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INTRODUCTION: Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for
analysing complex medical data and extracting meaningful relationship in data sets, for several clinical aims. Especially
in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives
in terms of diagnosis, planning and outcome prediction. In this work, we present an overview of different artificial
intelligent techniques used in the brain care domain, along with a review of important clinical applications.

METHOD: A systematic and careful literature search in major databases such as Pubmed, Scopus and Web of Sci-
ence was carried out using “artificial intelligence" and “brain" as main keywords. Further references were integrated
by cross-referencing from key articles. RESULTS: 155 studies out of 2696 were identified which actually made use
of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance and post-operative as-
sessment). Artificial neural networks (ANNs) have risen to prominent positions among the most widely used analytical
tools. Classic Machine Learning (ML) approaches such as Support Vector Machine (SVM) and Random Forest (RF)
are still widely used. Task-specific algorithm are designed for solving specific problems. Brain images are one of the
most used data type. CONCLUSION: AI has the possibility to improve clinicians’ decision-making ability in neuro-
science applications. However, major issues still need to be addressed for a better practical use of AI in brain. To this
aim, it is important to both gather comprehensive data and build explainable AI algorithms.

I. INTRODUCTION

Over the last three decades hospitals and healthcare systems
produced a vast quantity of unstructured data such as Medical
Imaging (MI) data, genomic information, free text and data
streams from monitoring devices1. The analysis of such data
significantly changed the approaches used by medical experts
and practitioners for identifying, understanding and treating
brain pathologies, as well as identifying risks and reactions to
therapies2. In particular, MI and MI processing started a rev-
olution in the field; indeed, they paved the way to quick and
non-invasive ways to study, treat, manage, and predict dis-
eases. Furthermore, advances in image and image processing
technologies led to more and more cost-effective and low-risk
analysis3. Computed Tomography (CT), Positron Emission
Tomography (PET) and Magnetic Resonance Imaging (MRI),
for instance, have revolutionized the study of the brain by al-
lowing doctors to perform noninvasive evaluations of the brain
structure, and to infer causes of abnormal function due to dif-
ferent diseases4,5.

However, “manually” processing medical data, and brain
images in particular, is often time consuming, and chances
of errors in the interpretation are not irrelevant. For exam-
ple, it has been estimated that day-to-day error rates and dis-
crepancies in radiology are greater than 3-5%6. This called
for novel methods to help physicians at efficiently and effec-
tively analyzing data. As more computational power has been
available and the medical data quality increased, the interest
in employing advanced algorithms has increased7. However,
despite the significant results obtained during years, given
the raise in complexity and volume of data many traditional
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computer-based techniques and algorithms are not feasible in
real world scenarios. For instance, objects like lesions and or-
gans in MI may be too complex to be accurately represented
simply by traditional equations or models. Furthermore, it
is not always easy for experts to define precise rules to ap-
ply, for example, for disease analysis and control. Hence,
the use of Artificial Intelligence (AI) techniques has received
a growing interest in the field of brain imaging and compu-
tational neurosciences over the last decade, as demonstrated
in the exponential grow of scientific publications reported in
Figure 1. Among these approaches, Machine Learning (ML)
techniques are now renowned and widely used for addressing
brain-related problems.

ML is a subset of AI algorithms that automatically “learn”
to identify categories or forecast future or unknown conditions
starting from data. Several solutions have been developed dur-
ing years, and many of them still provide successful results in
the analysis and processing of brain data.

Quantitative and qualitative characterization of normal and
pathological structures are often part of clinical tasks in which
ML has achieved the most promising results8–10. In this con-
text, brain data processing using ML methods has been widely
used to identify brain conditions such as Alzheimer’s disease,
dementia, schizophrenia, multiple sclerosis, cancer, and in-
fectious and degenerative diseases. Furthermore, approaches
for segmentation and detection brain structures, as well as
pathological tissues, are also widely studied11. Detection and
precise localization of the abnormal tissue and surrounding
healthy structures, indeed, are crucial for diagnosis, surgi-
cal planning, postoperative analysis, and chemo/radiotherapy
treatment.

Nevertheless, it is worth to note that, because of the com-
plexity and the amount of brain data, ML methodologies usu-
ally comprise several steps in order to actually perform a
task. For example, image pre-processing, feature selection
and ranking, as well as dimensionality reduction, are often re-
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Figure 1. Cumulative and absolute number of papers on artificial intelligence in brain published in the latest ten years (as reported in the
considered databases).

quired as initial stages to boost algorithm performances up to
adequate levels12.

In recent years, a subfield of AI, Deep Learning (DL), has
revolutionized a variety of neurosurgical tasks10,13,14 (Figure
2). In particular, DL algorithms rose a prominent position
in computer vision, outperforming other methods on several
high-profile image analysis benchmarks15. Differently from
traditional ML models, in DL useful representations and fea-
tures are learnt automatically, directly from raw data, over-
coming the issue of manually compute and select potentially
relevant attributes. Thanks to critical advancement in com-
puting power, including the use of Graphic Processing Unit
(GPU), such algorithms started to be effectively used for
learning from the 3-D and 2-D images typical of the medical
domain12.

This work primarily focuses on providing an overview of
the recent literature on AI techniques directly supporting brain
care. We provide a brief analysis of key ideas and areas of ap-
plication of AI as well as the principal modalities and knowl-
edge used in neuroscience. First, we present a summary of the
key clinical uses of AI in brain, including classification, seg-
mentation, organizational preparation, postoperative analysis
and predictive methods; furthermore, we provide a thorough
description of recent classification methods based on brain
connectivity; eventually, taking into account recent develop-
ments and the rapidly growing potential of the field, we dis-
cuss how AI might transform brain care in the near and long

term, identifying open issues and promising directions for fu-
ture work.

The remainder of the paper is organized as follows. We
briefly introduce the main type of data used for brain analysis,
as well as the main AI techniques adopted for solving brain-
related tasks. The methodology used for evaluating the state-
of-the-art is explained in section V and analysed more in detail
in Section VII. We discuss our findings in Section VIII and
draw our conclusions in Section IX.

II. Type of Data

Many different technologies have been developed with the
aim of understanding brain structure without the need for in-
vasive neurosurgery. CT and MRI are the two primary inno-
vations that improved diagnostic and management efficiency
across the spectrum of neurological disorders8,12. CT uses
computer-processed adaptations of several X−ray measure-
ments taken from various angles to produce cross-section (to-
mographic) images. PET is used to observe metabolic pro-
cesses at cellular levels. MRI uses a strong magnetic field
and radio waves to render high-quality imagery of biological
structures5.

By controlling the radio frequency pulses and the oscilla-
tions of the gradient, specific pulse sequences determine how
the image is obtained (weighed) and how the different tissues
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appear. T1- and T2- weighted imagery is useful for demon-
strating the anatomy and pathology of the brain, respectively.
A third commonly used sequence is the Fluid Attenuated In-
version Recovery (FLAIR).

Advanced imaging is playing an increasingly more impor-
tant role in the management of patients with neuro-oncologic
disease. In this way, advances in Diffusion Tensor Imaging
(DTI) and Functional Magnetic Resonance Imaging (fMRI)
provide noninvasive means of brain mapping16. More in de-
tail, DTI provides in vivo visualization of white matter tracts
in the brain, helping to analyze pathological alterations out-
side visible lesions on MRI17. This is achieved through the
creation of a map of the axonal network in the brain by mea-
suring the diffusivity of water molecules. fMRI is a technique
to detect eloquent cortex by identifying increased blood oxy-
gen levels in areas of the brain that are activated by task-based
paradigms. During the last two decades, an explosion of fMRI
studies took place mapping neural functions to distinct parts
of the brain at rest or during task performance. However, more
attention has been directed towards Resting State Functional
Magnetic Resonance Imaging (rs-fMRI) data18.

Hyperspectral Imaging (HSI) is an emerging imaging
modality for medical applications, especially in disease di-
agnosis and image-guided surgery. It provides diagnostic in-
formation about the tissue physiology, morphology, and com-
position. HSI acquires a three-dimensional dataset called
hypercube, with two spatial dimensions and one spectral
dimension19. Another technique which gained interest be-
cause of the capabilities of obtaining real-time visualizations
is Intra-operative Ultrasound (IUS), a diagnostic imaging tool
that uses high-frequency sound waves to create images of
structures in the body20. Ultrasound images are captured in
real time using an external probe and ultrasound gel placed
directly on the skin.

A fundamental concept in modern neuroscience is that
anatomical and functional links between brain regions are ar-
ranged in such a way that information processing is close
to optimal. Recently applied in neurosciences, graph-based
models opened up new perspectives for the study of brain
structural and functional integration through graph-derived
metrics21,22. In this context, brain connectivity analysis rests
upon three different but related forms of connectivity: Struc-
tural Connectivity (SC) consists of nodes, corresponding to
segmented cortical regions, and links, e constructed by trac-
tography from white matter fibers-tracts23,24. Functional Con-
nectivity (FC), instead, is defined as the temporal dependency
of neuronal activation patterns of anatomically separated brain
regions. Other brain connectivity forms exist, which, how-
ever, are not treated in this review.

Other type involved in the brain care are gene sequence,
Electronic Health Record (EHR), Electroencephalography
(EEG), Microelectrode Recording (MER) data. EHR are dig-
itizing valuable medical data on a massive scale. Electronic
health records (EHR) capture “real-world” disease and care
processes and hence offer richer and more generalizable data
for comparative effectiveness research than traditional ran-
domized clinical trial studies. EEG measure the weak electro-
magnetic signals generated by in-brain neuronal activities. It

Figure 2. Relations among artificial intelligence, machine learning
and deep learning.

captures both slowly and rapidly changing dynamics of brain
activations with a time resolution of milliseconds. This en-
ables the investigation of neuronal activity over a wide range
of frequencies that can offer potentially complementary in-
sights regarding how the brain works as a large system25.
MER technique further enhance the ability of the surgeon sub-
cortical area; MER data are used as an adjunct approach to en-
sure that the Deep Brain Stimulation (DBS) electrode is cor-
rectly placed within the target structure26.

All input data of the reviewed article are reported in Ta-
ble XI.

III. Artificial Intelligence, Machine Learning and Deep
Learning

One of the main AI goals is the development of software for
computers or computer-controlled machines able to perform
tasks commonly associated with intelligent beings1. Its use in
healthcare commonly attempts to emulate and even overcome
human cognition in the analysis of complicated medical data.

As schematized in Figure 2) among the various AI
branches, ML has a prominent role in brain data analysis. ML
is an adaptive process that enables computers to learn from
experience, learn by example, and learn by analogy27. The
goal is to define generic algorithms able to automatically im-
prove their performance over time on the basis of previous
results, and is achieved by training the algorithms via proper
optimization approaches. One of the most valuable proper-
ties of such models is the capability of achieving accurate
results on several tasks, such as classification or prediction,
over unseen data, thus generalizing their learned expertise. In
general, every ML algorithm falls into one of two main cate-
gories: supervised learning and unsupervised learning. Super-
vised learning is generally used when the answer to the prob-
lem is known. In this scenario, a set of samples with known
labels (training set), is provided to the ML algorithm. Thus, a
model is prepared through a training process where its param-
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eters are tuned to produce accurate predictions for the labeled
data. Classification methods fall in this category. With unsu-
pervised learning, differently from supervised learning, input
data are not labelled and no known result is provided to the
model. In this case, the algorithm is generally trained at de-
ducing structures and common patterns present in the input
data. Clustering is a prime example.

In this review we mainly focus on supervised approach, as
widely adopted in brain image processing tasks. In this con-
text, several ML solutions provide promising and reliable so-
lutions. According to the function used to process the input,
they can be classified in many categories. Among the most
common we find Decision Tree (DT), that predict the output Y
based on a sequence of splits in the input feature space X . En-
sembles of DT, such as Random Forest (RF) or boosted trees
(e.g. AdaBoost), are thus a more popular choice in most appli-
cations since they yield much better prediction performance.
Support Vector Machines (SVM) search for an optimal sepa-
rating hyperplane between classes that maximizes the margin,
i.e., the distance from hyperplane to points closest to it on ei-
ther side.

Among the various ML solutions, Deep Neural Network
(DNN) are nowadays considered as the state-of-the-art so-
lution for many problems, including tasks on brain images.
Such human brain-inspired algorithms have been proven ca-
pable of extracting highly meaningful statistical patterns from
large-scale and high-dimensional datasets. A DNN is a DL
algorithm aiming to approximate some function f ∗. For ex-
ample, a classifier can be seen as a function y = f ∗(x,θ) map-
ping a given input x to a category labelled as y. θ is the vector
of parameters that the model learns in order to make the best
approximation of f ∗. Artificial Neural Networks (ANN) are
built out of a densely interconnected set of simple units, where
each unit takes a number of real-valued inputs (possibly the
outputs of other units) and produces a single real-valued out-
put (which may become the input to many other units). DNN
are called networks because they are typically represented by
composing together many functions. The overall length of the
chain gives the depth of the model; from this terminology the
name “deep learning” arises. Recently, more advanced neu-
ral networks models with local receptive fields, like Convo-
lutional Neural Network (CNN), have proven promising clas-
sification accuracy in image processing tasks such as classi-
fication or segmentation. CNNs replace the fully-connected
operations by convolutions with a set of “learnable” filters.
Success of this approach stems from its ability to exploit the
full-resolution of 2-D and 3-D spatial structures (e.g., MRI)
without the need for learning too many model parameters,
thanks to the weight sharing. Many other DL architectures
have been presented during years; here, it is worth mentioning
Recurrent Neural Network (RNN), widely used where longi-
tudinal data are available, and Graph Neural Network (GNN),
which extend neural networks with the purpose of processing
graph structures data.

IV. Clinical Aims

AI is a major branch of computer science; it counts many
methods for building effective tools for analysing complex do-
mains, including medical data. Its potential to exploit mean-
ingful relationship within a data set can be used in diagno-
sis, surgical treatment, intra-operative assistance and post-
operative predicting outcome in many clinical scenarios. In-
deed, modern medicine is faced with the challenge of acquir-
ing, analysing and applying the large amount of knowledge
necessary to solve complex clinical problems. The devel-
opment of medical AI has naturally been related to the de-
velopment of AI techniques; in the brain care these are in-
tended to support healthcare workers in their duties, espe-
cially with tasks that rely on the manipulation of data and
knowledge. More specifically, in the context of brain care,
one of the main purpose is to help clinicians in the formula-
tion of diagnosis "classification" problems, using anatomical,
morphological and connectivity information7,8,12,18. Usually,
automatic classification helps clinical decision making on a
pathology of the brain or multiple classes of it, by discerning
patterns corresponding to classes. For example, classification
methods, using anatomical information, are widely used for
the detection of Alzheimer’s Disease (AD) and other cogni-
tive impairments8, as well as the characterization of various
brain tissues including brain tumors14. Moreover, a classifica-
tion using morphological information is performed, the task is
known as “image segmentation”11. The goal is to partition an
image into multiple regions that share similar attributes, en-
abling localization and quantification. Segmentation is com-
monly used for detecting, measuring and analyzing the main
morphological structures of the brain and eventually identify-
ing pathological regions. This accurate structural classifica-
tion is particularly important in patients with tumors, edema,
and necrotic tissues. Brain image segmentation is also use-
ful in clinical diagnosis of neurodegenerative and psychiatric
disorders, treatment evaluation, and surgical planning.

To help the formulation of the surgical treatment, similarly,
classification is used for surgical candidate selection and seg-
mentation is used for finding and categorizing the surgical tar-
get. In brain images, ML detection techniques are performed
to identify the areas where the patient’s lesions are located as
box coordinates and localization of stimulation zones within
the brain for DBS treatment used for brain lesion and Parkin-
son patients. Moreover, AI systems are used for assisting a
surgeon during the definition of an optimal trajectory.

Prognosis is extremely important in planning appropriate
post-operative treatment. Accurate identification of high-risk
patients may facilitate targeted aggressive adjuvant therapy
which may help cure the disease and prolong survival28. The
implementation of EHR in hospitals is increasing rapidly; the
generated data can be fed to an AI algorithm in its raw form,
and the algorithm can try to learn which features are associ-
ated with the outcome of interest29. This way, the algorithm
can be able to predict mortality, postoperative ospitalization,
transphenoidal surgery response, DBS outcome, reperfusion,
disease recurrency in a variety of disease conditions includ-
ing Cushing’s disease, Parkinson’s disease, brain tumor, brain
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injury, brain lesion and neurological disorders, easing the bur-
den of clinicians who have to come up with meaningful struc-
tured data.

V. METHODS

A systematic literature review was performed according to
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. In particular, Pubmed,
Scopus and Web of Science databases were searched to
identify all potentially relevant studies back to January 1,
2008. The search queries were carefully built with the guid-
ance of a professional librarian using search terms related to
‘artificial intelligence’ and ‘brain’. A comprehensive list of
the keywords used for the search is reported in Table XII.
All biomedical studies that evaluated AI models assisting in
brain care were included; duplicates are discarded by using
the EndNote reference management software. Following the
elimination of duplicates, a careful screening of titles and ab-
stracts was made in order to identify paper that were relevant
to our research topic. Any work that matched at least one of
the following exclusion criteria was crossed out:

(i) no full-text available
(ii) no AI application

(iii) conference abstracts
(iv) animal models
(v) conference papers

(vi) books
(vii) book chapters

(viii) non-English language
After a proper check of full-texts and references, a total of 154
articles/reviews were identified as eligible, and hence included
into this systematic review. Any article appearing to help our
research was included and classified; nevertheless, we decided
to not cover, papers already covered by previous reviews. Data
considered from each study were:

1. application
2. name of first author
3. year of publication
4. clinical aim
5. pathology
6. type of data
7. data
8. AI method
9. benchmark measure

10. results.
On this basis, we computed the distribution of all published
articles within the domains of clinical aim, pathology, ML al-
gorithm and type of data used as input feature.

We considered a quantitative synthesis to be inappropri-
ate, due to the heterogeneity in the applications. A qualita-
tive synthesis of results is hence provided next by means of a
narrative approach. Concerning classification tasks, given the
large amount of publications in literature and the recent re-
sults sublimely analysed, both quantitatively and qualitatively,
by previous surveys, we limited the detailed overview to the
50 most cited papers of 2019. Finally, we made a strong dis-

tinction between image-based and connectivity-based classi-
fication tasks. In fact, given the promising results obtained by
these techniques, we find the latter to be an evolving challenge
that deserves a thorough analysis.

VI. Evaluation Metrics

For all AI applications, and ML is no exception, perfor-
mance measurement is an essential task. Benchmark mea-
sures used for the evaluation of the reviewed studies are ex-
plained in in Table IX. Accuracy, precision, sensitivity, and
specificity are metrics widely used to evaluate performance
in ML classification tasks. Accuracy and precision reveal a
test’s basic reliability, while specificity and sensitivity reveal
the likelihood of false negatives and false positives. Those pa-
rameters are largely used, but, as reported by other reviews30,
in some cases these evaluation metrics might not constitute a
realistic measure. For these reasons, several works are starting
to extend their evaluations by also reporting Positive Predic-
tive Value (PPV) and Negative Predictive Value (NPV)31–35.
Area Under the Curve (AUC) Receiver Operating Charac-
teristic (ROC) curve is one of the most important evaluation
metrics to check or visualize the performance of a ML classi-
fication problem. It tells how much model is capable of dis-
tinguishing between classes: the higher the AUC, the better
the model is at predicting. To make a quantitative evaluation
of automatic segmentation results the frequently used proce-
dure is to determine the overlap with the gold standard that
in this field is the manual segmentation by and expert radi-
ologist. Generally, Jaccard Coefficient (JC) or Dice Similar-
ity Index (DSI) is used. It ranges from 0 to 1, ranging from
no overlap to perfect overlap. For probabilistic segmenta-
tion, the validation metric is AUC. Other validation metrics in-
clude Mean Square Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), Mean Absolute Distance (MAD) and Housdorff Dis-
tance (HDD) values. Regarding path planning problem, the
most important evaluation metric reported are Center of Mass
Distance (CMD), Mean Square Distance (MSD), min Square
Distance (mSD) and risk score for the trajectories evaluation
and time complexity to evaluate the total time of execution for
time-constrained applications. For predictive model the met-
ric reported are error rate, Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) that can be interpreted as a
measure of the ratio between the true and predicted values.

As a final remark, it is worth mentioning the efforts spent
by researchers to validate their methods, in order to reduce the
possibility of human error and handle variations in brain data.
To this aim, a crucial role is played by validation methods.
Cross-validation methods (k-fold, leave-one-out, leave-one-
group out) are still the most valuable approach in this sense.
Such methods allow to better validate ML and DL algorithms,
avoiding biases which might be present in a single dataset.
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Figure 3. PRISMA flow diagram of systematic identification, screening, eligibility and inclusion. 154 studies were included in the final
analysis out of the 2696 screened.

VII. RESULTS

Out of the 2696 citations initially identified in the selected
databases, 2231 were selected by title/abstract and full-text
screening (Figure 3). We witnessed an exponential growth,
in the latest ten years, of the number of studies evaluating
AI models as an assisting tool across multiple paradigms of
brain care; such paradigms include diagnosis with anatomical
information, diagnosis with morphological information, diag-
nosis with connectivity information, candidate selection for
surgical treatment, target definition for surgical treatment, tra-
jectory definition for surgical treatment, modelling of tissue
deformation for intra-operative assistance and prediction of
patient outcome for post-operative assessment, as outlined in
Figure 4; AI-enhanced brain care in patients with a wide vari-
ety of brain disorders, including, epilepsy, brain tumors, brain
lesion, Parkinson’s diseases, brain injury, and cerebrovascular
abnormalities. Algorithms used were Natural Language Pro-
cessing (NLP) algorithms, Genetic Algorithm (GA), ANN,
SVM, fuzzy C-means, RF, logistic regression, linear regres-

sion, K-nearest Neighbors (KNN), DT, Gradient Boosting
Machine (GBM), Sparse Autoencoder (SAE) and k-means all
described in Table X. A trend in adopting custom solutions,
as well as less widely used ML algorithm, was also observed.
Commonly used Type of data were MRI, CT, IUS, DTI, HSI,
EHR, MER, EEG and Functional Near-Infrared Spectroscopy
(fNIRS). MRI data were the most frequently used input fea-
tures. Radiological brain tumor segmentation and classifica-
tion were the most frequently evaluated applications.

A. Diagnosis

121 studies considered AI for diagnosis. This includes clas-
sification using anatomical information, morphological infor-
mation and connectivity information for neurological disor-
ders, brain tumors, brain lesion, brain injury, Parkinson’s dis-
ease, epilepsy and cerebral artery, schizophrenia, Alzheimer’s
disease, autism disorder and multiple sclerosis. CT, MRI,
PET, SC and FC data were used as input features for the de-
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Figure 4. Diagram of multiple paradigms using AI in brain care identified in this review including diagnosis with anatomical information,
diagnosis with morphological information, diagnosis with connectivity information, candidate selection for surgical treatment, target definition
for surgical treatment, trajectory definition for surgical treatment, modelling of tissue deformation for intra-operative assistance and prediction
of patient outcome for post-operative assessment

velopment of classification algorithm. Results of the distribu-
tions for pathology, AI methods and type of data for diagno-
sis are reported in Figure 5. Notice that, due to the vast het-
erogeneity of sub-tasks found concerning classification using
anatomical information, a qualitative rather than a quantitative
research design was chosen.

Computer Assisted Diagnostic (CAD) reflects a large por-
tion of the various facets of AI for medical imaging12. Such
tools constitute a valuable resource for the assistance of med-
ical doctors in diagnosis, prognosis and pre-and post-surgical
processes. One key task is to automatically determine the
presence or absence of a disease or a particular type of malig-
nancy. This classification stage is focused on making clinical
decisions on a pathology of the brain or multiple classes of it,
by discerning patterns corresponding to classes.

Several ML based algorithms have been proposed in re-
cent years for automatically discovering and exploiting visual
characteristics statistically associated with clinical outcomes5.
Specifically, as previously observed by related studies5,7,12,36

a variety of suitable solutions, mainly based on supervised
learning techniques, have been developed for addressing clas-
sification tasks in brain imaging. As observable from Table I,

different works still exploit classic ML algorithms such as
SVM and its variants37–41 and RF42–44. Such algorithms, in-
deed, provide desirable characteristics, especially for the clin-
ical domain. Other than achieving accurate solutions, indeed,
their capability to quantify feature importance measures form
the basis for their explainability.

However, it is evident that a lot of work relies on DL
solutions. Independently from the clinical aim, several pa-
pers have been proposed exploiting CNN for classification
purposes7,36. Thanks to their capability of extracting latent
complex patterns, such algorithms still caught the interest of
a wide community and constitute the state of the art for many
classification tasks. Nevertheless, several novel architectures
have been proposed, achieving significant performance with
overall accuracy greater than 90% for many classification
tasks. In45, an ensemble of 3D densely connected CNN for
AD and Mild Cognitive Impairment (MCI) diagnosis was pro-
posed, outperforming previous methods in all four classifica-
tion tasks. Pang et al.46, introduced a novel fused CNN which
combines shallow layer features and deep layer features. In
the analysis, it was observed that the shallow layers provided
more detailed local features, which could distinguish differ-
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Figure 5. Distribution of general applications for diagnosis, in the
brain care literature, related to classification using anatomical in-
formation, morphological information and connectivity information.
From top: Pathology, AI method and type of data

.

ent diseases in the same category, while the deep layers could
convey more high-level semantic information used to classify
the diseases among the various categories. In47, the authors
aim to maximally utilize multimodality neuroimaging and ge-
netic data for identifying AD and its prodromal status, MCI
from normal aging subjects. The proposed approach consists
in stage-wise learning latent representations of each modality
first independently and then jointly in order to finally learn
diagnostic labels.

A widely used technique for enhancing results on limited
dataset is transfer learning (also known as fine-tuning or pre-
training) which consists in training the model on large banks
of natural images, before actually training it over the small

(medical) dataset. This technique allows the model to learn
general features like shapes, colors and patterns, which can be
used to process the small dataset more effectively.

Several works applied this technique to enhance their
results48–51. They show how fine tuned models achieved state-
of-the art results, and how the effect of reduction in training
data did not impact the performance of the fine tuned CNN
models.

Another possible way to overcome limited data availabil-
ity, is to artificially create new data. As an example, new in-
stance images can be obtained by applying linear transforma-
tions (i.e., rotation, reflection, scaling, etc.) to already avail-
able ones. One of the most interesting alternatives, when deal-
ing with image data, consists of learning the latent manifold
on which the input images lie, and then sample realistic pic-
tures (and their labels) from this manifold. Researchers are
investigating this approach in the biomedical domain, achiev-
ing promising results. For example, the recently proposed
Wasserstein-Generative Adversarial Network (GAN) model
was applied by Wegmayr et al.52 to generate a synthetically
aged brain image given a baseline image. The aged image
is passed to an MCI or AD discriminator deciding the future
disease status, achieving 73% accuracy on MCI-to-AD con-
version prediction at a 48 months follow-up using only one
coronal slice of a patient’s baseline T1image.

Another current DL limitation is related to the understand-
ing of the model when performing the decision-making pro-
cess. In this direction, Lee et al.53 proposed a DL system to
detect acute intracranial hemorrhages and classify Intracere-
bral Hemorrhage (ICH) sub types. The system was equipped
with an attention map and a prediction basis retrieved from
training data in order to enhance explainability. In Bohle
et al., Layerwise Relevance Propagation (LRP) was used to
produce heatmaps to visualize the importance of each voxel.
They showed how this method was very specific for individu-
als with high inter-patient variability. A similar approach was
introduced in54, where LRP helped in explaining MS diag-
nosis by showing relevant brain areas beyond visible lesions.
Wang et al.55, trained a CNN to distinguish six hepatic tumor
entities. Interestingly, the presence of previously manually
defined features was assessed by analyzing the CNN activa-
tion patterns. Lee et al.56, proposed a novel framework to
better understand which parts of the brain were pathological
and how different brain regions are related to symptomatic ob-
servations. To this aim Regional Abnormality Representations
were extracted using complex linear relationships among vox-
els.

Also “hybrid” approaches are widely adopted. In a typi-
cal CNN architecture, the feature extraction part includes sev-
eral convolution layers followed by max-pooling and an acti-
vation function. Output of these layers provide latent repre-
sentation of the original input space, which could constitute
an useful information. In hybrid approaches, features are ex-
tracted from the CNN layers and then used to feed a shallow
classifier which performs the classification task. To this aim,
a widely adopted pipeline, consists in encoding input features
by means of Autoencoder architectures. In such models, a
network is trained to reconstruct its input. This technique is
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typically used for dimensionality reduction, since, in its sim-
plest version, the input is projected in a smaller latent space
before being reconstructed. In this scenario, the latent en-
coding is used as input for the shallow classifier, as it con-
tains “compressed” informative content. Martinez-Murcia et
al.57, for example, extracted high-level abstract features di-
rectly from MRI images and performed an exploratory data
analysis of AD based on deep convolutional autoencoders.
They observed how the imaging-derived markers could pre-
dict clinical variables with correlations above 0.6, achieving
a classification accuracy over 80% for the diagnosis of AD.
As reported in Table II AI methods were used preoperatively
for radiologic segmentation, as previously reported by other
reviews1,29. Segmentation of anatomical structure is impor-
tant for the diagnosis and treatment of many neurological dis-
orders. Yepes et al.58 presented a segmentation strategy for
cerebral ventricular volume, based on an algorithm that uses
four features extracted from the medical images to create a sta-
tistical estimator capable of determining ventricular volume.
When compared with manual segmentation, the correlation
was 94% and holds promise for even better accuracy by in-
corporating the unlimited data available. Cherukuri et al.59

used a learning approach that treats segmentation as super-
vised classification at the pixel level. The proposed algorithm
is computationally less burdensome and exhibits a graceful
degradation against a number of training samples.

Tumor segmentation is used for neurosurgical planning to
extract the 3-dimensional shape from an MRI scan and its
relationship with the surrounding anatomy. Thillaikkarasi et
al.60 presented a novel DL algorithm (kernel based CNN) with
M-SVM to segment the tumor automatically and efficiently.
Experimental results of proposed method can show that this
presented technique can executes brain tumor segmentation
accurately reaching almost 84% in evaluation with existing
algorithms. Sharma et al.61 proposed a method of segmenta-
tion based on a statistical model called Hidden Markov Model
(HMM). The results obtained from parametric analysis show
that this algorithm has performed better than the technique
of Support Vector Regression (SVR) for brain cancer seg-
mentation, in terms of PSNR, MSE, Fault Rate Dust Detec-
tion (FRDD) and accuracy. Pushpa et al.62 presented a SVM
algorithm to segment the tumor. The proposed method ob-
tained a better accuracy in classifying the malignant tumor
(accuracy of 99%) comparing to the other existing systems.
Laukamp et al.63 used a multiparametric DL model on rou-
tine MRI data in automated detection and segmentation of
meningiomas in comparison to manual segmentation. The
DL model yielded accurate automated detection and segmen-
tation of meningioma tissue. Chen et al.64 adopted a Ran-
dom Forest-based feature selection methods to select the most
significant features. They developed a reliable MRI-based ra-
diomics approach to perform pathological and molecular di-
agnosis. Soltaninejad et al.65 suggested a novel 3D supervoxel
based learning method for segmentation of the tumor. The
method provides a close match to expert delineation across
all tumour grades, leading to a faster and more reproducible
method of brain tumour detection and delineation to aid pa-
tient management images. Sengupta et al.66 presented a semi-

automatic method for segmentation between non-enhancing
tumor and vasogenic edema, based on an SVM classifier
trained on an alternative ground truth to a radiologist’s man-
ual delineation of a tumor. The proposed methodology may
prove to be a useful tool for pre- and post-operative evaluation
of glioma patients. Rundo et al.67 implemented a novel fully
automatic method for necrosis extraction, using the Fuzzy
C-Means algorithm, after the gross tumor volume segmenta-
tion. This unsupervised ML technique detects and delineates
the necrotic regions also in heterogeneous cancers. Perkuhn
et al.68 evaluate a DL–based, automatic glioblastoma tumor
segmentation. The proposed approach for automatic segmen-
tation of this kind of tumor proved to be robust on routine
clinical data and showed on all tumor compartments an high
automatic detection rate and a high accuracy, comparable to
interrelated variability. Liu et al.69 combined CNN features
and SVM classifier for the segmentation task. Experiments
demonstrate that the cascaded CNN method achieves good tu-
mor segmentation result with a high DSI of 77.03%. Fabelo
emphet al.70 obtained the segmentation map via unsupervised
clustering employing a Hierarchical K-Means algorithm. It
demonstrated that the use of this method can improve the out-
comes of the undergoing patient, assisting neurosurgeons in
the resection of the brain tumor. Binaghi et al.71 suggested
a fully automatic procedure based on the allied use of Graph
Cut and SVM. Experimental results, obtained by processing
in-house collected data, prove that the method is robust and
oriented to the use in clinical practice.

Regarding brain lesion segmentation is used for the diag-
nosis and follow-up treatment. Sundaresan et al.72 used LO-
Cally Adaptive Threshold Estimation (LOCATE), a super-
vised method for determining optimal local thresholds to ap-
ply to the estimated lesion probability map, as an alternative
option to global thresholding. It allowed to detect more deep
lesions and provided better segmentation of periventricular le-
sion boundaries. Praveen et al.73 designed a deep architecture
is using SAE layers. The experimental results showed that the
proposed approach significantly outperforms the state-of-the-
art methods in terms of precision, DC, and recall.

Segmentation is also used for diagnosis and follow-up treat-
ment of brain injury. Remedios et al.74 used three neural net-
works to convergence on a CT brain hematoma segmentation
task. Resultant lesion masks with the multi-site model at-
tain an average DSI of 0.64 and the automatically segmented
hematoma volumes correlate to those done manually with a
Pearson Correlated Coefficient (PCC) of 0.87, corresponding
to an 8% and 5% improvement, respectively, over the single-
site model counterparts.

Segmentation is also used to evaluate deep surgical plan-
ning targets for DBS. Park et al.75 developed DL semantic
segmentation-based DBS targeting. A Fully Convolutional
Neural Network (FCNN) (VGG-16) was used to ensure mar-
gin identification by semantic segmentation. Proving that the
accuracy of DL-based semantic segmentation may surpass
that of previous methods.

Segmentation is used to evaluate deep surgical planning tar-
gets for epilespsy treatment. Hadar et al.76 implemented auto-
mated segmentation through the Corrective Learning Network
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(CLNet) method. It demonstrate the clinical utility of au-
tomated segmentation in the Temporal Lobe Epilepsy (TLE)
MR imaging pipeline prior to surgical resection, and suggest
that further investigation into CLNet-assisted MRI reading
could improve clinical outcomes.

Segmentation is used to assess cerebrovascular reconstruc-
tion. Li et al.77 implemented a novel intensity and shape-
based Markov statistical modeling for complete cerebrovascu-
lar segmentation. To regularize the individual data processes,
Markov regularization parameter is automatically estimated
by using a ML algorithm. This methods obtained satisfying
results in visual and quantitative evaluation. The proposed
method is capable of accurate cerebrovascular segmentation.
Lee et al.78 suggested a fully automated segmentation via un-
supervised classification with fuzzy c-means clustering to an-
alyze the Arteriovenous Malformation (AVM) nidus on T2-
weighted. The automated segmentation algorithm was able
to achieve classification of the AVM nidus components with
relative accuracy.

Human connectome research has attained growing inter-
est in neuroscience18,79. Computational methods, particularly
graph theory-based methods, have recently played an impor-
tant role in understanding the architecture of brain connectiv-
ity because of their notable ability to describe complex brain
systems22. Although graph theoretical approach can generally
be applied to either functional or structural connectivity pat-
terns, to date, most articles have concentrated on resting-state
functional connectivity. In this context, there has been an in-
creasing trend to identify biological markers for the charac-
terization of various brain disorders, including either cogni-
tive impairments and pathological alterations30. Connectivity
features alone offer promising diagnostic biomarkers, even if
several studies apply feature selection and ranking techniques
in order to reduce their complexity. Graph-theory derived
metrics and high-level network organization have also been
considered as valuable biomarkers and widely used in several
studies79.

Concerning the classification of brain disorders, during the
last decade, several conventional studies focus on binary clas-
sification tasks. They primarily seek to discriminate between
patients and Healthy Control (HC), as well as separating
patients into different sub-groups according to the different
stages of brain disorder progression. However, recent stud-
ies have also drawn their attention to multi-class classification
problems.

Table III present a summary of recent studies concerning
brain network based classification tasks. Among various brain
disease and disorders Alzheimer, Autism, Schizophrenia are
the most studied in recent years. However, several studies
are also focused on Parkinson’s disease, Multiple Sclerosis,
Tourette Syndrome, among others.

Among ML approaches based on classical ML algorithms,
a wide range of classifiers has been applied in the classifi-
cation of brain disorders. SVM is so far the most popular
method, as also observed in earlier reviews18,30.

Many studies are related to schizophrenia, bipolar disorder,
autism spectrum disorder, attention, AD and MCI. Kazem-
inejad et al.80, for example, used graph theoretical metrics of

fMRI-based functional connectivity of patients with Autism
and HC, to inform a SVM. They achieved state-of-the-art re-
sults (accuracy 96%), also observing that measures of cen-
trality provide the highest contribution. Lei et al.81, analysed
topological properties of patients with Schizophrenia, com-
paring them with HC. Connectome-wide connectivity allowed
single subject classification of patients and HC (average ac-
curacy 81%) better than both whole-brain images and graph-
based metrics. However, SVM is also widely used also in
other brain connectivity analysis applications. Saccà et al.32

used functional connectivity to train SVM, along with vari-
ous ML algorithms, to distinguish MS patients and HC. Fea-
ture selection was performed to identify the most important
variables. SVM and RF achieved the best results (85.7 %).
In82, SVM was used to classify patients with Tourette syn-
drome. They observed successful performance in children and
adults separately, which however, did not generalize across
age groups, suggesting that connectivity characteristics are
age specific. Weis et al.83, employed SVM to assess how ac-
curtely partecipant’s sex can be classified based on spatially
specific resting state brain connectivity.

Ensembles methods, such as RF or boosted trees, are
also a more popular choice in most applications since they
yield much better prediction performance. In31, authors used
tract-based connectivity metrics from structural connectome
to classify children with Autistic Spectrum Disorder (ASD).
High level of accuracy was achieved ( 75%), also observing
reduced density of connection edges in the posterior white
matter tracts of children with ASD. In84, functional connectiv-
ity, along with regional activities over a wide range of differ-
ent parcellation schemes, was used as input for an ensemble
ML algorithm. They outperformed earlier ML models built
for diagnosing Schizophrenia using rs-fMRI.

DL methods have attracted increasing interest in various ar-
eas and also have been applied in the classification of brain
disorders. Ju et al.85 used DL with functional brain network
and clinical relevant text information to make early diagnosis
of AD. Specifically, a targeted autoencoder is built to distin-
guish HC from MCI. The study revealed discriminative brain
network features and provided a reliable classifier for AD de-
tection (Accuracy 86%, AUC 0.91). In86, a six layer CNN
was trained using structural connectivity to classify among
patients with AD, Dementia and HC. A 3D-CNN architecture
was used in87 for the automated discrimination of Schizophre-
nia based on 3D-ICA based functional connectivity networks,
achieving promising results (Accuracy 98%, AUC 0.99). A
similar approach was proposed in88 for AD detection.

A 3D-CNN approach was also used in Khosla et al.89 for
Autism classification. An ensemble learning strategy to com-
bine the predictions from models trained on connectivity data
extracted using different parcellation schemas was proposed.
They observed how ensemble learning with stochastic par-
cellations outperform atlas-based models (Accuracy: 72%,
AUC: 0.77).
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B. Surgical Treatment

18 studies considered AI in surgical treatment. This in-
cludes surgical candidate selection, trajectory planning and
target definition with intra-operative segmentation of anatomi-
cal structures and localization of stimulation zones for Parkin-
son’s disease, epilepsy, and general neurosurgery. CT, MRI,
EHR, IUS and HSI data were used as input features for the
development of prediction algorithm. Results of the distribu-
tions for pathology, AI methods and type of data for surgical
treatment are reported in Figure 6.

As reported in Table. IV, AI were also useful to identify
patients who are potentially eligible for surgery as reported in
Senders et al.1 review. Wissel et al.90 validated a NLP ap-
plication that uses provider notes to assign epilepsy surgery
candidacy scores.

As reported in Table. V AI methods were used for target
definition using intra-operative segmentation and localization
of stimulation zones within the brain.

a. Intra-operative Segmentation . In Intra-operative
segmentation for general neurosurgery, Nitsch et al.91 pre-
sented a robust and fully automatic neural-network-based seg-
mentation of central structures of the brain on B-mode IUS.

In Intra-operative segmentation for DBS, Valsky et al.92,93

showed the feasibility of real-time ML classification of
striato-pallidal borders and Subthalamic Nucleus (STN) to as-
sist neurosurgeons during DBS surgery. ML algorithms en-
able real-time Globus Pallidus (GP) and STN navigation sys-
tems to potentially shorten the duration of electrophysiologi-
cal mapping of borders, while ensuring correct border detec-
tion.

b. Localization of stimulation zones within the brain .
AI methods were also used for brain lesion and Parkinson pa-
tients to localize the stimulation zone and estimate the volume
of activated tissue as previously reported by other reviews1,94.

Regarding Brain lesion stimulation zones, Ieong et al.95

presented a supervised ML method to obtain associations be-
tween EEG and fNIRS modalities to improve precision and lo-
calization in assessing neurovascular signals in the prefrontal
cortex in opiate addiction patients.

Regarding Parkinson’s disease stimulation zone, Wang et
al.96described a functional localization method in the brain.
Cubic SVM was used to train spike pattern recognition model
for functional localization with accuracy of 10% in nor-
mal monkey, and the evaluation of trained model demon-
strated reasonably excellent recognition accuracy of 99.5%.
Weighted KNN showed a better performance of accuracy
(94.5%) of spike pattern recognition for functional localiza-
tion than cubic SVM. These two works97,98 demonstrated that
The 7T-ML method is highly consistent with microelectrode-
recordings data. This method provides a reliable and accurate
patient-specific prediction for targeting the STN. Khosravi et
al.99 suggested an unsupervised ML technique to localize the
STN during DBS Surgery. Bermudez et al.100 used a patch-
based convolutional neural network to classify a stimulation
coordinate as having a positive reduction in symptoms during
surgery.

Regarding epilepsy stimulation zones, Cimbalnik et al.101

Figure 6. . Distribution of general applications for surgical treatment,
in the brain care literature, related to target definition and trajectory
definition. From top: Pathology, AI method and type of data

applied a support vector machine (SVM) model for accurate
localization of the epileptogenic tissue. The tissue under the
iEEG electrodes, classified as epileptogenic, was removed in
17/18 excellent outcome patients and was not entirely resected
in 8/10 poor outcome patients. The overall best result was
achieved in a subset of 9 excellent outcome patients with the
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area under the ROC=0.95. Bharath et al.102 proposed a SVM
to identify and validate the possible existence of resting-state.
This approach could classify individuals with epilepsy with
97.5% accuracy, 100% sensitivity and 94.4% specificity.

As reported in Table. VI, AI methods were used for preop-
erative trajectory definition as reported in Senders et al.29 re-
view. AI in geneneral neurosurgery can be used for assist the
surgeon preoperatively for the definition of an optimal trajec-
tory. Briefly, usually the algorithm aims are to minimize the
intracerebral catheter length, drilling angle from orthogonal to
skull, while maximizing distance from critical structures. Vil-
lanueva et al.103 proposed the use of a GA drastically reduces
the computational cost.

Liu et al.104 used a Vector-model-supported optimization
for brain tumor surgery. With this approach there was a signif-
icant reduction in the median planning time, a 40% reduction
from 3.7 to 2.2 hours.

Segato et al.105 presented a GA that drastically reduces the
number of trajectories to analyze, speeding up the preopera-
tive planning procedure for DBS in parkinson patients.

In three works93,106,107 two ML approaches, RF and lin-
ear regression, were investigated to predict composite abla-
tion scores and determine entry and target point combinations
that maximize ablation for Laser Interstitial Thermal Therapy
(LITT). RF and linear regression predictions had a high corre-
lation with the calculated values in the test set for both meth-
ods.

C. Intra-operative assistance

As reported in Table. VII, 2 studies considered AI in intra-
operative assistance. This includes modelling of tissue defor-
mation for brain tumor. MRI data ware used as input features
for the development of prediction algorithm. Results of the
distributions for pathology, AI methods and type of data for
diagnosis are reported in Figure 7

In modelling the tissue deformation for brain tumor surgery.
Sharma et al.61 developed a ML approach to detect and model
tissue deformation with classification of soft and hard tissues
so that the tissues having risk of future problem can also be
recognized. Tonutti et al.108 presented a real-time soft tissue
deformation computation method. A brain tumour was used
as the subject of the deformation model. Once trained, the
models can predict the deformation of the tumour in real-time
with relative positional errors below 0.3mm.

D. Post-operative assessment

As reported in Table. VIII, 9 studies considered AI in
post-operative assessment. This includes prediction of post-
operatice patient outcome for brain lesion, brain injury, brain
tumor, neurological disorder and general neurosurgery. CT,
MRI, EHR data were used as input features for the develop-
ment of prediction algorithm. Results of the distributions for
pathology, AI methods and type of data for surgical treatment
are reported in Figure 8 DL techniques can be used for test-

Figure 7. Distribution of general applications for intra-operative as-
sistance, in the brain care literature, related to intra-operative mod-
elling of tissue deformation. From top: Pathology, AI method and
type of data

ing the informativeness of neurosurgical operative reports for
predicting the duration of postoperative stay in a hospital29.
Shabo et al.109 applied a RNN to the word-embedded texts in
EHR. Results prove the potential utility of narrative medical
texts as a substrate for decision support technologies in neuro-
surgery. In two works110,111 six and seven ML algorithms, re-
spectively, were applied to construct Transsphenoidal Surgery
(TSS) response prediction models. The ML models showed
good discrimination ability and calibration, with the highest
levels of accuracy and specificity. The presented models was
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Figure 8. Distribution of general applications for post-operative as-
sessment, in the brain care literature, related to prediction of post-
operative patient outcome. From top: Pathology, AI method and
type of data

significantly better than that of some conventional models.

AI can be applied to investigate risk factors and predicting
complications in treatments used for the treatment of neuro-
logical disorders such as DBS and Dilated Cardiomyopathy
(DCM). A work of Farrokhi et al.112 reports results obtained
via supervised learning algorithms achieving high discrimina-
tion performance when predicting any complication. Merali
et al.113 applied a supervised ML approach to develop a clas-
sification model to predict individual patient outcome after
surgery for DCM. The best performing predictive model used
a RF structure and had an average AUC of 0.70, classification
accuracy of 77%, and sensitivity of 78% when evaluated on a
testing cohort that was not used for model training.

AI methods can be used for predicting inpatient Length of
Stay (LOS) after brain tumor surgery overall survival time.
Muhlestein et al.114 implemented an ML ensemble model to
predict LOS with good performance on internal and external
validation, and yields clinical insights that may potentially
improve patient outcomes. Nie et al.115 presented a multi-
channel architecture of 3D CNN for DL and a SVM to gen-
erate the prediction of overall survival time. The experimen-
tal results demonstrate that this multi-model, multi-channel
deep survival prediction framework achieves an accuracy of
90.66%, outperforming all the competing methods.

AI can be applied to investigate risk factors and predicting
complications in treatments used for the treatment of brain
lesion such as ischemic stroke. Hilbert et al.116 proposed
a DL approach for predicting outcomes of acute ischemic
stroke patients using CT angiography images. The model
outperformed the models using traditional radiological image
biomarkers in three out of four cross-validation folds for func-
tional outcome (average AUC of 0.71).

AI can also be applied to investigate mortality prediction af-
ter traumatic brain injury. Raj et al.117 used ML-based logistic
regression modeling to create two algorithms able to discrim-
inate between survivors and non-survivors with accuracies up
to 81% and 84%.

Table I: Anatomical information: Details on Clinical Aim, Type of data, Dataset,
AI Method, Benchmark measure and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Anatomical Information

Pang,201946
Classification

of various
brain disorders

Neurological
disorders

CT
MRI -

CNN
SVM
RF

Acc -

Talo,2019118
Classification

of various
brain disorders

Neurological
disorders MRI-T2WI - CNN Acc -

Spiteri,201941
Cerebellar

mutism syndrome
identification

Neurological
disorders MRI 40 SVM AUC

ROC -
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Squarcina,2019119 Bipolar disorders
classification

Neurological
disorders MRI-T1WI 75 Graph Based

semisupervision

Acc
Sp
Se

AUC

-

Ramasubbu,2019120
Depression

disorder
classification

Neurological
disorders

MRI-T1WI
clinical 44 SVM

Acc
Sp
Se

-

Zhou,201947 AD vs MCI
classification

Alzheimer’s
disease

MRI
PET

Gene sequence
805 DNN Acc -

Basaia,2019121 AD vs MCI
classification

Alzheimer’s
disease MRI-T1WI 1409 CNN Acc -

Spasov,2019122 AD vs MCI
classification

Alzheimer’s
disease MRI-T1WI 785 CNN Acc

AUC -

Wang,201945 AD vs MCI
classification

Alzheimer’s
disease MRI-T1WI 624 CNN

Acc
Pr

Rec
DSI

-

Mehdipour,2019123 AD progression
modeling

Alzheimer’s
disease MRI-T1WI 742 LSTM AUC

ROC -

Bohle,2019124 AD classification Alzheimer’s
disease MRI-T1WI 344 CNN Acc -

Martinez-Murcia,202057 AD diagnosis Alzheimer’s
disease MRI-MRI-T1WIWI 479 CNN

SVM

Se
Sp

Acc
DSI

-

Raza,2019125 AD diagnosis Alzheimer’s
disease MRI 432 CNN

SVM

Acc
Rec
Pr
Se
Sp

-

Wang,2019126 MCI vs AD
classification

Alzheimer’s
disease MRI-T1WI 624 CNN

Acc
Pr

Rec
DSI

-

Yamashita,201939 AD diagnosis Alzheimer’s
disease

PET
MRI 507 SVM

Acc
Pr

Rec
Sp

ROC

-

Benyoussef,2019127 AD diagnosis Alzheimer’s
disease MRI 416 CNN

KNN - -

Forouzannezhad,2019128 MCI diagnosis Alzheimer’s
disease

MRI
PET

clinical
- CNN

Acc
Sp
Se

-

Jabason,2019129 AD diagnosis Alzheimer’s
disease MRI-T1WI - CNN

Acc
Se
Sp

-

Khan,201949 AD diagnosis Alzheimer’s
disease MRI - CNN

Acc
Pr

Rec
DSI

-

Punjabi,2019130 AD classification Alzheimer’s
disease

MRI-T1WI
PET 723 CNN Acc -

Kim,2019131 AD vs Dementia
classification

Alzheimer’s
disease MRI-T1WI 339 LDA

Acc
Sp
Se

AUC

-

Sato,2019132 AD classification Alzheimer’s
disease PET 379 CNN AUC

ROC -

Eitel,201954 MS diagnosis MS MRI-T2WI 147 CNN Acc
AUC -
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Mato-Abad,2019133 MS classification MS DWI 34 Naive Bayes
DNN

AUC
ROC -

Ebdrup,201944 Diagnosis of
Schizophrenia Schizophrenia MRI

EHR 104
SVM
RF
DT

Acc -

Talpalaru,2019134 Schizophrenia
identification Schizophrenia MRI-T1WI 167

Logistic Regression
RF

SVM

ROC
AUC -

Kniep,201942
Metastatic

Tumor Type
classification

Brain
tumor

MRI-T1WI
MRI-FLAIR 189 RF Acc

AUC -

Kunimatsu,201937 Tumor type
classification

Brain
tumor MRI-T1WI 76 SVM

Se
Sp

AUC
-

Wu,201943 Tumor type
classification

Brain
tumor MRI 126 RF Acc

AUC -

Kebir,2019135 Tumor type
classification

Brain
tumor

MRI
PET 39 SVM ROC

AUC -

Swati,201948 Tumor type
classification

Brain
tumor MRI 233 CNN

Acc
Pr

Rec
Sp

DSI

-

Jeong,2019136 Tumor type
classification

Brain
tumor

MRI-T2WI
MRI-FLAIR 25 RF Acc

AUC -

Pan,2019137 Tumor mutation
prediction

Brain
tumor

MRI-T1WI
MRI-T2WI 151 RF Acc

AUC -

Sultan,2019138 Tumor type
classification

Brain
tumor MRI-T1WI 233 + 73 CNN

Acc
Pr
Se
Sp

-

Ozyurt,2020139 Brain tumor
detection

Brain
tumor MRI-T1WI 500 CNN

Acc
AUC
ROC

-

Ahammed,2019140 Tumor grade
identification

Brain
tumor MRI-T2WI 20 CNN

Acc
Pr

Rec
DSI
Se
Sp

-

Wang,201955 Diagnosis of
liver tumor

Brain
tumor MRI 334 CNN

PPV
Se
Pr

Rec

-

Shrot,201940 Tumor type
classification

Brain
tumor

MRI
DTI 141 SVM

Acc
Sp
Se

-

Rehman,201950 Tumor type
classification

Brain
tumor MRI 233 CNN

SVM

Acc
Pr
Se
Sp

-

Tian,2019141

Glioblastoma
vs Analplastic
Astrocytoma
classification

Brain
tumor MRI-T1WI 123 LDA

Se
Sp

AUC
-

Ortiz-Ramon,2019142
Ischaemic Stroke

lesions
identification

Brain
lesions

MRI-T1WI
MRI-T2WI

MRI-FLAIR
100 RF

SVM AUC -

Lau,2019143 WM hypertensity
detection

Brain
lesions

MRI-T1WI
MRI-T2WI

MRI-FLAIR
180 DNN

Se
Sp

AUC
-
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Kim,2019144
Ischaemic Stroke

lesions
identification

Brain
lesions EHR - DT

Acc
Pr

Rec
DSI

-

Shen,2019145
Parkinson’s

disease
diagnosis

Parkinson’s
disease PET 350 Deep

Belief Network

Acc
Se
Sp

-

Lee,201953 haemorrhage
detection

Cerebral
artery CT 196 CNN

Se
Sp

AUC
-

Ker,2019146
brain

haemmorhage
detection

Cerebral
artery CT 399 CNN DSI -

Dawud,2019147 haemorrhage
classification

Cerebral
artery CT - CNN

SVM Acc -

Liu,2019148
Cerebral

microbleed
detection

Cerebral
artery MRI 255 CNN AUC

ROC -

Gunter,201938 DESH detection Other MRI-T1WI 1576 SVM AUC
ROC -

Xin,2019149 Gender
identification Other diffusion MR 1065 CNN Acc -

Table II: Morphological information: Details on Clinical Aim, Pathol-
ogy/Anatomical area, Type of data, Dataset, AI Method, Benchmark measure
and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Morpholoical Information

Yepes,201858
Determine

the quantity
of CSF

Neurological
disorders MRI-T1WI 44 SVM Acc 94%

Cherukuri,201859
Determine

the quantity
of CSF

Neurological
disorders CT 15 CNN Time 0.003sec

Thillaikkarasi,201960 Early detection
of brain tumor

Brain
tumor MRI 40 CNN

SVM

Acc
Error
Time

98%
15%
15ms

Sharma,201961

Simulating tissue
deformation and

locating
cancerous nodes

Brain
tumor MRI-T1WI 6 HMM

Acc
PSNR
MSE

FRDD

88%
21

985mm
72%

Pushpa,201962
Detect and
classify the
tumor type

Brain
tumor MRI 60 SVM Acc 99%

Rundo,201867
Necrosis

extraction of
brain tumor

Brain
tumor MRI 32 Fuzzy C-Means DSI

MAD
95.93%
0.22px

Laukamp,201963
Volumetric

assessment of
meningiomas

Brain
tumor

MRI-T1WI
MRI-T2WI 56 CNN

FCNN DSI 81%

Chen,201964

Detect
mutations in

craniopharyngioma
patients

Brain
tumor MRI-T1WI 44 RF

AUC
Acc
Sp
Se

89%
86%
85%

Soltanine,201865
Segmentation

of brain
tumor

Brain
tumor

MRI
MRI-DTI 30 RF

DSI
Se

Error

89%
96%
2%

Sengupta,201866
Segmentation

of brain
tumor

Brain
tumor

MRI-T1WI
MRI-T2WI 9 SVM Error 8.2%
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Perkuhn,201868
Segmentation

of brain
tumor

Brain
tumor

MRI-T1WI
MRI-T2WI

MRI-FLAIR
64 CNN

FCNN DSI 86%

Liu,201869
Segmentation

of brain
tumor

Brain
tumor MRI - CNN

SVM
DSI
Acc

77.03%
94.85%

Fabelo,201870
Segmentation

of brain
tumor

Brain
tumor HSI 5 K-Means

Acc
Se
Se

99%
96%
96%

Binaghi,201971
Segmentation

of
meningiomas

Brain
tumor

MRI-T1WI
MRI-T2WI 15 SVM

JD
DSI
Error

81%
88.9%

21.74%

Sundaresan,201972 Lesion segmentation Brain
lesions

MRI-T1WI
MRI-T2WI

MRI-FLAIR
60 Supervised Learning

LOCATE DSI 70%

Praveen,201873
Segmentation
of ischemic
stroke lesion

Brain
lesion MRI 28 SAE

SVM

DSI
Sp

Acc
Se

94.3%
96.8%
90.4%
92.4%

Remedios,201974 Segmentation
of brain injury

Brain
injury CT - 3 ANN DSI

PCC
64%
87%

Park,201975 Segmentation
for DBS

Parkinson’s
disease MRI-T2WI 102 FCNN

DSI
Acc
JD

90.2%
90.4%
81.3%

Hadar,201876

Hippocampal
segmentation
in temporal

lobe epilepsy

Epilepsy MRI-T1WI 47 CLNet DSI 85%

Li,202077 Cerebrovascular
segmentation

Cerebral
artery MRI-T1WI 109 HMM DSI 93%

Lee,201978 AVM identification
and quantification

Cerebral
artery MRI-T2WI 39 Fuzzy C-Means

DSI
Se
Sp

79.5%
73.5%
85.5%

Table III: Connectivity information: Details on Clinical Aim, Pathol-
ogy/Anatomical area, Type of data, Dataset, AI Method, Benchmark measure
and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Connectivity Information

Nielsen,202082
Tourette
syndome
analysis

Neurological
disease FC 202 SVM Acc 71%

Hirshfeld-Becker,2019150 Depression
diagnosis

Neurological
disease

FC
(longitudinal) 68 SVM

Acc
Se
Sp

92%
90%
93%

Liu,2019151 Depression
diagnosis

Neurological
disease FC 85 LR

Acc
Se
Sp

AUC

77%
84%
72%
87%

Shao,2019152
Bipolar

disorders
classification

Neurological
disease

FC
(longitudinal) 200 SVM

Acc
Se
Sp

78.13%
82%
75%

DSouza,2019153
HiV-associated

disorders
analysis

Neurological
disease FC 29 AdaBoost Acc

AUC
79%
84%

Ju,201985 AD diagnosis Alzheimer’s
disease FC 170 DNN

Acc
Se
Sp

AUC

86.47%
92%
81%
91%
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Li,2019154 AD diagnosis Alzheimer’s
disease FC 26

292 SVM

Acc
Se
Sp

AUC

84.6%
92%
79%
0.80

Li,2019155 MCI diagnosis Alzheimer’s
disease FC 73 DNN

Acc
Se
Sp

80.82%
81%
81%

Song,2019156 AD diagnosis Alzheimer’s
disease FC 30 KNN

Acc
Se
Sp

AUC

96%
94%
1%
98%

Wada,201986 AD vs Dementia
classification

Alzheimer’s
disease FC 48 CNN

Acc
Pr

Rec

73%
78%
73%

Qureshi,201988 AD progression
analysis

Alzheimer’s
disease FC 133 CNN

Acc
Sp
Se

92%
95%
70%

Nguyen,201934 Dementia
diagnosis

Alzheimer’s
disease FC 95 ELM

Acc
Se
Sp

PPV
NPV

89.92%
87%
84%
94%

87.40%

Peraza,2019157 AD diagnosis Alzheimer’s
disease SC 78 SVM

Acc
Se
Sp

AUC

89.07%
79%
99%
78%

Kam,201935 MCI diagnosis Alzheimer’s
disease FC 49 CNN

Acc
Se
Sp

PPV
NPV

73.85%
74%
74%

74.38%
73.79%

Wang,2019158 AD diagnosis Alzheimer’s
disease

SC
(multimodal) 211 LR

Acc1

Acc1

Acc1

97%
83%
97%

Azarmi,2019159 MS diagnosis MS FC 20 SVM
Acc
Se
Sp

95%
0.88%
100%

Sacca,201932 MS diagnosis MS FC 37 SVM
RF

Acc
Se
Sp

PPV
NPV

85.7%
100%
67%
60%

100%

Lisowska,2019160 Dementia
diagnosis Dementia SC 84 SVM

Acc
Se
Sp

AUC

76.88%
67%
78%
76%

Wang,2019161 Autism
diagnosis

Autism
spectrum
disorder

FC 1112 Sparse MVTC

Acc
Se
Sp

AUC

73%
79%
64%
72%

Kazeminejad,201980 Autism
classification

Autism
spectrum
disorder

FC 816 SVM
Acc
Se
Sp

95%
97%
95%

Payabvash,201931 Autism
diagnosis

Autism
spectrum
disorder

SC 47 RF
Acc
Sp

PPV

75.3%
97%

81.5%

Yamagata,2019162 Autism
diagnosis

Autism
spectrum
disorder

FC 60 LR Acc
AUC

75%
78%
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Khosla,201989 Autism
diagnosis

Autism
spectrum
disorder

FC

387
389
213
163

CNN Acc
AUC

100%
77%

Song,2019163 Autism
diagnosis

Autism
spectrum
disorder

FC 39 LDA
Acc
Pr

Rec

82.08%
81%
81%

Dekhil,2019164 Autism
diagnosis

Autism
spectrum
disorder

FC 185 RF

Acc
Se
Sp

AUC

81%
85%
79%
0.82

Wang,2019165 Autism
diagnosis

Autism
spectrum
disorder

FC 531 SVM
Acc
Se
Sp

90.60%
91%
91%

Kalmady,201984 Schizophrenia
diagnosis Schizophrenia FC 174 Ensemble

Learner

Acc
Se
Sp
Pr

87%
80%
93%
92%

Lei,201981 Schizophrenia
diagnosis Schizophrenia FC 747 SVM Acc 81.74%

Li,2019166 Schizophrenia
diagnosis Schizophrenia FC 148 LDA Acc 76.34%

Qureshi,201987 Schizophrenia
diagnosis Schizophrenia FC 144 CNN Acc

AUC
98.09%

99%

Phang,2019167 Schizophrenia
diagnosis Schizophrenia FC

(multimodal) 84 CNN

Acc
Se
Sp
Pr

90.37%
91%
90%
92%

Deng,2019168 Schizophrenia
diagnosis Schizophrenia SC 125 RF

Acc
Se
Sp

AUC

71%
67%
75%
79%

Zhao,2019169 Schizophrenia
diagnosis Schizophrenia FC

SC 283 SVM
Acc
Se
Sp

91.75%
91%
93%

Rangaprakash,2019170 Neurotrauma
analysis Brain injury FC 87 SVM Acc 81.4%

Rubbert,2019171
Parkinson’s

disease
diagnosis

Parkinson’s
disease FC 89 LR

Acc
Sp
Se

76.2%
72%
81%

Baggio,2019172
Parkinson’s

disease
diagnosis

Parkinson’s
disease FC 151 SVM

Acc
Se
Sp

77.17%
80%
77%

Pena-Nogales,2019173
Parkinson’s

disease
progression analysis

Parkinson’s
disease SC 51 LR

Acc
Se
Sp

AUC

84%
91%
77%
89%

Bharath,2019174 Epilepsy
diagnosis Epilepsy FC 132 SVM

Acc
Se
Sp

97.5%
100%
94%

Nielsen,2019175 Brain maturity
prediction Other FC 122

SVM
Multivariate

Analysis
IGV 57%

Zhigalov,2019176
Attentional

states
classification

Other FC 24 SVM
Acc1

Acc2

Acc3

62%
62%
55%

Brauchli,2019177 Absolute pitch
identification Other FC 100 SVM Acc 71.75%

Fede,2019178
Alcohol use

severity
classification

Other SC
FC

59
24 Linear Regression IGV -
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Weis,201983 Gender
classification Other FC

434
410
941

SVM Acc 70.33%

Bidelman,2019179
Age-related
hearing loss
prediction

Other FC 32 SVM
Acc
AUC
DSC

85.7%
88%
86%

Wetherill,2019180
Nicotine use

disorder
identification

Other FC 216 SVM Acc
AUC

88.1%
93%

Chen,201933 Fatigue
identification Other FC 16 SVM

Acc
Pr
Se

FAR

94.4%
94%
95%
5.7%

Al-Zubaidi,2019181 Metabolic state
classification Other FC 24 SVM

Acc
Se
Sp

81%
89%
83%

Shen,2019145
Chronic low

back pain
analysis

Other FC 160
37 SVM

Acc1

Se1

Sp1

Acc2

Se2

Sp2

79.3%
83%
74%
67%
72%

Chriskos,2020182 Sleep state
classification Other FC 23 CNN Acc

Rec
99.85%
100%

Feng,2019183
Prediction

of dispositional
worry

Other SC 59 LR RMSE
p

13.65%
< 0.005

Table IV: Surgical candidate selection: Details on Clinical Aim, Pathol-
ogy/Anatomical area, Type of data, Dataset, AI Method, Benchmark measure
and Results

First author,
Year of publication. Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Surgical Candidate Selection

Wissel,201990 Candidate
selection Epilepsy EHR 4211 NLP

SVM

AUC
Se
Sp

80%
77%

Table V: Target definition: Details on Clinical Aim, Pathology/Anatomical area,
Type of data, Dataset, AI Method, Benchmark measure and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Intra-operative Segmentation

Nitsch,201991
Segmentation

of central ultrasound
images

Neurosurgery IUS
MRI 18 ANN DSI

HDD
88%

5.21mm

Valsky,201992
Segmentation

of striato
borders

Parkinson’s
disease MER 42 HMM - -

Valisky,201793
Discrimination

between
the STN and SN

Parkinson’s
disease

CT
MRI 46 SVM pFDR

Time
<0.05%
-98%

Localization of Epileptic Zones Within the Brain

Ieong,201995

localization
of lesion

due to
oppiate

Brain
lesion

EEG
fNIRS 19

SVM
GBM
ANN

PCC 55%

Wang,201996 Functional
localization

Parkinson’s
disease MER 1

K-Means
SVM
KNN

Acc 96%
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Shamir,201997 Visualize
STN

Parkinson’s
disease MRI 16 RF Acc 93%

Kim,201998 Visualize
STN

Parkinson’s
disease MRI 80 RF

CMD
MSD
DSI
Acc

1.25mm
0.57mm

64%
89%

Khosravi,201999 Visualize
STN

Parkinson’s
disease MER 50 K-Means Acc 80%

Bermudez,2019100

Localization
of the optimal

stimulation
zone

Parkinson’s
disease MRI 187 CNN AUC 67%

Cimbalnik,2019101
Localization
of epileptic

foci
Epilepsy EEG 9 SVM AUC <95%

Bharath,2019102
Localization

epilepsy
Network

Epilepsy MRI-T1WI 42 SVM
Acc
Sp
Se

97.5%
94.4%
100%

Table VI: Trajectory definition: Details on Clinical Aim, Pathology/Anatomical
area, Type of data, Dataset, AI Method, Benchmark measure and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Trajectory Definition

Villanueva,2018103

Risk
assessment

for trajectory
planning

Neurosurgery CT
MRI 1 GA Risk

Time
2347
-98%

Liu,2017104
Planning

stereotactic
radiotherapy

Brain
Tumor

CT
MRI 46 SVM pFDR

Time
<0.05%
-98%

Valisky,201793

Discrimination
between
the STN
and SN

Parkinson’s
disease

CT
MRI 46 SVM pFDR

Time
<0.05%
-98%

Segato,2019105 Curvilinear
DBS

Parkinson’s
disease

MRI-T1WI
DTI
CT

10 GA MSD
mSD

+145%
+25%

Li,2019106
Computer
assisted
planning

Epilepsy MRI-T1WI
CT 10 RF

Linear Regression PCC 70%

Vakharia,2019107
Trajectory
planning
for laser

Epilepsy MRI-T1WI 95 RF
Linear Regression

Risk
Length
Angle
MSD

1.1%
93.5mm
28.8 ◦

6.7mm

Table VII: Intra-operative assistance: Details on Clinical Aim, Pathol-
ogy/Anatomical area, Type of data, Dataset, AI Method, Benchmark measure
and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Modelling of Tissue Deformation

Sharma,2019184
Modelling
of tissue

deformation

Brain
tumor MRI 4 SVR

PSNR
MSE

FRDD
Acc

17.31%
1240mm

54%
80%

Tonutti,2019108
Modelling
of tissue

deformation

Brain
tumor MRI 1 ANN

SVR

MSE
Error
Time

0.11mm2

0.3mm
3.1sec
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Table VIII: Prediction assessment: Details on Clinical Aim, Pathol-
ogy/Anatomical area, Type of data, Dataset, AI Method, Benchmark measure
and Results

First author,
Year of publication Clinical Aim Pathology,

Anatomical area Type of data Dataset AI Method(s) Benchmark
measure Results

Prediction of Post-operative Patient Outcome

Shabo,2019109
Postoperative
ospitalization

prediction
Neurosurgery EHR - RNN MAE 2.8 days

Fan,2019110
TSS

response
prediction

Neurosurgery EHR - GBDT AUC 81%

Liu,2019111 CD recurrency
prediction Neurosurgery EHR 354 RF AUC 0.78%

Farrokhi,2019112 DBS outcome
prediction

Neurological
disorders EHR 501 GBM

AUC
Se
Sp

Acc

-

Merali,2019113
Postoperative

outcome
prediction

Neurological
disorders EHR 757

KNN
RF

SVM
Logistic regression

ANN

AUC
Acc
Se

70%
77%
78%

Muhlestein,2019114 Postoperative
ospitalization prediction

Brain
tumor EHR 41222 29 ML Methods RMSLE 55%

Nie ,2019115 Survival
prediction

Brain
tumor

MRI-T1WI
MRI-DTI 68 CNN

SVM Acc 90.66%

Hilbert,2019116 reperfusion
prediction

Brain
lesion CT 1301 RFNN AUC1

AUC2
71%
65%

Raj ,2019117 Mortality prediction Brain
injury CT 472 Logistic

regression

AUC1

AUC2

Acc

67-81%
72-84%
81-84%

Table IX: Benchmark measures explained
Benchmark measures definition
Acc (Accuracy) is the proportion of correct predictions among the total no. of predictions (TP +

TN)/total population.
Sp (Specificity) is the proportion of negatively classified cases among the total no. of negative cases;

TN/(TN + FP).
Se (Sensitivity) is the proportion of positively classified cases among the total no. of positive cases;

TP/(TP + FN);
TP (True Positive) is an outcome where the model correctly predicts the positive class.
TN (True Negative) is an outcome where the model correctly predicts the negative class.
FP (False Positive) is where you receive a positive result for a test, when you should have received a

negative results.
FN(False Negative) is where you receive a negative result for a test, when you should have received a

positive results.
Error (Error rate) refer to the frequency of errors occurred, defined as “the ratio of total number of data

units in error to the total number of data units transmitted.”
Risk (Risk Score) is designed to represent an underlying probability of an adverse event denoted Y = 1

given a vector of P explaining variables X containing measurements of the relevant
risk factors.

Time (Time complexity) is the computational complexity that describes the amount of time it takes to run an
algorithm.

JD (Jaccard Coefficient) also known as Intersection over Union and the Jaccard similarity coefficient, is a
statistic used for gauging the similarity and diversity of sample sets. The Jaccard
coefficient measures similarity between finite sample sets, and is defined as the size
of the intersection divided by the size of the union of the sample sets
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DSI (Dice Similarity Index) Statistic for similarity.
PSNR (Peak Signal-to-Noise Ratio) represents the ratio between the maximum possible power of a signal and the power

of corrupting noise that affects the fidelity of its representation.
MSE (Mean Square Error) measures the average of the squares of the errors.
RMSE (Root Mean Square Error) measures the standard deviation of the residual.
FRDD (Fault Rate Dust Detection) is calculated as FRDD = (T P+FN)/(T P+T N +FP+FN)
PCC (Pearson Correlation Coefficient) is a measure of the linear correlation between two variables X and Y.
HDD (Hausdorff distance) measures how far two subsets of a metric space are from each other.
AUC (Area Under the Curve) is a graphical plot illustrating the sensitivity as a function of “1 – specificity” in a

binary classifier with a varying discrimination threshold. The area under the curve
corresponds to the probability that a binary classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one; range 0 to 1.

MAD (Mean Absolute Distance) is the average absolute distance between two surface points.
CMD (Center of mass distance) is the distance between two center of mass of surface points.
MSD (Mean distance of surface point) is the average distance between two surface points.
mSD (Min distance of surface point) is the minimum distance between two surface points.
pFDR (Positive False Discovery Rate) can be written as pFDR = E[V /R|R > 0]. Where V is the number of false posi-

tives (Type I error),R is the number of rejected null hypotheses. The term “positive”
describes the fact that we have conditioned on at least one positive finding having
occurred.

MAE (Mean Absolute Error) is an average of the absolute errors. |ei|= |yi-xi|, where yi is the prediction and xi the
true value.

RMSLE (Root Mean Square Logarithmic Error) measures the ratio between actual and predicted. It is then sqrt(mean(squared loga-
rithmic errors)).

Rec (Recall) quantifies the number of positive class predictions made out of all positive examples
in the dataset. It is calculated as the number of TP divided by the total number of TP
and FN.

Pr (Precision) quantifies the number of positive class predictions that actually belong to the positive
class. It is calculated as the ratio of correctly predicted positive examples divided by
the total number of positive examples that were predicted.

PPV (Positive Predictive Value) is the probability that subjects with a positive screening test truly have the disease.
NPV (Negativr Predictive Value) is the probability that subjects with a negative screening test truly don’t have the

disease.
FAR (False Alarm Rate) is the number of false alarms per the total number of warnings or alarms in a given

study or situation.
ROC (Receiver operating characteristic) is created by plotting the true positive rate against the false positive rate at various

threshold settings.
IGV (Inter-group Variance) refers to variations caused by differences within individual groups.

Table X: AI Algorithm explained
AI Algorithm Mechanism
Regression Algorithms Regression is concerned with modeling the relationship between variables that is iter-

atively refined using a measure of error in the predictions made by the model.
Linear Regression Relationships between variables are modeled by fitting a linear equation to observed

data.
Logistic Regression Explains the relationship between one dependent binary variable and one or more

independent variable regressing for the probability of a categorical outcome using a
logistic function.

Instance-based Algorithms Instance-based learning model is a decision problem with instances or examples of
training data that are deemed important or required to the model. Such methods typi-
cally build up a database of example data and compare new data to the database using
a similarity measure in order to find the best match and make a prediction.

KNN (k-Nearest Neighbor) Categorize instances based on their similarity with the neighborhood, defined using a
proper similarity function (e.g. Eulidean distance).

SVM (Support Vector Machines) Search for an optimal separating hyperplane between classes that maximizes the mar-
gin, i.e., the distance from hyperplane to points closest to it on either side.

Bayesian Algorithms Bayesian methods are those that explicitly apply Bayes’ Theorem for problems such
as classification and regression.

NB (Naive Bayes) Apply Bayes’ theorem with the naive assumption of conditional independence be-
tween the features.
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Clustering Algorithms Clustering, like regression, describes the class of problem and the class of methods.
K-Means By following an iterative procedure, the algorithm create K partitions and assign entry

points to each partition using some heuristic (e.g. similarity with a representative
point called centroid).

Fuzzy C-Means Allows one piece of data to belong to two or more clusters. The procedure is car-
ried out through an iterative optimization of an objective function, with the update of
membership of each data point in each cluster.

HMM (Hidden Markov Model) A Markov chain in which states are not directly observable.
SAE (Sparse Autoencoder) DNN models trained at reproducing their inputs. Using proper loss function the model

is forced to rely on a small number of neurons (sparsity).
Artificial Neural Network Algorithms Artificial Neural Networks are models that are inspired by the structure and/or func-

tion of biological neural networks. They are a class of pattern matching that are
commonly used for regression and classification problems but are really an enormous
subfield comprised of hundreds of algorithms and variations for all manner of problem
types.

ANN (Artificial Neural Network) Network of highly interconnected processing units, which process information by
their dynamic state response to external inputs

Deep Learning Algorithms Modern update to Artificial Neural Networks that exploit abundant cheap computa-
tion. They are concerned with building much larger and more complex neural net-
works and, as commented on above, many methods are concerned with very large
datasets of labelled analog data

FCNN (Fully Connected Neural Network) ANN in which each unit in a layer is connected with all the units in the next layer.
CNN (Convolutional Neural Network) ANN in which the fully-connected operations by convolutions with a set of learnable

filters.
CLNet (Corrective Learning Network) Explicitly learn a mapping from a new speech segment and the current predictions, to

a correction
RNN (Recurrent Neural Networks) Allows you to model a temporal dynamic behavior dependent on the information

received at the previous instants of time by interconnecting higher levels with lower
levels.

RFNN (Recurrent Fuzzy Neural Networks) Finds the parameters of a fuzzy system (i.e., fuzzy sets, fuzzy rules) by exploiting
approximation techniques from neural networks.

LSTM (Long Short-Term Memory Networks) Special kind of RNN, capable of learning long-term dependencies.
DBN (Deep Belief Networks) Stack of Restricted Boltzmann Machines, where the nodes in each layer are connected

to all the nodes in the previous and subsequent layer.
ELM (Extreme Learning Machines) Single hidden layer NN where the weights between inputs and hidden nodes are ran-

domly assigned and remain constant during training and predicting phases.
Dimensionality Reduction Algorithms Like clustering methods, dimensionality reduction seek and exploit the inherent struc-

ture in the data, but in this case in an unsupervised manner or order to summarize or
describe data using less information. This can be useful to visualize dimensional data
or to simplify data which can then be used in a supervised learning method. Many of
these methods can be adapted for use in classification and regression.

LDA (Linear Discriminant Analysis) Projects a dataset of n-dimensional samples onto a latent subspace k (k≤ n−1) while
preserving class-discriminatory information.

Ensemble Algorithms Ensemble methods are models composed of multiple weaker models that are indepen-
dently trained and whose predictions are combined in some way to make the overall
prediction.

AdaBoost The algorithm generates H hypotheses through an ensemble of learning algorithms.
The output of the learning algorithms is combined into a weighted sum that represents
the final output of the boosted classifier.

RF (Random Forest) Consists of a large number of individual decision trees that operate as an ensemble.
Each individual tree outputs a class prediction and the class with the most votes rep-
resents the model’s prediction.

GBM (Gradient Boosting Machines) ML technique providing a prediction model in the form of an ensemble of weak pre-
diction models

GBRT (Gradient Boosted Regression Trees) GBM with decision tree predictors.
Sparse MVTC (Sparse Multi-View Task-
Centralize)

multi-view and multi-task ensemble classification method for image-based ASD
diagnosis.

Other Artificial Intelligence Algorithms
GA (Genetic Algorithm) A number of candidate solutions (individuals) for a problem are created. The algo-

rithm reflects the process of natural selection where the fittest individuals are selected
for reproduction in order to produce offspring of the next generation. Fitness is eval-
uated by a proper optimization function.
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NLP (Natural Language Processing) Techniques to process and understand the natural language.
GBS (Graph Based Semisupervision) Semisupervised learning method in which labeled and unlabeled data are jointly rep-

resented as a weighted graph; the resulting graph structure is then used as a constraint
during the classification of unlabeled data points.

Multivariate Analysis Involves observation and analysis of more than one statistical outcome variable at a
time.

Supervised LOCATE (LOCally Adaptive Thresh-
old Estimation)

Determines the optimal local thresholds to apply to the estimated lesion probability
map, as an alternative option to global thresholding.

Table XI: Type of Data explained
Type of data Definition
Medical Imaging
MRI (Magnetic Resonance Imaging) MRI uses a strong magnet and radiofrequency (RF) waves to provide clear and de-

tailed pictures of internal organs and tissues.
MRI-T1WI (T1 Weighted Image) T1 weighted image is one of the basic pulse sequences in MRI and demonstrates

differences in the T1 relaxation times of tissues.
MRI-T2WI (T2 Weighted Imaging) T2 weighted image is one of the basic pulse sequences in MRI. The sequence weight-

ing highlights differences in the T2 relaxation time of tissues.
MRI-FLAIR (Fluid-attenuated Inversion
Recovery)

FLAIR is an MRI sequence with an inversion recovery set to null fluids.

MRI-DWI (Diffusion Weighted Imaging) DWI measures the strength of molecular motions of diffusion within a tissue structure
or boundaries of white and gray matter brain tissues and brain lesions which have their
own diffusion criteria and can be restricted by the diseases

MRI-DTI (Diffusion tensor imaging) DTI is a magnetic resonance imaging technique that enables the measurement of the
restricted diffusion of water in tissue in order to produce neural tract images instead
of using this data solely for the purpose of assigning contrast or colors to pixels in a
cross-sectional image

PET (Positron Emission Tomography)) PET offers superior soft-tissue contrast and a means of assessing cellular density with
diffusion-weighted imaging

CT (Computed Tomography) Uses computer-processed adaptations of several X-ray measurements taken from var-
ious angles to produce cross-section (tomographic) images.

IUS (Intra-operative Ultrasound) IUS is a Dynamic imaging modality based on ultrasounds that provides interactive
and timely information during surgical procedures.

fNIRS (Functional Near-Infrared Spectroscopy) fNIRS is Noninvasive optical imaging technique used to monitor changes in
hemoglobin (Hb) amounts within the brain by means of the characteristic absorption
spectra of Hb in the near-infrared range.

HSI (Hyperspectral Imaging) HSI is an imaging techniques based on capturing and processing of an image using
information from all over the electromagnetic spectrum.

Connectivity
FC (Functional Connectivity) FC is a network representing temporal dependency of neuronal activation patterns of

anatomically separated brain regions.
SC (Structural Connectivity) SC is a network representing anatomical brain regions connected each other through

fiber bundles.
Other data
MER (Microelectrode Recording) MER is a technique used to recording electrical patterns from surrounding brain

structures.
EEG (Electroencephalography) EEG ia a technique for recording and interpreting the electrical activity of the brain.
Gene sequence Gene sequence are string of data representing the order of nucleotides in DNA.
EHR (Electronic Health Record) EHR are digital version of a patient’s paper chart.

VIII. DISCUSSION

AI algorithms have increasingly caught, in recent years, the
attention of many researchers in the neuroscience field. ML,
in particular, have been used for finding ways to increase qual-
ity and precision of diagnosis and peri-operational decision-
making, in order to improve neurosurgical treatments. In
this work, a systematic review of the recent applications of
AI in brain care was presented. Four main categories have

been found and analysed both quantitatively and qualitatively,
namely diagnosis, surgical treatment, intra-operative assis-
tance and post-operative assessment.

Concerning diagnosis, CNN models are widely adopted.
However, despite DL architectures having been demonstrated
to be able to achieve excellent results, they present several
drawbacks which need to be taken into account. One of the
most difficult issues to address, is the large amount of data
to minimize overfitting and improve performances. How-
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ever, obtaining them might not be trivial. Several works face
this issue by designing proper frameworks which are able to
achieve excellent results even using relatively limited amounts
of data53,121, training from incomplete data123 and by the
adoption of semi-supervised and unsupervised techniques119.
These algorithms, indeed, remain a black box in terms of the
bases on top of which the predictions are generated from the
input data. For this reason, “explainability” will be a cru-
cial part of the development of new algorithms and many re-
searches follow this direction. To this aim, an interesting al-
ternative is represented by brain connectivity representation
of the human brain. Such kind of data allow to represent
the brain using mathematical models, opening a remarkable
opportunities to study hidden pathological alterations outside
visible objects in conventional images. High performance has
been achieved using classical ML and DL models for the di-
agnosis and inter-class classification of several neurodegener-
ative diseases. An interesting perspective in this sense can be
open by the use of novel graph-based DL approaches, includ-
ing Graph Neural Networks185. Notwithstanding, as pointed
out in related studies8, a major limitation is still the limited
sample size, which, however, has started to be overcame by
the availability of public datasets; it is worth to mention here
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)186

and The Human Connectome Project187.
Concerning surgical treatment, EHR data can be use to

select candidate potentially eligible for surgery. As previ-
ously mentioned, by Wissel et al.90, an electronic health
record–integrated NLP application can accurately assign sur-
gical candidacy scores to patients in a clinical setting. In sur-
gical planning, brain structure demarcation may be inaccurate,
consequently the exact detection of the target is difficult, lead-
ing to sub-optimal planning strategy and inadequate clinical
outcomes. Interesting applications in surgical treatment con-
cerning the target identification and involving AI approach is
obtaining accurate, and automatic real-time target detection
with intra-operative segmentation and localization of epilep-
tic zones. This work provide neurosurgeons and neurologists
with accurate means for automatic patient-specific targeting
of the STN and its sub-regions, potentially reducing the need
for other approaches that may lengthen the procedure and/or
be associated with a higher risk of side effects36. To assist
surgeons for a complete planning procedure AI techniques
are exploring the definition of an optimal trajectory giving
an alternative to standard approach such as graph-based or
sampling-based method. In brief, usually the algorithm aims
are to minimize the intracerebral trajectory length, drilling
angle from orthogonal to skull, while maximizing distance
from critical structures. The use of ML in this context has
allowed quantification of hitherto unidentified trajectory pa-
rameter combinations to be determined106 and the decrease of
the time complexity103.

Concerning intra-operative assistance, and in particular
intra-operative modelling of tissue deformation, accurate re-
construction and visualisation of soft tissue deformation in
real time is crucial in image-guided surgery, particularly in
augmented reality applications108. The AI approach are able
to address the needs of image-guided surgical systems.

In addition, we found that there is an emerging interest in
the application of AI for post-operative assessment. The ac-
curate prediction of an individual patient’s tumor response to
treatment is a sort of Holy Grail of oncology188. Indeed, re-
cent discoveries in molecular medicine and improvements in
clinical treatments have made it now more important than ever
to predict tumor behavior. They have shown that AI methods
can predict tumor behavior with greater accuracy than tra-
ditional statistical methods104. Mining and advanced analy-
sis of “big data” in brain care provide the potential not only
to perform “in silico” research but also to provide predictive
model for mortality prediction, post-operative outcome, post-
operative hospitalization and DBS outcome. “On-demand”
access to high-performance computing and large health care
databases will support and sustain our ability to achieve per-
sonalized medicine. Unfortunately, these increased demands
of health care providers create greater risk for diagnostic and
therapeutic errors189. Developing large database of practice
guidelines requires knowledge-based technologies to create
and maintain them. Ultimately, what is required is also a way
for practicing clinicians to access such guidelines quickly, in-
corporate them into their clinical practices, and then submit
their own experiences back to the knowledge base to help im-
prove it190.

Although the potential of AI in brain care is promising, in
order to observe practical benefits in real-world systems, is
critical to delineate some challenges. Data quality, data in-
consistency and instability, limitations of large size and di-
versity in support of new studies, are one of the major con-
cerns. To this aim, the research community created and pop-
ulated public repositories and leaderboards to make resources
publicly available and submit new results, implicitly dealing
with medical-related problems such as validation, and legal
issues. Kaggle191, Grand Challenge192 are concrete exam-
ples in this direction. Furthermore, an effort is spent to en-
courage synergy between AI researchers and non-tech users
(as clinicians and medical experts). In this context, a cru-
cial role is played by web platforms aimed at collaborative
learning paradigm that enables research hospitals and institu-
tions to collaborate and develop more robust AI algorithms
and collect annotated data. The NVIDIA Clara medical imag-
ing platform193, the Structured Planning and Implementation
of New Explorations project (SPINE)194, the Artificial Intel-
ligence On-Demand Platform and Ecosystem195 are some ex-
amples.

As a final remark, we suggest here that, as DL techniques
become more and more effective in solving brain related tasks,
a considerable effort should be spent into developing new
ways of interpreting such algorithms. Indeed, this study sug-
gests that the primary role of AI in brain will be to assist
experts and clinicians in their duties. For this reason, it is
important that researchers do not focus only on on algorithm
performances, but rather also at increasing their trustworthi-
ness.
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IX. CONCLUSION

In this study, a general overview of the current literature on
AI methods directly assisting brain care was presented. The
use of artificial intelligence techniques is gradually bringing
efficient theoretical solutions to a large number of real-world
clinical problems related to brain. Especially in recent years,
thanks to the accumulation of relevant data and the develop-
ment of increasingly effective algorithms, it has been pos-
sible to significantly increase the understanding of complex
brain mechanisms. The researchers’ efforts are leading to the
creation of increasingly sophisticated and interpretable algo-
rithms, which could favor a more intensive use of “intelligent”
technologies in practical clinical contexts.
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Appendix

Table XII: Keywords for Systematic Review
Database Query
SCOPUS TITLE-ABS-KEY ( “Machine Learning" AND

“Deep Learning" AND ( “Classification" OR “De-
tection" OR “Identification" OR “Diagnosis" )
AND ( “brain disease" OR “neuro" OR “MRI" OR
“medical imaging" ) ) AND ( LIMIT-TO ( DOC-
TYPE , “ar" ) OR LIMIT-TO ( DOCTYPE , “cp" )
) AND ( LIMIT-TO ( LANGUAGE , “English" ) )
AND ( LIMIT-TO ( EXACTKEYWORD , “Brain"
) OR EXCLUDE ( EXACTKEYWORD , “Image
Segmentation" ) OR EXCLUDE ( EXACTKEY-
WORD , “Image Reconstruction" ) OR EXCLUDE
( EXACTKEYWORD , “Connectivity" ) OR EX-
CLUDE ( EXACTKEYWORD , “Functional" ) )

WEB OF
SCIENCE

((“Machine Learning" AND “Deep Learning")
AND (“Classification" OR “Detection" OR “Iden-
tification" OR “Diagnosis") AND (“brain disease"
OR “brain disorders" OR “MRI" OR “medical
imaging" OR “neuro") NOT “segmentation" NOT
“functional" NOT “connectivity") AND LAN-
GUAGE: (English) AND DOCUMENT TYPES:
(Article OR Proceedings Paper)

PUBMED (“Machine Learning"[Title/Abstract/MeSH]
OR “Deep Learning"[Title/Abstract/MeSH])
AND (“classification"[Title/Abstract] OR
“diagnosis"[Title/Abstract] OR “iden-
tification"[Title/Abstract] OR “detec-
tion"[Title/Abstract]) AND (“Brain"[All Fields]
AND “MRI"[All Fields]) NOT “Connectiv-
ity"[Title/Abstract/MeSH] NOT “Segmen-
tation"[Title/Abstract/MeSH] NOT “Func-
tional"[Title/Abstract/MeSH] NOT Review[ptyp]
AND English[lang]

Acronyms

AD: Alzheimer’s Disease. 4, 7, 8, 9, 10

AI: Artificial Intelligence. 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 25,
26, 27

ANN: Artificial Neural Networks. 4, 6

ASD: Autistic Spectrum Disorder. 10

AUC: Area Under the Curve. 5, 10, 13

AVM: Arteriovenous Malformation. 10

CAD: Computer Assisted Diagnostic. 7

CLNet: Corrective Learning Network. 9, 10

CMD: Center of Mass Distance. 5

CNN: Convolutional Neural Network. 4, 7, 8, 9, 10, 13, 25

CT: Computed Tomography. 1, 2, 6, 9, 11, 12, 13

DBS: Deep Brain Stimulation. 3, 4, 9, 11, 12, 13, 17, 21, 26

DCM: Dilated Cardiomyopathy. 13

DL: Deep Learning. 2, 4, 5, 7, 8, 9, 10, 12, 13, 25, 26

DNN: Deep Neural Network. 4

DSI: Dice Similarity Index. 5, 9

DT: Decision Tree. 4, 6

DTI: Diffusion Tensor Imaging. 3, 6

EEG: Electroencephalography. 3, 6, 11

EHR: Electronic Health Record. 3, 4, 6, 11, 12, 26

FC: Functional Connectivity. 3, 6

FCNN: Fully Convolutional Neural Network. 9

FLAIR: Fluid Attenuated Inversion Recovery. 3

fMRI: Functional Magnetic Resonance Imaging. 3

fNIRS: Functional Near-Infrared Spectroscopy. 6, 11
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FRDD: Fault Rate Dust Detection. 9

GA: Genetic Algorithm. 6

GAN: Generative Adversarial Network. 8

GBM: Gradient Boosting Machine. 6

GNN: Graph Neural Network. 4

GP: Globus Pallidus. 11

GPU: Graphic Processing Unit. 2

HC: Healthy Control. 10

HDD: Housdorff Distance. 5

HMM: Hidden Markov Model. 9

HSI: Hyperspectral Imaging. 3, 6, 11

ICH: Intracerebral Hemorrhage. 8

IUS: Intra-operative Ultrasound. 3, 6, 11

JC: Jaccard Coefficient. 5

KNN: K-nearest Neighbors. 6, 11

LITT: Laser Interstitial Thermal Therapy. 12

LOCATE: LOCally Adaptive Threshold Estimation. 9

LOS: Length of Stay. 13

LRP: Layerwise Relevance Propagation. 8

MAD: Mean Absolute Distance. 5

MAE: Mean Absolute Error. 5

MCI: Mild Cognitive Impairment. 7, 8, 10

MER: Microelectrode Recording. 3, 6

MI: Medical Imaging. 1

ML: Machine Learning. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
25, 26

MRI: Magnetic Resonance Imaging. 1, 2, 3, 4, 6, 9, 10, 11,
12

mSD: min Square Distance. 5

MSD: Mean Square Distance. 5

MSE: Mean Square Error. 5, 9

NLP: Natural Language Processing. 6, 11, 26

NPV: Negative Predictive Value. 5

PCC: Pearson Correlated Coefficient. 9

PET: Positron Emission Tomography. 1, 2, 6

PPV: Positive Predictive Value. 5

PSNR: Peak Signal-to-Noise Ratio. 5, 9

RF: Random Forest. 4, 6, 7, 10, 12, 13

RMSE: Root Mean Square Error. 5

RNN: Recurrent Neural Network. 4, 12

ROC: Receiver Operating Characteristic. 5, 12

rs-fMRI: Resting State Functional Magnetic Resonance
Imaging. 3

SAE: Sparse Autoencoder. 6, 9

SC: Structural Connectivity. 3, 6

STN: Subthalamic Nucleus. 11

SVM: Support Vector Machines. 4, 6, 7, 9, 10, 11, 12, 13

SVR: Support Vector Regression. 9

TLE: Temporal Lobe Epilepsy. 10

TSS: Transsphenoidal Surgery. 12
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