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Abstract
A new scheduling problem arising in the home care context is addressed, whose novelty with respect to the literature lies
in the way overtime is paid. In this problem, some clients are willing to pay a higher fee to cover the additional overtime
cost, if such overtime is incurred because a caregiver works extra time with the client to preserve continuity of care. These
overtime hours charged to clients unburden the company, which no longer has to balance between cost and continuity of
care in a traditional way. The problem is also studied in a context that includes preferences expressed by both clients and
caregivers. Strict preferences must be respected with a high priority, while soft preferences increase the satisfaction and
should be preferably respected. We formalize the problem as a Mixed Integer Linear Problem and also propose a cluster-
based decomposition to solve real-life instances. The problem is inspired by the real case study of a provider operating in the
USA. Numerical results validate the model and confirm the capability of the decomposition approach to deal with real-life
instances.

Keywords Operations research · Home care vehicle routing problem · Chargeable overtime · Preferences · Cluster-based
decomposition

Highlights

• Chargeable overtime allows home care managers to
guarantee continuity of care to clients while avoiding
additional overtime cost for the provider.

• The home care scheduling problem is solved by
including chargeable overtime and in a context with
strict and soft preferences expressed by clients and
caregivers.

• A cluster-based decomposition is proposed to solve the
problem in real-life instances.

• The problem is inspired by a real provider operating in
the USA, but is of general validity for several providers.
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• The proposed algorithm allows home care managers
to effectively handle the complexity of this scheduling
problem in real-life instances.

1 Introduction

Home Care (HC) services play an important role in modern
health care systems. They can be used in all cases where a
patient requires assistance that does not need to be provided
in a hospital or a care center. This involves not only medical
and nursing assistance, but also cleaning, social assistance
and many other activities. The goal is twofold: on the one
hand, HC avoids hospitalization cost and, thus, reduces
the economic burden on regional and national health care
systems; on the other hand, it provides a better quality
of life to patients, who are treated at home. HC services
are usually provided to elderly frail patients with chronic
diseases, or to people with disability. As a consequence, due
to aging population, HC services are largely expanding in
many Western countries and new and more complex HC
facilities are appearing nowadays.
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Organizational and planning problems are more complex
in HC than in inpatient care, as clients are not in the
same location. Thus, in addition to caregivers’ schedules,
routing problems and the synchronization with other clients’
activities must also be considered. Additionally, many
other constraints must be respected, such as the minimum
frequency of visits, caregiver-to-client skill compatibilities,
continuity of care, and so on.

Usually, HC management problems can be classified
into three planning levels [1, 2]. Middle-term planning
(6-24 months) deals with the dimensioning of the HC
provider, e.g. the division into districts and the assignment
of caregivers, materials and support staff to each district.
Short-term planning (1-3 months) deals with the assignment
of clients to caregivers, if continuity of care is pursued.
Very-short-term planning (1 week) deals with the generation
of a weekly plan for each caregiver, including a detailed
sequence of visits and tasks. The complexity of all problems
increases with the number of clients and caregivers, as
well as with the number and structure of regulations and
constraints taken into account.

In this article, we address the short-term and very-short-
term planning problems for a new and complex class of
HC services, inspired by the real case study of a provider
operating in the USA. This type of provider takes care
of the elderly, who require a variety of services with
different characteristics and durations. They range from
general household help to clinical and technical services,
e.g. injections or qualified assistance in case of specific
diseases. Some clients require only few hours a week,
while others require ongoing assistance. The novelty of our
problem lies in the way overtime is paid and continuity of
care is treated.

Continuity of care means that the client is assisted by the
least number of caregivers, ideally by a single caregiver who
takes care of the entire care or assistance pathway. In our
case, some clients are willing to pay a higher fee to cover the
additional overtime cost if such overtime is incurred because
a caregiver works extra time with the same client to preserve
his/her continuity of care.

This additional fee is a fixed amount per hour, given
by the additional hourly cost incurred when a caregiver
works above the contractual capacity. Each client who is
willing to pay it knows the maximum associated cost, which
is given by the product between the fee and the number
of hours he/she requires. Moreover, a realistic range of
variability for the cost is communicated to the client, who
decides whether to pay the fee or not. This chargeable
overtime prevents the company from incurring additional
costs deriving from maintaining continuity of care, and from
finding a compromise between cost and continuity of care.

The problem is also taking into account preferences.
Both clients and caregivers express preferences, classified

as strict or soft, and the caregiver-to-client assignments take
them into account. Strict preferences must be respected
with a high priority, while soft preferences, which increase
caregivers’ and clients’ satisfaction and improve the
quality of service, should be preferably respected whenever
possible.

Although this work is inspired by a real case, the idea
of chargeable overtime and the proposed approach can be
considered of general validity and extendable to several
other HC providers.

Our work consists of two parts. We first formalize the
HC assignment and scheduling problem with chargeable
overtime and strict and soft preferences, and propose a
Mixed Integer Linear Model (MILP) to solve it. The
goals are to minimize the non-chargeable overtime paid
by the provider, the number of unmatched preferences
(distinguishing between strict and soft ones) and the total
caregivers’ travel time. Due to the complexity of the model
and the difficulty to efficiently tackle real-life instances, we
also propose a cluster-based decomposition approach. This
separates the problem into independent sub-problems, so
that the model can be solved within each cluster and the
overall solution is given by the combination of solutions
in the clusters. The first part represents the novelty of this
work, while the second part shows the applicability of the
model in real-life instances.

To validate the model and evaluate the cluster-based
decomposition, we have applied our approach to a set of
realistic instances derived from the considered real case
study, which respect the features of assisted clients and
the proportions between each feature in the original data.
This allows us to test our approach on several instances
and to validate the cluster-based decomposition on larger
instances than the current provider needs, to simulate future
utilization of the model in a larger context. Results show the
effectiveness of proposed formulation and the capability of
the cluster-based decomposition to tackle real-life instances
in reasonable time.

The rest of the paper is structured as follows. A literature
review on related HC problems is presented in Section 2.
The addressed problem is described in Section 3 and
the mathematical formulation is presented in Section 4.
The proposed cluster-based decomposition is detailed in
Section 5. The case study is presented in Section 6. The
tested instances and the numerical results are reported in
Section 7. Finally, the conclusions of the work are drawn in
Section 8.

2 Literature review

Two literature reviews have recently been published, which
provide an overview of HC management problems. [3]
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published a comprehensive review on HC routing and
scheduling with a specific focus on problem setting. [4]
identified the most relevant features of HC routing and
scheduling problems, analyzed the existing literature based
on how the different studies formulate constraints and
objective functions, and provided an overview of methods
developed to solve the problems.

Several planning problems are involved in HC manage-
ment, which can be solved either together or separately. [5]
divided HC management into three sub-problems, namely
grouping, assignment and routing. [6] proposed a three-
phase decision support methodology to identify the decision
rules for patient acceptance, staff hiring and staff utilization.

HC routing and scheduling problems can be classified
based on different characteristics. The main classification
is between deterministic and stochastic problems. Another
classification concerns the period considered in the formu-
lation, i.e. problems can be single- or multi-period. Finally,
widely utilized constraints concern time windows, skill
matching, working regulations, and synchronization.

Caregivers have different skills and qualifications, and
clients can specify the desire to be assisted by caregivers
who meet a specific set of skills. In addition, assignments of
caregivers to clients can also be influenced by a number of
other characteristics [7–9]. For example, [7] dealt with the
penalization of assigning a caregiver with specific skills to
a client who does not require them, which is seen as a waste
of qualifications.

In some cases, more than one caregiver may be needed
to perform a visit. This involves temporal dependencies
and the synchronization of caregivers [4, 10]. In the most
general case, clients define a time window in which the
visit must be performed; within this window, they may
also indicate a preferred starting time for the visit. Then,
deviations from required time window and preferred start
time are usually penalized in the objective function [8, 9].

Overtime and workload fairness are the main metrics for
the cost and the quality of work, respectively [11]. Overtime
refers to the time worked by a caregiver beyond regular
working hours, which is determined by workers’ regulations
or by contract. When a caregiver exceeds this threshold, the
overtime work is compensated with a higher fee. In models
that minimize overtime, the hours above the threshold are
penalized in the objective function with a fixed or increasing
weight. An upper bound to the number of working hours
beyond the threshold can also be added [11, 12]. Workload
fairness refers to workload balancing among caregivers [13,
14]. When balancing, either the entire workload amount can
be considered, or only one component, e.g. service time or
travel time.

Both single-objective and multi-objective problems have
been proposed in the literature. In the multi-objective case,
most authors optimize a weighted sum of the objectives.

Alternatively, [11] proposed a threshold method to include
the cost sustained by the provider, workload balancing and
continuity of care; [15] proposed a lexicographic approach
with two objectives. Finally, [16] determined the entire
Pareto frontier using an ε-constraint scheme.

In the following paragraphs, we focus on the contri-
butions that are similar to our problem, i.e. research that
considers overtime, preferences matching and skill match-
ing.

[7] minimized travel time, dissatisfied clients, overtime
and visits to clients who require a lower qualification level,
and included preferred time windows for both caregivers
and clients. However, dissatisfaction simply considers the
possibility for clients to ask for a specific caregiver. The
total overtime per caregiver is considered, and there is
no possibility for the client to pay it. [17] minimized
the cost of each caregiver, given by service and travel
times, and maximized clients’ and caregivers’ satisfaction.
They included additional tasks for caregivers (e.g. team
meetings) and the fact that patients and caregivers may
declare negative preferences against each other. Finally,
the authors took multi-modality into account, i.e. different
modes of transport. They did not consider overtime. [18]
developed a heuristic approach to minimize the total travel
time, the total idle time due to early arrivals with respect
to the target time, and the remaining time until the end
of the working time window. They penalized task and
time window violations, working time violations, skill
requirement violations, assignments of non-preferred tasks
and caregivers, connected task violations. However, they
minimized overtime without the possibility of charging it
to clients and based preferences on skill requirements only.
Braekers et al. [16] developed a metaheuristic algorithm
in which clients specify preferences for caregivers through
a penalty incurred when assigning a certain caregiver to
a specific visit. However, this penalty is simply related to
the caregiver and not based on a set of criteria as in our
case. The total number of worked hours was considered to
compute the overtime, neglecting the possibility of clients
paying for it. Finally, [9] minimized total time, uncovered
visits, overtime work and deviations from the preferred time
of jobs.

To the best of our knowledge, no available contributions
consider the idea of chargeable overtime as this work
does. Regarding the matching criteria, none of the available
contributions include a rigid classification with several
criteria and two levels (strict and soft preferences) as
considered in our problem.

We conclude our literature overview exploring similar
contributions in other fields, to look for chargeable overtime
in other applications or similar matching criteria problems.
In fact, our problem can be seen as an extension of both the
Vehicle Routing Problem (VRP) and the Nurse Rostering



L. Malagodi et al.

Problem (NRP), for which a huge literature with many
variants is available. Our problem can be considered as a
VRP with time windows and skills [19], if we extend the
idea of skill to account for both strict and soft preferences.
To the best of our knowledge, the possibility of charging
the requested overtime to the client cannot be found
in the VRP literature. The NRP deals with scheduling
employees’ shifts for inpatient institutions, e.g. residential
homes and hospitals. Preferences and skill compatibilities
are sometimes considered; however, travel time is not
included due to the inpatient institution. In this case as well,
chargeable overtime cannot be found in the NRP literature.

Looking at matching problems, they are widely studied
in several fields. Considering health care related problems,
a relevant case is the so-called Hospitals/Residents Problem
[20]. Outside the health care field, a matching structure
close to that considered in our work can be found in
the Stable Marriage problem [21], whose goal is to find
a stable matching between two sets of individuals given
an ordering of preferences for each individual. However,
matching problems neglect all other time-related features
that are typical of a scheduling problem, e.g. workloads and
travel times.

This short analysis confirms the novelty of our problem,
especially in regards to the chargeable overtime.

3 Problem description

The addressed problem includes both classical features of
assignment and scheduling problems and the new features
considered in our work, i.e. the chargeable overtime coupled
with the matching criteria.

The problem consists of assigning a set I of jobs required
by a set C of clients to a set K of caregivers over a planning
horizon divided into a set H of discrete time periods.
Parameters θc

i denote the correspondence between jobs and
clients, i.e. θc

i = 1 if job i ∈ I belongs to client c ∈ C and
0 otherwise (with

∑
c∈C θc

i = 1 ∀i ∈ I ). Each job i ∈ I is
characterized by a fixed duration di and a given starting time
ti ∈ H , and requires only one caregiver. Some time periods
refer to the weekend (subset W ⊂ H ) and some others to
the night (subset N ⊂ H ); a job i is considered to be a job
at night if ti ∈ N or a job in the weekend if ti ∈ W .

Each caregiver k ∈ K begins and ends the route in his/her
own depot, while each client c ∈ C is located at his/her
domicile. We denote the travel time from job i ∈ I to j ∈ I

or vice versa (between the respective clients’ domiciles) by
δij , while the travel time from the depot of caregiver k ∈ K

to job i ∈ I or vice versa by δ̃k
i .

Each caregiver k ∈ K has a maximum working time
over H , denoted by Sk . This amount is given by the regular
working time τ reported in the working contract (without

loss of generality, τ is assumed to be the same for all
caregivers) and the maximum overtime the caregiver is
willing to work. Though travel times are minimized in the
problem, caregivers’ workload refers only to the service
time with clients, as is the case with several HC providers
including the one considered in this work.

Finally, the problem is characterized by chargeable
overtime, preference matching, and specific characteristics
of jobs and shifts, which are separately presented below.

3.1 Chargeable overtime

The overtime of caregiver k ∈ K is given by the amount of
time that k works beyond his/her regular working time τ . As
overtime hours are paid with a higher fee, it is not profitable
for the provider to exploit overtime. In addition, overloaded
caregivers might provide lower quality service.

Avoiding overtime is in contrast with favoring continuity
of care, and providers usually assign multiple caregivers
to clients to remove or reduce overtime, though this
deteriorates continuity of care. This trade-off between
overtime reduction and continuity of care is particularly
critical in several new and complex HC facilities where
clients ask for a high number of hours, as in the considered
case study. To solve the trade-off, the considered provider
introduced the idea of chargeable overtime. Each client
can choose whether or not to pay a higher fee to cover
the additional overtime costs if these costs are incurred
for providing the visits to this client. For clients willing
to pay the additional fee, no additional costs are incurred
by the provider and continuity of care is pursued with no
drawbacks. In the case of clients who are not willing to
pay the additional fee, continuity of care could be affected
more, since the provider minimizes overtime. This idea is of
general validity and can be effectively applied to other HC
providers; from an academic viewpoint, it is novel in the HC
management literature.

A binary parameter φc is associated with each client c ∈
C, which is equal to 1 if c is willing to pay the additional fee
and 0 otherwise. Then, the total overtime of each caregiver
k ∈ K is split into two parts and only the part σk (decision
variable) not paid by clients with φc = 1 is minimized. In
any case, the maximum working time Sk of each caregiver
k is respected.

3.2 Preferences

The provider takes into account a list of preferences
that may impact quality and satisfaction of caregiver-
client matching. Each preference is expressed by the client
in terms of a yes/no requirement, i.e. the client may
require a caregiver with or without a specific characteristic.
Preferences include caregiver’s gender and other personal
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characteristics, e.g. the caregiver being a smoker or not.
Based on their relevance, these preferences are divided into
a set M of strict preferences, which must be respected with
a high priority, and a set F of soft preferences, which should
be preferably respected.

Each client c ∈ C expresses his/her interest for each
characteristic. Parameter λ

q
c is equal to 1 if client c expresses

interest in the strict preference q ∈ M and 0 if he/she
is indifferent to q; parameter μr

c is equal to 1 if client c

expresses interest in the soft preference r ∈ F and 0 if
he/she is indifferent to r .

For each strict preference q ∈ M , parameter ω
q
k is equal

to 1 if caregiver k ∈ K has the considered characteristic and
0 otherwise. Parameter π

q
c is equal to 1 if client c ∈ C wants

a caregiver with this characteristic and 0 if he/she wants
a caregiver without this characteristic (considered only if
λ

q
c = 1).

Similarly, for each soft preference r ∈ F , parameter
ψr

k is equal to 1 if caregiver k ∈ K has the considered
characteristic and 0 otherwise. Parameter χr

c is equal to 1
if client c ∈ C wants a caregiver with this characteristic
and 0 if he/she wants a caregiver without this characteristic
(considered only if μr

c = 1).
With these parameters we can compute γ k

c and γ̃ k
c

that express the number of total strict and soft preference
mismatches between c ∈ C and k ∈ K , respectively, as
follows:

γ k
c =

∑

q∈M

(
π

q
c − ω

q
k

)2
λ

q
c ∀c ∈ C, k ∈ K (1)

γ̃ k
c =

∑

r∈F

(
χr

c − ψr
k

)2
μr

c ∀c ∈ C, k ∈ K (2)

The calculations within parentheses are equal to 1 if there is
a mismatch between c and k for the considered preference,
while the multiplication by λ

q
c or μr

c allows to compute the
mismatches for the items of interest only.

The two sets of parameters γ k
c and γ̃ k

c are included in the
model.

3.3 Characteristics of jobs and shifts

Besides chargeable overtime and preference matching,
which are the novel features considered together in this
work, we tailor the characteristics of jobs and shifts on the
considered case study.

The time horizon includes nights and weekends, and each
caregiver decides whether he/she is willing to work in these
time frames. Parameter ξk is equal to 1 if caregiver k is
willing to work on the weekend and 0 otherwise, while
parameter νk is equal to 1 if caregiver k is willing to work at
night and 0 otherwise.

In any case, each caregiver must return home for at least
ρ every D time periods, for a home-based break. From a

practical viewpoint D represents the number of time periods
in a day (e.g. D = 24 with periods of 1 hour) to impose
that each caregiver has his/her own daily home-based break.
On the contrary, when the caregiver does not return home
between two jobs, the maximum time that he/she can spend
in a break is limited to β time periods.

One of the main features of the problem, inspired by the
considered provider, is the so-called night shift. These shifts
cover the whole night but, if the client does not require
continuous assistance overnight, then the caregiver can rest
and sleep at the client’s home for a period of ρ time periods.
In this way, if the client is willing to host a caregiver for the
night, travel time and the caregiver’s discomfort are avoided.
These hours of rest are not considered as working hours,
they are not paid (neither by the client nor by the provider)
and do not contribute to caregivers’ workloads. This night
shift arrangement is identified by a parameter ni for each
job: ni = 1 if job i ∈ I is a night shift and 0 otherwise. If
ni = 1 the duration di does not include the ρ periods of rest,
to take into account that they are not paid.

Night shifts can only be assigned to caregivers who are
willing to stay overnight. Parameter λk is equal to 1 if
caregiver k is willing to perform night shifts and 0 otherwise
(λk = 1 only if νk = 1). When a caregiver rests at a client’s
home, this rest period replaces the home-based break of at
least ρ periods.

4Mathematical formulation

The assignment of jobs to caregivers is modeled by binary
variables zk

i , where zk
i = 1 if job i ∈ I is assigned to

caregiver k ∈ K and 0 otherwise.
The goals of the assignment are to minimize the non-

chargeable overtime paid by the provider, the number of
unmatched preferences (distinguishing between strict and
soft) and the total caregivers’ travel time.

Set, parameters and decision variables are listed in
Table 1, while the MILP formulation is presented below.

The model minimizes the following weighted sum:

minimize

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αM

∑

i∈I
c∈C
k∈K

diγ
k
c θc

i zk
i + αF

∑

i∈I
c∈C
k∈K

di γ̃
k
c θc

i zk
i + αO

∑

k∈K

σk

+αT

⎡

⎢
⎢
⎢
⎢
⎣

∑

i∈I
k∈K

δ̃k
i f k

i +
∑

i∈I
k∈K

δ̃k
i lki +

∑

i∈I
j∈J
k∈K

δij x
k
ij +

∑

i∈I
j∈J
k∈K

(̃δk
i +δ̃k

j )yk
ij

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

The first two terms (weighted by αM and αF , respectively)
compute the mismatches of strict and soft preferences over
the jobs. Both are multiplied by the duration di of the job,
to penalize mismatches on longer-lasting jobs more. The
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Table 1 Set, parameters and decision variables of the MILP model

Sets

I set of jobs

C set of clients

K set of caregivers

M set of strict preferences

F set of soft preferences

H set of time periods in the planning horizon

W ⊂ H subset of weekend time periods

N ⊂ H subset of night time periods

Parameters

di duration of job i ∈ I in time periods

ti starting time period of job i ∈ I

θc
i equal to 1 if job i ∈ I belongs to client c ∈ C; 0 otherwise

ni equal to 1 if job i ∈ I requires a night shift afterwards; 0 otherwise

τ regular working time (same for all caregivers k ∈ K)

Sk maximum working time of caregiver k ∈ K

φc equal to 1 if client c ∈ C is willing to pay overtime; 0 otherwise

γ k
c number of strict preference mismatches between client c ∈ C and caregiver k ∈ K

γ̃ k
c number of soft preference mismatches between client c ∈ C and caregiver k ∈ K

δij travel time from job i ∈ I to job j ∈ I or vice versa

δ̃k
i travel time from depot of caregiver k ∈ K to job i ∈ I or vice versa

ρ minimum number of time periods a caregiver can spend on a home-based break

β maximum number of time periods a caregiver can spend on a break without going home

ξk equal to 1 if caregiver k ∈ K is willing to work on the weekend; 0 otherwise

νk equal to 1 if caregiver k ∈ K is willing to work at night; 0 otherwise

λk equal to 1 if caregiver k ∈ K is willing to perform night shifts; 0 otherwise

D number of time periods in a day

� big number

αM weight of the strict preference mismatch in the objective function

αF weight of the soft preference mismatch in the objective function

αO weight of the overtime paid by the provider in the objective function

αT weight of the total travel time in the objective function

Decision variables

zk
i equal to 1 if job i ∈ I is assigned to caregiver k ∈ K; 0 otherwise

xk
ij equal to 1 if job j ∈ I is done immediately after job i ∈ I by caregiver k ∈ K

without returning home; 0 otherwise

yk
ij equal to 1 if job j ∈ I is done immediately after job i ∈ I by caregiver k ∈ K

when returning home between the two jobs; 0 otherwise

f k
i equal to 1 if job i ∈ I is the first job of caregiver k ∈ K; 0 otherwise

lki equal to 1 if job i ∈ I is the last job of caregiver k ∈ K; 0 otherwise

Wk
c overtime (positive) or undertime (negative) of caregiver k ∈ K on client c ∈ C

Ok
c overtime of caregiver k ∈ K on client c ∈ C

σk overtime of caregiver k ∈ K not paid by the clients

u auxiliary binary variable

vk
c , ωk

c auxiliary binary variables ∀ c ∈ C, k ∈ K

χij auxiliary binary variables ∀ i, j ∈ I
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third term (weighted by αO ) is the total overtime paid by the
provider and not by clients. The last four terms (all weighted
by αT ) give the total travel time for all caregivers k ∈ K .
The first term is the total time that the caregivers travel from
the depot to the first job; the second the total time that the
caregivers travel from the last job to the depot; the third the
total time that the caregivers travel to directly go from a job
to the next one; the fourth the total time that the caregivers
travel between two jobs when they go home in between.
The decision variables f k

i are equal to 1 if i is the first
job of caregiver k and 0 otherwise; decision variables lki are
equal to 1 if i is the last job of caregiver k and 0 otherwise.
The main objective is to minimize the mismatches of strict
preferences. Thus, αM >> αF ≈ αO ≈ αT to penalize the
mismatches of strict preferences more.

The first group of constraints regulates the assignments
of jobs:

∑

k∈K

zk
i = 1 ∀i ∈ I (4)

∑

i∈I

diz
k
i ≤ Sk ∀k ∈ K (5)

∑

i∈I : ti∈W

zk
i ≤ �ξk ∀k ∈ K (6)

∑

i∈I : ti∈N

zk
i ≤ �νk ∀k ∈ K (7)

niz
k
i ≤ λk ∀i ∈ I, k ∈ K (8)

Constraints (4) guarantee that each job is assigned to
exactly one caregiver. Constraints (5) limit the total working
time for each caregiver k, which can be at maximum Sk .
Constraints (6) and (7) guarantee that, if a caregiver is not
available at night or on the weekend, no jobs are assigned
during this time period (� is a big number, both here
and below). Constraints (8) guarantee that night shifts are
assigned only to caregivers willing to perform them.

The second group guarantees that the starting times of
jobs are correctly sequenced:

ti + di + ρ ni + δij −�
(
1−xk

ij

)
≤ tj ∀i, j ∈ I, k∈ K (9)

ti + di + ρ ni + δ̃k
i + δ̃k

j −�
(
1−yk

ij

)
≤ tj ∀i, j ∈ I, k ∈ K (10)

Constraints (9) state that, if job j is performed immediately
after i by the same caregiver k, the starting time of j

cannot be before the completion time of i plus the travel
time from i to j . Similarly, constraints (10) consider the
travel time to go from job i to the caregiver’s home and
from there to job j . In both cases, the completion time of
job i is given by di + ρni to include the additional ρ rest
hours spent at the client’s home in case of night shift (when
ni = 1). Decision variables xk

ij are equal to 1 if job j is done
immediately after i by caregiver k without returning home,

and 0 otherwise; decision variables yk
ij are equal to 1 if job

j is done immediately after i by caregiver k when returning
home between the two jobs, and 0 otherwise.

The third group gives the relations between the
assignment variables zk

i , xk
ij , yk

ij , f k
i and lki :

∑

i∈I

(
xk
ij + yk

ij

)
+ f k

j − zk
j = 0 ∀j ∈ I, k ∈ K(11)

∑

j∈j

(
xk
ij + yk

ij

)
+ lki − zk

i = 0 ∀i ∈ I, k ∈ K (12)

∑

i∈I

zk
i ≤ �

∑

i∈I

f k
i ∀k ∈ K (13)

∑

i∈I

zk
i ≥

∑

i∈I

f k
i ∀k ∈ K (14)

∑

i∈I

f k
i ≤ 1 ∀k ∈ K (15)

∑

i∈I

zk
i ≤ �

∑

i∈I

lki ∀k ∈ K (16)

∑

i∈I

zk
i ≥

∑

i∈I

lki ∀k ∈ K (17)

∑

i∈I

lki ≤ 1 ∀k ∈ K (18)

xk
ij + yk

ij ≤ 1 ∀i, j ∈ I, k ∈ K (19)

xk
ii = 0 ∀i ∈ I, k ∈ K (20)

yk
ii = 0 ∀i ∈ I, k ∈ K (21)

Constraints (11) guarantee that, if caregiver k does job j ,
this job can be either the first or the successor of another
job i (returning home after i or not). Similarly, constraints
(12) guarantee that, if caregiver k does job i, this job can be
either the last or the predecessor of another job j (returning
home before j or not). Constraints (13)-(15) regulate the
first job f k

i : constraints (13) guarantee that, if caregiver k

performs at least one job, there is a first job among those
performed; constraints (14) guarantee that, if caregiver k has
a first job, he/she has at least one job assigned; constraint
(15) impose that a caregiver cannot have more than one
first job. Constraints (16)-(18) regulate the last job lki in
the same way. Constraints (19) impose that, when a job is
done immediately after another, either the caregiver returns
home or not between the jobs. Finally, Eqs. 20 and 21 are
consistency constraints on xk

ij and yk
ij .

The fourth group guarantees that, if the time between two
jobs is greater than β, the caregiver goes home:

tj − (ti + di + ρ ni + β) ≤ �χij ∀i, j ∈ I (22)
∑

k∈K

xk
ij ≤ �

(
1 − χij

) ∀i, j ∈ I (23)

Constraints (22) impose that the auxiliary variables χij are
equal to 1 if the time between the end of job i and the
beginning of job j is equal to or greater than β. Then,
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constraints (23) impose xk
ij = 0 for all caregivers k if

χij = 1, i.e. that job j cannot be done immediately after i

without going home.
The fifth group computes the overtime:

∑

i∈I

zk
i diθ

c
i = τ + Wk

c ∀c ∈ C, k ∈ K (24)

Wk
c ≤ �vk

c ∀c ∈ C, k ∈ K (25)

Ok
c − Wk

c ≤ �
(

1 − vk
c

)
∀c ∈ C, k ∈ K (26)

−Wk
c ≤ �ωk

c ∀c ∈ C, k ∈ K (27)

Ok
c ≤ �

(
1 − ωk

c

)
∀c ∈ C, k ∈ K (28)

∑

i∈I
c∈C

zk
i diθ

c
i ≤ τ + σk +

∑

c∈C

Ok
c φc ∀k ∈ K (29)

Constraints (24) define the total working time Wk
c that each

caregiver k works on each client c above or below τ (Wk
c >

0 for overtime above τ ; Wk
c < 0 for undertime below τ ).

Constraints (25)-(28) compute the overtime Ok
c of caregiver

k devoted to client c. If Wk
c > 0, constraints (25) impose

that each auxiliary binary variable vk
c is equal to 1; thus,

OK
c ≤ Wk

c from constraints (26). If Wk
c < 0, no restriction

to the value of Ok
c is imposed by these two constraints, while

constraints (27) impose that each auxiliary variable ωk
c is

positive; thus, Ok
c = 0 from constraints (28) and the domain

Ok
c ≥ 0. Finally, constraints (29) compute σk based on Ok

c

and the willingness of clients to pay overtime φc.
Finally, the last constraints define the domains of

decision variables:

Ok
c ∈ N ∀c ∈ C, k ∈ K

Wk
c ∈ Z ∀c ∈ C, k ∈ K

σk ∈ N ∀k ∈ K

zk
i , f

k
i , lki ∈ {0, 1} ∀i ∈ I, k ∈ K

xk
ij , y

k
ij ∈ {0, 1} ∀i, j ∈ I, k ∈ K

u ∈ {0, 1}
vk
c , ω

k
c ∈ {0, 1} ∀c ∈ C, k ∈ K

χij ∈ {0, 1} ∀i, j ∈ I

Continuity of care is inherently pursued, because the
minimization of preference violations and travel time favors
a single caregiver rather than several ones if this solution
does not affect the cost sustained by the provider. However,
if the number of hours requested by a client is high, this
could result in several caregivers due to the extra overtime
cost that the provider should pay if a single caregiver
provides all visits to the client. The chargeable overtime
avoids such extra cost and allows the model to pursue
continuity of care for clients who are willing to pay the extra
fee. However, in some cases, this effect can be prevented by
non-consecutive jobs from the same client, too many jobs

from the same client, too long jobs, or a high percentage
of clients with φc = 1. In these cases, to enforce the
continuity of care requirement, the reduction of the number
of caregivers assigned to each client with φc = 1 can be
explicitly pushed. To this end, the following term is added
to the weighted sum minimized in the objective function:

α∗ ∑

c∈C
k∈K

φcp
k
c (30)

where α∗ denotes the weight of this term, each pk
c is a binary

decision variable equal to 1 if at least one job of client
c ∈ C is assigned to caregiver k ∈ K , and 0 otherwise,
and

∑
k∈K pk

c computes the number of caregivers assigned
to client c ∈ C, whose sum over the clients willing to pay
overtime is minimized. The new variables pk

c are computed
through the following constraints:

�pk
c ≥

∑

i∈I

θc
i zk

i ∀c ∈ C, k ∈ K (31)

pk
c ≤

∑

i∈I

θc
i zk

i ∀c ∈ C, k ∈ K (32)

5 Cluster-based decomposition

The model presented in Section 4 cannot be efficiently
solved in larger instances. Thus, a decomposition of the
problem into sub-problems and/or a heuristic approach is
required to apply the tool in the case of large providers.
In this work, we follow the first alternative to preserve the
exact structure of the model. The problem is decomposed
into independent sub-problems that are separately solved,
and the solution of the overall problem is the combination of
solutions in the sub-problems. The final solution is clearly
sub-optimal, but with a significant advantage in terms of
computational performance.

The adopted two-step algorithm first divides the care-
givers into a set L of clusters, and then adds the clients
to these clusters. Finally, if some clusters remain with-
out clients, their caregivers are redistributed to the other
clusters that contain clients. As the main objective is to min-
imize the mismatches of strict preferences (αM significantly
greater than the other weights), the clustering is performed
by grouping together the caregivers k ∈ K whose vectors
�k = [

ω
q
k , q ∈ M

]
assume similar values (see Section 3.2).

The clusters are generated by means of a hierarchical
clustering [22], adopting a Manhattan distance and a
complete linkage over the vectors of strict preferences �k .
The number of clusters |L| is obtained by imposing the cut-
off point � in the dendrogram of the hierarchical clustering.
Then, the assignment of clients to clusters is performed with
the k-Nearest Neighbors (k − NN) algorithm [23].
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Suitable values for the cut-off point � and the parameter
k of the k − NN algorithm are not known a priori, but they
must be chosen based on numerical experiments. In fact,
the best values are those that provide the lowest objective
function for the problem rather than good clustering metrics.

It is important to notice that this two-step algorithm may
lead to an infeasible solution for a sub-problem. In some
cases, it is necessary to solve the sub-problem to detect
the infeasibility. In other cases, the infeasibility can be
detected in advance without solving the sub-problem. Thus,
the algorithm also includes a detection of the infeasibilities
that can be identified before solving the sub-problems. This
is done by considering the total demand from clients and
the total availability of caregivers. More specifically, we
evaluate the following demand-to-workload ratio in each
cluster l ∈ L:

r(l) =
∑

i∈I
c∈C(l)

diθ
c
i

∑
k∈K(l) Sk

where C(l) and K(l) denote the subsets of clients and
caregivers assigned to cluster l, respectively. We impose
that r(l) ≤ η ∀ l ∈ L, where η is a predefined threshold.
Obviously, η ≤ 1 because r(l) > 1 certainly provides an
infeasible problem, while r(l) ≤ 1 could admit a feasible
solution and the chance to find a feasible solution increases
as r(l) decreases. In this regard, it is worth remarking that,
even when r(l) = 1, the problem could be infeasible because
some jobs cannot be allocated to the caregivers, and the
duration of these non-assigned jobs equals the non-used
capacity of caregivers.

Operatively, the two-step algorithm (hierarchical cluster-
ing and k −NN) is first executed as described above. Then,
if one or more clusters do not respect the condition r(l) ≤ η,
the algorithm is reiterated with the inclusion of some adjust-
ments until such condition is respected ∀l ∈ L. Adjustments
consist of moving clients from an overloaded cluster l with
r(l) > η to another one with r(l) ≤ η following these steps:

1. The similarity between each client and the set of
caregivers in the cluster is measured. This measure
considers the same criterion that initially composes the
clusters, i.e. the closeness of vector �c = [

π
q
c , q ∈ M

]

of the considered client c with respect to the vectors
�k = [

ω
q
k , q ∈ M

]
of caregivers k in the cluster,

evaluating only the components for which λ
q
c = 1.

According to this, we define the dissatisfaction of client
i with being in cluster l as:

dis(l)
c =

∑
k∈K(l)

q∈M

λ
q
c

∣
∣π

q
c − ω

q
k

∣
∣

∑
q∈M λ

q
c

2. The clients in each overloaded cluster l ∈ L are sorted
based on their dissatisfaction index, and the client
with the highest value of the index is removed. If this
removal is sufficient to respect r(l) ≤ η the removal
in cluster l is stopped. Otherwise, the client with the
second highest value is removed and so forth, until
the condition is respected in l. In case some clients
have the same value of the dissatisfaction index, that
with the lowest duration of jobs is first selected to
reduce the impact of the reassignment in case of equal
dissatisfaction.

3. The reassignment of all clients removed from their orig-
inal cluster is carried out by applying the same k − NN

algorithm already employed for the initial assignments,
excluding the clusters that were overloaded and from
which clients were removed to avoid ending up with the
previous assignments.

This procedure is repeated until all sub-problems respect
the condition r(l) ≤ η, or until there are no more clusters
to move clients to. In the latter case, the decomposition is
not successful due to workload violations in the clustering,
though the original problem can be either feasible or
infeasible.

Finally, as the procedure might leave some clusters with
no clients, each caregiver in an empty cluster is moved
to the closest cluster with at least one client. Thus, the
number of sub-problems to solve is equal to or lower than
the number |L| of initial clusters obtained with �. This final
reassignment of caregivers is also performed considering
the Manhattan distance over the strict preferences.

If all sub-problems provide a solution, the combination
of solutions gives that of the overall problem. Otherwise,
either the overall problem is infeasible or the current
decomposition is unable to provide a solution. In this case,
we provide the solution of the solved sub-problems, together
with the percentage of jobs for which the assignment is
successfully provided; repair algorithms from the VRP
literature [24, 25] can then be employed to complete the
solution.

A block diagram of the overall approach is sketched in
Fig. 1.

6 Case study

The approach has been validated considering realistic data
obtained from the above mentioned provider that inspired
our work.

Possible new clients contact the provider and, if they live
in a covered area, they define the weekly pattern of requests
in terms of starting time and duration for each visit. All other
features regarding the visits are defined according to the job
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Fig. 1 Block diagram of the cluster-based decomposition

characteristics presented in Section 3.3. In particular, no job
requires more than one caregiver, and for this reason this
possibility was excluded in the model.

The agreed timetable is then set for a period of at least
four weeks; if the client asks to change something, the
changes will be effective only from the following period.
Thus, the setting is quite static.

Caregivers’ homes are considered as the initial and final
location for shifts. Travel times are not considered as
working time, and caregivers are not paid for the time spent
traveling, even when they move from one client to the next.
However, the provider tries to minimize the total travel time
to increase efficiency. The travel time between two locations
is calculated as the average of the expected driving times in
the two directions (symmetric travel times).

Client requests longer than 8 hours are split into jobs
with a maximum duration di of 8 hours. According to the
USA regulation, a caregiver cannot work for more than
16 hours a day. Therefore, as anticipated in the problem
description, the resting period during night shifts (8 hours
from 11 pm to 7 am or from 12 pm to 8 am) is not computed
as working time and not paid. The regular working time of
each caregiver is made up of 40 working hours per week.
The hours worked beyond this threshold are considered

overtime and paid more. Each caregiver is required to
declare the maximum overtime he/she is willing to work;
therefore, their total workload cannot exceed the regular
working hours plus the maximum overtime declared.

In the current layout, as observed from data, all
caregivers are willing to work on weekends (ξk = 1 ∀k ∈
K), while only about 92% of them are willing to stay
overnight at a client’s home.

As is commonly done, the provider aims at minimizing
the incurred overtime costs. However, as the provider
introduces the idea of chargeable overtime, part of the
overtime is paid by clients and is not an additional cost from
the provider perspective. If a caregiver works for more than
40 hours per week with one client and this client is willing
to pay overtime, the provider has no extra costs in assigning
those extra hours to a single caregiver, provided that his/her
maximum overtime threshold is respected. Indeed, most
clients choose to pay overtime if they require more than 40
hours per week.

Finally, the provider considers the compatibility between
clients and caregivers in terms of strict and soft preferences,
as described in Section 3.2. Strict preferences are defined
by the provider as “necessary or very important”, while soft
preferences are simply considered as “preferences” that are
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not that relevant. In particular, 9 criteria are included in
the strict preferences and 9 in the soft ones. Examples of
“necessary or very important” (strict) are: female or male
caregiver; caregiver with insured car and/or driving license;
specific certifications as cardiopulmonary resuscitation or
first aid. Examples of “preferences” (soft) are: smoker
or non-smoker caregiver; caregiver accepting a smoker
client; caregiver accepting dogs or cats; caregiver with good
cooking skills; caregiver with a top evaluation from previous
clients. Both clients and caregivers must answer a survey
containing these criteria shown as yes/no questions; the
clients can specify if they are interested in each item and
answer the yes/no question only if interested.

At present, the provider has a pool of 37 caregivers
serving 18 clients, whose needs range from two hours a
week to a 24/7 live-in. Each live-in request is broken down
in a series of shifts per day, including those with a night
shift (i.e. with ni = 1). For example, a first shift starts at 7
am and ends at 3 pm, and a second shift starts immediately
after and ends at 11pm. This second shift has ni = 1, i.e.
the following 8 hours from 11 pm to 7 am of the following
day are the unpaid resting period. A 24/7 live-in service
is requested by approximately 30% of clients. However,
the number of assisted clients is rapidly increasing, thus
justifying the need for a planning tool.

7 Computational experiments

Additional experimental tests have been conducted to
evaluate the solution of the problem and the computational
performance of the decomposition approach in realistic
instances generated based on the considered provider. In
particular, two groups of instances have been generated
(small and large instances), as detailed in Section 7.1.

In all experiments, we have considered one week as the
time horizon and the set H includes the hours within this
time horizon; thus, D = 24 in constraints (22) and (23).
According to work regulations in the considered provider,
τ = 40, ρ = 8 and β = 7 in the experiments. Travel times
have a 15-minute discretization, i.e. 0.25 time periods, while
job durations have a 1-hour discretization, i.e. 1 time period.

Finally, the weights in the objective function have
been set to reflect the decision-making strategy of the
company, for which the matching of strict preferences has
the highest priority. As mentioned, a lexicographic approach
is considered for the multi-objective formulation. For this
purpose, we have set αM = 106 and αF = αO = αT = 1.
The first weight is much higher than the others to perform
the lexicographic approach, while the others are equal as no
information is available from the company apart from the
fact that weights are comparable.

The decomposition is analyzed in Section 7.2. The
experimental plan has evaluated the impact of the cut-off
point �, the neighborhood parameter k for the k − NN , and
the threshold η (with η ≤ 1). The following levels (values)
have been tested:

– Cut-off point �: two levels have been considered.
The first level �I is the lowest possible number of
clusters, 1 excluded, for the instance, i.e. the number
of branches after the first branching in the dendrogram.
The second level �II is half of the number of leaves
in the dendrogram, i.e. half of the highest number of
possible clusters. Higher values have been neglected as
they easily make the sub-problems infeasible.

– Neighborhood parameter k: two levels have been
considered. The first level kI is always equal to 1; the
second level kII is equal to 30% of the number of
caregivers in the biggest cluster before the reassignment
of caregivers in clusters with no clients. It is worth
noting that the value of kII depends not only on the
instance, but also on the generated clusters, i.e. on �.

– Threshold η: two values have been considered, 1 and
0.9. The former is the maximum possible value, while
the latter has been chosen not far from 1 in order to keep
a high quality of the solutions.

The plan has included all their combinations (with a total of
8 cases) for both small and large instances.

The impact of the decomposition parameters on the
solution is further analyzed in Section 7.3 to provide
guidance for their choice. The effect of chargeable overtime
on the overtime paid by the provider and on the continuity
of care is finally studied in Section 7.4.

All problems and sub-problems have been solved with
CPLEX 12.8 on a Windows Server 2016 machine equipped
with an Intel Xeon Gold 6130 processor at 2.1 GHz (with
32 cores) and 64 GB of RAM installed. A time budget of
3600 seconds (1 hour) has been assigned to each problem.
When the problem is solved without any clustering, a time
limit of 3600 seconds has been imposed to the solver. When
the problem is divided into sub-problems, the time limit
assigned to each is proportional to the ratio between the
number of jobs in the cluster and the total number of jobs
of the problem, with a minimum value of 300 seconds, and
ensuring that the sum of time limits over the sub-problems
is equal to 3600 seconds. Finally, no memory limit has been
imposed.

7.1 Tested instances

Tests have been conducted on 20 realistic instances
generated based on the observed mix of clients and
caregivers in the considered provider. The first 10 small
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instances have the same number of clients and caregivers of
those in the real case, i.e. 18 clients and 37 caregivers. The
other 10 large instances include 30 clients and 60 caregivers,
to simulate the provider future growth while respecting the
ratio between caregivers and clients in the original dataset.

More specifically, instances have been randomly sampled
from the original dataset, maintaining the same features
of the observed data, as summarized below. Firstly, the
factors that are relevant to the problem have been identified.
Clients’ factors include: strict and soft preferences, together
with the related interests in expressing them; willingness
to pay overtime; number of requested jobs and their initial
time, duration and night shift characterization. Caregivers’
factors include: strict and soft preferences; willingness
to stay overnight; willingness to work during weekends,
maximum number of weekly overtime hours.

For each factor, an empirical probability distribution has
been defined based on the observations in the dataset. A
binomial distribution is assumed for binary parameters,
whose probability of success equals the ratio of positive
observations. Levels have been defined for the other
parameters and the probabilities of observing values in
each level have been derived from the dataset. Thus, a

multinomial distribution with these probabilities has been
assumed.

The parameters of each job are correlated with each other.
Once the number of jobs for a client has been sampled,
the other features of each job (starting time, duration and
night shift characterization) have been sampled considering
a hierarchical approach. Indeed, for each value of number
of client’s jobs, batches of jobs that are coherent with the
total number in terms of starting time, duration and night
shift characterization have been defined and the probability
of each batch has been derived from the data. Then, a
multinomial distribution conditioned to the drawn number
of jobs has been assumed with these probabilities.

With this approach, each small or large instance has been
independently sampled. The generated instances together
with their features are reported in Table 2. They have been
ordered in increasing order of demand-to-workload ratio in
the instance, which is defined as:

roverall =
∑

i∈I di
∑

k∈K Sk

As for the other characteristics of the instances, they
are in agreement with those described in Section 6. The

Table 2 Characteristics of the instances

Group Instance roverall Number
of jobs

Mean
jobs per
client

Demand (total
duration of all
jobs in hours)

Mean duration
per job in hours
(max 8 hours)

Mean percentage
strict preferences
requested per client

Percentage of
clients willing to
pay overtime

Small 1 0.464 127 7 787 6 35% 83%

2 0.548 132 7 918 7 35% 89%

3 0.636 153 9 1062 7 36% 44%

4 0.657 145 8 980 7 36% 78%

5 0.666 149 8 1049 7 36% 89%

6 0.675 139 8 995 7 33% 78%

7 0.681 147 8 1014 7 35% 61%

8 0.712 166 9 1119 7 38% 67%

9 0.741 146 8 1043 7 32% 72%

10 0.761 158 9 1103 7 41% 67%

Large 1 0.458 200 7 1181 6 34% 77%

2 0.619 232 8 1568 7 34% 83%

3 0.629 237 8 1568 7 32% 60%

4 0.658 267 9 1881 7 36% 77%

5 0.665 262 9 1823 7 37% 80%

6 0.676 250 8 1649 7 37% 67%

7 0.682 247 8 1731 7 37% 77%

8 0.744 268 9 1913 7 34% 77%

9 0.770 277 9 1968 7 37% 70%

10 0.850 268 9 1933 7 34% 67%
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instances refer to one week due to the weekly pattern of
jobs. Clients with a 24/7 live-in request (about 30%) have the
same request from a time perspective, though they may express
different preferences. The other requests are quite different
from client to client. Caregivers have τ = 40, with many of
them available for possible overtime. All of them are willing
to work on weekends while 92% are available at night. In all
cases, a perfect matching of strict preferences is impossible,
because no caregiver meets all requests of any client.

7.2 Decomposition results

We consider in this section the reference model without the
additional term (30) in the objective function.

The solutions of the problem with no cluster-based
decomposition in the instances are reported in Table 3.
They are first reported in terms of the overall objective
function (OF ), which is however mainly influenced by
the strict preference mismatches, due to the lexicographic
approach with αM much higher than αF , αO and αT .
Then, the counts of events of different types occurred in
the solution are also reported: number of mismatches for
strict preferences (mM ), number of mismatches for soft

preferences (mF ), total overtime paid by the provider OV T ,
and total caregivers’ travel time (T T ). They are expressed in
terms of counts to allow easy understanding by provider
managers, as suggested by those of the considered provider.
We also report the computational time taken to obtain the
solution (CT ) and the optimality gap (Gap), which is com-
puted as the difference between the objective function value
and the best bound provided by CPLEX, divided by the
value of the objective function and expressed in percentage.

The results show that the problem is never solved to
optimality. As for small instances, a solution is always
found, whose optimality gap is lower than 10−4% in 9 out
of 10 cases. When this order of magnitude is obtained with
mM 	= 0, the best matching in terms of strict preferences is
found and the solution could only be improved with regards
to the other terms in the objective function. On the contrary,
in the small instance 8, the higher gap means that the best
matching of strict preferences is not guaranteed. Finally,
mM is always lower than mF according to the lexicographic
approach. As for large instances, the time limit is always
reached without providing any solution.

The outputs of the cluster-based decomposition are
reported in Tables 4 and 5 for small instances, and in

Table 3 Solution of the entire problem with no cluster-based decomposition: overall objective function (OF ); mismatches of strict preferences
(mM ); mismatches of soft preferences (mF ); total overtime paid by the provider OV T ; total caregivers’ travel time (T T ); computational time to
get the solution (CT ); percent optimality gap (Gap)

Group Inst Output

(roverall) OF mM mF OV T T T CT Gap

Small 1 (0.464) 232002285.25 37 337 49 57.25 TL 1.8 · 10−5%

2 (0.548) 120002512.75 15 348 22 72.75 TL 1.1 · 10−5%

3 (0.636) 219002612.75 32 343 62 76.75 TL 1.6 · 10−5%

4 (0.657) 272002906 35 398 12 83.00 TL 7.6 · 10−6%

5 (0.666) 138003514.50 20 487 7 69.50 TL 1.7 · 10−5%

6 (0.675) 216002549.75 29 332 60 92.75 TL 1.1 · 10−5%

7 (0.681) 76003424 11 492 24 52.00 TL 2.3 · 10−5%

8 (0.712) 467003686 73 503 111 110.00 TL 3.9%

9 (0.741) 112002832 14 396 62 55.00 TL 8.5 · 10−5%

10 (0.761) 641003625.75 85 471 98 111.75 TL 1.4 · 10−5%

Large 1 (0.458) No solution TL -

2 (0.619) No solution TL -

3 (0.629) No solution TL -

4 (0.658) No solution TL -

5 (0.665) No solution TL -

6 (0.676) No solution TL -

7 (0.682) No solution TL -

8 (0.744) No solution TL -

9 (0.770) No solution TL -

10 (0.850) No solution TL -

TL denotes the time limit of 3600 seconds



L. Malagodi et al.

Table 4 Cluster-based decomposition in small instances 1-5. Solutions the successful combinations of �, k and η: number of sub-problems (#subp);
percentage of jobs for which a solution is provided over the sub-problems (%sol); sum of OF , mM , mF , OV T , T T over the sub-problems with a
solution; sum of the computational times over them (CT ); maximum percent optimality gap over them (Gapmax )

Instance Input Overall output

(roverall) � k η #subp %sol OF mM mF OV T T T CT Gapmax

1 (0.464) I(2) I(1) 1 2 100% 316002123.25 50 321 24 55.25 3017 3.0·10−6%

II(11) I(1) 1 8 97% 440002157.5 66 323 20 64.5 1037 2.1·10−6%

I(2) II(9) 1 1 100% 232002285.25 37 337 49 57.25 TL 1.8·10−5%

II(11) II(3) 1 5 93% 639001669.75 96 241 34 59.75 196 0.0%

I(2) I(1) 0.9 2 100% 316002121.75 53 317 19 53.75 3016 2.5·10−6%

II(11) I(1) 0.9 8 98% 560002247.75 79 335 4 70.75 1108 1.1·10−6%

I(2) II(9) 0.9 1 100% 232002285.25 37 337 49 57.25 TL 1.8·10−5%

II(11) II(3) 0.9 5 93% 639001669.75 96 241 34 59.75 196 0.0%

2 (0.548)

I(2) I(1) 1 1 100% 120002512.75 15 348 22 72.75 TL 1.1·10−5%

II(10) I(1) 1 4 48% 1162.5 0 174 18 31.5 13 0.0%

I(2) II(9) 1 1 100% 120002512.75 15 348 22 72.75 TL 1.1·10−5%

II(10) II(3) 1 5 100% 184002992.5 23 410 20 72.5 377 0.0%

I(2) I(1) 0.9 1 100% 120002512.75 15 348 22 72.75 TL 1.1·10−5%

II(10) I(1) 0.9 7 100% 292002743 38 385 19 80 1264 2.1·10−6%

I(2) II(9) 0.9 1 100% 120002512.75 15 348 22 72.75 TL 1.1·10−5%

II(10) II(3) 0.9 6 100% 225002631.25 33 362 34 79.25 110 0.0%

3 (0.636) I(2) I(1) 1 2 100% 229003065 34 420 39 69 2693 2.6·10−5%

II(10) I(1) 1 4 100% 267002942 38 420 18 75 2475 1.8·10−5%

I(2) II(7) 1 1 100% 219002612.25 32 343 62 76.25 TL 1.6·10−5%

II(10) II(5) 1 4 95% 279003171.5 37 416 51 66.5 2680 4.3·10−4%

I(2) I(1) 0.9 2 100% 229003065 34 420 39 69 2693 2.6·10−5%

II(10) I(1) 0.9 5 100% 267002957.75 38 414 43 70.75 2263 9.2·10−3%

I(2) II(7) 0.9 2 95% 191003051.5 25 402 96 98.5 3314 7.4·10−5%

II(10) II(5) 0.9 4 100% 272003285.25 36 455 63 64.25 2686 3.6%

4 (0.657) I(3) I(1) 1 3 100% 384002578.25 49 358 23 81.25 36 0.0%

I(3) II(5) 1 3 100% 495002511.50 70 357 11 72.50 131 0.0%

I(3) I(1) 0.9 3 100% 399002575 52 380 27 68 38 0.0%

I(3) II(5) 0.9 3 100% 495002511.50 70 357 11 72.50 129 0.0%

5 (0.666) I(2) I(1) 1 1 100% 138003514.50 20 487 7 69.50 TL 1.7·10−5%

II(10) I(1) 1 4 100% 448002886.5 67 398 35 68.5 1850 1.2·10−5%

I(2) II(9) 1 1 100% 138003514.50 20 487 7 69.50 TL 1.7·10−5%

II(10) II(5) 1 4 100% 318003566.25 50 477 12 58.25 2004 1.8·10−6%

I(2) I(1) 0.9 1 100% 138003514.50 20 487 7 69.50 TL 1.7·10−5%

I(2) II(9) 0.9 1 100% 138003514.50 20 487 7 69.50 TL 1.7·10−5%

II(10) II(5) 0.9 6 100% 615002806.5 89 380 19 84.5 1665 3.5·10−6%

TL denotes the time limit of 3600 seconds, and the best solution among those with %sol = 100% is highlighted in bold

Tables 6 and 7 for large instances. The number of generated
sub-problems (#subp) and the solution obtained over the
sub-problems are listed only for the successful clusterings
(combinations of �, k and η). We report the percentage
of jobs for which a solution is provided (%sol), i.e.
the percentage of jobs assigned to a sub-problem which
provided a solution. All sub-problems provide a solution
if %sol = 100%; otherwise, some jobs are not assigned.

The solution is then expressed in terms of the sum of
OF , mM , mF , OV T and T T over the sub-problems with
a solution. The sum of the computational times CT over
the sub-problems with a solution is also reported, together
with the maximum percent optimality gap with respect to
the CPLEX lower bound over the sub-problem (Gapmax).
Finally, the best solution among those with %sol = 100%
for each instance, if any, is highlighted in bold; in case the
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Table 5 Cluster-based decomposition in small instances 6-10

Instance Input Overall output

(roverall) � k η #subp %sol OF mM mF OV T T T CT Gapmax

6 (0.675) I(2) I(1) 1 2 100% 245002553.75 35 341 56 88.75 2925 7.2·10−6%

I(2) II(9) 1 2 100% 233002461 32 317 60 93 3329 1.2·10−5%

I(2) I(1) 0.9 2 100% 221002579.25 30 340 60 87.25 3322 9.9·10−6%

I(2) II(9) 0.9 2 98% 269002308.75 36 301 47 81.75 3329 8.1·10−6%

7 (0.681) I(2) I(1) 1 2 100% 76003487.25 11 493 22 59.25 3201 2.9·10−5%

II(3) I(1) 0.9 3 100% 280003629 40 498 28 74 2056 1.1%

I(2) II(9) 1 1 100% 76003424.00 11 492 24 52.00 TL 2.3·10−5%

II(3) II(5) 0.9 3 100% 340003366.25 47 473 28 68.25 1857 1.3·10−1%

8 (0.712) I(3) I(1) 1 3 100% 527003591.5 82 515 92 92.5 2420 6.0·10−5%

II(10) I(1) 1 5 47% 718001190.25 119 197 22 44.25 6 0.0%

I(3) II(5) 1 2 100% 515003613.25 82 511 44 76.25 2540 3.7·10−5%

II(10) II(5) 1 4 100% 706003697.25 112 517 37 81.25 616 0.0%

I(3) I(1) 0.9 3 100% 632003484 103 482 28 78 2003 1.6·10−6%

I(3) II(5) 0.9 2 100% 582003338.25 96 475 34 70.25 2191 9.4·10−7%

II(10) II(5) 0.9 4 100% 706003697.25 112 517 37 81.25 627 0.0%

9 (0.741) I(2) I(1) 1 2 100% 112002809.00 14 395 54 56.00 3217 9.5·10−5%

II(8) I(1) 1 4 90% 88002755.25 11 366 23 53.25 2443 5.5·10−5%

I(2) II(9) 1 1 100% 112002832 14 396 62 55 TL 8.5·10−5%

II(8) II(5) 1 3 90% 120002434 16 326 26 50 2721 2.4·10−5%

I(2) I(1) 0.9 2 100% 112002809.00 14 395 54 56.00 3219 9.5·10−5%

I(2) II(9) 0.9 2 100% 232002716 30 370 48 49 3269 3.5·10−5%

10 (0.761) I(2) I(1) 1 2 98% 689003212.75 90 405 120 115.75 3318 1.8·10−5%

I(2) II(9) 1 2 98% 689003212 90 409 104 111 3317 1.8·10−5%

I(2) I(1) 0.9 2 100% 792003180.75 101 427 90 83.75 3229 5.4·10−7%

I(2) II(9) 0.9 2 100% 792003179.75 101 427 98 79.75 3229 2.8·10−7%

The table has the same structure of Table 4

best solution occurs for more than one combination of �, k

and η, all rows are highlighted in bold.
Most gaps are lower than 10·10−4%, and a higher gap is

generally observed when mM = 0 in the corresponding sub-
problem. It is worth remarking that this is not immediately
visible from the tables, as they report the maximum gap
and the sum of mM over the sub-problems. In particular,
the gap is lower than 10·10−4% when mM = 0 in all sub-
problems but 2 (of large instances). Therefore, these gaps
show that both the entire problem (only for small instances)
and the sub-problems are generally solved to optimality
with respect to the first term of the objective function, and
that the optimality gap is due to the other terms, for which
a better solution could be obtained while keeping the same
value for the first term.

In small instances, for which a solution of the problem
with no cluster-based decomposition is possible (Table 3),
the decomposition performed worse, but only in 4 out
of 10 instances, where the objective functions are 182%
(in instance 4), 102% (in instance 6), 110% (in instance

8) and 124% (in instance 10) of the corresponding
solution for the entire problem with no decomposition,
respectively. Moreover, in 2 out of 10 instances, the
solution from the decomposition is slightly better than the
corresponding solution with no decomposition, i.e., the
difference between the objective value function with and
without decomposition is equal to -0.50 and -23.00 in
instances 3 and 9, respectively. Though we are aware of
the solution detriment that could be associated with the
decomposition, it is often limited.

In large instances, the decomposition approach allows
us to provide a solution with %sol = 100 in 6 out of 10
instances, where a solution for 100% of jobs is provided
within the time limit for at least one combination of �,
k and η. Moreover, we have clearly observed that the
decomposition approach does not provide a solution to the
entire problem for higher roverall values, i.e., in instances
8 (with roverall = 0.744), 9 (with roverall = 0.770) and
10 (with roverall = 0.850). Actually, a solution for the
entire problem is not provided also in instance 1, where
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Table 6 Cluster-based decomposition in large instances 1-5

Instance Input Overall output

(roverall) � k η #subp %sol OF mM mF OV T T T CT Gapmax

1 (0.458) I(2) I(1) 1 2 4% 6000137 3 40 0 7 0 0.0%

II(14) I(1) 1 10 98% 128002727.25 22 448 98 120.25 913 7.7%

I(2) II(17) 1 1 0% 0 0 0 0 0 0 0.0%

II(14) II(7) 1 10 98% 124002280.75 26 337 90 114.75 2053 7.3%

I(2) I(1) 0.9 2 4% 6000137 3 40 0 7 0 0.0%

II(14) I(1) 0.9 10 99% 184002580.75 36 437 70 134.75 912 6.0%

I(2) II(17) 0.9 1 0% 0 0 0 0 0 0 0.0%

II(14) II(7) 0.9 10 98% 237002083.5 45 340 89 112.5 1973 5.9%

2 (0.619) I(3) I(1) 1 3 24% 54001206.5 11 179 21 43.5 2 0.0%

II(15) I(1) 1 10 100% 373004928.75 61 685 26 165.75 459 0.0%

I(3) II(13) 1 1 0% 0 0 0 0 0 0 0.0%

II(15) II(7) 1 7 96% 276003846.5 38 514 100 141.5 1772 6.4%

I(3) I(1) 0.9 3 24% 54001206.5 11 179 21 43.5 2 0.0%

II(15) I(1) 0.9 8 100% 325004618.25 48 628 26 206.25 1381 3.6·10−6%

I(3) II(13) 0.9 1 0% 0 0 0 0 0 0 0.0%

3 (0.629) II(12) I(1) 1 9 91% 458004786.5 70 638 86 109.5 409 0.0%

I(2) I(1) 1 2 100% 620002899.50 91 410 116 110.50 2566 3.6·10−5%

I(2) II(11) 1 2 12% 774 0 96 0 6 2 0.0%

II(12) II(5) 1 9 95% 509003566 78 489 137 116 584 0.0%

II(12) I(1) 0.9 9 100% 624004280 102 583 88 114 49 0.0%

I(2) I(1) 0.9 2 100% 620002899.50 91 410 116 110.50 2580 3.6·10−5%

I(2) II(11) 0.9 2 12% 774 0 96 0 6 2 0.0%

II(12) II(5) 0.9 9 100% 621003804.5 93 543 118 112.5 143 0.0%

4 (0.658) I(2) I(1) 1 2 19% 156000831.5 20 114 14 25.5 15 0.0%

II(16) I(1) 1 8 100% 688005849.25 99 796 142 151.25 1798 1.2·10−4%

I(2) II(13) 1 2 0% 0 0 0 0 0 0 0.0%

II(16) II(7) 1 8 100% 994005551.25 144 747 94 171.25 1509 9.7·10−5%

I(2) I(1) 0.9 2 19% 156000831.5 20 114 14 25.5 15 0.0%

I(2) II(13) 0.9 2 0% 0 0 0 0 0 0 0.0%

5 (0.665) I(2) I(1) 1 2 100% 426005714.5 63 798 142 149.5 TL 3.0%

II(16) I(1) 1 11 91% 866005301.75 135 725 27 111.75 606 2.0·10−1%

I(2) II(13) 1 2 31% 112002257.75 14 293 4 21.75 1131 2.2·10−6%

I(2) I(1) 0.9 2 100% 379006103.75 57 835 141 154.75 TL 1.3%

I(2) II(13) 0.9 2 34% 112002225 14 294 4 33 1230 2.0·10−6%

The table has the same structure of Table 4

however %sol = 99% indicates a solution for almost all
jobs. We may argue that the decomposition is not able to
find a solution for all jobs where the entire problem could
be infeasible in itself. As a matter of facts, in these instances
we found similar %sol under the different decomposition
layouts, which could indicate that these percentages are
driven by the instance instead of the decomposition. We
cannot formally prove that, as we did not find a solution for
the entire problem (see Table 3), but our results indicate this
motivation.

We can observe that mM is always much less than mF , as
in Table 3, confirming that the primary goal is to minimize
the mismatches of strict preferences. As for small instances,
we observe that, the value of mM either increases or remains
constant with the decomposition. Considering the best
solutions in bold, the worst increase is observed in instance
4 where the value of mM has doubled. This is anyway
a limited increase, in agreement with the structure of the
decomposition, that creates clusters based on the matching
of strict preferences. We can therefore hypothesize that the
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Table 7 Cluster-based decomposition in large instances 6-10

Instance Input Overall output

(roverall) � k η #subp %sol OF mM mF OV T T T CT Gapmax

6 (0.676) I(3) I(1) 1 3 23% 72000980.75 10 133 28 43.75 7 0.0%

I(3) II(15) 1 1 0% 0 0 0 0 0 0 0.0%

II(16) II(5) 1 7 100% 1182004367.75 166 623 125 111.75 1366 2.8·10−6%

I(3) I(1) 0.9 3 23% 72000980.75 10 133 28 43.75 7 0.0%

I(3) II(15) 0.9 1 0% 0 0 0 0 0 0 0.0%

7 (0.682) I(3) I(1) 1 3 100% 862005444.75 117 740 150 128.75 3326 8.4·10−1%

II(14) I(1) 1 6 97% 1337004115 188 549 82 153.5 2413 2.0·10−5%

I(3) II(11) 1 2 22% 64001180.5 8 169 4 14.5 19 0.0%

II(14) II(5) 1 5 100% 971005054.75 130 695 95 106.75 2639 1.3·10−5%

I(3) I(1) 0.9 3 37% 231001873.75 30 252 19 44.75 3013 6.4·10−6%

I(3) II(11) 0.9 2 22% 64001180.5 8 169 4 14.5 20 0.0%

8 (0.744) I(2) I(1) 1 2 21% 15001188.25 3 166 11 31.25 20 0.0%

I(2) II(13) 1 2 0% 0 0 0 0 0 0 0.0%

I(2) I(1) 0.9 2 18% 15001413.5 3 180 17 19.5 13 0.0%

I(2) II(13) 0.9 2 12% 56000733.5 7 95 4 13.5 2 0.0%

9 (0.770) I(2) I(1) 1 2 10% 925 0 116 0 5 5 0.0%

I(2) II(13) 1 2 5% 457.5 0 56 0 1.5 1 0.0%

I(2) I(1) 0.9 2 16% 248001153 34 151 4 17 20 0.0%

I(2) II(13) 0.9 2 19% 528001104 76 151 16 28 26 0.0%

10 (0.850) I(2) I(1) 1 2 10% 84000478.75 11 54 16 22.75 2 0.0%

I(2) II(17) 1 1 0% 0 0 0 0 0 0 0.0%

I(2) I(1) 0.9 2 8% 64000715.75 9 86 0 11.75 1 0.0%

I(2) II(17) 0.9 2 6% 60000440 9 57 0 12 1 0.0%

The table has the same structure of Table 4

values of mM in large instances are not too deteriorated
compared to their optimal value. As for the other metrics
mF , OV T and T T , they have increased or decreased based
on the instance. In particular, in instance 4 where mM has
doubled, all these metrics have decreased. Thus, rather than
deteriorating the overall solution quality, the decomposition
seems to select solutions that favor specific terms in the
objective function with respect to the hierarchy assigned by
the weights αM , αF , αO and αT .

7.3 Analysis of decomposition parameters

In this section we evaluate the impact of the decomposition
parameters �, k and η on the solution, based on the results
in Tables 4-7, and provide guidance for their choice.

We may first observe that the quality of the solution
deteriorates somewhat when #subp increases; however, if the
value of #subp is too small, we do not reach %sol = 100%,
especially in large instances.

To quantify the impact of the parameters, we have
conducted an independent ANOVA for %sol and for the
metrics mM , mF , OV T and T T . All the ANOVAs consider

the decomposition parameters as factors with two levels.
As for %sol , observations refer to all the combinations of
parameters in each instance; they are taken from Tables 4-7
in the case of combinations with a solution, while %sol =
0 is assumed for the others as no solution is provided.
As for the metrics, only the observations in Tables 4-
7 are taken and, to normalize them with respect to the
percentage of solution provided, the values are divided by
such percentage. The ANOVA outputs, obtained with R, are
reported in Table 8.

The results show that only � significantly affects the
solution in small instances, both in terms of %sol and some
metrics. In these cases, �II is associated with a reduction
of %sol , an increase of mM and a reduction of OV T with
respect to �I Thus, �I is recommended to obtain a solution
for several jobs associated with lower mM values.

In large instances, both � and k, as well as their
interaction, are significant for several metrics. In the
significant cases, �II is associated with a reduction of %sol ,
mF and OV T with respect to �I ; kII is associated with
a reduction of %sol , OV T and T T with respect to kI ;
�II × kII shows an increase of OV T and T T . Thus, �I
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Table 8 p-values of the terms in the ANOVA for the different variables

Term Metric

%sol mM mF OV T T T

(a) Small

� 0.029 * 0.060 • 0.741 0.062 • 0.672

k 0.499 0.955 0.881 0.352 0.699

η 0.524 0.683 0.997 0.804 0.687

� × k 0.485 0.889 0.853 0.966 0.614

� × η 0.756 0.712 0.386 0.859 0.238

k × η 0.826 0.600 0.642 0.355 0.673

(b) Large

� 0.042 * 0.349 0.004 ** 0.006 ** 0.140

k 0.057 • 0.966 0.900 0.072 • 0.001 ***

η 0.050 * 0.406 0.756 0.386 0.412

� × k 0.158 0.793 0.144 0.001 *** 0.086 •
� × η 0.070 • 0.124 0.464 0.946 1.000

k × η 0.961 0.228 0.425 0.297 0.282

Reported significance levels are as follows: “***” for 0.001; “**” for 0.01; “*” for 0.05; “•” for 0.1

and kI are recommended in order to obtain a solution for the
highest possible number of jobs, while no recommendation
is possible regarding the quality of the solution, as mM is not
significantly affected and the other secondary terms show
alternate effects. Also η significantly affects %sol , with an
increase of η1 with respect to η0.9 and for kII × η1.

From the practical viewpoint, these analyses indicate that
some combinations of decomposition parameters perform
better than others. Thus, when our approach has to be
applied in practice, we suggest to repeat the decomposition
with different parameters starting from the better combina-
tions identified by the ANOVA; if the result from a decom-
position setting is not satisfactory, a new decomposition can
be performed considering other promising combinations.

7.4 Impact on overtime and continuity of care

In this section we analyze the impact of chargeable overtime
on the overtime paid by the provider and the continuity
of care. To this end, together with OV T , we consider the
number of caregivers assigned to each client willing to pay
overtime (denoted by nkφ=1) and to each client unwilling to
pay overtime (denoted by nkφ=0), both expressed in terms of
mean value and standard deviation over the corresponding
clients.

We compare OV T , nkφ=1 and nkφ=0 under three
configurations: the reference configuration already tested
in Section 7.2; the configuration in which the continuity
of care is reinforced through the additional term (30)
in the objective function and the related constraints; a

configuration in which all clients are unwilling to pay
overtime (forcing φc = 0 ∀c ∈ C). In the last configuration,
to effectively compare the alternatives, nkφ=1 and nkφ=0 are
computed while keeping the same division of the original
instance, though all clients are unwilling to pay overtime.
The second configuration is run with α∗ = 105 to give
a high priority to the additional term, but lower than the
priority of strict preference mismatching. Moreover, due to
the slower convergence observed in this configuration, its
time limit has been tripled.

We focus on small instances for which a solution without
decomposition is obtained and on a couple of large instances
for which #subp = 2 and %sol = 100%, i.e., on instances 3
and 5 decomposed with �I , kI and η = 0.9.

Results are reported in Table 9. They show that OV T

values are always lower with chargeable overtime than
without, being less than half in several cases. When
comparing the first two alternatives, there is not a clear trend
as OV T is lower under the first or the second alternative
depending on the instance. Thus, chargeable overtime is
clearly effective in unburdening the provider while the
effectiveness of the additional term (30) depends on the
instance. As for the continuity of care, it is not adequately
pushed by the reference formulation when compared to the
case without chargeable overtime. In fact, when comparing
the first and the third alternative, nkφ=1 and nkφ=0 values
are almost similar. This is due to the presence non-
consecutive jobs from the same client and a high percentage
of clients with φc = 1 (whose values are reported in
Table 9). The additional term (30) pushes the continuity of
care with lower nkφ=1 values in some instances, while it is
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Table 9 Values of OV T , nkφ=1 and nkφ=0 in the small instances without decomposition and in large instances 3 and 5 decomposed with �I , kI

and η = 0.9, for which #subp = 2 and %sol = 100%: reference configuration with chargeable overtime; configuration in which the continuity of
care is reinforced through (30); configuration in which all clients are unwilling to pay overtime

Group Inst roverall Percentage With chargeable With chargeable overtime and Without chargeable

of φc = 1 overtime (reference) (30) in objective function overtime (φc = 0∀c ∈ C)

OV T nkφ=1 nkφ=0 OV T nkφ=1 nkφ=0 OV T nkφ=1 nkφ=0

Small 1 0.464 83.3% 49 2.5 ± 1.2 2.7 ± 2.1 67 2.3 ± 1.5 3.0 ± 2.6 137 2.5 ± 1.2 3.0 ± 2.6

2 0.548 88.9% 22 2.5 ± 1.2 3.5 ± 3.5 26 1.8 ± 0.9 4.5 ± 4.9 93 2.6 ± 1.5 3.0 ± 2.8

3 0.636 44.4% 62 3.5 ± 1.7 2.4 ± 0.8 57 2.3 ± 1.0 2.2 ± 1.1 116 4.0 ± 1.7 2.4 ± 0.8

4 0.657 77.8% 12 2.6 ± 1.2 2.0 ± 1.4 32 1.9 ± 1.0 2.3 ± 1.9 84 2.7 ± 1.3 2.0 ± 1.4

5 0.666 88.9% 7 3.3 ± 1.2 1.0 ± 0.0 69 2.8 ± 1.2 1.0 ± 0.0 129 3.3 ± 1.1 1.0 ± 0.0

6 0.675 77.8% 60 2.9 ± 1.5 2.3 ± 0.5 52 2.3 ± 1.0 2.5 ± 0.6 146 2.7 ± 1.4 2.3 ± 0.5

7 0.681 61.1% 24 2.5 ± 0.9 2.9 ± 1.9 52 2.0 ± 1.0 2.7 ± 2.1 93 3.0 ± 0.9 3.0 ± 1.8

8 0.712 66.7% 111 3.9 ± 1.9 2.7 ± 2.4 207 4.4 ± 2.4 3.5 ± 1.6 247 3.8 ± 1.9 2.2 ± 1.8

9 0.741 72.2% 62 3.2 ± 1.6 2.8 ± 1.5 16 2.1 ± 0.9 3.4 ± 1.5 132 3.5 ± 1.8 3.2 ± 1.8

10 0.761 66.7% 98 2.9 ± 1.1 5.3 ± 3.1 139 2.9 ± 1.3 5.0 ± 3.1 188 2.7 ± 1.0 5.0 ± 2.8

Large 3 0.619 60.0% 116 2.6 ± 1.2 2.7 ± 0.9 103 1.2 ± 0.9 2.8 ± 2.2 162 2.9 ± 1.4 2.7 ± 0.8

5 0.665 80.0% 141 3.7 ± 2.2 3.5 ± 2.2 102 2.3 ± 1.4 3.3 ± 1.9 200 3.0 ± 1.4 3.2 ± 1.8

not effective in others. More specifically, it is effective for
lower roverall values because it exploits the flexibility of the
instance, for which alternative solutions are available due
to the margin between demand and capacity. When roverall

increases, this margin reduced and the problem becomes
more complex. Accordingly, the additional term (30) is
associated with a non-negligible optimality gap even under
longer computational times. Thus, aiming at providing a
solution in a limited computational time from the practical
viewpoint, such a term should be included only if there is
margin between the demand and the capacity. Otherwise, it
could be counterproductive.

8 Conclusion

We have formulated a novel HC scheduling problem and
proposed a cluster-based decomposition algorithm to obtain
solutions for larger instances. The chargeable overtime has
been introduced for the first time in the literature. Combined
with the needs of the real provider operating in the USA,
it represents an advancement for the HC practice. Indeed,
this idea offers more flexibility to HC providers that want
to increase the provided service level without excessively
increasing overtime cost, giving clients the possibility to
further increase the service level by allowing the payment
of the difference in cost. In our opinion, this idea is
immediately applicable to other providers and our work can
be a useful tool to apply it.

We have also proposed a cluster-based decomposition
to address real-life instances of the problem, which proved

effective in our tests. Moreover, the analysis of the outcomes
suggested to perform the decomposition paying attention to
� and k in the case of large instances, preferring �I and kI .

Results also showed that, in this specific provider, the
reference model is able to reduce the overtime paid by the
provider, while non-consecutive jobs from the same client
and the high percentage of clients with φc = 1 require
the additional term in the objective function to adequately
pursue continuity of care, which is effective when the
solution converges to the optimal one.

The ongoing work will be dedicated to the development
of heuristic, metaheuristic or matheuristic approaches to
provide approximate solutions for both the problem or the
sub-problems. On the one hand, the idea is to completely
avoid decomposition; on the other hand, it is to complete
the solution when the percentage of jobs for which a
solution is provided is less than 100%. In particular,
variable neighborhood search strategies will be considered
to develop fast algorithms for large instances.

An assessment of the feasibility of the overall problem
without providing a solution could also be implemented.
This will allow to determine whether infeasibilities (%sol <

100%) are due to the solution approach or to the instance
itself.

Finally, we will consider other approaches to tackle
the multi-criteria problem other than the lexicographic one
considered in this work; for example, we will consider a
threshold method or the Pareto frontier analysis.
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A (2017) Or problems related to home health care: A review of
relevant routing and scheduling problems. Oper Res Health Care
13:1–22

5. Chaieb M, Jemai J, Mellouli K (2019) A decomposition-
construction approach for solving the home health care scheduling
problem. Health Care Manag Sci:1–23

6. Nasir JA, Dang C (2019) Quantitative thresholds based decision
support approach for the home health care scheduling and routing
problem. Health Care Manag Sci:1–24

7. Trautsamwieser A, Hirsch P (2011) Optimization of daily
scheduling for home health care services. J Appl Oper Res
3(3):124–136

8. Hiermann G, Prandtstetter M, Rendl A, Puchinger J, Raidl GR
(2015) Metaheuristics for solving a multimodal home-healthcare
scheduling problem. CEJOR 23(1):89–113

9. Erdem M, Bulkan S (2017) A two-stage solution approach for
the large-scale home healthcare routeing and scheduling problem.
South African J Ind Eng 28(4):133–149

10. Mankowska DS, Meisel F, Bierwirth C (2014) The home health
care routing and scheduling problem with interdependent services.
Health Care Manag Sci 17(1):15–30

11. Carello G, Lanzarone E, Mattia S (2018) Trade-off between
stakeholders’ goals in the home care nurse-to-patient assignment
problem. Oper Res Health Care 16:29–40

12. Lanzarone E, Matta A, Sahin E (2012) Operations management
applied to home care services: the problem of assigning human
resources to patients. IEEE Trans Syst Man Cybern -Part A: Syst
Human 42(6):1346–1363
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