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Abstract

Evaluating the reduction in pollution caused by a sudden change in emission is
complicated by the confounding effect of weather variations. We propose an approach
based on machine learning to build counterfactual scenarios that address the effect of
weather and apply it to the COVID-19 lockdown of Lombardy, Italy. We show that
the lockdown reduced background concentrations of PM2.5 by 3.84 µg/m3 (16%) and
NO2 by 10.85 µg/m3 (33%). Improvement in air quality saved at least 11% of the
years of life lost and 19% of the premature deaths attributable to COVID-19 in the
region during the same period. The analysis highlights the benefits of improving air
quality and the need for an integrated policy response addressing the full diversity of
emission sources.
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1 Introduction

Exposure to airborne pollutants is detrimental to human health. Fine particulate matter

(PM2.5) increases mortality rates and hospitalizations due to respiratory and cardiovascular

disease (Pope and Dockery 2006; Ebenstein et al. 2017; Deryugina et al. 2019). Addition-

ally, it leads to a decline in physical and cognitive productivity (Graff Zivin and Neidell

2012; Ebenstein et al. 2016; Zhang et al. 2018; He et al. 2019; Kahn and Li 2020). Simi-

larly, exposure to nitrogen dioxide (NO2) leads to an increase in hospital admissions and

premature mortality (Mills et al. 2015; Amini et al. 2019; Duan et al. 2019).

The design of effective pollution abatement policies requires a comprehensive under-

standing of the relationship between reductions of emissions and concentrations. However,

the processes of formation, transport, and dispersion of pollutants are complex phenom-

ena, introducing considerable uncertainty on the effect of policies on air quality. Moreover,

impact assessments need to address the confounding effect of annual and daily weather

variations, a significant driver of pollutant concentrations.

This paper provides novel evidence on the change in concentrations of PM 2.5 following

a composite reduction in emissions across different sources. Specifically, we exploit the

dramatic decrease in Italy’s mobility and economic activity in response to the COVID-19

outbreak from late February to early May. We provide causal estimates of the change

in PM2.5 and NO2 over more than two months for Lombardy, one of the most polluted

regions among Organisation for Economic Co-operation and Development countries, and

one of the first areas outside China that imposed a strict lockdown.

Using a machine-learning algorithm, we address the confounding effect of weather and

build a counterfactual scenario of the pollution concentrations that would have occurred

if the COVID-19 pandemic had not broken out and no lockdown had been implemented.

Finally, we compute the years of life saved and the number of premature deaths avoided
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by the improvement in air quality. We compare these numbers against the years of life lost

and premature deaths due to COVID-19 in the region over the same period.

Ex-post studies can provide valuable estimates of the sensitivity of concentrations to

emissions. However, a host of confounding factors can seriously hinder policy evaluation.

In particular, the concentration of airborne pollutants is highly dependent on atmospheric

conditions. Formation, transport, dispersion, and even emission of pollutants are directly

or indirectly affected by the weather (Kroll et al. 2020). For instance, severe haze events

in Beijing follow periodic cycles governed by meteorological conditions, especially wind

patterns (Guo et al. 2014). Unless the confounding impact of weather is accounted for, the

estimated change in concentrations following intervention will be biased.

A common approach to impact evaluation of pollution control policies is comparing

areas that were affected by a policy and areas that were not (e.g., He et al. (2020) and

Cole et al. (2020) for the case of COVID-19 lockdowns). However, even when differences in

weather have been accounted for, unaffected and comparable areas may not always exist.

For the problem at hand, a precise separation between affected and unaffected regions is

not possible, considering the ubiquitous adoption of measures to control the spreading of

COVID-19.

We turn the complex correlation of weather and pollution to our favor, predicting

concentrations as a function of weather variables and season with machine learning. We

follow a simple strategy, similar to Petetin et al. (2020), that does not require the avail-

ability of comparable but unaffected regions. For each air pollution monitoring station

in Lombardy, we train an extreme gradient boosting regressor (Friedman 2001), a tree-

based machine learning algorithm, over daily concentrations from 2012 to 2019 and predict

concentrations for the first four months of 2020. We show in Supplementary information

that this approach is more reliable than linear regression models. To account for any con-
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stant error in our prediction, including inter-annual trends (Silver et al. 2020), we adopt

a difference-in-differences strategy. We identify the average impact of the lockdown on air

pollution concentrations as the difference between the prediction error before and during

the lockdown.

We find that, despite the unprecedented halt in mobility and economic activity, the con-

centrations of major pollutants only partially decreased as a consequence of the lockdown.

Background concentrations of PM2.5 and NO2 decreased by 3.84 µg/m3 (16%) and 10.85

µg/m3 (33%), respectively. Nonetheless, the improvement in air quality saved at least 11%

of the years of life lost and 19% of the premature deaths attributable to COVID-19 in the

region during the same period.

This paper contributes to several active strands of literature in air pollution research.

First, it speaks to works on the assessment of pollution control policies, and in particular,

to the growing corpus of research employing machine learning and fine-grained data. The

paper illustrates an innovative procedure to quantify the implications of a change in emis-

sions on outdoor concentrations of pollutants, isolating the effect of weather variability.

While existing studies applying a similar approach restrict the analysis to no more than a

few days, we show the conditions under which the procedure can be applied to longer time

windows, the length of weeks or months. We illustrate the approach through a specific

event - the lockdown of Lombardy, in Northern Italy - but it can be generalized wherever

spatially and temporally detailed data on air pollution concentrations and atmospheric

conditions are available.

Second, this paper is relevant to pollution control policies in the domain of study.

Lombardy is a high-income, densely populated region, home to approximately 10 million

people, and one of the most polluted in OECD countries. The European Commission has

repeatedly referred Italy to the Court of Justice of the European Union over persistently
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high levels of NO2 and PM10, mainly in Lombardy and the rest of the Po Valley (European

Commission v. Italian Republic 2012, 2019, 2020). This study sheds light on the sectoral

contributions to emissions of PM2.5 and NO2, offering tools to regulators and policymakers.

Finally, our study relates to the literature on source apportionment to different sectors,

particularly agriculture, a topic of increasing relevance (Lelieveld et al. 2015). During the

study period, agricultural production continued unaffected, and on average 11.6 µg/m3

(39%) of PM10 in Milan, the largest city, were attributable to agriculture. We acknowledge

that missing sufficient data on 2020 sectoral emissions and on the composition of PM2.5,

source apportionment to different sectors remains elusive. Were the data available, our

machine learning approach could be used to exactly estimate changes in the composition

of PM2.5.

2 Sectoral emissions during lockdown

The timing and nature of the lockdown of Lombardy and Italy are discussed in detail in the

Supplementary information. We highlight here two key moments. On February 21, 2020,

the first outbreak of COVID-19 in Italy was identified in the south of Lombardy. Within

24 hours, 11 municipalities in the region went under strict lockdown: schools were closed,

all non-essential economic activities had to stop, and a stay-at-home order was in place.

Teaching activities in the rest of Lombardy also were suspended. On March 8, authorities

extended the lockdown to the rest of Lombardy; and to the rest of Italy on the following

day. Lockdown measures were kept in place almost unaltered until May 4.

The progressive spreading of the virus in Northern Italy and the tightening of con-

tainment measures have substantially reduced mobility and economic activity. As mobile

phone data reveals, the movement of individuals in Lombardy has followed a two-step re-

sponse, following the first outbreak of COVID-19 cases in lower Lombardy (February 21)
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and the lockdown of the entire country (March 9) (Figure 1a). By mid-March, mobility

dropped by three-fourths, according to data compiled by Google and Apple (Google 2020;

Apple 2020). Under lockdown, all non-essential industrial production halted. As a conse-

quence, energy demand in Northern Italy steadily decreased since March 9, as businesses

shut down, bottoming to 50% of pre-lockdown levels after two weeks (Figure 1b).

However, not all major sources of emissions, especially those releasing precursors of

PM2.5, have been affected by restrictions. The lockdown forced most people to home

isolation; it is sensible to hypothesize that emissions from residential buildings increased

as a consequence. On the other hand, emissions from non-residential buildings might have

decreased. Although data to confirm this is lacking, it is plausible that emissions from

heating systems have not been affected substantially.

During the transition between winter and spring, agriculture becomes an important

source of secondary PM2.5 in Lombardy (INEMAR 2017). The dispersal of animal liquids

on open fields is a common (though regulated) practice that releases ammonia in the atmo-

sphere, a precursor to secondary PM2.5. Public authorities have not restricted agricultural

activities during lockdown in the interest of securing food supplies. These practices have

continued virtually unchanged compared to previous years (personal exchange with public

officials at the regional office for agriculture).

The agricultural sector is responsible for almost all emissions of ammonia (NH3) in the

region (INEMAR 2017), a precursor to particulate matter as it combines into ammonium

nitrates and ammonium sulfates. Data on the decomposition of background PM10 in Milan

shows that ammonium nitrates and ammonium sulfates accounted for almost 40% of PM10

concentrations during the lockdown (see Figure A.4 in Supplementary information). This

corroborates the evidence that restrictive measures did not meaningfully alter agricultural

emissions.
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Figure 1: Proxies of sectoral emissions. a, Mobility indices for Milan Lombardy based
on mobile phone data. Indices equal 100 on February 23. Source: Google (2020); Apple
(2020). b, Total load of energy demand in Northern Italy in MW, 2019 vs 2010. The time
series of 2019 has been shifted to match the day of the week. Source: TERNA (2020).

3 Methods

3.1 Machine learning

To identify the causal effect of the lockdown on concentrations without directly observing

emissions, we build a synthetic counterfactual. We train a machine learning algorithm that

can reproduce pollution concentrations on a business-as-usual scenario, and then predict
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concentrations during the lockdown. The difference between observed concentrations and

the counterfactual, or prediction error, is the effect of the intervention. To account for

potential systemic bias in the counterfactual, we adopt a difference-in-differences strategy.

We identify the average impact of the lockdown on concentrations as the difference be-

tween the average prediction error before and during the lockdown. This approach does

not require identifying comparable regions whose concentrations follow a business-as-usual

trend.

We first assemble a dataset of air pollution, atmospheric conditions, and calendar vari-

ables for the period 2012 to 2020 for the Italian region of Lombardy. Pollution concen-

trations are measured at 83 monitoring stations. Data on daily minimum and maximum

temperature, average wind speed and wind direction, average relative humidity, daily cu-

mulative precipitation, and atmospheric soundings come from 227 weather stations.

For every monitoring station, we build the counterfactual using an extreme gradient

boosting regressor, a tree-based model (Friedman 2001).1 Next, monitor by monitor, we

train the algorithm on data from 2012 through 2019 and predict concentrations of PM2.5

and NO2 in 2020. We use the pre-lockdown period from January 1 to February 22, which

was not included in the training set, to assess the validity of the counterfactual.

As our ultimate goal is a reliable prediction of pollutant concentrations from January

through early May 2020, cross-validation is performed over four folds, each one consisting

of the months from January to April for 2016, 2017, 2018, and 2019. The more common

cross-validation on random subsamples, or folds, gives equal weight to all seasons. However,

with such validation strategy it cannot be ruled out that an algorithm make good average

predictions, while over-predicting in one season and under-predicting in the opposite one.

Suppose, for instance, that the predictions of a learner are positively biased in spring, neg-
1We use the python package xgboost (Chen and Guestrin 2016).
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atively biased in fall, and unbiased in winter and summer. In this case, testing predictions

on the pre-lockdown period (in wintertime) does not give correct estimates of the bias

during the lockdown (in springtime). For this reason, we perform cross-validation over the

months for which we want predictions to be reliable. Model parameters are selected to

maximize the cross-validated RMSE.

The identification strategy relies on two assumptions. First, input variables should

not be themselves affected by the intervention; otherwise, estimated effects will be biased

towards zero. To this end, we exploit the sensitivity of concentrations to meteorological

conditions and build the counterfactual as a function of weather and season. While emis-

sions are affected by weather (e.g., lower emissions from heating systems on warmer days),

our identification assumption is not violated as the weather is not affected by emissions.

On the other hand, the algorithm implicitly learns the patterns of emissions as the weather

varies and seasons pass.

Second, emissions that would have materialized absent the lockdown, and once weather

has been accounted for, should be equal to emissions in the training period. One might be

concerned that differences in technology (such as upgrading of the vehicle fleet) or economic

activity between the training and prediction sample violate this assumption (Silver et al.

2020). We address this concern adopting a difference-in-differences strategy that excludes

any constant prediction bias from the estimated effects of the lockdown. As long as the

variation of observed values around the true counterfactual mean is well reproduced, esti-

mates will be valid. Furthermore, the learner is cross-validated on data from 2016 through

2019; thus, recent years are given more weight.

We estimate the average effect of the lockdown with the following equation:

yit − ŷit = α+ βLockdownt + εit (1)

9

Page 9 of 53 AUTHOR SUBMITTED MANUSCRIPT - ERL-110024.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



where yit is concentration measured at monitor i on day t, ŷit is the predicted value,

and Lockdown is a dummy equal to 1 during the lockdown and 0 prior to it. α captures

any time-invariant bias of the predictor; β is the parameter of interest; and εit is a random

term. The preferred specification then distinguishes treatment effects by type of monitoring

station.2 Since concentrations are consequential to the extent that they reflect exposure, we

weight observations by population within 20 kilometers from monitors.3 We leave estimates

of unweighted regressions, which yield qualitatively similar results, to the Supplementary

information. To our knowledge, there is little guidance in the literature on how to estimate

standard errors in this context properly. Thus, where reasonable, we cluster standard

errors by monitor; where the number of clusters is small, we use robust heteroskedasticity-

standard errors.

2Namely background, industrial, and traffic monitoring stations.
3Territory within 20 kilometers of two or more monitors is assigned to the closest monitor. The con-

struction of population weights is described in more detail in Supplementary information.
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3.2 Data sources

We assemble a dataset of air pollution, atmospheric conditions and calendar variables for

the period 2012 to 2020 for the Italian region of Lombardy. The region is the home to

about 10 million people and is the first contributor to national GDP by size. Its natu-

ral geography is conducive to low winds and stable air masses throughout the cold season.

Mountain ranges to the North, West and South effectively block transboundary air streams

extending wintertime thermal inversions and aggravating pollution events. For exceeding

recommended air quality thresholds, Italy has been fined and subject to infringement pro-

cedures by the European Commission. We describe the data sources and pollution trends

in Lombardy.

3.2.1 Air pollution

Data for air pollution is collected, checked, and published by ARPA Lombardia, the regional

environmental agency.4 We obtain readings for NO2 and total PM2.5 for background,

traffic, and industrial stations as available. Hourly readings are averaged to daily readings.

We exclude all monitoring stations that are not functioning during the lockdown or have

been set up after 2015. Background stations account for about 60% of pollution monitors,

traffic stations for about 30%, and the remaining 10% is located in industrial areas.

Average yearly concentrations of PM2.5 in Milan, the region’s capital, are systematically

above the safety levels established by the WHO (10 µg/m3); from December to the end of

February, daily concentrations average above 40 µg/m3. Average levels of NO2 during the

period are also well above WHO safety standards.
4Both air pollution and weather data are publicly available at https://www.dati.lombardia.it/

stories/s/auv9-c2sj.
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3.2.2 Weather data

Data on weather conditions at weather stations throughout the region are also elaborated

and made available by ARPA Lombardia. We retrieve the daily minimum and maximum

temperature; average wind speed and wind direction; average relative humidity; and daily

cumulative precipitation. We further include a host of atmospheric sounding indices mea-

sured at Milano Linate airport and made available by the University of Wyoming, namely

Showalter index, Lifted index, SWEAT index, K index, and Cross Totals, and Vertical To-

tals indices. All atmospheric variables enter as predictors in the form of contemporaneous

and lagged values. Although monitor data and atmospheric soundings have gone through

quality checks at the source, we winsorize all atmospheric predictors at 1 and 99 percentiles

to bound the influence of extreme values.

3.2.3 Additional predictors

The ratio of PM2.5 to PM10 in Lombardy is typically altered in presence of pollution trans-

ported from long distances. For instance, a mass of dust from the Caspian Sea reached

Northern Italy in late March, substantially altering the ratio. We assume the PM2.5 to

PM10 ratio is independent of the lockdown and include it among predictors as the concen-

tration of PM2.5 is affected by such shocks. Additional predictors are calendar variables to

capture trends over time and seasons. We include year, month, week of the year, day of

the month, day of the week in the form of continuous variables as well as dummy variables.

We further include sine functions of time to mimic seasonality.

3.2.4 Population weights

Population weights for monitoring stations reflect the population within 20 kilometers of

monitors (Figure 3 in Supplementary information). Population data on a 1 km by 1 km
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grid comes from the Italian National Statistical Office (ISTAT).5 Grid cells within less than

20 kilometers from two or more monitors are assigned to the closest one.

3.3 Health impact assessment

To compute the number of avoided deaths and years of life saved by the reduction in

PM2.5, we follow Fowlie et al. (2019) and take all-cause mortality relative risk (RR) ratios

for PM2.5 from two influential studies, Krewski et al. (2009) and Lepeule et al. (2012). In

addition, we use the RR ratio recommended by the WHO (Henschel et al. (2013)) and

adopted by the European Environment Agency (European Environment Agency 2019).

For NO2, we only use the WHO recommendations. The calculation of avoided deaths and

years of life saved from concentration-response functions is described in Supplementary

Information A.1.

The more conservative estimates are based on Krewski et al. (2009), who report an

hazard ratio 1.056 for an increase of 10 µg/m3 of PM2.5. Lepeule et al. (2012) estimate

instead a larger hazard ratio of 1.14 for the same change in concentrations. The WHO

recommends estimating the long-term impact of exposure to PM2.5 in adult populations

using an RR of 1.062 for 10 µg/m3; it recommends an RR of 1.055 for 10 µg/m3 of NO2

above 20 µg/m3 in adult populations.

4 Results and Discussion

4.1 Accuracy of predictions

To assess the accuracy of predictions, we test the counterfactual against observed values

during the pre-lockdown period from January 1 to February 22, which has not been used for
5The data is available at https://www.istat.it/it/files//2015/04/GEOSTAT_grid_POP_1K_IT_

2011-22-10-2018.zip. Last accessed on July 23, 2020.
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training. Table 1 reports mean values of Pearson’s correlation coefficient (Corr), mean bias

(MB), normalized mean bias (nMB), and root mean square error (RMSE). As we ultimately

compute the difference-in-differences between observed values and the counterfactual, we

also report the centered RMSE (cRMSE) and the normalized centered RMSE (ncRMSE).6

For completeness, the table also includes statistics for the training set.

The correlation between observed and predicted values in the pre-lockdown period is

0.87 and 0.88 for PM2.5 and NO2, respectively. The counterfactual overestimates observed

values by 1.34 µg/m3 (PM2.5) and 4.7 µg/m3 (NO2), thus motivating the use of a difference-

in-differences strategy. The centered RMSE is 30% (PM2.5) and 27% (NO2) of mean

observed concentrations. A graphical summary of model predictive performance, Taylor

diagrams, can be found in Supplementary information.

In air pollution forecasting, machine learning techniques are typically used to predict

concentrations an hour to few days ahead, and studies that can be used as benchmark

are scarce. To the best of our knowledge, Petetin et al. (2020) is the only work whose

methodology and length of forecast are comparable. They use machine learning to build

a counterfactual for NO2 concentrations in Spain during the COVID-19 lockdown. They

report a normalized mean bias of 2% to 7%, depending on the type of station, a correlation

coefficient of 0.71 to 0.75, and normalized RMSE of 28% to 32%. Compared to their study,

our algorithm better mimics variation around the mean, than the mean itself. However, in

our estimation strategy, any constant bias is captured by the constant in Equation 1.

6The centered RMSE is computed as
[
1/N

∑
(ŷi − ¯̂y − yi + ȳ)2]1/2.
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Table 1: Accuracy of predictions, average values across monitors

Pollutant Dataset Corr MB nMB RMSE cRMSE ncRMSE

NO2 Train 1 .004 0 .276 .275 .008
NO2 Test .875 -4.672 -.159 9.961 8.088 .261
PM2.5 Train .999 0 0 .443 .443 .015
PM2.5 Test .871 -1.335 -.049 8.764 8.476 .295

Notes: Corr : Pearson’s correlation coefficient. MB: Mean bias, where negative values indicate observed
values below predicted values. nMB: Normalized mean bias. RMSE : Root mean squared error. nRMSE :
Normalized RMSE. cRMSE : Centered RMSE. ncRMSE : Normalized centered RMSE. Mean bias, RMSE
and centered RMSE are expressed in µg/m3. Mean bias, RMSE and centered RMSE are normalized
dividing by mean observed concentrations. The centered RMSE is computed as[
1/N

∑
(ŷi − ¯̂y − yi + ȳ)2]1/2.
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4.2 Effect of the lockdown on air pollution

Following the lockdown, air quality in Lombardy improved only partially. Figure 2 plots

the population-weighted observed and counterfactual values for PM2.5 (Figure 2a) and NO2

(Figure 2b). NO2 at background stations reached levels below the yearly limit set by the

WHO Air Quality Guidelines. However, background concentrations of PM2.5 still exceeded

the daily limit of 25 µg/m3 every one in four days.

The counterfactual well mimics observed values in the pre-lockdown period, corrobo-

rating the validity of the statistical approach. In contrast, a gap between observed and

counterfactual values is evident as restrictions are tightened. We show in Supplementary

information that the method outperforms a linear regression.

Suggestive evidence of the effect of the lockdown on concentrations of NO2, which in

Lombardy largely originate from motor vehicles, is visible from the week of February 25,

consistent with the reduction in mobility documented in Figure 1a. The effect on PM2.5

only appears as non-essential economic activities are halted in Lombardy and the rest of

Italy, and is smaller in magnitude.
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Figure 2: Population-weighted average of observed and counterfactual values.
a, PM2.5. b, NO2. Population is measured within 20 kilometers of a monitoring station.
Territory within less than 20 kilometers from two or more monitors is assigned to the
closest one.

The lockdown may have affected PM2.5 concentrations mainly through two channels:

the reduction of primary PM2.5 emissions, such as black and organic carbon, and reduction

of precursors of secondary PM2.5. We remark that NO2 is a precursor of secondary PM2.5;

a reduction in NO2 may, therefore, lead to a decline in PM2.5. However, as data on PM2.5
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composition is insufficient, we cannot quantify the contribution of NO2 to the reductions

in PM2.5 concentrations.7 Therefore we treat both pollutants independently.

We estimate a population-weighted version of Equation 1 in Methods and report results

in Table 2. Results of unweighted regressions are qualitatively similar and can be found

in Supplementary information. From February 22 to May 4, the lockdown has on average

reduced daily concentrations of PM2.5 and NO2 by 5.32 µg/m3 and 13.56 µg/m3. That

is a reduction of 21.8% and 35.6%, respectively, from the average levels that would have

been observed had not the epidemic broken out.

Next, our preferred specification distinguishes effects of the lockdown by type of moni-

tor. Background monitors are located where concentrations are representative of the am-

bient exposure of the general population; industrial monitors are located in the proximity

of industrial sites or industrial sources; traffic monitors are located near a major road.

Population-weighted average background concentrations of PM2.5 decreased by 3.84

µg/m3 from 24.42 µg/m3 (Table 3).8 The reduction was almost twice as large in monitored

industrial sites and near major roads. Background concentrations of NO2 dropped by 10.85

µg/m3 from 33.22 µg/m3, by 10.66 µg/m3 near monitored industrial sites and by 15.85

µg/m3 more at major roads.
7At the time of writing, data on composition of PM2.5 has not been released. Data on composition of

PM10 is available only for 3 monitoring station.
8The very low number of monitors by type makes clustered standard errors inappropriate. We thus use

robust standard errors.
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Table 2: Population-weighted regression

∆Observed,Counterfactual

(1) (2)

PM 2.5 NO2

Lockdown -5.32∗∗∗ -13.56∗∗∗

(1.08) (1.21)

Constant 0.73 2.59

(1.37) (1.67)

Average baseline concentration 24.39 38.14

Observations 3555 10084

Notes: Regression weighted by population within 20 kilometers of

a monitoring station. Territory within less than 20 kilometers from

two or more monitors is assigned to the closest one. The dependent

variable is the difference between the observed values and the coun-

terfactual. Lockdown is a dummy variable equal to 0 from January 1,

2020 to February 22, and equal to 1 after February 22, 2020. Average

baseline concentration is the population-weighted average of coun-

terfactual values during the lockdown, less the constant in case the

latter is statistically significant at 10%. Standard errors, in brackets,

are clustered by monitor. * p<0.1, ** p<0.05, *** p<0.01.
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Table 3: Heterogeneous effects by type of monitoring station

∆Observed,Counterfactual

PM 2.5 NO2

Background Industrial Traffic Background Industrial Traffic

Lockdown -3.84∗∗∗ -7.39∗∗∗ -7.28∗∗∗ -10.85∗∗∗ -10.66∗∗∗ -15.85∗∗∗

(0.97) (1.54) (1.20) (0.64) (0.96) (0.75)

Constant -1.26 5.18∗∗∗ 2.79∗∗ 0.21 7.29∗∗∗ 4.04∗∗∗

(0.84) (1.37) (1.07) (0.49) (0.84) (0.63)

Average baseline concentration 24.42 27.99 27.77 33.22 31.93 46.67

Number of monitors 18 2 10 53 6 24

Observations 2117 244 1194 6483 731 2870

Notes: Regression weighted by population within 20 kilometers of a monitoring station. Territory within less than 20 kilometers

from two or more monitors is assigned to the closest one. The dependent variable is the difference between the observed values and

the counterfactual. Lockdown is a dummy variable equal to 0 from January 1, 2020 to February 22, and equal to 1 after February

22, 2020. Average baseline concentration is the population-weighted average of counterfactual values during the lockdown, less

the constant in case the latter is statistically significant at 10%. Robust standard errors are in brackets. * p<0.1, ** p<0.05,

*** p<0.01.
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4.3 Human health benefits

As the reduction in road transport and the slowing of economic activity reduced toxic

emissions, the burden of pollutants on human health eased. For calculations, we use

the estimated change in concentrations at background stations. Avoided deaths and YLS

should be considered a lower-bound estimate of total health benefits avoided deaths.

The reduction in PM2.5 prevented 10.2 to 24.8 premature deaths per 100,000 indi-

viduals and saved 72.1 to 175.9 years of life per 100,000 individuals, depending on the

concentration-response function (Table 4). The reduction in NO2 prevented 28.8 prema-

ture deaths and saved 203.7 years of life per 100,000 individuals. Given the high correlation

between concentrations of PM2.5 and NO2, the concentration-response function of these

pollutants are interdependent. It is recommended that avoided deaths and YLS be not

aggregated across pollutants, lest incurring in partial double counting.

As a comparison, in Italy in 2016 for every 100,000 individuals, there have been 96.6

premature deaths attributable to PM2.5 and 24.1 attributable to NO2, or 23.8 and 5.9

premature deaths in three months, respectively (European Environment Agency 2019).

Since most of the premature deaths happen in the more polluted North of Italy, including

Lombardy, the lockdown has temporarily reduced the cost of pollution by a substantial

amount.

We compare the results against the number of deaths and the years of life lost (YLL)

related to COVID-19 in Lombardy during the same period, computed from patient-level

data.9 In Lombardy, from February 22 to May 3 2020, every 100,000 people 155 died after

testing positive for COVID-19 and 1891 years of life have been directly lost to the virus.

Avoided deaths from the reduction in PM2.5 are 6.5% to 16% of COVID-19 deaths; YLS
9Data on the individual COVID-19 patients has been shared by regional health officers under an insti-

tutional agreement.
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Table 4: Avoided premature deaths and years of life saved per 100,000 in Lombardy due
to improved air quality during lockdown.

Pollutant Source of HR Hazard ratio Avoided deaths

Avoided deaths NO2 EEA/WHO 1.055 28.8
PM 2.5 EEA/WHO 1.062 11.3
PM 2.5 Krewski et al. (2009) 1.056 10.2
PM 2.5 Lepeule et al. (2012) 1.14 24.8

Years of life saved NO2 EEA/WHO 1.055 203.7
PM 2.5 EEA/WHO 1.062 79.7
PM 2.5 Krewski et al. (2009) 1.056 72.1
PM 2.5 Lepeule et al. (2012) 1.14 175.9

In Lombardy, from February 22 to May 3 2020, every 100,000 people 155 died after testing positive for
COVID-19 and 1891 years of life have been directly lost to the virus. The hazard ratio is the ratio of two
concentration-response functions, or hazard rates, between a high and a low concentration differing by 10
µg/m3. Avoided premature deaths are calculated using the population-weighted change in concentrations
at background stations.

are 3.8% to 9.3% of YLL to COVID-19. Avoided deaths from the reduction in NO2 are

18.6% of COVID-19 deaths; YLS are 10.8% of YLL to COVID-19.
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5 Conclusions

The dramatic reduction in emissions of airborne pollutants that has come with the response

to COVID-19 provides a unique natural experiment to assess the sensitivity of pollutants

concentrations and health to emissions. We estimate a substantial yet partial improvement

in air quality in Lombardy following the outbreak, and suggest that the improvement

originates primarily from the reduction of road transport; and to a lesser degree from the

reduction in industrial activity. Important sources of emissions as heating systems and

agriculture have not been substantially affected by the outbreak.

The methodology used to build the counterfactual does not require identifying compa-

rable but unaffected regions, but relies on the assumption of emissions absent the lockdown

following historical variation around the mean. The approach is not limited to this case

study, but can be applied in a variety of settings due to the increasing and reliable avail-

ability of pollution and weather data.

Finally, we are nowhere near suggesting the pandemic has been beneficial for the affected

communities, yet the health benefits from improved air quality are noticeable. While global

pandemics are rare phenomena, exposure to unhealthy levels of toxic air pollutants is the

rule, including in affluent regions of the world such as the one considered here. This paper

has emphasized some of the health benefits of cleaner air, but also highlighted the variety

of emissions sources and the need for a broader policy response to solve Europe’s biggest

environmental health risk.
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A Supplementary information

A.1 Years of life saved

Concentration-response functions are typically estimated with log-linear regressions of mor-

tality risk on pollutants of the form ln(y) = α + βC, so that y = AeβC . The change in

mortality risk from y′ to y′′ is

y′ − y′′ = A(eβC′ − eβC
′′)

= AeβC
′(1 − eβ(C′′−C′))

= y′(1 − 1
eβ(C′−C′′) )

with A = eα. Here y′ is the baseline mortality risk and eβ(C′−C′′) is the RR. The β

coefficient is not typically reported, but is easily found as β = ln(RR)/10.

For each gender g and age group a above 30, we multiply the change in mortality

risk from the baseline by the number of individuals in Lombardy of that gender and age

group (Ng,a).10 This gives us the number of avoided deaths for a year-long reduction in

pollutants. We then multiply this number by gender- and age-specific life expectancy to

obtain the YLS.

Avoided Deathsg,a = y′g,a · (1 − 1
eβ(C′−C′′) ) ·Ng,a · 1

6

Y LSg,a = Avoided Deathsg,a · Life Expectancyg,a

Y LS =
∑
g

∑
a

Y LSg,a

10The benefits from reductions in NO2 are set to zero for values below 20 µg/m3, as recommended by
Henschel et al. (2013).

32

Page 32 of 53AUTHOR SUBMITTED MANUSCRIPT - ERL-110024.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



It should be noted that we are assuming that avoided deaths and years of life saved

by a two-month improvement in air quality are equivalent to a sixth of the benefits of a

year-long improvement. In addition, we assume that the gains are linear in reductions of

concentrations.11

Gender- and age-group specific baseline mortality risk, population size and life ex-

pectancy come from mortality tables for Lombardy compiled by the Italian National Sta-

tistical Office (ISTAT). Avoided deaths and YLS are computed using the lockdown on

pollution (C ′ − C ′′) estimated at background stations.

A.2 Accuracy of linear regression for construction of counterfactuals

We show a linear regression model does not perform as well as the machine learning al-

gorithm used for the main results. For every monitoring station, we regress daily concen-

trations on a vector of daily weather summaries, namely daily cumulative precipitation,

average temperature, average wind speed and average wind direction, in 2012 through 2019

(Equation A.2.1). We then use the estimated coefficients to predict concentrations in 2020

before and throughout the lockdown (Equation A.2.2). Finally, we assess the accuracy of

predictions during the pre-lockdown period from January 1 to February 21, 2020. Precipi-

tation, temperature, wind speed and direction on day t at any given pollution monitor are

interpolated with inverse distance weight from the three closest weather stations within

0.2 degrees from the monitor.

yt2012−2019 = α+ β′Weathert2012−2019 + εt2012−2019 (A.2.1)

ŷt2020 = α̂+ β̂′Weathert2020 (A.2.2)
11This is in line with Henschel et al. (2013), who recommend a linear concentrations-response function.
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Observed and predicted population-weighted average concentrations are displayed in

Figure A.3. While approximating pre-lockdown values on average, the predictions fail

to capture a non-negligible portion of the variability. The validity of predictions based

on linear regressions is especially poor for PM2.5. The same conclusions can be drawn

examining average accuracy measures for linear regression predictions in Table A.5.

Table A.5: Accuracy of liner regression predictions, average values across monitors

Pollutant Dataset Corr MB nMB RMSE cRMSE ncRMSE

NO2 Train 0.71 0 0 9.7 9.7 0.33

NO2 Test 0.7 -5.09 -0.16 13.22 11.45 0.37

PM2.5 Train 0.63 0 0 12.21 12.21 0.53

PM2.5 Test 0.59 0.35 0.01 14.43 14.21 0.5

Notes: Corr : Pearson’s correlation coefficient. MB: Mean bias, where negative values indicate observed

values below predicted values. nMB: Normalized mean bias. RMSE : Root mean squared error. nRMSE :

Normalized RMSE. cRMSE : Centered RMSE. ncRMSE : Normalized centered RMSE. Mean bias, RMSE

and centered RMSE are expressed in µg/m3. Mean bias, RMSE and centered RMSE are normalized

dividing by mean observed concentrations. The centered RMSE is computed as[
1/N

∑
(ŷi − ¯̂y − yi + ȳ)2]1/2.
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Figure A.3: Population-weighted average of observed and counterfactual values
built with linear regression models. a, PM2.5. b, NO2. Population is measured within
20 kilometers of a monitoring station. Territory within less than 20 kilometers from two
or more monitors is assigned to the closest one.
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A.3 Supplementary tables

Table A.6: Pollution monitors by type.

Pollutant Type of monitor Number of
municipalities

Number of monitors

NO2 Background 50 53
NO2 Industrial 6 6
NO2 Traffic 20 24
PM2.5 Background 18 18
PM2.5 Industrial 2 2
PM2.5 Traffic 10 10

Background stations measure pollutions concentrations that are representative of the average exposure of
the general population, or vegetation. Industrial stations are located in close proximity to an industrial
area or an industrial source. Traffic stations are located in close proximity to a single major road.
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Table A.7: Unweighted regression

∆Observed,Counterfactual

(1) (2)

PM 2.5 NO2

Lockdown -4.37∗∗∗ -9.19∗∗∗

(0.41) (0.65)

Constant 1.19∗∗ 0.73

(0.47) (0.53)

Average baseline concentration 25.58 38.14

Observations 3555 10084

Notes: Unweighted regression. The dependent variable is the differ-

ence between the observed values and the counterfactual. Lockdown

is a dummy variable equal to 0 from January 1, 2020 to February

22, and equal to 1 after February 22, 2020. Average baseline concen-

tration is the average of counterfactual values during the lockdown,

less the constant in case the latter is statistically significant at 10%.

Standard errors, in brackets, are clustered by monitor. * p<0.1, **

p<0.05, *** p<0.01.
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Table A.8: Heterogeneous effects by type of monitoring station - unweighted regression

∆Observed,Counterfactual

PM 2.5 NO2

Background Industrial Traffic Background Industrial Traffic

Lockdown -3.70∗∗∗ -7.63∗∗∗ -4.92∗∗∗ -7.53∗∗∗ -7.50∗∗∗ -13.39∗∗∗

(0.39) (1.33) (0.53) (0.19) (0.58) (0.39)

Constant 0.79∗ 5.10∗∗∗ 1.11∗ -0.05 2.89∗∗∗ 1.98∗∗∗

(0.34) (1.20) (0.46) (0.15) (0.48) (0.31)

Average baseline concentration 25.21 27.91 26.09 33.22 27.53 44.61

Number of monitors 18 2 10 53 6 24

Observations 2117 244 1194 6483 731 2870

Notes: Unweighted regression. The dependent variable is the difference between the observed values and the counterfactual.

Lockdown is a dummy variable equal to 0 from January 1, 2020 to February 22, and equal to 1 after February 22, 2020.

Average baseline concentration is the average of counterfactual values during the lockdown, less the constant in case the latter is

statistically significant at 10%. Robust standard errors are in brackets. * p<0.1, ** p<0.05, *** p<0.01.
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A.4 Supplementary figures
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Figure A.4: Composition of background PM10 in Milan, Lombardy. Source: ARPA Lom-
bardia.
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Figure A.5: Location of pollution monitors and weather stations in Lombardy over a 1 km
by 1 km population grid.
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Figure A.6: Taylor diagrams are a practical way to display different dimensions of model
predictive performance (Taylor 2001) . Each circle represents the prediction of a model,
that is, in this case, a monitoring station for the pre-lockdown period from January 1
to February 22. Isocurves from the origin outward measure the standard deviation of a
model’s predictions relative to the standard deviation of the observed values. The azimut
measures Pearson’s correlation coefficient. The ideal model prediction has a relative stan-
dard deviation of 1 and a correlation coefficient of 1, and is marked by the red diamond.
We do not show the RMSE, as is practice in Taylor diagrams, because it is graphically
incompatible with the relative standard deviation.
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Figure A.7: Each polygon circumscribes the territory nearest to a monitor and within 20
kilometers from it. Color represents population in grid cells of 1 km2.
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Figures A.8, A.9, and A.10 show the observed concentrations, predicted concentrations, and estimated
reductions of PM 2.5 at background monitoring stations averaged over two weeks. Figure A.11 shows the
local premature deaths avoided by the reduction in PM2.5.
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Figure A.8: Observed concentrations of PM2.5 in µg/m3 at background monitoring stations during the
lockdown. Grey pixel are a 1 km by 1 km population grid.
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Figure A.9: Predicted concentrations of PM2.5 in µg/m3 at background monitoring stations during the
lockdown. Grey pixel are a 1 km by 1 km population grid.
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Figure A.10: Estimated reductions in concentrations of PM2.5 in µg/m3 at background monitoring stations
during the lockdown. Grey pixel are a 1 km by 1 km population grid.
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Figure A.11: Premature deaths avoided by reductions in PM2.5 within 20 km of background monitoring
stations. Territory within less than 20 kilometers from two or more monitors is assigned to the closest
one.

46

Page 46 of 53AUTHOR SUBMITTED MANUSCRIPT - ERL-110024.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Figures A.12, A.13, and A.14 show the observed concentrations, predicted concentrations, and esti-
mated reductions of NO 2 at background stations averaged over two weeks. Figure A.15 shows the local
premature deaths avoided by the reduction in NO2.
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Figure A.12: Observed concentrations of NO2 in µg/m3 at background monitoring stations averaged over
two weeks. Grey pixel are a 1 km by 1 km population grid.
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Figure A.13: Predicted concentrations of NO2 in µg/m3 at background monitoring stations during the
lockdown. Grey pixel are a 1 km by 1 km population grid.
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Figure A.14: Estimated reductions in concentrations of NO2 in µg/m3 at background monitoring stations
during the lockdown. Grey pixel are a 1 km by 1 km population grid.
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Figure A.15: Premature deaths avoided by reductions in NO2 within 20 km of background monitoring
stations. Territory within less than 20 kilometers from two or more monitors is assigned to the closest
one.
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A.5 Lockdown of Lombardy

Italy has witnessed one of the first major outbreak of COVID-19 outside China. The
virus has first been identified in two Chinese tourists who had arrived at Milano Malpensa
Airport and, on January 31st, tested positive for the virus when visiting Rome (ANSA
2020b). For the next three weeks, only a handful of cases had been identified and all had
a direct link with known hot-spots, such as a student returning from vacation in Wuhan
and a couple of tourists from Taiwan (ANSA 2020a,c).

However, on February 21st, the first non-imported cases and the first death related
to COVID-19 in the country were confirmed in lower Lombardy. By the end of the day,
17 individuals had been tested positive, 15 of which in Lodi and surroundings, in lower
Lombardia, and 2 in the neighboring region of Veneto. The largest hotspot had been
identified in the hospital of Codogno, where 5 members of the medical staff and 3 patients
had tested positive to COVID-19. On the same day, the Minister of Health announced
severely restrictive measures on 11 municipalities and over 50 000 people. Until further
notice, schools and all public and sporting events were suspended; non-essential production,
commercial activities and public offices had to close doors; self-isolation at home was
mandated and enforced; access to the municipalities was monitored by police and armed
forces (Presidente del Consiglio dei Ministri 2020c; ANSA 2020d; La Repubblica 2020;
Guidelli 2020) Also, self-isolation for two weeks was mandatory for whoever in the country
had had contacts with confirmed cases. Violations of lockdown areas and self-isolation
could be sanctioned with fines and up to a three months prison sentence (Presidente della
Repubblica 2020; Ministro della Salute 2020a).

Over the next two days, local governments all over the country imposed restrictions of
heterogeneous degrees, with strictest measures in the regions of Lombardia and Veneto.
In Lombardia, the regional government suspended all teaching activities in schools and
universities, prohibited public events, and suspended religious gatherings; pubs had to
close by 6 pm (Ministro della Salute 2020b).

Local measures were soon followed by the intervention of the central government. On
February 25th, the Prime Minister signed a Law Degree to expand and incorporate contain-
ment efforts in hotspot regions of Northern Italy. The decree closed schools and universities
(originally until March 15th) and recommended remote working in Emilia Romagna, Friuli
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Venezia Giulia, Lombardia, Veneto, Liguria, and Piemonte (Presidente del Consiglio dei
Ministri 2020d).

A week later, on March 1st, the government extends previous measures and prescribes
non-restrictive ones over non-affected regions(Presidente del Consiglio dei Ministri 2020b);
on March 4th, it announces all schools and universities in the countries will close.

By March 7th, 5883 cases had been confirmed in Italy and 233 COVID-19-related deaths
recorded (Protezione Civile 2020). Despite containment measures, the growing number of
confirmed cases and deaths pressured the Italian government to impose stricter controls.
With a Law Decree on March 8th, Italy became the first country in Europe to impose a
lockdown over Lombardia and 14 provinces of the northern and central regions of Piemonte,
Emilia-Romagna, Veneto, and Marche. The restrictive measures were soon extended to the
rest of the country on the following day. The decree imposed compulsory social distancing
and self-isolation at home and the halt of all non-essential economic activities (Presidente
del Consiglio dei Ministri 2020a; Presidenza del Consiglio dei Ministri 2020).

The list of sectors and activities deemed essential had been furthered narrowed on
March 23rd; most notably, construction works were stopped, and all public offices had to
close (Presidente del Consiglio dei Ministri 2020e). The lockdown then continued under
virtually unaltered conditions until May 3rd.

A.6 Averaging wind speed and direction

Consider two vectors s′ = [s1, . . . , sh, . . . , s24] and d′ = [d1, . . . , dh, . . . , d24] containing
hourly data on wind speed and direction, respectively. Speed and direction at hour h are
sh and dh. To calculate average wind speed and average wind direction we:

1. Convert wind direction from degrees to radians
r = d · π/180

2. Calculate the average of East-West and North-South speed components and invert
sign.
s̄EW = − 1

24
∑
si · sin(ri)

s̄NS = − 1
24
∑
si · cos(ri)

3. Calculate average wind speed
S =

√
s̄EW 2 + s̄EW 2
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4. Calculate average wind direction
r̄ = arctan2

(
s̄NS , s̄EW

)
5. Convert radians to degrees
d̄ = r̄ · 180/π

D =



d̄+ 180 if d̄ < 180

d̄ if d̄ = 0

d̄− 180 if d̄ > 180.

D is the average wind direction, and S is the average wind speed.

A.7 Effects on economic activity and morbidity

We report here an estimate of the theoretical gains in GDP and lost workdays from air
pollution-related illness due to the improvement in air quality, but absent the pandemic.

To calculate the aggregated productivity gains, we employ the results of Dechezleprêtre
et al. (2019), who use thermal inversions to identify the causal impact of air pollution on
economic activity. They estimate that a one µg/m3 increase in PM2.5 concentration leads
to a 0.8% decrease in regional annual GDP. Accordingly, the average reduction of PM2.5

by 3.84 µg/m3 for two months corresponds, for simplicity ignoring the exponential growth
process, to 3.84 · 0.8/6 = +0.512% in regional annual GDP.

We compute the number of lost workdays from air pollution-related illnesses as in
Vandyck et al. (2018). They assume a fixed ratio of 547 avoided lost workdays per avoided
premature mortality. The multiplier was derived from the WHO-HRAPIE recommenda-
tions, based on earlier work, and applied in the context of the EU Clean Air Package.
Following this methodology, we calculate that 5579.4 to 13565.8 lost workdays have been
avoided by reducing PM2.5 concentrations; and 15753.6 by the decrease in NO2 concentra-
tions.
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