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Abstract: The new Database of Italy's Seismogenic Sources (DISS Working Group, 2007) identifies 

areas with a degree of homogeneity in earthquake generation mechanism judged sufficiently high. 

Nevertheless, their seismic sequences show rather long and regular interoccurrence times mixed 

with irregularly distributed short interoccurrence times. Accordingly, the following question could 

naturally arise: do sequences consist of nearly periodic events perturbed by a kind of noise; are 

they Poissonian; or short interoccurrence times predominate like in a cluster model? The relative 

reliability of these hypotheses is at present a matter of discussion (Faenza et al. 2003, Corral 2005 

and 2006, ...).

In our regions a statistical validation is not feasible because of the paucity of data. Moreover the 

classical tests do not clearly suggest which one among different proposed models must be 

favoured. 

In this paper we adopt a model of interoccurrence times able to interpret the three different 

hypotheses, ranging from exponential to Weibull distributions, in a scenario of increasing degree of 

predictability.



In order to judge which one of these hypotheses is favourite, we adopt, instead of the classical 

tests, a more selective indicator measuring the error in respect to the chosen panorama of possible 

truths.

The earthquake prediction is here simply defined and calculated through the conditional probability 

of occurrence depending on the elapsed time t0 since the last earthquake. Short and medium term 

predictions are performed for all the Italian seismic zones on the basis of datasets built in the 

context of the National Projects INGV-DPC 2004-2006, in the frame of which this research was 

developed.

The mathematical model of interoccurrence times (mixture of exponential and Weibull distributions) 

is justified in its analytical structure. A dimensionless procedure is used in order to reduce the 

number of parameters and to make comparisons easier. Three different procedures are taken into 

consideration for the estimation of the parameter values: in most of the cases, they give 

comparable results. The degree of credibility of the proposed methods is evaluated. Their 

robustness as well as their sensitivity are discussed. 

The comparison of the probability of occurrence of a Maw>5.3 event in the next 5 and 30 years 

from January 1st, 2003, conditional to the time elapsed since the last event, shows that the relative 

ranking of impending rupture in five years is roughly maintained in a 30-years perspective with 

higher probabilities  and large fluctuations between sources belonging to the same macro region.
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The new Database of Italy's Seismogenic Sources (DISS Working Group, 2007) identifies areas with a 

degree of homogeneity in earthquake generation mechanism judged sufficiently high. Nevertheless, their 

seismic sequences show rather long and regular interoccurrence times mixed with irregularly distributed 

short interoccurrence times. Accordingly, the following question could naturally arise: do sequences 

consist of nearly periodic events perturbed by a kind of noise; are they Poissonian; or short 

interoccurrence times predominate like in a cluster model? The relative reliability of these hypotheses is 

at present a matter of discussion (Faenza et al. 2003, Corral 2005 and 2006, ...).

In our regions a statistical validation is not feasible because of the paucity of data. Moreover the 

classical tests do not clearly suggest which one among different proposed models must be favoured. 

In this paper we adopt a model of interoccurrence times able to interpret the three different 

hypotheses, ranging from exponential to Weibull distributions, in a scenario of increasing degree of 

predictability.

In order to judge which one of these hypotheses is favourite, we adopt, instead of the classical tests, a 

more selective indicator measuring the error in respect to the chosen panorama of possible truths.

The earthquake prediction is here simply defined and calculated through the conditional probability of 

occurrence depending on the elapsed time t0 since the last earthquake. Short and medium term predictions 

are performed for all the Italian seismic zones on the basis of datasets built in the context of the National 

Projects INGV-DPC 2004-2006, in the frame of which this research was developed.

The mathematical model of interoccurrence times (mixture of exponential and Weibull distributions) 

is justified in its analytical structure. A dimensionless procedure is used in order to reduce the number of 

parameters and to make comparisons easier. Three different procedures are taken into consideration for 

the estimation of the parameter values: in most of the cases, they give comparable results. The degree of 

credibility of the proposed methods is evaluated. Their robustness as well as their sensitivity are 

discussed. 
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The comparison of the probability of occurrence of a Maw>5.3 event in the next 5 and 30 years from 

January 1st, 2003, conditional to the time elapsed since the last event, shows that the relative ranking of 

impending rupture in five years is roughly maintained in a 30-years perspective with higher probabilities  

and large fluctuations between sources belonging to the same macro region.
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Introduction

One of the main issues in seismology and seismic engineering is reliable earthquake prediction. However, 

since earthquake occurrence depends on many random variables whose characteristics are often not well

defined, its prediction is still a difficult matter. Several approaches have been presented, but it seems that 

none is clearly superior. 

The degree of uncertainty, epistemic and statistic, contained in the models leads to statements of this 

kind. “Although seismology has intensively analyzed the characteristics of single earthquakes with great 

success, a clear description of the properties of seismicity …is still lacking” (A. Corral 2006); “…test 

based on the likelihood ratios should be approached with caution…” and “physical significance (of cyclic 

effects and clustering) therefore remains questionable.” (D.Vere-Jones et al. 1982); “…these results… 

could be very relevant in the debate of seismic gap models versus clustering occurrence” (A. Corral 

2005).

One of the major challenges is to interpret two apparently opposite characteristics in recurrence time 

models: temporal clustering and nearly periodic events. In A. Corral (2006) the Author quotes “…results 

turn out to be in contradiction with each other, from the paradigm of regular cycles and characteristic 

earthquakes to the view of totally random occurrence” and proposes a unifying description of seismicity.

We do not have the pretension to enter in the debate, but we propose an elementary model that could 

be a first step to incorporate quasi-periodic events as well as poissonian or clustered events. Moreover we 

adopt an indicator, called credibility, to compare the competing models.

The mathematical tool of the model consists in a renewal process, already proposed by many authors 

in order to overcome the Poisson models.. The renewal process is not free from criticism: 1) all past 

history, not only the last event, influences the earthquake generation; 2) the complexity of Italian context 



makes debatable a complete energy release after each earthquake followed by a new cycle; 3) the 

recurrence times are independent identically distributed (i.i.d.); 4) the sum of many causes of seismicity 

can suggest the Poisson process (this criticism being feeble because the renewal process includes the 

Poisson process as particular case).

Nevertheless, in the frame of the renewal processes, the role of the specific survivor function 

(complementary distribution function) with the implied hazard rate is crucial. The mixture exponential-

Weibull distribution function we propose has the capacity to incorporate in a probabilistic way three 

different behaviours (with different kind of energy release): to collapse into a Poisson process, to model 

characteristic or clustering events.

The existence of characteristic or clustering events needs sound physical basis to be asserted; here the 

terms are used, for shortness, to indicate respectively the presence of rather regular temporal sequence 

(even if mixed with irregular short interoccurrence times) or the dominance of short interoccurrence 

times.

The main responsible to make the mixture suitable in the three mentioned cases is the shape parameter 

 of Weibull component. In general its behaviour is as follows.

If  is greater than the unity the hazard rate comes out to be increasing until a peak value: it models a 

kind of seismic gap. If  is lesser than the unity the hazard rate comes out to be decreasing like in 

clustering events. If  is equal to the unity the proposed renewal process weakly differ from Poisson 

process. Moreover the renewal process can collapse precisely in a Poisson process, as shown in the next 

sections.

In SIS Intermediate Conference 2007 Risk and Prediction, held in Venice in June 2007, such a model 

was already presented (Garavaglia et al. 2007) in a preliminary way; here it is studied and applied to the 

Italian seismic zones. 

During the last twelve years and at the present Italian researchers are improving the earthquake 

catalogues and proposing different seismogenetic models of the seismic source. Seismic zoning, as well 

as the seismic catalogues, are again under revision. 

In the context of a research plan proposed by Italian Department of Civil Protection (DPC) and 

National Institute of Geophysics and Vulcanology (INGV) (National Projects INGV-DPC 2004-2006) in 

the frame of which this work has been developed, new databases were released with the aim of 



calculating the probability of occurrence of strong events in the next 30 years. Earthquake sub-catalogues 

were obtained by the association of the events of the Italian historic catalogue CPTI04 (Catalogo 

Parametrico dei Terremoti Italiani–Versione 2004 - CPTI Working Group, 2004 INGV, Bologna) with 

seismogenetic source areas (SA) (DISS03, INGV - DISS Working Group, 2006) that are sources having 

homogeneous behaviour. For a lot of SAs the number of events in the sub-catalogues is inadequate for a 

significant statistical analysis; therefore the predictability could not be applied to the whole Italian 

context. In order to overcome this problem, the SAs have been grouped in macro regions (MR) (Basili, 

2007) with the following characteristics: similar style of faulting and amount of deformation, This last 

association permitted to have adequate interoccurrence times datasets. The approach herein proposed was

applied to these catalogues, as described in the following. 

1. The interoccurrences time model

This paper is aimed at providing a model for earthquakes prediction, which takes into account 

interoccurrence time both for nearly periodic, characteristic earthquakes, and for clusters and other 

randomly occurring earthquakes having a magnitude greater than a selected threshold. 

The procedure is purely probabilistic, but at least three physical hypotheses are included: 

1) a double behaviour in earthquake generation, as already said;

2) a dependence on the past history, expressed with the use of a renewal process;

3) a stationary asymptotic behaviour of the hazard: a very long seismic silence in a zone could be 

reasonably interpreted as an energy release having occurred somewhere else, rather than a 

continuous enormous accumulation of energy in progress in the zone; so even in the case of 

increasing hazard rate its limiting value is a finite quantity.

More precisely, property 2) means that the probability of an earthquake occurrence depends on the 

elapsed time t0 from the last event. Property 3) means that, in case of >1 the hazard increases with t0 but, 

after a peak value, if the earthquake doesn’t occur, it decreases and reaches a stable value, describing for 

every time increment a constant probability of an immediate occurrence. 

In our regions an exponential-Weibull (ex-w) mixture, with the Weibull’s shape parameter >1

appears to be suitable: it generally shows, after a first phase of weakly decreasing hazard rate, a central 

phase of increasing hazard followed by a stationary one. The exponential distribution mainly models the 



short interoccurrence times, related to clustering or random events, while the Weibull distribution mainly 

models the interoccurrence times related to the characteristic earthquake. Nevertheless, both distributions 

are defined in [0, ∞ without a threshold of separation between the two families of events. The weaker the 

characteristic earthquake is expressed, the more the tails of the two distributions overlap.

In any case the mixture distribution overcomes the drawback of a single distribution that in general is not 

able to fit the entire class of interoccurrence times. In fact what in general happens is that a distribution 

that fit well the short interoccurrence times does not fit the long interoccurrence time and viceversa.

Moreover note that the entire set of interoccurrence times has often coefficient of variation (COV) near to 1. 

So this property does not indicate a propensity towards characteristic earthquake nor towards clustering. 

The preliminary check of the global COV simply would indicate that the Poisson hypothesis is not 

rejectable. A better fitting is obtained through a mixture. The coefficient of aperiodicity (Matthews et al. 

2002) of the resulting process can adequately fit sequences with different degrees of regularity.

The choice of the two component distributions here proposed for the mixture is the result of 

investigations on different mix of distributions and on correspondence between the theoretical 

characteristic of the mixture and the physical aspect of phenomenon modelled (Guagenti Grandori et al. 

1990).

The ex-w survivor function, )(1)( 00 tFt   , and the probability density function, )( 0tf , are 

respectively (Cox, 1962):
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Let us call  the interoccurrence time random variable, t0 being its generic value, i.e. the time since 

the last event. The parameters involved in Eqs. (1) are: p, which can be considered the weight of the 

characteristic earthquake portion of the model; , whose value governs the Weibull coefficient of 

variation COVW: 
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b and , that can be defined as functions of 1 and 2, which are the two return period components of the 



short interoccurrence times and of the characteristic earthquake interoccurrence times, respectively:
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Moreover the COV of the mixture in the resulting process, called coefficient of aperiodicity, comes 

out to be 
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The information about aperiodicity contained in (2’) differs from the information contained in the 

sample COV.

The mixture (1) models a wide class of earthquake interoccurrence times; its hazard rate (HR),

)( 0t , is defined as:
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and it is shaped as required for property 3). Because parameter p can assume different values, the 

distribution (1) can explore different degrees of characteristic earthquake evidence: increasing values of p

means larger and larger evidence of characteristic earthquake; p=1 means lack of the irregular short 

interoccurrence times. In the two extreme cases p=0 and p=1 the mixture distribution (1) becomes, 

respectively, exponential and Weibull and property 3) fails: when p=0 the HR is constant in time and the 

predictability is missing; when p=1 the HR is continuously increasing until the certainty of an immediate 

occurring earthquake.

Eq. (4) furnishes the prediction in a very short (infinitesimal) next time interval dt:
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while the medium term t prediction is the probability, at each t0 of an earthquake in the next t:
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In this context, prediction means, at each instant, the conditional probability of an earthquake with 



magnitude greater than a specific value in the next time interval (dt or t), given the length of the 

preceding seismic gap. 

The presence of four parameters is the main drawback of Eq. (1) in estimation procedure. To avoid 

this shortcoming, we propose the following time scale transformation:


0th  (7)

where

21)1(  pp  (8)

is the global return period of the earthquake process. Eq. (7) transforms Eq. (1) into dimensionless terms 

as follows:
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where k1 =  1  , k2 =  2  are the two return period components, 1 and 2, expressed in dimensionless 

terms. 

Eq. (9) offers the advantage of presenting the range of a source’s possible earthquake behaviour 

independently of the numerical value of the respective return periods. The Eq. (8) becomes:

21)1(1 kpkp  . (8’)

The parameter p now can be estimated through Eq. (8’) as follows:
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Three parameters remain to be estimated in Eq. (9). In order to make the estimate procedure easier and 

more stable, we proceed assuming  = constant with different trial values; then we choose the best one in 

respect to likelihood function. In this way only k1 and k2 have to be estimated: they offer the advantage of 

being directly suggested by the sample, at least if the ratio 12 kkr  is large enough to ensure weak 

overlap of the two component densities. In this case the mean values of the interoccurrence times < 1 and 

the interoccurrence times > 1 give empirical estimates of k1and k2, respectively. 

Varying k2 and k1 we obtain different families of earthquake processes, representing conjectural 

“truths”. In Figures 1-5 they are shown in a compact form through the dimensionless HR ~ .
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The assumed range [1.2-2] for k2 can be considered exhaustive for a wide class of Italian seismic 

zones. The values of k1 are chosen between 0 and 1 to give, from Eq. (10), equally spaced p values 

(0.1 p <1/k2 with increment 0.1). 

In the above figures the value of  is 4. Our large set of numerical simulations show that larger or 

smaller values of  lead to similar behaviours with more or less pronounced peak relative to characteristic 

earthquake.

Let us remember that all distributions (Eq. 9) have mean value =1. If we want the prediction in time 

scale we will use the relationships
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Moreover, the asymptotic value of hazard rate is given by: 
1

1
  and its dimensionless form is 

given by 
1

1~
k .

2. Comparison between Estimation Procedures

We consider four different estimation procedures for conditional earthquake occurrence probability.

The first one assumes the mathematical model (Eq. 9) and it uses the classical method of maximum 

likelihood (ML) for the estimation of the parameters k1 and k2 (Maybeck, 1979,...).

A second method, proposed by us and called threshold method (TR), assumes again the mathematical 

model (Eq. 9) with the means of interoccurrence times less than and greater than 1 taken as estimators of 

k1 and k2, respectively. As we will see in the following, if r assumes values around 4 or more, the TR 

method is better than the ML method: indeed it is able to catch the contribution of the few interoccurrence 

times in the tail better than the ML, which is sensitive to the total contribution of the interoccurrence 

times. On the other hand, the TR fails for low values of r, i.e. if the tails of the two components of the 

mixture overlap.

A third method (ME) is based on the maximum entropy principle that implies the use of a generalized 

exponential distribution (Jaynes, 1957, Akaike, 1977, Tagliani, 1989 and 1990). Indeed, this is the 

distribution function that incorporates only the information inherent in dataset (so maximizing the entropy



of the distribution). This method does not agree with our choice of limited  , but it is useful in a 

qualitative sense, because it is very sensitive to the dataset and is free from the characteristic earthquake

or other interpreting hypothesis (Vere-Jones et al. 1982). 

Finally, an empirical method (EMP) consists in reading directly on the cumulative frequency polygon 

F * the values of * and hhP . Specifically the empirical value * is:
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being (tg ) h the tangent of that polygon F * side which h belongs to (Fig. 6). Eq. (13) becomes 

meaningless at the end of the polygon, but, before the end, it offers an empirical rough prediction directly 

coming from the dataset, free from mathematical model (apart the piecewise linearity of the polygon). 

Moreover the dataset can suggest possible variability of the hazard that the structure of the chosen 

mathematical model cannot incorporate; typically, a possible multimodality of the hazard will be 

suggested from the empirical method. Obviously, this rough empirical method EMP cannot be considered 

as a reliable non-parametric procedure, but it may furnish complementary qualitative information. 
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Figure 6 Building of empirical value * as exposed in (13)

3. Procedure Credibility

In previous papers (Grandori et al. 1998, 2003, 2006; Guagenti et al. 2003, 2004) the credibility of a 

procedure has been introduced: a measure of the error, with respect to a conjectural truth F°, when a 

target quantity A is estimated with that procedure. Let A° be the true value of A (in the conjectural truth) 

and sÂ its estimator with the procedure s. The credibility 
s of the procedure s relative to the truth F° 



(that here is simply a given distribution) is defined as follows:

  kAAAkAA ss
ˆPr . (14)

In other words, 
s is the probability to have (as absolute value) a fractional (or relative) error not larger 

than a given value k in the estimate of the quantity A. In this research the target quantity A is the 

prediction ( or 
0

P
tt

).

The merit of credibility 
s is to focus attention on the target quantity A of interest, instead of on the 

data fitting. This makes the credibility specifically useful to the aim of the research and more selective 

than classic tests. For example, exponential, lognormal, gamma and Weibull distributions, largely used 

for interoccurrence time model, can lead, with the classic tests, to similar levels of significance; on the 

other hand they lead to predictions drastically different.

It is remarkable that the credibility 
s is not based on the single sample given by the catalogue but on 

“all samples” (i.e. 1000 samples) that can be drawn from F°.

Because of definition (14) of credibility, competing models can be compared in the frame of the 

chosen conjectural truths. The values of  are obtained with Monte Carlo simulation.

In Table 1. and 2. the  values are shown, relative to the estimated quantity ̂ or P̂ in respect to 

some conjectural F° identified through their single parameter 
2k , being the comparison done with the 

same values of p and . The values p=0.5 and =4 are assumed because they are frequently observed in 

the studied zones; the parameter 
1k is evaluated through Eq. (8’).

h
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2k methods

0.5 1 1.5 2 2.5 hmax

1.2
ML 0.99 0.89 0.94 0.49 0.87 0.890
TR 1.00 0.02 0.22 0.0 0.0 0.0

1.4
ML 0.96 0.93 0.81 0.74 0.45 0.50
TR 1.00 0.76 0.67 0.93 0.0 0.09

1.6
ML 0.92 0.93 0.76 0.73 0.74 0.82
TR 1.00 0.94 0.84 0.83 0.88 0.87

1.8
ML 0.61 0.80 0.65 0.64 0.64 0.92
TR 0.57 0.83 0.71 0.71 0.71 0.80
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)(

)()(ˆ
Pr

h

hh


 with samples size =100



h

2k
methods

0.5 1 1.5 2 2.5 hmax

1.2
ML 0.99 0.91 0.96 0.59 0.89 0.90
TR 1.00 0.03 0.51 0.0 0.0 0.01

1.4
ML 0.97 0.93 0.86 0.80 0.53 0.530
TR 1.00 0.75 0.75 0.98 0.0 0.11

1.6
ML 0.92 0.91 0.79 0.84 0.85 0.88
TR 1.00 0.93 0.87 0.90 0.95 0.97

1.8
ML 0.61 0.77 0.68 0.71 0.75 0.98
TR 0.54 0.82 0.73 0.75 0.80 0.94

Table 2. Values of 















 3.0
)(P

)(P)(P̂
Pr

h
hh ;  h=0.1 and with samples size =100

Table 1. gives the credibilities of the estimate of ~ with the procedures ML and TR. Table 2 gives 

the same credibilities for the estimate of hhP . The sample size is rather numerous in this first analysis: 

it is  = 100. The threshold k is taken equal to 0.3; a series of preliminary tests in various hypothetical 

conditions confirmed a good sensitivity of the method of comparison based on k=0.3.

The credibilities are time dependent, hence their values are calculated for different time instant h with 

steps of 0.5, i.e. 0.5 times the return period . These step values allow determining in which periods the 

prediction is more or less reliable. The last column gives the mean value of the credibilities if the 

prediction is made when the elapsed time h is equal to the maximum observed interoccurrence times.

In some cases the tables show large differences. Which one must be judged more credible? On the 

basis of many numerical simulations, we can say that the TR method is reliable when the ratio 12 kkr 

is large (r > 4), as in the case of third or fourth row. This behaviour can be explained thanks to the 

meaning of the ratio r: its large values (third and fourth case) mean a weak overlap of the tails of the two 

component densities (ex and W) and the information coming from the larger IT is really interpreted as 

Weibull contribution, while small values of r mean that the role of the two components is not clearly 

separate in the interpretation of short and long interoccurrence times. 

The seismic zones in this study, have much fewer data than in this first simulation. So, the next Table 

1’. and Table 2’. give the credibilities when the sample has the more realistic size of 20 elements (=20). 

The credibility values are obviously rather small, but they confirm the preceding trend.



h

2k methods

0.5 1 1.5 2 2.5 hmax

1.2
ML 0.71 0.57 0.57 0.19 0.50 0.49
TR 0.91 0.21 0.37 0.0 0.0 0.0

1.4
ML 0.67 0.61 0.46 0.38 0.25 0.36
TR 0.91 0.65 0.54 0.68 0.14 0.70

1.6
ML 0.58 0.59 0.41 0.39 0.34 0.69
TR 0.87 0.70 0.54 0.54 0.58 0.69

1.8
ML 0.33 0.41 0.36 0.34 0.34 0.43
TR 0.38 0.49 0.38 0.38 0.40 0.57

Table 1’. Values of 
















 3.0

)(

)()(ˆ
Pr

h

hh




with samples size =20

h

2k methods
0.5 1 1.5 2 2.5 hmax

1.2
ML 0.78 0.58 0.59 0.24 0.51 0.49
TR 0.90 0.20 0.37 0.0 0.0 0.0

1.4
ML 0.70 0.58 0.53 0.45 0.28 0.28
TR 0.92 0.63 0.55 0.68 0.14 0.70

1.6
ML 0.58 0.58 0.44 0.48 0.48 0.77
TR 0.88 0.69 0.50 0.53 0.57 0.63

1.8
ML 0.32 0.41 0.34 0.34 0.38 0.79
TR 0.41 0.50 0.36 0.35 0.36 0.59

Table 2’. Values of 
















 3.0

)(P

)(P)(P̂
Pr

h

hh
; h=0.1 and with samples size =20

With regard to the ME method, its credibility is almost always around 0.25: a reliable prediction 

cannot be based on it. Nevertheless, as already noticed, from a qualitative point of view, it offers useful 

information directly coming from data, free of modelling error; therefore it must be taken into 

consideration, especially when it appears largely different from the assumed model.

All the methods are significantly reliable in deciding whether the Poissonian model could be rejected. 

Indeed, in case of Poisson model is HR=1. If the credibility is aimed at testing the hypothesis 

HR=constant against any other time varying HR, it becomes:

   kh  1)(ˆPr . (15)

Eq. (15) is the probability of an error not larger than a given value k accepting the hypothesis 



HR=constant. Table 3 gives its complementary values '
 with k =2. Therefore the table shows the 

credibility of an HR more than three times the poissonian constant HR. All the three methods, even if the 

probability can be different, agree in judging the difference from the Poisson hypothesis, when it exists.

h

2k methods
0.5 1 1.5 2 2.5 hmax

1.2
ML 0.00 0.00 0.42 0.46 0.25 0.47
TR 0.00 0.00 0.0 0.79 0.68 0.71

ME 0.01 0.08 0.28 0.21 0.24 0.15

1.4
ML 0.00 0.00 0.29 0.67 0.54 0.77
TR 0.00 0.00 0.0 0.74 0.84 0.88

ME 0.02 0.04 0.0 0.50 0.64 0.99

1.6
ML 0.00 0.00 0.12 0.54 0.74 0.87
TR 0.00 0.00 0.0 0.45 0.84 0.88

ME 0.02 0.01 0.09 0.35 0.81 0.99

1.8
ML 0.00 0.00 0.0 0.32 0.64 0.86
TR 0.00 0.00 0.0 0.21 0.58 0.76

ME 0.01 0.01 0.04 0.18 0.50 1.00

0(exp)
ML 0.00 0.00 0.00 0.00 0.00 0.00
TR 0.00 0.00 0.00 0.00 0.00 0.00

ME 0.05 0.04 0.04 0.05 0.04 0.00

Table 3. Values of  21)(ˆPr'  h with samples size=20

4. Robustness

The credibility procedure is now applied to investigate the robustness of the mixture procedure. In 

particular, assumed as true distribution of the interoccurrence times the exponential process, we drew 

from it several random samples using Monte Carlo method. Considered as competing models the ex-w 

mixture distribution and the exponential distribution, from each sample we derived, with the ML method, 

the models parameters and we evaluated the hazard rate curves ~ . Finally, we calculated the credibilities 

(in ~ estimate) of the mixture procedure, exp
wex , i.e. when the mixture is a wrong model being the 

truth is exponential. From the obtained results it is evident that the ex-w mixture model has the advantage 

of being robust, at least in respect to the Poissonian hypothesis. Indeed, the mixture model gives a reliable 

prediction even if the true distribution is exponential, as shown in Table 4, because of its adaptability.

Note that the credibility values are rather high, even if a realistically small size of the samples (=20) was

chosen.



Moreover, it was verified that the above credibility exp
wex is about of the same order of the 

credibility 
exp
exp : it means that the degree of uncertainty of the wrong (but robust) mixture procedure is 

similar to the degree of uncertainty due to statistical variability of the samples in the true exponential 

model.

Repeating the same procedure assuming the exp-w mixture process as true distribution, we verified 

the lack of robustness of the exponential model. In fact its credibility, when the truth is a mixture, is near 

to zero.

h 0.5 1 1.5 2 2.5 hmax

~ 0.92 0.95 0.70 0.57 0.48 0.42

h.10P 0.94 0.95 0.71 0.59 0.50 0.44

Table 4. Values of exp
wex for estimate with ML of ~ and h.10P ; with samples size =20

5. Application to Italian seismic sources

The catalogues taken into consideration for the application of the proposed procedures are obtained by the 

association of the events of the Italian historic catalogue CPTI04 (CPTI Working Group, 2004) with the 

seismogenetic source areas (SA) defined in DISS3.0.2 (Database of Individual Seismogenetic Sources, 

DISS, DISS Working Group, 2006). In DISS, SAs are identified on the basis of geological and 

geophysical characteristics (Basili, 2007). 

These new sub-catalogues have been made available by the members of Task 1.1 of the INGV-DPC 

Project S2 (Slejko & Valensise, 2007). Each analysed catalogue involves events with magnitude M 

defined in CTPI04 as Maw > 5.3 and having occurred from 1600 to 2002. To better understand the results 

presented below, we have provided some supplementary electronic material (the label “SEM”, included in 

table and figure references, will be used to identify further supplementary electronic material associated 

with this paper). In Figure 01SEM a plot of the the SA’s labelled with the identification number used in 

DISS3.0.2 is given. 

As explained in the previous sections, the sample size  plays an important role on the reliability of a 

probabilistic analysis. Initial inspection of the catalogues of the 74 SA Sources reveals immediately that 



the methods of this paper cannot be applied successfully: many of the SA sources have too small a sample 

size  (0-5 events and 0-4 interoccurrence times). We obtained a set of sources having a sufficiently large

set of interoccurrence times, using the new association of source areas and related seismicity, grouping

the SA’s into eight Macro Regions (MR), on the basis of geophysical aspects (Basili, 2007). These are 

shown in Figure 02SEM; the MR coordinates are listed in Table 01SEM.

The combining of SAs in MR can lead to lose the proper identity of each SA. To maintain unaltered 

the characteristics of the interoccurrence of each SA, the interoccurrence times of each MR are built using 

the interoccurrence times obtained for each SA; as an example, Table 5 shows the data set of MR6 built 

using the data set of SA24, SA34, SA38 and SA63. The implicit assumption is that the constituent 

sources in a region behave similarly in their seismic cycles. The choices made during this phase of the 

project were discussed and decided with other components of the INGV-DPC Project S2 with the aim that 

the results obtained by the tasks involved into the project could be comparable each other.

Interoccurrence times for each seismogenetic area of macro region MR6 (in years)

SA24

13.76984 30.71288 72.65607 100.3346 56.73634

SA34

27.18319 4.688642 122.936

SA38

122.937 5.881749 161.8029

SA63
215.7441

Interoccurrence times of macro region MR6 (in years)

MR6

13.76984 30.71288 72.65607 100.3346 56.73634 27.18319 4.688642
122.936 122.937 5.881749 161.8029 215.7441

Table 5. Building of a MR interoccurrence time dataset using the interoccurrence time datasets of the 
constituent SA’s. 

The three methods, ML, TR and ME, proposed in the previous sections were applied to the eight 

Italian MR. For each MR, the data were organized as shown in Table 6 and Figure 7 for MR6. In Table 6 

are collected: the MR6 catalogue in dimensional and dimensionless forms, the MR6 return period , the 

parameter p, representative of the evidence of characteristic earthquake, the asymptotic hazard rate value 

 and its dimensionless form 
~

. Figures 7a and 7b show, respectively, the MR6 )(ˆ hF and )(ˆ h



estimations with the three methods in dimensionless form. In the figures the experimental HR * (EMP) 

and the exponential HR (EXP) are also presented. The behaviour of EMP is useful for investigating 

anomalies in the data sets not captured by ML, TR and ME. 

MR6_ interoccurrence times in years

4.688642 5.881749 13.76984 27.18319 30.71288 56.73634 72.65607 100.3346
122.9360 122.937 161.8029 215.7441

 = 77.94861      p = 0.4167     = 0.033077      
~

= 2.5783    

MR6_ interoccurrence times in dimensionless form

0.060150 0.075457 0.176653 0.348732 0.394014 0.727869 0.932102 1.287189
1.577142 1.577154 2.075764 2.767774

Table 6. MR6: Seismic catalogue in dimensional and dimensionless form
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Figure 7a MR6: Estimation of )(ˆ hF in dimensionless form
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Figure 7b MR6: Estimation of )(ˆ h in dimensionless form

All the results produced are collected in the SEM file of this paper (Figures 03SEM-10SEM; Tables 

02SEM-09SAM).



In all the implementations, the exponential distribution seems inadequate to model the seismic 

renewal process, while the mixture ex-w, supported by the proposed credibility analysis, seems more 

adequate. 

The next step was the evaluation of the probability 
0

P̂ tt
: it is the probability of occurrence of an 

event of magnitude Maw>5.3 (according with the events considered in the project) in the next interval of 

time t if a time t0 is passed from the last event occurring in each SA and the last year reported in CPTI04 

(2002) assumed as date of reference. Different interval of time t have been considered: 5, 10, 20, 30 50 

and 100 years. In particular, the probability obtained for t equal 5 and 30 years are collected, both in 

tables and in maps, in the SEM of this paper (Figures 11SEM-16SEM; Tables 01_PSEM–08P_SEM). As 

example, Table 7 shows the probability of occurrence connected with the SA classified in MR6. 

MR6 t=5years t=10years t=20years t=30years t=50years t=100years

SA24 t0=40

ML 0.039451 0.096306 0.175295 0.237261 0.351327 0.627267
TR 0.04145 0.088838 0.147305 0.195926 0.281847 0.580433
ME 0.042291 0.106876 0.204251 0.286431 0.44201 0.721479

SA34 t0=22

ML 0.056713 0.107703 0.207961 0.277258 0.392574 0.612508
TR 0.058281 0.108403 0.200431 0.259055 0.350627 0.559674
ME 0.049064 0.096063 0.198182 0.277916 0.428859 0.700014

SA38 t0=4

ML 0.06687 0.136225 0.243931 0.323475 0.445231 0.636549
TR 0.080004 0.148542 0.272828 0.349374 0.456243 0.607427
ME 0.047855 0.101151 0.193301 0.271068 0.413136 0.682776

SA63 t0=92

ML 0.038474 0.083398 0.16832 0.249702 0.435952 0.845912
TR 0.032162 0.078694 0.150611 0.231663 0.429369 0.867464
ME 0.057749 0.122077 0.233283 0.327149 0.504588 0.823986

Table 7. MR6: Probability of occurrence 
0

P̂ tt
for different t and different approach of each SA 

Since the year 2002 (the end of our catalogue) until today, 5 years are already passed. The occurrence 

probabilities shown in Table 7 are low and the earthquake did not occur. Is this a confirmation of the 

model goodness? Not at all. Only it can be taken as a kind of consolation. The degree of goodness of the 

model is measured by the above shown credibility that had explored the “complete” (1000 samples) 

sequence of possible events.



Figure 8 and 9 collect and compare the probability obtained in each SA with the 3 different methods 

proposed for t=5 years and t=30years (in the SEM file Figure 8 and 9 are reported in larger format and 

labelled as Figure 17SEM and Figure 18SEM respectively). We may observe that in most of the cases the 

three methods give comparable results. There are few cases in which the ML and ME methods produce 

lower probabilities than the TR method. It could be due to the frame of TR method more able to take into 

account the tail of the distribution when the ratio r is large, as previously discussed: accordingly, high 

value of TR probability may indicate peaks in the hazard curve not caught by ML and ME methods. In 

any case, these situations should be investigated. However, when the gap t0 is large (i.e. SA40 and SA11) 

the TR prediction can not be done because the asymptotic behaviour of hazard rate has been reached. ME 

results mainly confirm the results of ML. On the other hand, being ME method strictly related to datasets, 

in few cases it gives differences or even lack of prediction. Considering ML results, for t=5 years , the 

highest hazard of occurrence are find in SA 23 ( MR1 - Western Alps), in SA 80 (MR7 – Calabrian Arc)

and in the SA’s of the Central Northern Apennines (MR4). Increasing the interval of time up to 30 years, 

the hazard increases maintaining mainly the same ratio between the different areas. It indicates that not 

significant changes should be expected in the hazard of the country increasing the expected time from 5 to 

30 years, according with ML and ME methods. On the contrary, TR method underlines some differences.
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Figure 8. Italian SA Sources: conditional occurrence probability for t=5 years, given elapsed time t0, 
different for each SA. Comparison between the ML, TR and ME methods. The vertical dotted lines define 
the eight MR.
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Figure 9. Italian SA Sources: conditional occurrence probability for t=30 years, given elapsed time t0, 
different for each SA. Comparison between the ML, TR and ME methods. The vertical dotted lines define 
the eight MR.

6 Discussion and conclusions

Within the context of earthquake prediction, if it is admissible to assume that the generation of strong 

events depends primarily on the time elapsed since the last event, at least in some seismic areas, and if, in 

this reduced context, it is reasonable to accept an asymptotic stationary prediction, an exponential–

Weibull mixture renewal model, associated with an empirical criterion, leads to conditional probabilities 

of occurrence having a rather good degree of credibility, at least for the Italian sources considered.

The proposed model appears flexible enough to interpret different behaviours of earthquake 

occurrence, whose identification is up to day questionable. It is a robust model, in particular it can give a 

statistic symptom of the dominant behaviour in the analyzed regions: clustering, or seismic gap, or 

poissonian one. 

The shape parameter  of Weibull component is responsible of increasing or decreasing hazard rate, 

hazard rate being nearly constant when  is near to 1.

It is remarkable that the proposed mixture spontaneously fits the alternative behaviours with a good 

credibility. As an example let us consider samples drawn from two known distributions with increasing or 

decreasing hazard rate respectively; precisely two Weibull distributions respectively with >1 and <1

are assumed as conjectural truths. Figures 10 and 11 show the estimated hazard rate with the ex-w 

mixture model. It is evident that, even if the mixture is a wrong model in this case, it is able to catch the 

true increasing or decreasing behaviour of the hazard rate in the two assumed conjectural truths. 

In the regions analyzed in this paper the model leads to estimate values of >1.

On the other hand we have to stress that the robustness of the mixture model refers only to the 

explored distributions F°. The panorama of conjectural truths F° and the target quantities A should be 



properly enriched; other models can enter in competition. Nevertheless all the numerical experiments 

carried out up to now showed a remarkable robustness of the model, i.e. its adoption reduces the 

epistemic uncertainties.

The credibility 
s can be a good tool to judge a model in its structure in a panorama of conjectural 

truths, rather than to check a hypothesis upon a single catalogue.
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Figure 10. Mixture-estimated )(ˆ h (in dimensionless form) for samples drawn from known 

distribution with increasing hazard rate (Weibull with >1).
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Figure 11. Mixture-estimated )(ˆ h (in dimensionless form) for samples drawn from known 

distribution with decreasing hazard rate (Weibull with <1).
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Response to Reviewer #1
Firstly, we would like to deeply thank reviewer #1 for his valuable comments and suggestions in 
relation to the shortcomings of the initially submitted work, thanks to which it was certainly 
possible to now increase considerably the quality of the paper. 
In what follows, a point-by-point response to the specific comments made by this reviewer is given.

Questions 1 and 4 
In the case that the paper aims to be more than a theoretical exercise, some reason has to be given for the 
exclusion of the more plausible recurrence model for seismicity in Italy. It is well known that three 
alternative views exist: "more than poissonian" time clustering, Poissonian time clustering, "less than 
poissononian" clustering (Characteristic earthquake). So far, the first model only has found some empirical 
support (Faenza et al., 2003). Despite of this, Authors ignore this model and concentrate their analyses on 
the remaining ones. In their answer, Authors state that their methodology is in principle able to manage the 
"clustering" model but, anyway, no attempt is made in this direction and no argument is given in support of 
this choice. This is more than an "incompleteness". Since the "credibility" analysis aims at a relative 
evaluation of the competing models, the lack of one of these makes the results useless: what does it mean that 
CE model works better than the poissonian one if both are wrong?

In the new version of the paper the three alternative views have been discussed and an attempt has been 
made to show how our methodology is in principle able to manage all the three alternatives. Moreover, in the 
text the following sentence has been added: “On the other hand we have to stress that the robustness of the 
mixture model refers only to the explored distributions F°. The panorama of conjectural truths F° and the 
target quantities A should be properly enriched; other models can enter in competition. Nevertheless all the 
numerical experiments carried out up to now showed a remarkable robustness of the model, i.e. its adoption 
reduces the epistemic uncertainties.” This means that the necessity of enriching the panorama of conjectural 
truths F° and target quantities A is recognized by the authors, but in any case the performed credibility 
analysis highlights the robustness of the considered model and the great advantages of reducing the epistemic 
uncertainties with its employment. This means that the author recognize the necessity of enriching the 
panorama of conjectural truths F° and target quantities A, but at the same time they consider useful the 
performed credibility analysis because it allows to highlight the robustness of the considered mixture model 
and hence the great advantages of reducing the epistemic uncertainties with its employment. For example, 
the added figure 10 and 11 show that, “even if the mixture is a wrong model in this case, it is able to catch 
the true increasing or decreasing behaviour of the hazard rate in the two assumed conjectural truths.” 

Question 2
Authors state that "credibility" is a better measure of model performances than an "economy" principle. In 
this position, no importance is given to the number of parameters to be estimated for each model. This can 
be considered a possible choice, but it is not in line with the current practice. 

From the point of view of the authors the interesting characteristic of the credibility (which could suggest 
preferring this measure than an “economy” principle) is that “it allows to judge a model in its structure in a 
panorama of conjectural truths, rather than to check a hypothesis upon a single catalogue.”

Question 3
To the third question, (i.e. to the possibility to apply the CE model to relatively small earthquakes) no answer 
has been given but a purely formal one (it depended on the position of the research group) that does not rely 
on the physical problem I have posed. At least an attempt to support with scientific arguments this position 
should be considered as mandatory.

The following sentence has been added in the paper: “The existence of characteristic or clustering events 
needs sound physical basis to be asserted; here the terms are used, for shortness, to indicate respectively the 
presence of rather regular temporal sequence (even if mixed with irregular short interoccurrence times) or the 
dominance of short interoccurrence times.” This sentence wants to clarify the meaning of the term 
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“characteristic” for the authors, which is not strictly connected with the magnitude of the earthquake but 
rather to the time frequency. 

Final comment
In summary, I have not found technical errors in the paper, but it lacks of an open discussion about its 
limitations. In my opinion the paper can be considered for publication if at least some discussion is included 
in the text (e.g., in the form of a Discussion section) about the questions stated above to make readers aware 
of possible critical aspects of the proposed procedure.

A paragraph devoted to the discussion about the limitation of the proposed methodology has been added. 
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Figure 02SEM The eight Italian Macro Regions (MR) including all the 74 SA 



MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8

Lon. Lat. Lon. Lat. Lon. Lat. Lon. Lat. Lon. Lat. Lon. Lat. Lon. Lat. Lon. Lat.

8.16 46.55 9.31 45.35 13.45 42.54 9.26 44.29 17.29 39.98 14.11 41.43 15.36 36.82 11.25 38.63

7.08 46.29 10.67 45.27 13.44 42.55 9.66 44.67 17.28 39.99 14.12 41.43 15.33 37.58 13.21 38.65

6.55 45.55 11.27 45.32 13.15 42.94 9.96 44.50 16.42 39.73 14.25 41.78 15.32 37.85 14.95 38.70

6.41 45.16 11.69 45.56 12.82 43.31 10.73 44.21 16.19 40.01 15.24 41.21 15.12 38.31 15.32 37.85

6.57 44.50 12.28 45.80 12.52 43.47 10.99 44.20 16.03 40.34 15.79 40.79 15.57 38.43 14.99 37.83

7.26 43.72 12.62 45.98 12.09 43.75 11.31 44.14 15.79 40.80 16.03 40.35 15.83 38.73 14.89 37.75

7.85 43.74 12.93 46.08 11.31 44.14 12.09 43.75 15.24 41.21 16.19 40.01 15.90 39.02 14.87 37.62

8.54 43.84 13.47 45.80 10.99 44.21 12.52 43.47 14.26 41.78 16.42 39.73 15.85 39.57 15.06 37.56

8.48 44.12 14.40 45.27 10.73 44.21 12.82 43.31 14.25 41.78 16.07 39.63 16.07 39.63 15.33 37.58

7.84 44.11 14.82 45.72 9.96 44.50 13.15 42.94 14.28 41.86 15.76 40.01 16.07 39.63 15.37 36.60

7.59 44.97 13.65 46.49 9.66 44.67 13.44 42.55 13.53 42.44 15.54 40.45 16.42 39.73 14.71 36.56

7.29 45.63 12.96 46.58 9.29 44.31 13.53 42.44 13.44 42.55 14.97 40.91 17.29 39.99 11.31 38.06

7.68 45.97 11.06 46.18 9.26 44.29 14.28 41.86 13.45 42.54 14.11 41.43 18.29 38.96 11.25 38.64

8.38 46.32 9.67 45.81 8.47 44.70 14.12 41.43 14.15 42.58 18.69 38.13

8.16 46.55 9.30 45.59 9.31 45.27 13.61 41.52 14.47 42.53 17.84 37.07

9.31 45.35 9.69 45.28 13.38 41.47 15.72 42.22 16.55 36.82

11.48 45.03 12.68 42.00 16.45 41.98 15.36 36.82

12.14 44.82 11.83 43.03 16.87 41.38

12.45 44.52 10.93 43.69 17.23 40.67

13.89 43.58 10.23 43.62 17.29 39.98

14.05 43.19 10.07 43.90

14.15 42.58 9.26 44.29

13.45 42.54

Table 01SEM Macro Regions MR coordinates



Macro Region 1 (MR1)

MR1_ interoccurrence times in years 

0.874467 12.37671 23.59352 32.15384 174.0233

 = 48.60436      p = 0.2155      = 0.057246      
~

= 2.7824

MR1_ dimensionless interoccurrence times
0.017992 0.254642 0.48542 0.661542 3.580404

Table 02SEM. MR1: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR1
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Figure 03SEM MR1: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= 

method of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model

         Δt
MR1 5 years 10 years 20 years 30 years 50 years 100 years

SA22 t0=115

ML 2.42E-02 5.55E-02 0.123149 0.2249110 0.4674350 0.96663

TR 1.65E-02 3.99E-02 9.00E-02 0.1560858 0.3411289 0.8898991

ME 2.35E-02 3.96E-02 8.33E-02 0.1347154 0.3073436 out range

SA23 t0=194

ML 0.262917 0.4778 0.770954 0.927526 0.996741 1.00

TR 0.179589 0.343982 0.6157831 0.8178208 0.9758246 1.00

ME out range out range out range out range out range out range

Table 01P_SEM MR1: Probability of occurrence 
0

P̂ tt
 for different t

The method ME, based on the maximum entropy principle, suffers for the truncation of the modelling on the last value present 
in the catalogue; therefore, the method is not able to give a prediction for values of Δt out of the range of estimation of the 
method.



Macro Region 2 (MR2)

MR2_ interoccurrence times in years

0.359444 3.290192 16.42364 44.36438 57.36636 60.67586 63.30458 88.23068
119.7216 125.9131 141.2944

 = 65.540373      p =0.3636      = 0.028466     
~

= 1.8657

MR2_ dimensionless interoccurrence times

0.005484 0.050201 0.250588 0.676902 0.875283 0.925778 0.965887 1.346204

1.826684 1.921153 2.155836

Table 03SEM. MR2: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR2
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Figure 04SEM MR2: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= method 

of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model.

         Δt
MR2 5 years 10 years 20 years 30 years 50 years 100 years

SA02 t0=200

ML 0.114447 0.215815 0.375595 0.502973 0.689655 0.9022
TR 0.114461 0.215896 0.3851 0.502927 0.78673 0.903689
ME out range out range out range out range out range out range

SA07 t0=66

ML 0.158078 0.269989 0.43255 0.541493 0.70936 0.909814
TR 0.321277 0.495745 0.659574 0.739362 0.845745 0.96383
ME 0.21459 0.350154 0.723573 0.947063 out range out range

SA48 t0=101

ML 0.097604 0.189295 0.412469 0.614987 0.881123 0.97791
TR 0.088018 0.185602 0.402292 0.595472 0.894155 0.993447
ME 0.095892 0.156473 0.323342 0.423213 0.63837 out range

SA61 t0=66

ML 0.046522 0.086649 0.188084 0.283234 0.53926 0.966194
TR 0.03828 0.076316 0.158063 0.243755 0.494248 0.983021
ME 0.082384 0.13443 0.277791 0.363595 0.54844 0.878493

SA62 t0=226

ML 0.128002 0.203876 0.385098 0.503002 0.685044 0.902293
TR 0.144231 0.259615 0.451923 0.576923 0.759615 0.942308
ME out range out range out range out range out range out range

SA64 t0=25

ML 0.064062 0.11414 0.210998 0.28877 0.398698 0.776872
TR 0.064237 0.10656 0.209174 0.277682 0.365149 0.742312
ME 0.073819 0.120454 0.228635 0.344005 0.506115 0.787165



SA66 t0=26

ML 0.077873 0.112654 0.208371 0.285504 0.395937 0.785124
TR 0.077312 0.104475 0.195526 0.272838 0.367076 0.751409
ME 0.085219 0.123454 0.231635 0.348005 0.509115 0.790165

SA67 t0=74

ML 0.049144 0.086881 0.20383 0.326123 0.618982 0.970412
TR 0.040839 0.084217 0.183693 0.212682 0.590012 0.98808
ME 0.084818 0.138399 0.285992 0.308792 0.56463 0.904426

Table 02P_SEM MR2: Probability of occurrence 
0

P̂ tt
 for different t.

The method ME, based on the maximum entropy principle, suffers for the truncation of the modelling on the last value present 
in the catalogue; therefore, the method is not able to give a prediction for values of Δt out of the range of estimation of the 
method.



Macro Region 3 (MR3)

MR3_ interoccurrence times in years

0.247982 0.286035 0.501886 0.515518 3.714619 6.824474 12.61874 13.72396
18.150685 19.08252 21.23771 24.29092 25.32855 26.28320 27.48978 28.17743

29.07295 32.18060 34.87820 40.30768 45.14968 51.01707 57.10596 61.22063
69.90959 88.22727 92.85134 112.2265 114.6950 139.3373 226.8711 343.7824

 =55.22835      p = 0.3125      = 0.047715      
~

= 2.6352

MR3_ dimensionless interoccurrence times

0.004490 0.005179 0.009087 0.009334 0.067259 0.123568 0.228483 0.248495

0.328648 0.345520 0.384544 0.439827 0.458615 0.475900 0.497748 0.510199
0.526414 0.582683 0.631527 0.729837 0.817509 0.923748 1.033997 1.108500

1.265828 1.597500 1.681226 2.032045 2.076741 2.522931 4.107873 6.224745

Table 04SEM. MR3: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR3
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Figure 05SEM MR3: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= 

method of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP =
exponential model.

         Δt
MR3 5 years 10 years 20 years 30 years 50 years 100 years

SA01 t0=39

ML 0.097136 0.155752 0.334919 0.441766 0.606052 0.790995
TR 0.060704 0.09108 0.170151 0.224741 0.325826 0.690268
ME 0.101924 0.101924 0.164919 0.307479 0.412297 0.564775

SA08 t0=85

ML 0.068794 0.145291 0.260374 0.351829 0.489361 0.657236
TR 0.033601 0.068969 0.166828 0.267182 0.492241 0.925766
ME 0.059416 0.12626 0.228966 0.313581 0.446366 0.640212

SA09 t0=31

ML 0.10992 0.18795 0.336037 0.452739 0.617338 0.809933
TR 0.078931 0.129461 0.214149 0.273656 0.369558 0.663746
ME 0.108195 0.18366 0.324212 0.432985 0.585567 0.776203

SA11 t0=314

ML 0.0807 0.143167 0.269105 0.397791 0.608181 0.901755
TR Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate

ME 0.108338 0.197557 0.394052 0.629315 out range out  range

SA12 t0=35

ML 0.108889 0.186193 0.332904 0.442808 0.61168 0.803073
TR 0.071571 0.117655 0.196069 0.253169 0.352314 0.671131
ME 0.105843 0.179818 0.317926 0.419943 0.576562 0.767946



SA18 t0=174

ML 0.038135 0.066846 0.123666 0.182167 0.2903 0.531044
TR 0.244295 0.444243 0.679979 0.84388 0.9764 1
ME 0.043343 0.076289 0.141507 0.207804 0.325277 0.558601

SA20 t0=59

ML 0.096164 0.169474 0.309698 0.403487 0.561684 0.740425
TR 0.065783 0.030664 0.125568 0.187595 0.345312 0.792662
ME 0.151949 0.151949 0.277931 0.363193 0.512205 0.704592

SA27 t0=4

ML 0.105332 0.198818 0.363088 0.478811 0.656339 0.852444
TR 0.14839 0.241956 0.392762 0.487295 0.591478 0.723327
ME 0.115908 0.215478 0.382951 0.49534 0.659692 0.837468

SA30 t0=86

ML 0.076278 0.144136 0.258339 0.349129 0.482961 0.654875
TR 0.034266 0.079779 0.170561 0.272975 0.51385 0.934332
ME 0.065894 0.125216 0.227317 0.311422 0.44375 0.639332

SA31 t0=30

ML 0.110247 0.188512 0.329682 0.454086 0.626229 0.811018
TR 0.081529 0.1336 0.220552 0.281018 0.376094 0.654307
ME 0.108956 0.184954 0.31937 0.435564 0.595158 0.777673

SA32 t0=72

ML 0.066097 0.158425 0.289704 0.38262 0.526976 0.701678
TR 0.028749 0.064834 0.133591 0.211139 0.408489 0.864575
ME 0.05778 0.13883 0.255654 0.340407 0.478975 0.672883

SA39 t0=127

ML 0.058057 0.099848 0.185191 0.248238 0.35562 0.540899
TR 0.107143 0.193066 0.381088 0.55247 0.820965 0.995826
ME 0.054645 0.095011 0.180328 0.246254 0.364446 0.568923

SA44 t0=216

ML 0.037089 0.066417 0.128039 0.196347 0.332166 0.635779
TR 0.417526 0.628866 0.860825 0.963918 1 1
ME 0.041511 0.073485 0.139304 0.209611 0.34368 0.663052

SA46 t0=184

ML 0.036477 0.060891 0.120398 0.179568 0.292278 0.551265
TR 0.285114 0.465236 0.742417 0.888941 1 1
ME 0.042245 0.070604 0.138722 0.204941 0.324222 0.573454

SA47 t0=73

ML 0.083336 0.15739 0.287834 0.380181 0.526787 0.696951
TR 0.032685 0.065433 0.135485 0.214743 0.415692 0.877162
ME 0.072746 0.137734 0.25379 0.338106 0.479253 0.670184

SA49 t0=6

ML 0.10497 0.198134 0.354213 0.477168 0.657778 0.850691
TR 0.117069 0.232688 0.377818 0.46904 0.731742 0.708144
ME 0.114446 0.212894 0.371241 0.490386 0.657513 0.832779

SA51 t0=93

ML 0.080047 0.137052 0.251217 0.328324 0.461556 0.633179
TR 0.049414 0.102624 0.19574 0.324121 0.966505 0.951065
ME 0.069352 0.119479 0.222445 0.294863 0.428614 0.625052

Table 03P_SEM MR3: Probability of occurrence 
0

P̂ tt
 for different t

In the TR method “Indetermimate” means that probability of occurrence reach an indeterminate value [(1.-1.)/0.]



Macro Region 4 (MR4)

MR4_ interoccurrence times in years

0.051265 1.403851 1.841407 2.175973 3.153834 4.277055 4.631491 5.863488
6.118125 6.824168 10.87455 10.88431 12.26855 13.88837 15.13162 16.39599

22.08228 22.26318 22.32155 24.58904 24.67123 29.21877 31.78788 40.20788
41.59272 42.28641 43.96712 46.34520 60.64055 77.54435 122.9986 159.6148

 = 28.99736      p = 0.3438     = 0.090629      
~

= 2.6280     

MR4_ dimensionless interoccurrence times

0.001768 0.048413 0.063503 0.075040 0.108763 0.147498 0.159721 0.202208

0.210989 0.235338 0.375017 0.375355 0.423092 0.478953 0.521827 0.565431
0.761527 0.767766 0.769779 0.847975 0.850810 1.007636 1.096234 1.386605

1.434362 1.458285 1.516246 1.598256 2.091244 2.674186 4.241717 5.504459

Table 05SEM. MR4: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR4
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Figure 06SEM MR4: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= method 

of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model

         Δt
MR4 5 years 10 years 20 years 30 years 50 years 100 years

SA25 t0=18

ML 0.161054 0.30586 0.502362 0.634005 0.780491 0.921256
TR 0.123765 0.228959 0.375726 0.485153 0.687985 0.949652
ME 0.164582 0.293156 0.48037 0.598669 0.740055 0.898372

SA26 t0=82

ML 0.096065 0.181464 0.330998 0.447294 0.637769 0.895739
TR 0.142704 0.265269 0.509026 0.674833 0.876424 0.994197
ME 0.083795 0.1601 0.299794 0.417345 0.648214 out range

SA28 t0=5

ML 0.174731 0.330941 0.550055 0.674371 0.822008 0.939842
TR 0.196914 0.345369 0.517931 0.608422 0.745664 0.947441
ME 0.185425 0.343338 0.553228 0.667558 0.803032 0.923146

SA37 t0=83

ML 0.095742 0.185693 0.330517 0.447042 0.638091 0.894702
TR 0.161459 0.318902 0.513278 0.679089 0.879156 0.994421
ME 0.083563 0.16426 0.300187 0.418587 0.652739 out range

SA40 t0=240

ML 0.166269 0.30708 0.53222 0.68576 0.865553 0.988067
TR Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate

ME out range out range out range out range out range out range



SA41 t0=1

ML 0.187709 0.336656 0.554107 0.687639 0.831979 0.94504
TR 0.223093 0.402558 0.571086 0.658236 0.777032 0.950495
ME 0.204466 0.357768 0.567935 0.690089 0.819918 0.93129

SA56 t0=18

ML 0.161054 0.30586 0.502362 0.634005 0.780491 0.921256
TR 0.123765 0.228959 0.375726 0.485153 0.687985 0.949652
ME 0.164582 0.293156 0.48037 0.598669 0.740055 0.898372

Table 04P_SEM MR4: Probability of occurrence 
0

P̂ tt
 for different t



Macro Region 5 (MR5)

MR5_ interoccurrence times in years

3.6736149 14.00548 34.78904 55.02297 61.19725 143.7406 194.7283 226.8948

314.05750

 = 116.45661      p = 0.4444     = 0.0296402      
~

= 3.4518

MR5_ dimensionless interoccurrence times

0.0315449 0.120263 0.298730 0.472476 0.525494 1.234284 1.672110 1.948321
2.6967770

Table 06SEM. MR5: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR5
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Figure 07SEM MR5: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= 

method of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model.

         Δt
MR5 5 years 10 years 20 years 30 years 50 years 100 years

SA03 t0=0.0

ML 0.060341 0.114519 0.226996 0.297595 0.395845 0.543678
TR 0.069412 0.206314 0.303349 0.383509 0.459184 0.592876
ME 0.032007 0.06311 0.137078 0.192546 0.302233 0.521141

SA04 t0=271

ML 0.095712 0.208365 0.371348 0.528115 0.758347 0.971487
TR 0.103329 0.24665 0.415201 0.557475 0.786432 0.979585
ME 0.07417 0.163838 0.300861 0.445756 0.709225 Out of range

SA05 t0=12

ML 0.054256 0.114364 0.195249 0.267839 0.34611 0.49762
TR 0.060546 0.113299 0.199351 0.278587 0.349103 0.468856
ME 0.032292 0.071381 0.131072 0.194267 0.303072 0.525802

SA58 t0=54

ML 0.031337 0.066361 0.114362 0.159076 0.20586 0.365483
TR 0.027057 0.050918 0.090885 0.13024 0.16475 0.310484
ME 0.033714 0.074523 0.136835 0.202811 0.306398 0.548922

SA59 t0=121

ML 0.017272 0.034532 0.074004 0.115383 0.201969 0.477297
TR 0.014296 0.029031 0.068548 0.103677 0.196822 0.484641
ME 0.037444 0.073828 0.151998 0.225259 0.351431 0.609669



SA75 t0=52

ML 0.031873 0.060701 0.116209 0.161503 0.228802 0.367283
TR 0.028412 0.053444 0.104218 0.135955 0.191275 0.313431
ME 0.03366 0.066375 0.136645 0.202526 0.315961 0.548164

SA79 t0=69

ML 0.025185 0.059011 0.093582 0.13225 0.194937 0.354401
TR 0.024778 0.058107 0.092249 0.130573 0.193151 0.354511
ME 0.034355 0.084092 0.13947 0.20672 0.322494 0.559486

SA84 t0=72

ML 0.023999 0.046021 0.089703 0.127398 0.18985 0.355141
TR 0.018604 0.03543 0.071808 0.097186 0.150983 0.313202
ME 0.034526 0.068076 0.140142 0.207696 0.324019 0.562134

SA89 t0=151

ML 0.021787 0.050044 0.09788 0.155801 0.276753 0.61443
TR 0.021129 0.043366 0.103919 0.157489 0.292896 0.639001
ME 0.040117 0.089627 0.162857 0.24134 0.376528 0.653209

Table 05P_SEM MR5: Probability of occurrence 
0

P̂ tt
 for different t



Macro Region 6 (MR6)

MR6_ interoccurrence times in years

4.688642 5.881749 13.76984 27.18319 30.71288 56.73634 72.65607 100.3346
122.9360 122.937 161.8029 215.7441

 = 77.94861      p = 0.4167     = 0.033077      
~

= 2.5783    

MR6_ interoccurrence times in dimensionless form

0.060150 0.075457 0.176653 0.348732 0.394014 0.727869 0.932102 1.287189

1.577142 1.577154 2.075764 2.767774

Table 07SEM. MR6: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR6
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Figure 08SEM MR6: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= 

method of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model

         Δt
MR6 5 years 10 years 20 years 30 years 50 years 100 years

SA24 t0=40

ML 0.039451 0.096306 0.175295 0.237261 0.351327 0.627267
TR 0.04145 0.088838 0.147305 0.195926 0.281847 0.580433
ME 0.042291 0.106876 0.204251 0.286431 0.44201 0.721479

SA34 t0=22

ML 0.056713 0.107703 0.207961 0.277258 0.392574 0.612508
TR 0.058281 0.108403 0.200431 0.259055 0.350627 0.559674
ME 0.049064 0.096063 0.198182 0.277916 0.428859 0.700014

SA38 t0=4

ML 0.06687 0.136225 0.243931 0.323475 0.445231 0.636549
TR 0.080004 0.148542 0.272828 0.349374 0.456243 0.607427
ME 0.047855 0.101151 0.193301 0.271068 0.413136 0.682776

SA63 t0=92

ML 0.038474 0.083398 0.16832 0.249702 0.435952 0.845912
TR 0.032162 0.078694 0.150611 0.231663 0.429369 0.867464
ME 0.057749 0.122077 0.233283 0.327149 0.504588 0.823986

Table 06P_SEM MR5: Probability of occurrence 
0

P̂ tt
 for different t



Macro Region 7 (MR7)

MR7_ interoccurrence times in years

0.005613 0.075942 0.507056 1.745634 4.129079 7.242543 8.678101 12.93454
14.55944 15.41725 16.64099 18.33644 25.56771 28.68665 38.34579 39.16575

41.67178 51.84873 54.01703 65.54449 68.24903 81.13173 84.08513 84.10157
125.8909 129.2970 136.4006 156.9056 186.5086

 = 51.64451      p = 0.4138     = 0.062109     
~

= 3.2076

MR7_ dimensionless interoccurrence times

0.000109 0.001470 0.009818 0.033801 0.079952 0.140238 0.168035 0.250453

0.281916 0.298526 0.322221 0.355050 0.495070 0.555463 0.742493 0.758370
0.806895 1.003952 1.045937 1.269145 1.321513 1.570962 1.628149 1.628467

2.437638 2.503591 2.641139 3.038179 3.611386

Table 08SEM. MR7: interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR7
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Figure 09SEM MR7: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= method 

of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model

         Δt
MR7 5 years 10 years 20 years 30 years 50 years 100 years

SA15 t0=89

ML 0.062719 0.117985 0.239156 0.353902 0.583767 0.946568
TR 0.095297 0.175153 0.380517 0.576199 0.851242 0.99947
ME 0.098628 0.180138 0.339336 0.466234 0.667783 0.947126

SA16 t0=27

ML 0.094701 0.168263 0.299976 0.394544 0.53231 0.777253
TR 0.06061 0.098543 0.169038 0.225689 0.358858 0.843734
ME 0.089869 0.164127 0.309138 0.424744 0.608344 0.862843

SA19 t0=19

ML 0.102141 0.181303 0.322229 0.422 0.564376 0.779014
TR 0.082041 0.13195 0.217741 0.274793 0.376999 0.804316
ME 0.08934 0.16317 0.30736 0.422307 0.608728 0.857882

SA53 t0=74

ML 0.06064 0.117368 0.213178 0.315075 0.511384 0.902229
TR 0.05872 0.123895 0.271931 0.41866 0.715728 0.995848
ME 0.095403 0.182574 0.321133 0.450913 0.645817 0.91599

SA55 t0=95

ML 0.137188 0.207059 0.435638 0.638186 0.891599 0.99976
TR 0.137188 0.207059 0.435638 0.638186 0.891599 0.99999
ME 0.119388 0.174367 0.345175 0.47423 0.679201 0.96367



SA68 t0=1

ML 0.106398 0.208072 0.361972 0.481129 0.630591 0.80337
TR 0.250298 0.270214 0.40242 0.484241 0.564588 0.7697
ME 0.079909 0.161435 0.297547 0.41781 0.598406 0.845481

SA80 t0=174

ML 0.223999 0.391998 0.653394 0.818779 0.950111 0.99312
TR 0.5 0.726027 0.958904 0.993151 1 1
ME 0.198792 0.363214 0.69856 0.939619 Out of range Out of range

Table 07P_SEM MR7: Probability of occurrence 
0

P̂ tt
 for different t



Macro Region 8 (MR8)

MR8_ interoccurrence times in years

0.471917 2.732234 9.954695 22.27298 39.89495 47.83341 51.66277 68.88320
69.03186 83.81932 96.21093 113.0211 125.1101 140.4369 193.4059

 = 70.98282      p = 0.400     = 0.028777      
~

= 2.0427

MR8_ dimensionless interoccurrence times

0.006648 0.038491 0.140241 0.313780 0.562037 0.673873 0.727821 0.970421

0.972515 1.180839 1.355411 1.592232 1.762541 1.978464 2.724686

Table 09SEM. MR8 interoccurrence time dataset using the interoccurrence time datasets of the SA composing MR8
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Figure 10SEM MR8: a) estimation of )(ˆ h in dimensionless form; b) estimation of )(ˆ hF  in dimensionless form. ML= 

method of maximum likelihood; TR = threshold method; ME = maximum entropy method; EMP = empirical method; EXP = 
exponential model

         Δt
MR8 5 years 10 years 20 years 30 years 50 years 100 years

SA14 t0=0.0

ML 0.065625 0.118268 0.205584 0.286884 0.422351 0.727319
TR 0.068977 0.144806 0.241345 0.33898 0.454495 0.663497
ME 0.058686 0.115343 0.205756 0.294148 0.446441 0.719792

SA17 t0=88

ML 0.087958 0.175244 0.34338 0.494549 0.715496 0.902061
TR 0.058539 0.104239 0.200548 0.357906 0.584102 0.961275
ME 0.068271 0.133185 0.253634 0.362604 0.550334 0.887284

SA21 t0=34

ML 0.043959 0.106281 0.197182 0.254345 0.453463 0.839808
TR 0.043056 0.093954 0.169548 0.245305 0.352983 0.720654
ME 0.050356 0.12193 0.224505 0.310961 0.471959 0.760941

SA35 t0=184

ML 0.090198 0.151977 0.279681 0.387946 0.558072 0.80648
TR 0.303762 0.477009 0.712959 0.872271 0.942378 0.992104
ME 0.218819 0.375055 0.714159 fuori range fuori range fuori range

SA42 t0=24

ML 0.044983 0.107756 0.196574 0.272604 0.429294 0.807424
TR 0.069899 0.118394 0.2004 0.25935 0.377512 0.682628
ME 0.049424 0.119688 0.220363 0.30523 0.46326 0.746909

Table 08P_SEM MR8: Probability of occurrence 
0

P̂ tt
 for different t



Figure 11SEM Occurrence probability for t=5years, Method ML



Figure 12SEM Occurrence probability for t=5years, Method TR



Figure 13SEM Occurrence probability for t=5years, Method ME



Figure 14SEM Occurrence probability for t=30years, Method ML



Figure 15SEM Occurrence probability for t=30years, Method TR



Figure 16SEM Occurrence probability for t=30years, Method ME



Figure 17SEM Italian Seismogenetic Source Areas (SA): occurrence probability for t=5 years, t0, different for each SA, is the actual elapsed time in the area. Comparison between the 
ML, TR and ME methods. The vertical dotted lines define the eight MR.
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Figure 18SEM Italian Seismogenetic Source Areas (SA): occurrence probability for t=30 years, t0, different for each SA, is the actual elapsed time in the area. Comparison between the 
ML, TR and ME methods. The vertical dotted lines define the eight MR.
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