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Abstract

A two-level nonlinear beam model, with the two levels linked by
first- and second-order adjoints, allows to successfully deal with beam
problems characterized by complex and multi-material cross-sections.
Emphasis is given to the approach used for coupling the two levels
within the FEniCS framework, and on how to overcome a few issues
encountered during the actual implementation of the coupling proce-
dure.
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1 Introduction
Beam models are an extremely useful computational approach that allows to
drastically reduce the computational complexity required for the structural
analysis of slender solids, even if the overall structural response is nonlinear.
Most of the time the cross-section material response is linear elastic, and
this allows to characterize the beam cross-section by computing the so-called
cross-section stiffness matrix, a linear relationship between resultant and mo-
ment resultant of the the normal stress vector and the beam generalized strain
measures. Even when the cross-section undergoes plastic deformations it is
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often possible to simplify the cross-section analysis by assuming a kinematic
model of the cross-section displacement. This may not be the case, however,
for completely nonlinear deformation of complex cross sections, even more so
if these cross-sections are not made with a homogeneous, isotropic material.
In this case it may be necessary to resort to completely three dimensional
analysis. Some approaches, based on simple kinematic assumptions for the
cross section motion and/or on the assumption of an axial stress state, al-
low to deal with complex cross-section; among them, the works of Rigobello
et al. (2013), Rezaiee-Pajand and Gharaei-Moghaddam (2015) and Chiorean
(2017) are worth mentioning. Bilotta and Garcea (2019) proposed an inter-
esting two-level beam analysis approach, but limited to small cross-section
strains.

Recently a new coupling scheme between a nonlinear beam model and the
completely nonlinear cross-section response analysis procedure of Morandini
(2019) was proposed in Morandini (2020). The coupling is based on a mixed
variational beam formulation, and depends, in order to link the beam and
the cross-section model, on the first- and second-order adjoints of the cross-
section complementary strain energy. This paper is based on Morandini
(2020), and is aimed at presenting the actual implementation of the two-
level analysis procedure, together with its shortcomings, within the Dolfin
library (Logg et al., 2012) and the FEniCS framework (Alnæs et al., 2015).

The outline of the paper is as follows. Section 2 details the proposed
formulation. Section 3 details Section 4 is dedicated to two selected examples
taken from Morandini (2020). The overall run time requirements of the
proposed two-level method are very briefly discussed within Section 5. The
conclusions of Section 6 close the paper.

2 Formulation
This section briefly details the formulation of the beam model (Section 2.1)
and of the local cross-section model (Section 2.2), as well as of the coupling
strategy (Sections 2.3 and 2.4). The presentation follows Morandini (2020),
and is required in order to understand the implementation description of
Section 3.
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2.1 Beam model

This section briefly introduces the high-level beam model. The interested
reader can check e.g. Pietraszkiewicz and Eremeyev (2009); Cardona and
Geradin (1988); Merlini and Morandini (2013) for details about intrinsic
beam model formulations, and (Morandini, 2017) for a Dolfin implementation
of simple intrinsic beam models. The deformed configuration of a beam is
defined by the position x′(s) and by the orientation tensor α′(s) at a point.
Tensor α′ is an orthogonal unit tensor, and s the arc length in the reference
configuration. The corresponding position vector and orientation tensor in
the reference configuration are x and α, respectively. The beam transmits,
ant any point, an internal force T and an internal moment M , defined as
the resultant and moment resultant of the beam cross-section normal stress
vector. The linear and angular strain measures ε̂ and β̂, defined as

ε̂ = α′Tx′
,s −αTx,s (1)

β̂ = α′Tax(α′Tα′
,s)−αTax(αTα,s),

are work-conjugated the back-rotated resultant and moment resultant vectors

T̂ = α′TT (2)

M̂ = α′TM .

The one-field principle of virtual work reads∫
l

(
δε̂T̂ + δβ̂M̂

)
ds− δLe = 0, (3)

with δLe the virtual work of the external loads. The force and moment
vectors T̂ and M̂ can be assumed to be function of the generalized strains
ε̂ and β̂. The first variation of the strain energy per unit of length w(ε̂, β̂)
is δw = T̂ δε̂ + M̂δβ̂, with T̂ = w,ε̂ and M̂ = w,β̂. Its Legendre transform
defines the complementary strain energy v, function of T̂ and M̂ ,

v(T̂ ,M̂ ) = ε̂T̂ + β̂M̂ − w (4)

so that δv = ε̂δT̂ + β̂δM̂ , ε̂ = v,T̂ and β̂ = v,M̂ . The Hellinger-Reissner
two-field variational principle is

H(δε̂, δβ̂, δT̂ , δM̂ , ε̂, β̂, T̂ ,M̂ ) = (5)∫
l

(
δε̂T̂ + δβ̂M̂ + δT̂ ε̂+ δM̂β̂ − δv(T̂ ,M̂ )

)
ds− δLe = 0,
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where x′, α′, T̂ and M̂ are independent unknowns and the linear form H
must be equal to zero for any compatible variation of the test functions δx′,
δα′, δT̂ and δM̂ . The strains ε̂ and β̂, and their variations, are computed
from Eq. 1.

2.2 Cross section model

Following Morandini (2019), the three-dimensional unknown displacement
of the beam at a given cross section is locally approximated with a power
expansion along the beam axis. To do so, one starts from the left hand side
of the principle of virtual work∫

V

δF : ŜdV =

∫
A

δx̂′ (L) · f (L) dA+

∫
A

δx̂′ (0) · f (0) dA, (6)

where F is the deformation gradient, Ŝ the first Piola-Kirchhoff stress tensor,
and f are external forces per unit of undeformed area, and integrates it by
part in the direction of the beam axis, leading to

−
∫
L

∫
A

δx̂′ ⊗ i3 : Ŝ,zdAdz +
∫
L

∫
A

δgradS(x̂
′) : ŜdAdz+

+

[∫
A

δx̂′ ·
(
Ŝ · n− f

)
dA
]
L

+

[∫
A

δx̂′ ·
(
Ŝ · n− f

)
dA
]
0

= 0. (7)

where the cross-section lies onto the x, y, plane, with i1, i2 and i3 the unit
vectors along the x, y and z axis, respectively, n if the outward-pointing unit
normal (i.e. n = i3 for z = L and n = −i3 for z = 0), and the deformation
gradient F is decomposed into its in-plane and out-of-plane components as

F = gradS(x̂
′) + x̂′

,z ⊗ i3, (8)

with gradS(x̂
′) = x̂′

,x⊗i1+x̂
′
,y⊗i2. It is clear from Eq. 7 that the equilibrium

along the beam is satisfied if

−
∫
A

δx̂′ ⊗ i3 : Ŝ,zdA+

∫
A

δgradS(x̂
′) : ŜdA = 0. (9)

The displacement û = x̂′− x̂, with x̂ the position vector in the reference
configuration, is s approximated around z = 0 as

û(x, y, z) ≈
N∑
i=0

1

i!
ûi(x, y)z

i, (10)
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where the unknown field ûi(x, y), is a function of the cross section position
only, and is equal to the i-th displacement derivative of the displacement
û(x, y, z) wrt. z evaluated at z = 0. Eq. 9, together with its derivatives up
to order N , is used to close the nonlinear problem and solve it for the N +1
unknown fields ûi. As an example, the first derivative is equal to

−
∫
A

δx̂′
,z ⊗ i3 : Ŝ,zdA−

∫
A

δx̂′ ⊗ i3 : Ŝ,zzdA+ (11)∫
A

δ
(
gradSx̂

′)
,z
: ŜdA+

∫
A

δgradSx̂
′ : Ŝ,zdA = 0.

Four additional constraints are required as well. The first two impose that
the cross- section stress resultant and moment resultant should be equal to
the sought values T̂ and M̂∫

A
Ŝ · i3dA = T̂ ,∫

A
x̂′ × Ŝ · i3dA = M̂ ;

(12)

the last two set of equations constraint the average displacement and rotation
of the cross section ∫

A
û0dA = 0,∫

A
x̂× û0dA = 0,

(13)

getting rid of rigid-body motion. Eqs. 12 and 13 are imposed by means of
four Lagrange multiplier vectors λj, j ∈ [1, 4]. The whole set of nonlinear
equations will be referred to, in the sequel, as

F(δûi, δλj, ûi,λj, {T̂ ,M̂}) = 0 (14)

where ûi and λj are the unknowns, i ∈ [1, N ], j ∈ [1, 4], and δûi and δλj

are the test functions; vectors {T̂ ,M̂} are the sought cross-section internal
actions, and act as independent forcing parameters. The form F is linear
both with respect to the test functions and to the forcing parameters {T̂ ,M̂}.
Standard finite elements are chosen for approximating ûi; the test function
are defined by the same expansion adopted for û, δû =

∑N
i=0

1
i!
δûi(x, y)z

i,
and δûi(x, y) is approximated with the same finite elements chosen for ûi.

2.3 Cross-section complementary strain energy deriva-
tives

In order to couple the cross-section model of Section 2.2 with the beam
model of Section 2.1 one needs to compute the derivative, with respect to
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the internal actions {T̂ ,M̂}, of the complementary strain energy per unit of
beam length v,

v =

∫
A

S : ε− ψ(ε,χ)dA, (15)

where ψ(ε,χ) is the material internal energy per unit of reference volume
at constant temperature, ε = 1

2
(F TF − I) is the Green-Lagrange strain

tensor, S is the second Piola-Kirchhoff stress tensor, and χ represents any
internal hidden variable that could be needed in order to describe the mate-
rial response. The Second Piola-Kirchhoff stress tensor S can be computed
as S = ψ,ε. The functional v is constrained by the equilibrium equations
F(δu,u, {T̂ ,M̂}) = 0, where u = {ûi,λi} accounts both for the unknown
cross-section displacement ûi and the Lagrange multipliers λi. The first and
second order adjoint equations allows to compute the derivatives of v with
respect to the forcing parameters {T̂ ,M̂}, see e.g. Hinze et al. (2008). The
actual implementation of these adjoint equations mimic that of of dolfin-
adjoint library, see Farrell et al. (2013) and Mitusch et al. (2019), but has
been re-written in order to leverage the fact that some terms are known to
be null, while others are linear. The first derivative of v are computed by
resorting to the adjoint variables λA, defined in such a way that

λT
AF,u = v,u. (16)

The first derivative of v with respect to {T̂ ,M̂} can thus be computed as

dv
d{T̂ ,M̂}

= −λT
AF,{T̂ ,M̂} (17)

where the expression for F,{T̂ ,M̂} is trivial since F is linear with respect to
{T̂ ,M̂}. The second derivative of v with respect to to the k-th component
of {T̂ ,M̂},can be computed by deriving Eq. 17:(

d2v

d{T̂ ,M̂}2

)
(k,:) = −

dλT
A

d{T̂ ,M̂}(k)
F,{T̂ ,M̂} (18)

where dλT
A

d{T̂ ,M̂}(k)
is the derivative of λT

A with respect to the k-th component

of {T̂ ,M̂} and we are making use of the fact that the second derivative
d(F,{T̂ ,M̂})/d{T̂ ,M̂}(k) is null because F is linear with respect to {T̂ ,M̂}
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and F,{T̂ ,M̂} is not function of u , cfr. Eq. 12. The derivative dλT
A

d{T̂ ,M̂}(k)
can

be computed by deriving Eq. 16

dλT
A

d{T̂ ,M̂}(k)
F,u + λ

T
A(F,uuu,k) = v,uuu,k (19)

where again we have made use of the fact that F,uk = 0. the derivative of
u with respect to the k-th component of {T̂ ,M̂}, u,k, can be computed by
solving six linear equations:

F,uu,{T̂ ,M̂} = −F,{T̂ ,M̂}. (20)

Since u,k and λA can be computed independently Eq. 19 is nothing but a
linear system of equations with dλT

A

d{T̂ ,M̂}(k)
as unknown:

dλT
A

d{T̂ ,M̂}(k)
F,u = v,uuu,k − λT

A(F,uuu,k) (21)

After solving Eq. 21 for dλT
A

d{T̂ ,M̂}(k)
the k-th row of d2v

d{T̂ ,M̂}2 is readily given by

Eq. 18. The computation of d2v

d{T̂ ,M̂}2 requires the solution of twelve linear

systems: for each row of d2v

d{T̂ ,M̂}2 one needs to solve two linear systems: the

first for computing u,k and the second for computing dλT
A

d{T̂ ,M̂}(k)
. The linear

solution required for computing the first order adjoint variables λA usually
brings no additional cost, since λA is already required in order to compute
the first order derivative of v.

2.4 The two-level scheme

The beam model of Section 2.1 is coupled to the cross-section model of Sec-
tion 2.2. The global model makes use of linear continuous interpolating
functions for the deformed position x′ and the rotation vector φ, defined in
such a way that α′ = exp(φ×)α. The unknown internal force and moments
{T̂ ,M̂} are approximated with constant piece wise discontinuous functions.
Each finite element of the global model has associated a mesh of the cross
section, as in Figure 1, together with suitable approximating functions for
all the ûi. The cross-section local model receives as forcing parameters the
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α′2

α′1

α′3

x′

Fi = 0

{T̂ ,M̂}

dv
d{T̂ ,M̂}

d2v
d{T̂ ,M̂}2

H = 0

a)

b) c)

F3 = 0
F1 = 0 F2 = 0

Figure 1: Interaction between the global beam and local cross-section models.

values of the internal force and moment vectors, {T̂ ,M̂}, and solves the
local nonlinear problem F = 0. After that, it can compute the values of
dv/d{T̂ ,M̂} and d2v/d{T̂ ,M̂}2 that are required for evaluating H and its
linearization, respectively: the beam model, after the cross section model has
computed dv/d{T̂ ,M̂} and d2v/d{T̂ ,M̂}2 can readily evaluate

δv = δ{T̂ ,M̂} · dv/d{T̂ ,M̂}

and
∂δv = δ{T̂ ,M̂} · d2v/d{T̂ ,M̂}2 · ∂{T̂ ,M̂},

where ∂{T̂ ,M̂} are the trial functions. This data exchange needs to be
performed at each Newton iteration of the global model. As a consequence,
the inner model keeps solving the nonlinear problem F = 0, whenever the
value of {T̂ ,M̂} change, before evaluating the first and second derivatives
of v that are required by the global model while iterating toward H = 0.

3 Implementation
This section details the actual implementation strategy. The code is written
using the Python Dolfin wrappers. Section 3.1 showcases the actual imple-
mentation, Section 3.2 explains why it was necessary to introduce a limited
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form of caching, and Section 3.3 discusses a significant bottleneck related to
the current handling strategy of the just-in-time UFL forms compilation.

3.1 Implementation: the good part

Thanks to the flexibility of Dolfin’s Python wrappers a basic implementation
of the above coupling scheme turns out to be relatively straightforward. A
single local cross-section is wrapped within an instance of a BeamSection
class:

class BeamSection():
# initialization
def __init__(self):

....
# solve the cross section variational problem
def solve(self, force, moment):

# solve Eq. 14
....

# compute the first derivative of the
# complementary strain energy with respect to
# the internal force and moment
def delta_v(self, force, moment):

# need first to reach convergence
self.solve(force, moment)
# compute the derivative dv

d{T̂ ,M̂} from Eqs. 16 and 17
....

# compute the second derivative of the
# complementary strain energy with respect to
# the internal force and moment
def de_delta_v(self, force, moment):

# first go to convergence and compute λA

self.delta_v(force, moment)
for k in range(6):

# compute u,k from Eq. 20
....

# compute dλT
A

d{T̂ ,M̂}(k)
from Eq. 21

....
# compute

(
d2v

d{T̂ ,M̂}2

)
(k,:) from Eq. 18

....

where the relevant methods are

solve to find the solution of F = 0;
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delta_c to compute the first derivative dv
d{T̂ ,M̂} ;

de_delta_v to compute the second derivative d2v

d{T̂ ,M̂}2 .

The whole set of cross-section instances, one for each cell of the global mesh,
is stored inside a vector, beam_sect. At the global level, the BeamSection’s
methods delta_v and de_delta_v are wrapped leveraging Dolfin’s UserExpression
class. The first derivative reads

class delta_v_expression(UserExpression):
# the constructor takes a reference to
# the global problem unknown vector, u
def __init__(self, u, *arg, **kwargs):

UserExpression.__init__(self, *arg, **kwargs)
self.u = u

# define proper value_shape
def value_shape(self):

return (6,)
# evaluate dv

d{T̂ ,M̂}
def eval_cell(self, value, x, ufc_cell):

# compute the global unknown values taken
# by this element at x
# and store them into self.uvalues
self.u.eval_cell(self.uvalues, x, ufc_cell)
# extract the force and moment resultant from self.uvalues
self.Tc.assign(Constant((self.uvalues[7], ...)))
self.Mc.assign(Constant((self.uvalues[10], ...)))
# actually compute dv

d{T̂ ,M̂} for the cross-section
# beams_sec[ufc_cell.index]
value = beams_sec[ufc_cell.index].delta_v(self.Tc, self.Mc).vector()

with the second derivative closely matching the first:

class de_delta_v_expression(UserExpression):
# the constructor takes a reference to
# the global problem unknown vector, u
def __init__(self, u, *arg, **kwargs):

UserExpression.__init__(self, *arg, **kwargs)
self.u = u

# define proper value_shape
def value_shape(self):

return (6, 6)
# ... and value_rank
def value_rank(self):
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return 2
# evaluate d2v

d{T̂ ,M̂}2

def eval_cell(self, value, x, ufc_cell):
# compute the global unknown values taken
# by this element at x
# and store them into self.uvalues
self.u.eval_cell(self.uvalues, x, ufc_cell)
# extract the force and moment resultant from self.uvalues
# and store them int self.Tc, self.Mc
self.Tc.assign(Constant((self.uvalues[7], ... )))
self.Mc.assign(Constant((self.uvalues[10], ...)))
# actually compute dv

d{T̂ ,M̂} for the cross-section
# beams_sec[ufc_cell.index] ...
(delta_v, de_delta_v) = beams_sec[ufc_cell.index].de_delta_v(self.Tc, self.Mc)
# ... and store it in the vector used to return the result
for i in range(6):

for j in range(6)
value[i * 6 + j] = de_delta_v[i].vector()[j]

Having at hand these two UserExpression classes the implementation of the
global model Eq. 5 is straightforward:

# bring together the resultant and moment resultant test functions δT̂ and δM̂
merged_V = as_vector([v_T[0], v_T[1], v_T[2], v_M[0], v_M[1], v_M[2]])
# build an instance of the dv

d{T̂ ,M̂} UserExpression
delta_v_expr = delta_v_expression(u, element = AZ2_EL)
# δv = δ{T̂ ,M̂} · dv

d{T̂ ,M̂}
delta_v = inner(merged_V, delta_v_expr)
# derivatives of linear and angular strain measures
delta_epsilon = derivative(epsilon, u, v)
delta_beta = derivative(beta, u, v)
# define the linear form
functional = inner(delta_epsilon, u_T) * dx + \

inner(delta_beta, u_M) * dx + \
inner(vu_T, epsilon) * dx + \
inner(vu_M, beta) * dx - \
delta_v * dx - \
.... # add forcing terms here

where epsilon and beta are defined from Eq. 1, delta_epsilon and delta_beta
are the corresponding test functions, v are the problem test functions, u the
vector of unknowns, v_T, v_M, u_T and u_M the portions of v and u re-
lated to the the internal force T and moment M resultants, respectively,
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and merged_V wraps the test functions of both the internal force and mo-
ment resultants, T and M . The linearization is straightforward as well

# bring together the resultant and moment resultant trial functions ∂T̂ and ∂M̂
merged_T = as_vector([d_T[0], d_T[1], d_T[2], d_M[0], d_M[1], d_M[2]])
# build an instance of the d2v

d{T̂ ,M̂}2
UserExpression

de_delta_v_expr = de_delta_v_expression(u, delta_v_expr, element = TANG2_EL)
# ∂δv = δ{T̂ ,M̂} · d2v

d{T̂ ,M̂}2
· ∂{T̂ ,M̂}

de_delta_v = inner(merged_V, dot(de_delta_v_expr, merged_T))
# define the bilinear form
J = derivative(functional, u, du) - de_delta_v * dx

where du are the problem trial functions, d_T and d_M the portions of du
related to the the internal force T and moment M resultants, respectively,
and merged_T wraps the trial functions of both the internal force and mo-
ment resultants, T and M . Since UFL has no clues about the dependency
of the first variation of the complementary strain energy delta_v on the
problem unknowns, one needs to add the de_delta_v term by hand instead
of relying on UFL’s symbolic differentiation.

3.2 Implementation: the not-so-good part

The basic implementation of Section 3.1 can be significantly sped up by a
proper caching of results. Since the global beam model has more than one
point of integration for each element, the assembly loop will call the lower
cross-section model methods more than once for each element. Since how-
ever the internal actions are constant within an element, it is advisable to
cache the last computed result, and avoid recomputing it if the element does
not change and the value of the internal actions are unchanged as well. To
keep the code simple only the last computed value is cached. Furthermore,
some additional saving can be achieved by adding a caching layer also at the
cross-section level. For example, if the code has already computed the first
derivative of the complementary strain energy delta_v, there is no need to
compute it again when the second derivative method de_delta_v is called.
For this reason the code tracks the computed values everywhere, and re-
compute them only if needed. As an example, the actual implementation of
delta_v becomes

def delta_v(self, force, moment):
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# if the values of force and moment are different
# from the previous ones
if (not(

numpy.array_equal(force.values(), self.previous_Tc) and
numpy.array_equal(moment.values(), self.previous_Mc) and
numpy.array_equal(force.values(), self.previous_Tc_dv) and
numpy.array_equal(moment.values(), self.previous_Mc_dv)))
# store the current values into the “previous one” vectors
self.FORCE_IA.assign(force)
self.MOMENT_IA.assign(moment)
self.previous_Tc_dv[:] = self.FORCE_IA.values()
self.previous_Mc_dv[:] = self.MOMENT_IA.values()
# and perform the actual computations
self.solve(force, moment)
....

and this kind of caching, although relatively benign and not too invasive, is
scattered all around, both for the solution of F = 0 and for the computation
of dv

d{T̂ ,M̂} and d2v

d{T̂ ,M̂}2 . This significantly speeds up the solution procedure.

3.3 Implementation: the weird detail

The Dolfin Python wrapper was crucial for a fast and almost frictionless
implementation of the coupling procedure. However, after everything was in
place, it soon turned out that the startup time of each and every simulation
was unnecessarily long, exceeding, for some specific test cases, the actual
computational time and literally wasting hours of computational time. This
is due to a critical difference between the how the C++ Dolfin library and
its Python wrapper deals with the code generation.

When directly dealing with the C++ library the user is supposed to run
the form compiler, generate the C++ code that computes the forms, and
then use the C++ compiler with these automatically-generated code. Since
the file defining the form is well–separated from the user-written code that
drives the computations, the user is in control, and can run the form compiler
only when the forms do actually change.

For the Dolfin wrappers, however, things are slightly different: since the
form definition is often mixed within the code that drives the solution, the
Python wrapper tries to be be “smart”: it computes a unique signature of
the form at hand and, if the signature if new, it first runs the form compiler,
then the C++ compiler and finally stores the resulting files into an on-disk
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cache, identified by that particular, unique signature. If the cache already
holds the code, instead, it reuses the previously compiled files.

This caching strategy is extremely handy and user-friendly. This conve-
nience, however, brings an overhead, since the code needs to compute this
unique signature. The overhead is luckily very small for the vast majority of
users and use-cases, but can be significant for some of the forms at required
for this applications.

The problem is exacerbated even more for the application at hand because
there can be tens or hundreds of identical forms, one for for every low-level
cross-section problem: there is a cross-section problem for each beam ele-
ment. Since problems with complex hyperelastic material constitutive laws
turned out to spend up to twenty minutes only for computing the signa-
ture of a single form, repeating these computations over and over for tens or
hundreds cross-section problems turned out to be unbearable.

A possible solution could be to define the Form once for all, and change
on the fly the mesh and the Functions that should be used to perform the
computation; unfortunately the Dolfin Form wrapper does not make easy to
do this. The alternative of defining a unique cross-section problem and copy-
ing the data there would not only complicate the code, but also prevent the
possibility of dealing with different cross-section, and thus different meshes.

It’s clear that the real solution to this would be to ditch the Python imple-
mentation of the coupling procedure, and re-write it in C++. An acceptable
stop-gap solution turned out to override the Form signature computation,
replacing it with the hash of the Python file defining the form, and forcing
a rebuild whenever there were some changes, in a different file, that I knew
could modify the form and would not be spotted by this file hash.

4 Examples
The correctness of the proposed coupling scheme is confirmed by the fact that
quadratic convergence is achieved both for the local cross-section problem and
the global beam problem. As an example, Table 1 shows, for two different
time steps, the residual norm history of the global problem of the PVC-copper
cross section shown in Sec. 4.2.

Sections 4.1 and 4.2 show two examples selected among those reported in
Morandini (2020).
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Table 1: Global beam model convergence.
Residual norm

Iteration t = 0.2 t = 0.4
0 0.5 0.5
1 0.00317 0.04223
2 0.00939 0.00108
3 0.004111 3.17E-06
4 0.000060 –

4.1 Bimetallic beam

A straight beam of length 10 mm has the bimetallic 1×1 mm cross-section of
Fig. 2. It is clamped at one end, and loaded by a transverse force F=1 N at the
other. The cross-section is made with two different materials. Both materials
are isotropic and elasto-plastic. The constitutive law is based on an additive
decomposition of the Green-Lagrange strain tensor, S = E : (ε− εp), where
εp is the plastic deformation tensor; a standard Von-Mises yield function f
with isotropic hardening

f =

√
3

2
s : s− (S0 +K) = 0 (22)

is assumed, with s = S − 1
3
S : I, S0+K the equivalent yield stress. The

internal energy is

ndψ(ε,χ) =
1

2
(ε− εp) : E : (ε− εp) +

1

2
Hεeffp εeffp

and as associated flow rule is assumed.
The constitutive law is defined by the material elastic modulus E, the

elasto-plastic tangent modulus Et, the Poisson coefficient ν and the yield
stress S0, so that the hardening parameter is H = Et/(1 − Et/E). The
elastic modulus, Poisson coefficient and elasto-plastic tangent modulus are
equal for both materials, E=1200 MPa, ν = 0.3 and Et = 360MPa; the
two material yield stresses do differ, and are equal to S0 = 2.4 MPa and
S0 = 12 MPa for materials Mat. 1 and Mat. 2, respectively.

Figure 3 compares the displacement of the beam model loaded point
with that of a three dimensional simulation. Figures 4 and 5 plot the root
section equivalent plastic strain and the norm of the normal stress vector,
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Mat. 1 Mat. 2

F

Figure 2: Bimetallic beam cross-section (from Morandini, 2020).

respectively. As expected, the left half of the beam, made with Mat. 1,
undergoes a significant plastic deformation, with the normal stress vector
limited to values that are smaller than those of the right half of the beam,
that is made with Mat. 2.

4.2 Complex cross-section

A circular composite PVC wire of length l = 10 mm is discretized with 10
beam elements. It has a circular cross-section with a radius R = 0.5 mm and
19 smaller copper wires, each of radius r = 0.08 mm, as shown in Fig. 6. The
PVC is assumed to be elastic, while the copper is elasto-plastic. The material
properties are reported in Table 2. The beam, clamped at one end, is subject
to a concentrated shear force F = 5 N at the other extremity. The load is
increased linearly from t = 0 to t = 1, and them brought to 0 for t = 2. A
three dimensional mesh with well-shaped constant stress tetrahedron would
require about 450 thousand nodes, for about 1.5 million unknowns, and is
out of reach on the desktop computer used for these computations.

Figure 7 plots the deformed configuration taken by the beam when the
load reaches it maximum at t = 1 and after unloading the structure, at
t = 2. The corresponding beam tip displacement components are reported
in Fig. 8, where x is along the beam axis and the load is applied in the z
direction. Figures 9 plot the deformed root cross-section, with the colors
representing the cross-section out of plane displacement for the fully loaded
(t = 1, left) and unloaded (t = 2, right) configurations. Figure 10 plots,
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Figure 3: Dual material elasto-plastic beam: loaded point displacement com-
ponents as a function of time (left) and corresponding load-displacement
curve (right) (from Morandini, 2020).

Figure 4: Dual material elasto-plastic beam: equivalent plastic deformation
at t = 1 (from Morandini, 2020).

Table 2: Composite wire material properties.
Copper PVC

E 117 GPa 4.1 GPa
ν 0.3 0.41
S0 70 MPa /
Et 2.34 GPa /
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Figure 5: Dual material elasto-plastic beam: norm of the normal stress vector
at t = 1 (from Morandini, 2020).

Figure 6: Mesh of the composite wire (from Morandini, 2020).
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Figure 7: Elasto-plastic wire beam deformed configurations (from Moran-
dini, 2020).

instead, the equivalent plastic strain εp eq of the copper wires; some wires
undergo a significant plastic deformation.

5 Run time
As already noted in Morandini (2020), the proposed approach turns out to
be faster than a fully three dimensional analysis only if the spatial resolution
required on the cross section is relatively high with respect the the resolution
along the axis. This is because the need to solve a nonlinear cross-section
problem each and every time the residual or the Jacobian matrix of the
beam problem need to be assembled really reduces the possible gains of the
two-level procedure. Because of this the run time turns to be higher than
that of a completely three dimensional simulation if the cross-section mesh
is small. The higher the number of elements in the section, the greater the
computational savings with respect to a three dimensional analysis. As an
example, Table 3 compares the run time required by a simple elastic problem,
a bent beam, with ten beam element, for different cross-section meshes.
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Figure 8: Elasto-plastic wire beam: loaded point displacement components
as a function of time (left) and corresponding load-displacement curve (right)
(from Morandini, 2020).

Figure 9: Composite wire out of plane warping, root element cross section:
maximum load (left, t = 1) and final unloaded state (right, t = 2); deforma-
tion scale factor: 300 (from Morandini, 2020).
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Figure 10: Composite wire equivalent plastic strain, root element cross sec-
tion: maximum load (left, t = 1) and final unloaded state (right, t = 2);
deformation scale factor: 300 (from Morandini, 2020).

Table 3: Timing comparison between the proposed approach and a fully
three-dimensional solution (data from Morandini, 2020).

Section 10× 10 Section 20× 20 Section 40× 40
Beam 3D Ratio Beam 3D Ratio Beam 3D Ratio
1033 s 926 s 1.12 4112 s 5810 s 0.71 29540 s 51598 s 0.57
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6 Conclusions
The proposed two-level approach is not competitive with classic kinematic
approaches whenever it is reasonable to assume an axial stress state and it
is possible to rephrase the constitutive law for it. Such standard beam fi-
nite elements, however, fail to deal with hyperelastic constitutive laws, and
are limited to relatively simple, homogeneous cross-sections. Thus, the pro-
posed approach can be one of the few viable alternatives for very specific
beam problems. Furthermore, the present approach guarantees that the
beam response is hyperelastic if the cross-section material is hyperelastic,
a correctness property not shared, to the author’s knowledge, with different
approaches.

The basic implementation of this somewhat complex coupling scheme and
of the related complex linear and bilinear forms turned out to be relatively
straightforward. This is, without any doubt, thanks to the flexibility of the
FEniCS framework and to the ease of use of the Dolfin Python wrappers.
However, the optimization of the code and its use for the simulation of com-
plex problems highlighted a few pain points, the more relevant being how
the JIT compilation of the UFL Forms is handled and on how these forms
are wrapped within Dolfin.
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