the temporal evolution of deterioration. 

Deterioration is simulated through the application of a time-dependent damage law whose parameters, as-

sumed as random variables and associated with proper functions of probability, can grasp all uncertainties in-

herent to phenomena of environmental aggressiveness and the possible variations in performance demand re-

quired by the structural system. The damage law is implemented with a methodology of Monte Carlo 

simulation, which generates different and possible laws of damage to be applied to the structure. Once certain 

levels of damage are established and which are significant for the structure under consideration, the structural 

analysis, performed for each damage law generated, gives back, at any given time, the level of damage 

reached by each member and the time to reach and overcome same damage. In this way the process of deteri-



oration is interpreted as a process of transition through different performance stages, characterised by differ-

ent significant levels of damage.  

The time prediction of transition from a state of damage and the next one is obtained through the application 

of a Markovian-type probabilistic approach (Cox, 1962). Indeed, starting from the current performance condi-

tion, the Markovian approach is able to assess the possible evolution of the damage to the structural system, 

and evaluate the transition probability for the system throughout different performance states. 

The results of the Markovian approach, applied to the large sample size of transition times obtained from the 

Monte Carlo simulation, are the starting point for choosing strategies of selective maintenance. 

As already mentioned, a thorough maintenance plan can definitely guarantee protection of the features of 

structure reliability. However, every maintenance intervention involves a cost in terms of intervention on the 

structure, the use of handling means and discomfort for the partial or total unavailability of the structure dur-

ing the maintenance operations. The situation becomes particularly delicate for bridges, since their total or 

partial closure would result in remarkable inconveniences for the traffic flow the entire area. For all these rea-

sons, it would be important to define a selective maintenance plan which may involve only some parts of the 

structure, thus reducing the inconveniences and guaranteeing, at the same time, the appropriate reactivation of 

the reliability features of the bridge itself.  

Whenever selective maintenance is carried out, each member involved in the maintenance renews its own per-

formance capabilities, which leads to an increase in its service-life and in the service-life of the whole struc-

tural system. 

In this work, appropriate scenarios of selective maintenance have been studied which involve only members 

with a high probability of failure. Each maintenance operation is intended as an action which renews the per-

formance of the concerned member. It is an action that can be repeated at more or less regular intervals, which 

depend on how structural member deterioration progresses after every maintenance operation. The process as 

intended is a renewal process which can adequately be modelled as a Markovian Renewal Process (MRP).  

The processes of Markov renewals are suitable for modelling repetitive phenomena which renew their fea-

tures after every event. For example, MRP processes are used when modelling the waiting times of strong 

earthquakes, in fact, this process is considered a renewal process: during a violent earthquake there is a total 

release of energy but such energy is recharged again during the entire period of suspension, renewing itself, to 



be then released in the next event (Shimazaki and Nakata, 1980 Alvarez, 2005, Garavaglia and Pavani, 2011, 

Masala, 2011, Votsi eta al., 2012). Recently MRP processes have been applied in predicting the return periods 

of hurricanes and tornadoes, obtaining good results (Masala, 2012). 

The MRP is able to predict, with different levels of probability, the transition from the current state of the sys-

tem, i.e. at the time t0, in a previous or next state. One special form of such processes, called semi-Markovian 

processes, predicts the next transition taking into account the time already spent by the system in its current 

state, in other words: the time interval between the previous transition and the current instant t0 (Garavaglia 

and Pavani, 2011, Masala, 2011, Votsi et al., 2012). The application of this type of process allows the proba-

bilistic prediction of the future state, and its likely time of achievement, starting from the actual instant of in-

vestigation. The Markov approach proposed in this paper refers to a renewal semi-Markov process.  

The transition times modelled in the MRP are those obtained from the application of Monte Carlo simulation. 

Members involved in any action for selective maintenance are suggested by the structural analysis performed 

for every damage law generated during the Monte Carlo simulation. 

The approach proposed in this paper combines two methodologies that are well known in literature but hardly 

used contemporaneously in the solution of a problem: the Monte Carlo simulation and the Markov approach 

at the time when the occurrence of the damage is predicted. In this case, the authors demonstrate how the syn-

ergistic use of the two approaches could lead to the definition of satisfactory maintenance strategies, reducing 

the computation time. In fact, in the proposed methodology, the Monte Carlo simulation is applied only once, 

unlike other approaches where a new simulation is required after each maintenance action (Biondini et al., 

2008).  

 
To show the possible application proposed, different maintenance scenarios have been studied:  

- three scenarios of non-selective maintenance which involve the whole structure (scenarios 1, 2, 3) with dif-

ferent maintenance times;  

- two scenarios of selective maintenance which keep the structure:  

a) at the initial undamaged state;  

b) in a state of slight damage.  



Finally, the scenarios of maintenance are compared with each other in a first assessment of costs-advantages 

which evaluates the sustainability of each scenario, taking into account the costs and the risks associated with 

each of the possible interventions assumed. 

 
2. THE STEEL BRIDGE IN NORTHERN ITALY 

The bridge is located in the municipality of Bellinzago Lombardo, on the western side of Milan, and it con-

nects a commercial centre to an important extra urban road. The bridge consists of two structures: the former, 

of 6.4 meters, is used to cross a bike path while the latter, of 28.8 meters, oversteps the artificial channel Nav-

iglio Martesana. The bridge deck is composed of IPE600 steel beams and a slab of reinforced concrete that is 

20 cm high. Figure 1 shows the longitudinal profile of the bridge.  

 

 

 
Figure 1. Longitudinal profile of the bridge. 

 

From a structural point of view, the bridge consists of two main beams composed of a Warren truss structure 

supported by reinforced concrete piles. All members of the structure are connected with welded joints. Figure 

2 shows an overview of the bridge structure during construction works 



 
 

Figure 2. Overview of the bridge structure during the construction works. 

 

To withstand the torsional action transmitted from the deck to the beams, each Warren truss beam is com-

posed of a three-dimensional structure. In the design of the bridge, all internal actions were taken into account 

by using a three-dimensional numerical model. For simplicity, and without loss of generality, the authors used 

the equivalent two-dimensional finite element model showed in Figure 3 to perform the deterioration simula-

tions and maintenance described in this paper. 
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Figure 3. Statically indeterminate truss bridge schema. 

 

The bridge structure is a statically indeterminate truss. Each component consists of members with an I or H 

profile whose geometric characteristics are reported in Table 1. 

Table 1. Truss dimensions 

___________________________________________________________________________________________________________________________ 

Member   height   area    inertia   volume 
_________________________________________________________________________________________ 

      cm   cm2   cm4    cm3 
___________________________________________________________________________________________________________________________ 

  1-18  35    630   150062    100800 
19-26  35    630  150062    201600 
27-28  35    630  150062    192333 
29-40  30    540    94500    164857 
41-53  30    450    78750    117000 

___________________________________________________________________________________________________________________________ 

 



The allowable material stress is assumed to be  380 MPa. The load history is characterised by the dead 

load and by the live loads of the structure summarised in forces Q1, Q2 and Q3 that are applied on the bottom 

of the truss as shown in Figure 4.  
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Figure 4. Bridge loads history. The bridge is subject to its own dead load and to live load schematised by the concentrated forces 

Q1=290kN, Q2=200.7kN and Q3=700kN. 

 

3. DETERIORATION PROCESS  

The deterioration process in structures, which occurs due to environmental aggressiveness, leads to a progres-

sive loss of their own load bearing capacities (Malerba, 2014; Basso et al., 2014). An example is the progres-

sive reduction of section resistance in members affected by deterioration and the consequent increase of stress 

in the material.  

Whenever the member reaches certain levels of deterioration, system performance reduces, so that the system 

passes from the current state to a subsequent state characterised by lower performance capabilities.  

In this way the deterioration process (failure process) may be defined as a transition process (Garavaglia et 

al., 2004).  

Every transition depends on: 

-  the magnitude of the attack (stress cycle); 

-  the ability of the system to withstand this attack. 

Both these parameters depend on a large number of time dependent and random variables (r.v.); therefore it is 

right to consider the transition process as a stochastic process. The r.v. service lifetime τi is suitable for de-

scribing this process. It is defined as: “the waiting time spent by the material in the performance state i before 



a transition” (Garavaglia et al., 2004). 

In a process of transition, transitions can occur both from a state characterised by high quality performance to 

a state characterised by lower performance, and, vice-versa, from a state characterised by low quality perfor-

mance to a state characterised by a higher quality performance (Fig. 5). In this case we say that the system re-

news its own performance capabilities. In case of a deteriorated system, the renewal occurs whenever a 

maintenance action is carried out; maintenance in fact, improves the qualities of the system by bringing it 

back to a better state of health, sometimes even similar to the initial one, thus extending its service life. 

If the process of deterioration is assumed to be a process of down-up transition, same process can be modelled 

in a satisfying way by the Markovian Renewal Processes (Howard, 1971; Limnios and Oprisan, 2001; 

Biondini and Garavaglia, 2005; Garavaglia et al., 2012). In fact, the MRP seem to be suitable for describing 

the development of the system life among different service states with different waiting times; it also takes in-

to account the age t0 of the system, i.e. the time already spent by the system in the current service state before 

the prediction is made. This aspect is very important in reliability analyses when maintenance must be 

planned.  
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Figure 5. Schematic transitions between different states of performance. 
 
 

 

 

 

 

 

 



3.1 Markov Renewal Processes 

Let us recall the definition and some properties of a Markov renewal process with finite state space. 

In what follows  NE ,...,1  with N  N ; EijijF  ))((F  denotes a matrix of distribution functions on 

 , Eijijp  )(P  denotes a transition matrix on E and ),...,( 1 Naaa  a probability distribution on E (i.e. 

ai  0 and  


N

i
ia

1
1). 

Let us consider a two-dimensional stochastic process 0),( nnnJ   defined on a complete probability space 

satisfying (Limnios & Oprisan, 2001):  

1. Initial conditions: initial state J0, i.e. the state occupied by the system at the starting time of the prediction. 

Defining the time t0 already spent by the system in the initial state J0 before the starting time of the predic-

tion is also needed (Howard, 1971). 

2. iaiJ  )(Pr 0  for every iE, where E=1, ... N is the set of all possible states, this probability distribu-

tion represents the probability that the initial state J0 will be i. 

3. )() , (Pr tFpJtJ ijijiijj   for every ),0( t  and i,jE.                                                                   (1) 

Assuming Ji as present state, point (3) (Eq. 1) describes the probability that transition into the next state Jj, 

occurs by time t; within it  pij are the transition probabilities of the Markov chain (Jn)n≥0 and Fij(t) are the dis-

tribution functions associated with waiting times in state Ji before moving to state Jj.  

Under these three assumptions, the process 0),( nnnJ   is called the Markov renewal process determined by 

the space E, EijijF  ))((F  the matrix of distribution functions on  , Eijijp  )(P  the transition matrix on E 

and a the initial probability distribution.  

Let us recall some consequences of the definition: 

i.   (Jn)n≥0 is an E-valued Markov chain with transition matrix P and initial distribution a; 

ii.  for every n > 1, τ1, ... , τn are conditional independent, given (Jn)n≥0   n≥0 and   

     0with  )()0,,...,(Pr
1

),1(11 


 i

n

i
iiinnn ttFnJtt                                                                     (2) 

Eq. (2) is the marginal distribution function of the waiting timesi describing the probability of transition into 

each state i by time ti. 



The Markov chain 0)( nnJ  represents the states successively visited by the system, while the process 

0)( nn  represents the successive waiting times in each visited state. In our application, the states are the dif-

ferent levels of performance which structural systems subject to deterioration may present during their useful 

life. Such levels are measured in terms of structural response to induced stresses. The τn’s are the times of 

permanence of the structural system during the performance state n before being subject to damage and before 

passing to the following state, which will be characterised by lower performance.  

If the MRP is defined as shown in points 1-3, assuming Ji as the present state and t0 as the time already 

passed by the system in the i-state, the probability of moving to state j, Jj, can be defined as follows: 

),,Pr( 00 tJttJ iiijj   ,                                                                                                                    (3) 

where i is the state of the present performance; j is the state of the next lower performance; τij is the waiting 

time spent by the system in the state Ji before moving to Jj, under the limiting condition that no transition has 

already happened (defined through the condition: 0 ,state ti ij  ); t is the discrete time in which the predic-

tion should be obtained.  

If the distribution functions Fij(t) are defined and τij=t0, the probability (3) can assume the following form 

(Garavaglia & Pavani 2011):  
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The probability pij can be obtained by experimental observations through the ratio: 

     from  ions   transitobserved

    to   from   ions   transitobserved

i

ji
pij  .                        (5) 

Equation (5) describes the probability pij as the ratio between the transitions from state i to those of state j 

(e.g.: transition State 0-State 1), as observed in the experimental sample, and all the transitions from state i to 

any other considered state k, with k = 1, ... , N (ex.: transitions State 0-State 1; State 0-State 2, ..., State 0-State 

k, ..., State 0-State N).  

Of course, the probability (4) can be evaluated both for the system and for each member which composes the 



system; in the following dissertation the member probability will be indicated with: ),(
0

P ijm
tt , where m is the 

number identifying the structural member analysed. 

 
3.2 The deterioration process as a Markovian Process 

Different deterioration processes connected with aggressive environmental attacks can affect every single 

member of a structure. The failure of one or more members involves the loss of performance of the whole 

system.  

When modelling a phenomenon, it is essential to pinpoint an appropriate variable which may properly de-

scribe the evolution of the process. In the present case a correct risk index can be the evolution of the value σ 

(of the matter stress) which, as it is well known, depends also on the resistant area of the damaged member. 

Therefore, assuming the stress value σ, the ratio between the internal forces and the deteriorated area of the 

member cross sections as a random variable in the deterioration process, and using an appropriate computer 

code for structural analysis, the performance decrease in load-bearing capacity can be evaluated.  

In order to model the time evolution of the variable within a Markov renewal model, the following assump-

tions are introduced (Biondini and Garavaglia; 2005): 

- the structure, as well as each component member, are undamaged at the initial time t0 = 0; 

- at each instant t the members are considered to occupy a given state i, with i > 0, when σi ≤ σ ≤ σ(i+1), 

where σi and σ(i+1) are the lower and upper thresholds respectively, which characterise the state i; 

- the member performance moves from a state i, i > 0, to another state j, with j > i, characterised by a 

lower level of performance, σi, when σi < σj, during a time interval τij. Of course, condition j < i, with 

σi > σj, is also possible if some maintenance is carried out. 

In MRP, each waiting time τij must be modelled by choosing an appropriate probability density function 

(PDF). This is not a simple choice and it can be “not unique”. It should be made on the basis of physical 

knowledge of the phenomenon and knowledge of the theoretical behaviour of the distributions in their tails, 

well described by the hazard rate function λ(t).  

Physical knowledge, based on experimental evidence, suggests that the deterioration of building materials 

increases over time, therefore the hazard rate must also increase over time. The distributions obeying this law 

are, for example, the Weibull distributions where, if t→∞, the hazard rate λ(t) increases and tends to an infi-



nite value too, and Gamma distributions where, if t→∞, the hazard rate λ(t) increases and tends to an asymp-

totic value. In this paper, starting from the previous considerations, Weibull distributions were chosen in order 

to model structural member deterioration. The parameters involved in the Weibull distributions are estimated 

by the maximum likelihood criterion using a computer code where the routine ROSE of IMSL Fortran Li-

brary, which is part of Rosenbrock’s optimisation method, was implemented. 

 

4. DAMAGE LAW 

In this paper the Markov renewal approach is applied to evaluate the transition process of each structural 

member of the steel bridge shown in Figure 2. Our aim is to be able to program maintenance interventions on 

one or multiple members based on the most likely instants of transition between states evaluated using MRP. 

As mentioned above, the deterioration of building materials due to the action of aggressive environment 

agents is a random process which depends on a certain number of variables. The uncertainty, in modelling 

these phenomena, derives from the fact that we do not always have sufficient data to accurately simulate the 

variations of mechanical behaviour in structures that have deteriorated over time. In fact, this would be possi-

ble only if there were a monitoring action for a sufficiently long period of time so as to guarantee a rather 

wide collection of data (Garavaglia e Sgambi, 2014). However, even if there were the possibility of carrying 

out a data-campaign, there would be a complete picture of the behaviour over time only after several years of 

structure service. For strategic structures, such as bridges, it is important to immediately plan proper mainte-

nance, therefore it is necessary to schedule a simulation methodology which, starting from already-known and 

readily available data, can reliably evaluate how the structural behaviour develops in the presence of deterio-

ration. 

The randomness of the deteriorating actions and the uncertainties in loads or in constraints must be modelled 

through proper probabilistic distributions. Some of these distributions are already present in literature, others, 

such as the environmental ones, are not easy to establish and their wrong definition might compromise the 

whole model. The authors are well aware of this limitation; as a consequence, the choices shown here are cer-

tainly not complete and still require a further in-depth analysis.  

To simulate the structural behaviour, taking into account some uncertainties and stochastic cases present in 

the actions of deterioration, the Monte Carlo methodology is used. The results obtained from such methodol-



ogy are the basis for the application of the Markovian probabilistic model in order to foresee the length of the 

system lifecycle in a given state. 

The Monte Carlo simulation requires an appropriate deterioration model. Biondini et al. (2008) proposed a 

suitable damage model which seems to be effective in order to simulate the deterioration process investigated. 

This model has been implemented into our computer code in order to perform Monte Carlo simulations and 

structural analyses (MCS).  

By denoting Θ as a generic material property, the material deterioration over time t can be evaluated as fol-

lows: 

)](1[)( 0 tt                          (6) 

where “0” denotes the initial undamaged state, and the deterioration over time t is measured by a time-variant 

damage index  = (t)  [0;1]. The following damage model is assumed (Biondini et al., 2008): 
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where  = t/TC, TC is the normalised time instant when the failure threshold  =1 is reached, and  and  are 

shape parameters of the damage curve. 

The damage parameters  and  must be chosen according to the actual damage process development. Dam-

age rates may be associated with environmental aggressiveness, as well as with the level of acting stress.  

The following linear relationship is assumed (Biondini et al., 2008):  

 )( aba                          (8) 

 )( aba                          (9) 

where the subscript “a” refers to the damage associated with environmental aggression, the subscript “b” re-

fers to the damage associated with loading effects, and ξ refers to the ratio between the level of acting stress 

and the limit state value  ,  / .  

Thereby, the proposed damage law is able to represent damage mechanisms induced by environmental deteri-

oration, such as steel corrosion or material fatigue. These mechanisms are usually present and interact with 



each other. Therefore, based on experimental observations and/or laboratory accelerated test data, a proper 

calibration of the damage parameters is required.  

 
5. APPLICATION OF MRP TO AN EXISTING STEEL BRIDGE 

The bridge in Figure 2 is subject to deterioration involving a reduction of both the cross-sectional area A and 

the material stress σ of each structural member. Without any loss of generality, in this study it is assumed that 

such properties suffer from the same damage process: 

)](1[)( 0 tAtA                         (10) 

where “0” denotes the initial undamaged state. The damage model assumed is the model in Eq. (7). 

The approach is applied to the statically indeterminate truss bridge in Figure 1. Buckling failures are assumed 

to be avoided. The initial value of the cross-sectional area A of the member and of material stress  , as well 

as the forces Qi, are assumed as deterministic.  

Each probabilistic approach requires several samples on which to base the prediction. In this study, the sam-

ples are obtained using the Monte Carlo simulation, which is applied to the formulation of time-dependent 

damage law, then implemented in the structural analysis of the system. In this simulation process deteriora-

tion laws are simulated, member by member, and the damage parameters a, b, a, b, and TC of every law are 

modelled, member by member, as random variables with prescribed probability distribution. In the proposed 

procedure, the damage laws and the random variables of each member can be assumed to be independent 

from one another, as well as correlated with each other with a different degree of correlation, as explained in 

5.1. Each distribution is chosen on the basis of physical knowledge of phenomena investigated, and phenom-

enon modelling starts by using mean and standard deviation (Ciampoli, 1999; Gupta and Lawsirirat, 2005), 

(Tab. 2). In the case study presented, damage laws are assumed to be independent, member by member, while 

random parameters of every damage law, generated by each member of the structure, are correlated (see 5.1). 

The mean values and standard deviation reported in Table 2 are assumed to be equal for each member of the 

structural system. 

 
 
 
 
 
 



Table 2. Distribution used in the Monte Carlo procedure. 
__________________________________________________________________________________________________________________________________________________________________________ 

Variable  Units    Distribution  mean value  standard deviation 
__________________________________________________________________________________________________________________________________________________________________________ 

a   dimensionless   Normal    1.20      0.2 
b   dimensionless   Normal    1.20      0.2 
a   dimensionless   Normal    0.35      0.2 
b   dimensionless   Normal    0.35      0.2 
TC    Years    Weibull    60       10 

_________________________________________________________________________________________________________________________________________________________________________ 

 
 

5.1 The procedure of the Monte Carlo simulation for the MRP 

This paragraph tries to give a better explanation of the simulation procedure used in this work (Figure 6  and 

7).

 

Figure 6. Procedure proposed: simulation process. 

 



 

Figure 7. Development of the red-box in Flowchart 1. 

 



Once distributions appropriate for describing the random variables in Table 2 are chosen, and after having set 

their average values and standard deviations, and provided that these choices are supported by experimental 

data regarding deterioration of the structure in question or of similar structures reported in literature, for each 

simulation cycle, starting from the average values and standard deviation, the developed procedure generates 

the probability distribution to be attributed to every random variable. Subsequently, through a procedure of 

random selection (crude technique), a value taken from the assigned probability function is then attributed to 

variables, and is then inserted in the law (7) to define its shape. The selection process provided for in the cal-

culation code allows the introduction of different levels of correlation among random variables at stake. Three 

types of correlation are provided:  

 Grade 0 represents a zero correlation, i.e. each random variable is independent from all others, both in 

terms of member and of structure. This degree of correlation is obtained by performing, for each ran-

dom variable, a random selection in the Monte Carlo simulation process.  

 Level 1 identifies a correlation among random variables of each member and is realised through a sin-

gle selection of the random number in the Monte Carlo process; this number is then used for all ran-

dom variable generation operations relative to the member concerned.  

 Level 2 reproduces a complete correlation with the whole structure, i.e. all the random variables are 

generated with the same probability of occurrence.  

In the present case, the correlation adopted for parameters of damage laws generated member by member is 

Level 1.  

Each damage law so constructed is applied to time-dependent structural analysis (Flowcharts 1 and 2). At 

each instant of time t, and for each member of the system, the damage law provides a certain value δ(t) which, 

applied to the initial section area, A0, of each member, quantifies its deterioration as area reduction (Eq. 10). 

Therefore, at each instant t, each member of the deteriorated system, subjected to stresses Qi invariant over 

time, always provides a different structural response, quantified in terms of effort σ and of nodal displace-

ments. The increase of the effort recorded in each member, step by step, describes its performance and places 

it, at that precise instant, in a determinate service state.  

We can therefore say that during its life the structure, as well as its single members, move into different ser-

vice states, therefore a transition can involve two or more states for each step. To simulate the behaviour for 



the bridge studied, three different states are assumed: State 0 relates to low damage, State 1 relates to moder-

ate damage and State 2 relates to heavy damage. The state bounders are chosen on the basis of expert judg-

ment and are reported in Table 3. They reflect about 51% of the allowable value for  , previously given to be 

380 MPa and 65% of the same value. The choice of these limits is sensitive and certainly not unique. It is an 

interesting field of research for evaluating the impact that different thresholds may have on the choice of 

maintenance strategies to be undertaken. The topic, however, goes beyond the context of this paper, therefore 

the authors have chosen to entrust them to expert judgment. 

 
Table 3. State bounders. 

________________________________________________________________________________________________________________________ 

State  min (MPa)  max (MPa)   Damage level 
________________________________________________________________________________________________________________________ 

State 0  >0.00   ≤195   Low (undamaged) 
State 1  >195    ≤250   Moderate 
State 2       >250   Heavy 
________________________________________________________________________________________________________________________ 

 
 

The time-variant structural analysis of each simulation cycle is carried out by updating, step-by-step, the stiff-

ness matrix of the deteriorated structural members and the matrix of the nodal displacements. Referring to the 

limit state i i
max   member transition occurs when the member reaches the upper boundary i

max  of the 

state i. During every simulation, the transition time for each member is recorded and is defined as the waiting 

time τij spent by the member in state i before moving to a successive state j. 

Considering the limit state 0)(  , whenever a member of the system reaches this state, it is considered out 

of order. In the following structural analysis the degrees of system freedom will increase and distribute the 

stress on the members that are still active. System failure is reached when the number of failed members acti-

vates a certain mechanism. The time during which the failure occurs is called failure time. Whenever a mem-

ber comes to a given damage threshold, the time taken to reach this damage state is called crossing time. 

The proposed approach is applied to investigating, from a probabilistic point of view, the next transition of 

each member of the system in Figures 3 and 4, from the current state i, since  t0 with t0>0, to the state j in the 

next interval Δt. Using the Monte Carlo simulation, a group of 5000 samples of the same structural system 

have been built which differ from each other for the deterioration suffered due to the application of generated 

damage laws (7) and to which their members are submitted. These laws are constructed by generating random 

parameters as shown in Flowchart 1 and subsequently introduced into the structural time-dependent analysis 



(Flowchart 2). From the structural analysis, step by step, of each of the 5000 samples, the simulation returns 

the state of effort, every instant, of each system member, the nodal displacements and the members' transition 

times connected with each damage threshold and the failure time of the whole system. The transition times 

between the different damage thresholds and the time of failure are useful outputs for setting the Markovian 

approach to maintenance. They will be modelled with Weibull distributions.  

Considering the structure always at the initial time t0=0 and using Eq. (4), the probabilities
 

)(
0

P ij
tt  and ),(

0
P ijm

tt  

are evaluated for the whole system and for each m member of the system (m=53). When the probability
 

)(
0

P ij
tt  

(or ),(
0

P ijm
tt ), with i ≠ j, reaches a value greater than or equal to r*10−4 (r = positive number) the risk of transi-

tion from i to j is assumed as being upcoming; therefore maintenance could be planned in instants close to 

which the probability is recorded.  

If the structure has already spent a certain period of time in a certain state, t0 is to be considered different from 

zero and the transition probability to the following stage changes. Figure 8 shows how transition probabilities 

change when t0 varies. 
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Figure 8. System’s probability of transition )(

0
P ij

tt  vs Δt (i=0, vs. j=1) evaluated at different t0. Damage d=n*10-4 are the damage 

thresholds; instants t* are the instants when the member exceeds dmin and dmax  for different time t0 spent in state i=0. The shadowed 
area is the period during which the risk increases. 

 
 

6. MAINTENANCE PLANNING BASED ON MRP EVIDENCE 



The application of the MRP to the whole system can lead to identifying when to carry out maintenance, but 

not where to do it. 

Figure 9 shows the period during which it is likely that the structural will fail in the next Δt, if the system has 

already passed t0 of its service life. If the risk threshold assumed is r*10-4 the probable dangerous interval for 

each t0 is the shadowed interval 
maxmin ; tt .  

Figure 10, instead, shows the period during which the system is likely to cross the first threshold in the next 

Δt, passing from state 0 to state 1, if the system has been in service at state 0 for one year (P01) and the period 

during which it is likely that the system crosses the second threshold, during the next Δt, passing from state 1 

to state 2, if it has been in state 1 for one year (P12). 

In both cases, a decision could be made to take a reasonable risk and carry out maintenance on the structure at 

a given instant of the shadowed period (when), but without knowing exactly where. 

In fact, using this approach, maintenance can be scheduled following three different scenarios: 

scenario 1) t0=1 year: renew/replace the whole system during the interval [t*min=21.0 years; t*max=25 years], 

before the system fails. This heavy maintenance should be cyclically repeated every 21.00-25 

years. 

scenario 2) t0=1 year: repair the whole system during the interval [t*min=3.0 years; t*max=4.0 years], before 

transition of the system into state 1. This light maintenance should be repeated cyclically every 3-

4 years to keep the system in state 0. 

scenario 3) t0>3 year (after the first transition): repair/replace the whole system during the interval [t*min=6.0 

years; t*max=7.0 years], before transition of the system from state 1 into state 2. This maintenance 

will be repeated cyclically every 9-10 years to prevent transition of the system into the state 2. 

Scenarios 1-3 involve the whole system in the maintenance plan, without identifying what system members 

are the most damaged. As this could be quite expensive, it becomes interesting to survey if the MRP approach 

can also suggest possible selective maintenance scenarios. 
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Figure 9. Probability of system transition 

)(
0

P fail
tt  vs t evaluated at different t0. The shadowed area is the period during which the 

risk increases. 
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Figure 10. Probability of system transition 

)(

0
P ij

tt  vs t (i vs. j) evaluated at t0=1year and for i=0, j=1 and i=1 and j=2.  

 

Following this aim, MRP was applied to evaluate the probability of transition to a different service state, both 

member by member and the whole system. 

Figure 11 shows the period during which it is likely that the 53 members of the system will pass from state 0 

to state 1, during the next Δt, if each member has been in state 0 for one year. In Figure 11 and in the follow-

ing figures, the probabilities related to members 26-53 are identified as “other members”.  
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Figure 11. Probability of member transition ),(

0

ijm
tt

P  vs t (i vs j) evaluated at t0=1year, i=0, j=1.  
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Figure 12. Probability of member transition ),(

0

ijm
ttP  vs t (i vs j) evaluated at t0=1year, i=1, j=2.  

 
Figure 11 shows the period during which it is likely that the 53 members of the system will pass from state 1 

to state 2 during the next Δt, if each member has been in state 1 for one year. In the case studied, for each 

member and for the whole system, the transition into state 2 occurs always m years after the transition into 

state 1 has happened; the transition 0-2 has never occurred. Figure 13 and Table 4 sum up the transitions from 

state 0 to state 1 of each of the 53 members. 
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Figure 13. Scheme of the progressive passage of the members from state 0 to state 1 (Colours refer to the range of crossing 

times listed in table 4). 



Table 4. Probable passage times from state 0 to state 1  
 

 crossing time 01 
(range in years) 

    1.35 –   2.95 
    4.00 –   6.40 
  11.60 – 15.10 
  17.50 – 21.50 
  19.30 – 24.75 
  22.00 – 28.65 

 
According to these last figures, maintenance could be scheduled following these other three scenarios: 

scenario a) t0=1 year: repair of the most deteriorated members every 3 years. Precisely, every 3 years an in-

tervention on members 22 and 23 should be carried out, every 6 years the intervention involves 

also members 21 and 24, and every 12 years the intervention involves also members 20 and 25. 

These interventions of light maintenance, cyclically repeated, can keep the structure in state 0, 

which is not damaged. Every 21 years the repair intervention should concern the entire bridge 

(Fig. 14). 
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Figure 14. Selective maintenance scenarios:  a). Considering maintenance instants, the figure shows how the system leans to-

wards the initial level of performance when damaged members are repaired; the table shows which members are repaired and the 
instant when maintenance occurs (the instant is shown in the table in the first column on the left, it is expressed in years and is 
measured from the year of construction). The selection of the time of maintenance and of the members to be submitted to mainte-
nance is suggested by the transition probability threshold 1, evaluated for each system member with the MRP application.    

  

  

 

  



If the choice involves the assumption of a certain degree of risk (i.e. accepting that the transition probability 

for some members is higher than the value dmax = 9x10-6) the scenario could be: 

scenario b) t0=1 year: the repair of members 20, 21, 22 23, 24, 25 every 11 years, then the repair/replacement 

of whole members every 22 years. Also this maintenance, cyclically repeated, would keep the sys-

tem in state 1 for a long time (Fig. 15).  
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Figure 15. Selective maintenance scenarios: b). Considering maintenance instants, the figure shows how the system leans towards 
the initial level of performance when damaged members are repaired; the table shows which members are repaired and the instant 
when maintenance occurs (the instant is shown in the table in the first column on the left, it is expressed in years and is measured 
from the year of construction). The selection of the time of maintenance and of the members to be submitted to maintenance is sug-
gested by the transition probability threshold 2, evaluated for each system member with the MRP application.    
 
In conclusion, the MRP methodology can lead us to choose the best maintenance strategy to keep the system 

healthy and in service for a long time, but it can also affect the initial planning choices of the structural sys-

tem in order to achieve longer maintenance intervals. Redesigning members 20-25 could maybe benefit the 

whole system in terms of probability of damage. 

Of course all scenarios proposed must be evaluated from an economical point of view. This important aspect 

is introduced in the next section. 

 

7. LIFE-CYCLE COST ANALYSIS 

  

  



The maintenance of a system involves costs which do not include only the actual cost of repair, but also the 

construction site costs and those directly related to the duration of the maintenance and to inconveniences 

caused by a possible temporary unavailability of construction. 

If the construction is a bridge, the temporary unavailability will cause inconveniences to the traffic in the en-

tire surrounding area. Thus, when calculating the costs of every maintenance choice, even these aspects must 

be taken into account by giving them the right importance. 

The life-cycle cost CT over the expected lifetime T can be computed as the sum of the initial cost C0 and the 

maintenance cost Cm: 

mT CCC  0                        (11) 

The initial cost can sometimes be associated to the cost of the material volume: 

 k kkVcC 00                        (12) 

where c0k and Vk are the volume unit cost and the material volume of member k, respectively. 

For a prescribed maintenance scenario, the total cost of maintenance Cm can be evaluated by summing the 

costs Cq of the individual interventions (Frangopol et al., 1997; Kong and Frangopol, 2003): 




 q
qt
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                       (13) 

where the cost Cq of the qth rehabilitation was referred to the initial construction time by taking a proper dis-

count rate of money v into account. The cost Cq of the individual intervention is assumed as follows (Biondini 

et al., 2008): 

 q q kq kq kk
C C c V                           (14) 

where Cαq =αqC0 is a fixed cost computed as a percentage αq of the initial cost C0, δkq is the damage index of 

member k, ckq is the volume unit cost for restoring the member k. Finally, with regard to the expected struc-

tural lifetime T, the annual cost C can be computed as follows (Flanagan et al., 1989): 

1)1(

)1(





T
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TCC



                       (15) 



Based on this cost model, alternative maintenance scenarios can be compared, and the optimal maintenance 

strategy associated to the minimum life-cycle cost can be selected (Biondini et al., 2006a; 2006b). 

The weight χ is introduced here (Eq. 14) as a multiplier of the unit volume cost ckq able to consider some mat-

ters usually involved in the maintenance process and which, inevitably, affect the maintenance costs. For ex-

ample if frequent but light maintenance involves little site work and partial unavailability of the construction, 

the weight χ can be assumed to be 1. When the maintenance involves the whole construction and total una-

vailability for a long time, the incidence of maintenance costs is significant and the weight χ can reach a high-

er value. 

 
7.1 Application to the case examined 

As said in the previous sections, the MRP applied to the entire system can foresee when a transition between 

states occurs but not what members may be involved in the damage in a more serious way, therefore mainte-

nance scenarios  1), 2) and 3) can arise. On the contrary, applying MRP to all the structure members can lead 

to selective maintenance which, time by time, involves only the most deteriorated members. In this case sce-

narios a) and b) are possible. 

For each of the scenarios proposed in section 4, the yearly cost C was analysed (Eq. 15) and a comparison be-

tween them was made. The comparison was carried out in terms of normalised cost ck=Ck/Ci where Ci indi-

cates the cost of the scenario taken as reference and Ck the cost of the scenario it is to be compared with. 

In Figure 16a the comparison is made between scenarios (2) and (a) aimed at maintaining the structure always 

in state 0 (low damage) but with a different maintenance approach: in scenario (2) it is done on the entire sys-

tem with frequency, scenario (a) is selective and foresees interventions only on the most damaged members. 

Costs are normalised at the cost of scenario (1) which imposes maintenance of the whole system only when 

the structure has already reached state 2 (heavy damage), hence: c=c2=C2/C1 e c=ca= Ca/C1. 

In Figure 16b the comparison is made between scenarios (3) and (b) aimed at maintaining the structure al-

ways in state 1 (moderate damage). Also in this case the scenarios face the problem in a different way: non 

selective scenario (3), selective scenarios (b). The costs are normalised at the cost of scenario (1) which im-

poses maintenance on the entire system only when the structure has already reached state 2 (heavy damage), 

hence: c=c3=C3/C1 e c=cb= Cb/C1. 
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Figure 16. Total costs of maintenance: comparison between selective scenario (a) and non-selective scenario (2), and between selec-

tive scenario (b) and non-selective scenario (3). All the costs are normalised to non-selective scenario (1). In Fig. 16a) the cost asso-

ciated with the selective scenario (a) and the non-selective scenario (2) are compared. In Fig. 16b) the cost associated with the selec-

tive scenario (b) and the non-selective scenario (3) are compared. 

 

For the scenarios which foresee a thorough intervention on the entire system with subsequent higher site work 

and inconvenience for its users, the cost of maintenance ckq is multiplied by χ=3. For maintenance interven-

tions which involve a limited number of members, ckq is multiplied by χ=1. 

From Figure 16 it is clear how the scenarios (a) and (b), which foresee selective maintenance, are to be pre-

ferred to the scenarios which involve maintenance of all the members. However, Figure 16a shows how 

maintenance that is too frequent and prudential, even if it involves a few members, is always more expensive 

than maintenance carried out on the entire system when it is already in state 2, even if it is associated with a 

higher risk of failure. Higher costs are foreseen for ν = 0.03-0.04. Figure 16b shows, instead, that for values of 

ν between 0.00 and 0.05 a selective intervention carried out over longer times, and which is able to keep all 

members of the system in state 1, with a low probability of immediate failure is preferable. For higher values 

of ν scenario (b) results as being slightly more expensive than scenario (1), however it has a lower risk of pos-

sible failure. 

The total yearly cost was evaluated taking into account the different incidence of the fixed cost Cαq =αqC0 on 

the maintenance cost Cq as the value of  αq changes (Eq. 14). 

Figure 17 shows the incidence of the value of αq on a total cost C for both scenarios; the reference cost for 

normalisation is the cost with αq = α =0.00.  
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Figure 17. Influence of the parameter α on the trend of the total yearly costs: a) Scenario (a); b) Scenario (b). The cost with α=0.00 

was considered as a reference for the normalisation of both scenarios. 

 

Figure 17 shows how parameter α affects the total yearly cost for scenario (b) much less if compared to (a). 

This is reasonable, since the reduced number of maintenance interventions involve less computation of fixed 

costs added to the costs of maintenance. 

Figure 18 compares scenarios (a) and (b) with the normalisation scenario (1) for values α=0.00 and α=0.20. 
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Figure 18. Comparison between scenarios (a) and (b), and the normalisation scenario (1) for two different values of  α: (a) α=0.00; 

(b) α=0.20. 

 
Figure 18 shows the great influence which fixed costs can have on the total yearly cost, above all in scenarios 

where frequent maintenance is expected. Therefore, the influence of the fixed cost as a percentage of the ini-

tial cost of construction must be carefully evaluated because it could allow for less frequent maintenance sce-

narios even if at a higher risk of failure. 



CONCLUSIONS 
 
In this work the authors propose the application of the Markovian Renewal Processes (MRP) as a predictive 

model for planning selective maintenance. 

The choice is due to the interpretation given to the deterioration process caused by environmental aggressive-

ness. 

As deterioration is seen as a dynamic process which leads the system to change its performance whenever a 

significant threshold is reached, then the process can be described as a process of transition and an appropriate 

method of modelling for this process is represented by the use of MRPs. In fact, MRPs are able to predict, in 

probabilistic terms, the instant of system transition from its current state of service to another state of service 

characterised by different levels of performance.  

In this work it has been shown that if MRP is applied to the entire system, it is able to predict the instant in 

which the system probably leaves the current state and passes to the following one. If, instead, it is applied to 

all members of the system it is able to predict, for each member, the probable instant of transition. This high-

lights: 

1) the weakest members of the system, therefore, during the design phase it could eventually be used to 

change the mechanical characteristics of such members and guarantee a longer useful life. 

2) the members which are the first to require possible maintenance. 

So that such model can be reliably applied to evaluation of the useful life of a structure, it requires an appro-

priate quantity of experimental data which may describe the performance evolution of the system over time. 

For this purpose, the authors suggest the use of the Monte Carlo method, which simulates structure behaviour 

depending on certain parameters, which simulate the changes in environment aggressiveness, and on a law 

which simulates the subsequent structural deterioration. 

From application of the Monte Carlo and the MRP approach, a methodology was developed which led to the 

planning of some scenarios of selective maintenance whose effectiveness has been assessed also in terms of 

total annual costs of maintenance. 

The selective maintenance problem has been dealt in the literature using the Monte Carlo methodology asso-

ciated to the development of different indexes of maintenance able to identify the damage or the decrease in 

the reliability of the system components. Yet these methods, which are equally reliable, require several appli-



cations of the Monte Carlo methodology with a remarkable use of computational time. The methodology pro-

posed, instead, requires only an MC application, which may allow the user to obtain, for each member,  5000 

transition times for each of the thresholds established.  This set of times, characterised by a high sample size, 

represent the base for the development of an MRP and for the calculation of the conditioned probabilities  

necessary for planning possible maintenance scenarios without further iterations of simulations. 
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