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Abstract Optical multi-domain transport networks are often controlled by a hi-
erarchical distributed architecture of controllers. Optimal placement of these con-
trollers is very important for efficient management and control. Traditional SDN
controller placement methods focus mostly on controller placement in datacenter
networks. But the problem of virtualized controller placement for multi-domain
transport networks needs to be solved in the context of geographically-distributed
heterogeneous multi-domain networks. In this context, Edge datacenters have en-
abled network operators to place virtualized controller instances closer to users,
besides providing more candidate locations for controller placement. In this study,
we propose a dynamic controller placement method for optical transport networks
that considers the heterogeneity of optical controllers, resource limitations at edge
hosting locations, and latency requirements. We also propose a machine-learning
framework that helps the controller placement algorithm with proactive prediction
(instead of traditional reactive threshold-based approach). Simulation studies, con-
sidering practical scenarios and temporal variation of load, show significant cost
savings compared to traditional placement approaches.
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1 Introduction

Existing proposals for controller placement [1] have focused mostly on packet-
switched Software-Defined Networks (SDNs) and they often ignore the complexity,
heterogeneity, and vendor specificity of a transport-network control plane. Current
technical solutions for transport-network control planes (e.g., Transport SDN, T-
SDN) are designed for circuit-switched optical layer and SONET/SDH/OTN layer.
T-SDN supports multi-layer, multi-vendor, circuit-oriented networks that are dif-
ferent from packet-based SDN-controlled networks [2]. In our study, we consider a
heterogeneous optical transport networks, i.e., optical networks where the devices
are heterogeneous (e.g., from different vendors, implementing different technolo-
gies flexi-gird vs. fixed-grid, etc.). Hence, to control such a network, we need a
heterogeneous set of optical network controllers, with different vendor-specific or
technology-specific capabilities. Moreover, the control plane for optical transport
networks employs a hierarchical distributed architecture [3] comprising of such
heterogeneous (often vendor-specific) Optical Network (ON) Controllers (ONCs).

Our study considers that T-SDN controllers can be deployed as virtualized con-
troller instances (as in [4]). Virtualized controller placement has many benefits.
First, manually deploying ONCs in traditional ‘hardware boxes’ can take several
days, compared to few minutes in case of virtualized instances (hosted on Vir-
tual Machines (VMs), docker containers, etc.). Such virtual instances are hosted
in cloud datecenter (DCs) or in computing nodes at edge datacenters (Edge-DCs)
(such as Network Function Virtualization Infrastructure Points of Presence (NFVI-
PoPs), metro datacenters (DCs), or Central Offices Re-architected as Datacenters
(CORDs), etc.). Second, virtualized controllers can be easily recovered from fail-
ures or disasters using the backed-up/replicated virtual copy of the controllers.
These instances can be easily moved from one location to another and can be
redeployed [5] without significant down time. Third, operational cost savings for
network operators and leasing cost savings for network leasers are other important
motivations toward virtualization.

Prior studies exploring static [6] [7], and dynamic [9] controller-placement prob-
lems mostly focused on packet-based SDN controllers and DC networks [10]. But,
as we discuss in Section 2, methods proposed in SDN and DC scenarios are often
not applicable and not optimal for heterogeneous optical transport networks.

To the best of our knowledge, our study is the first to propose dynamic place-
ment of controllers for heterogeneous, multi-domain transport networks comprising
heterogeneous ONCs, considering the complexity due to virtual instances hosted
jointly on DCs and Edge-DCs (e.g., NFVi-PoPs). We explore the technical details
of the dynamic controller-placement problem (e.g., latency requirements, resource
limitations at Edge-DCs, controller capacity limitations, etc.), propose the Virtu-
alized Controller Deployment Algorithm (VCDA), and report illustrative results.

In addition, we observe that the reactive threshold-based approach used, e.g.,
in our work in [11] and others’ [9], do not benefit from knowledge of historical traf-
fic patterns and data. Hence, we propose a machine learning (ML) based method
that leverages knowledge of historical data and can be used to forecast the required
number of controllers during next time interval. As we will elaborate in this study,
the ML method for controller-placement problem is not trivial, especially due to
complexity in modeling domain-specific controller traffic and in devising a conver-
sion from controller traffic to required number of controller.
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Significant contributions of our study in the controller placement problem are
as follows:

1. To the best of our knowledge, our study is the first to propose dynamic place-
ment of controllers for heterogeneous, multi-domain transport networks com-
prising heterogeneous ONCs.

2. We propose a ML framework that identifies the key parameters, and models
the conversion of traffic data to control traffic for the controller-placement
problem.

3. We demonstrate that dynamic load-aware controller placement (powered by
the proposed ML framework) can achieve significant accuracy, and enables
relevant cost savings and QoS improvement.

This study is organized as follows. Section 2 reviews prior work on controller
placement problems. Section 3 discusses the control-plane architecture. Section 4
provides a formal problem statement and describes the proposed solution method,
including the ML framework and cost models. Section 5 discusses numerical results
on accuracy of the ML framework, on cost savings and QoS improvement. Section
6 concludes the study.

2 Background and Related Work

The controller-placement problem is known to be NP-hard [1]. In the context of
SDN controllers, both static [6] [7], and dynamic [9] placement problems have
been explored. But most studies on SDN Controller Placement Problems (CPPs),
e.g., [6]- [8], consider placement of only controller ‘middle-boxes’, not virtualized
instances. Ref. [15] considers recovery of SDN controllers in a disaster scenario.
These early studies do not consider the additional complexities due to virtualiza-
tion, delay constraints, hosting location constraints, etc.

Recent studies [9] [10] on Elastic Control Placement (ECP) for SDN controllers
discuss threshold-based methods to dynamically resize the ECPs. Ref. [9] focuses
on DC networks managed through homogeneous SDN controllers, to minimize
control-plane resizing delay. Ref. [9] focuses on the ‘switch-to-controller’ mapping,
ensuring that each switch (forwarding plane) is connected to at least one controller
(control plane). Incoming traffic-flow requests originated inside a domain will be
served by the same controller; and controller capacity limit is preserved. When a
new traffic-flow request arrives, the ‘switch’ depends on the controller for routing
and path-computation decisions.

Recently, control plane architectures [12] [16] in T-SDN have been proposed
to accommodate multiple heterogeneous network domains and associated domain-
specific ON controllers. However, the design of T-SDN control plane architecture
is still evolving and is an active research area [2] [16]. Ref. [4] was among the first
to propose a virtualized control-plane architecture for transport networks, but not
from a placement perspective.

Refs. [9] [10] consider DC placement (of controller instances), which is prac-
tical for a DC network scenario. But, for a transport network with distributed
heterogeneous domains, we also consider joint deployment in DCs and Edge-DCs.
This introduces new constraints such as host location capacity, and inter-domain
and intra-domain communication delays (which [9] [10] do not consider). To the
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best of our knowledge, none of the prior studies on controller placement explores
impact of proactive prediction of number of controllers using machine learning or
other methods.

3 Control Plane Architecture

Fig. 1 shows an example of a hierarchical control plane for heterogeneous transport
networks. Domain-specific controllers are connected with ‘parent controller(s)’,
which are connected to the ‘application plane’ (e.g., Transport Network Orches-
trator (TNO), Operations Support Systems (OSS), etc.).

‘Domain Controllers’ (ONCs in the figure) are responsible for the communi-
cation between ‘control plane’ and ‘data plane’. Different autonomous domains,
depending on the underlying ONC, use specific type of controllers and protocols
to control the ‘data plane’ switches. Fig. 1 shows two types of domains, i.e., Fixed-
grid and Flex-grid domains. This example architecture can be extended to support
more variations of domain controllers and associated technologies. In this study, we
consider two levels of hierarchy and assume that the parent controller location is
already determined. Hence, our proposed method focuses solely on the placement
of domain controllers.

Fig. 1 Control-plane architecture for heterogeneous transport networks with ML module.

In the considered control-plane architecture, dedicated ML modules are asso-
ciated to each domain. In fact, each domain can have separate load patterns, load
types, and variation trend in load. To capture this knowledge, we propose to use
these distributed ML modules to power the controller placement algorithm pro-
posed in the next section. The choice of per-domain ML is not trivial. In some
scenarios, one ML module is enough to predict network-wide results. Then, in other
cases, deploying ML modules in a more distributed fashion than per-domain level
(e.g., per device level, per city/population center level) can be useful. In our use-
case, ‘per-device ML module’ will be a overkill, as control traffic from that domain
will arrive to controllers (making per-device control-traffic intelligence redundant).
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4 Problem Statement and Solution Method

4.1 Problem Statement

The dynamic ‘on-demand’ controller-placement problem can be defined as follows:
Given a topology, a set of controller hosting locations with limited capacity, arrival
rate of traffic flows, a set of heterogeneous network domains, controller capacity,
and constraints, deploy optimal number of controllers to satisfy all the domains,
minimizing the leasing costs.

In order to decide on how many number of controllers we need in a given time
interval, in Ref. [11], we proposed a traditional threshold-based approach (also
explored in [9] for datacenter network scenarios). In this study, we explore if ML-
assisted prediction can help to optimize the performance of our proposed solution
method. Hence, we propose a new ML-based a prediction mechanism, demonstrat-
ing its superior performance with respect to threshold-based approaches.

4.2 Input Parameters and Variables

– G(V,E): Optical transport network topology where V is set of domains and E

is set of inter-domain links.
– Mv: set of controllers serving domain v.
– Sv: set of switches in domain v serving traffic.
– Tv: domain-specific controller types (flexi-grid or fixed-grid).
– Hv: controller hosting location where Hv ⊆ V .
– χtv: total compute capacity at v.
– χuv : used compute capacity at v.
– ωtv: total memory capacity at v.
– ωuv : used memory capacity at v.
– Tµv : service capacity limit (i.e., maximum number of new routing requests

served per second) for controller type Tv.
– Tχv : compute resource requirement for controller type Tv.
– Tωv : memory resource requirement for controller type Tv.
– λ(v): arrival rate of new traffic flows for a given domain (v), where rv represents

new request for flow routing (to be processed by the controller). Sr is the switch
at which the request has arrived, and Mv gives the set of domain controllers
the data traffic switch (Sr) is connected.

– α: latency constraint (maximum allowed delay from switch to controller).

In this study, switch stands for optical data plane switch, where the new routing
requests arrives. Then, the switch depends on the domain controller for making
the routing decision for the new request [2]. If the domain controller is placed
far away from the switch, the decision making will be delayed. Hence, we need a
constraint (α) to enforce that.

4.3 Constraints

We consider the following constraints:
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1. Latency constraints: Controllers must be placed within the allowed latency
limit, i.e., switch-to-controller and controller-to-switch delay, including pro-
cessing delay must not exceed the allowed delay limit:

D(s, h) +Dp +D(h, s) ≤ α;∀sεSv, ∀hεV (1)

where function D(x, y) represents transmission, propagation, and processing
delay between points x and y, s is switch where the flow originated, h is con-
troller hosting location, and Dp is processing delay at controller instances Mv.

2. Controller type constraint: To reflect domain heterogeneity, we enforce the
following controller type constraints:

Tv == M t
v; ∀vεV (2)

where the constraint enforces that all controller instances of v (M t
v) match

required controller type Tv.
3. Controller capacity constraints: Deployed controllers must have enough ca-

pacity to support domain switches:∑
sεSv

λ(s) ≤ Tµv ∗ |Mv|; ∀vεV (3)

4. Controller host capacity limit: Hosting location (v.h) must have both com-
pute and memory capacity:∑

gεV

|Mg| ∗ Tχg ≤ χtv; Hg == v;∀vεV (4)

∑
gεV

|Mg| ∗ Tωg ≤ ωtv; Hg == v;∀vεV (5)

4.4 Cost Models

4.4.1 Leasing cost for virtual controller instances

We consider that network operators lease capacity from DC operators. Virtual
instance leasing cost CC can be stated as:

CC =
∑
vεV

(|Mv| ∗ (γh + γs) ∗ d) (6)

where γh is per-unit hardware cost for per unit time, γs is per-unit software cost
for per unit time, and d is duration of operation.

4.4.2 QoS degradation penalty

The quality of service is negatively impacted when the controller-placement method
fails to deploy enough number of controller instances. We model this cost by con-
verting the duration (dq) in degraded QoS to a penalty cost:

Cq =
∑
vεV

(|Mv| ∗ γq ∗ dq) (7)

where γq is the per unit-time penalty for degraded service.



Virtualized Controller Placement for Multi-domain Optical Networks using ML 7

4.5 Proposed Machine-Learning Framework to Forecast Controller Demand

Fig. 2 a) shows the components inside the ‘ML module’ (in Fig. 1). A brief de-
scription of the components follows:

Fig. 2 Proposed ML framework: a) ML module deployed per domain; and b) key parameters
used in designing the ML module.

– Data collection: For each domain, data is collected from network traffic. For
this study, we use realistic traffic load traces from [17]. This traffic load data
(in bits) was collected at every five-minute intervals over a 1.5-month period
from a private ISP and on a trans-Atlantic link.

– Preprocess training data: In many cases the collected data is not immediately
applicable for training the ML model. The data needs to go through certain
steps to be ready as training data. In this study, to make the data useful for the
controller-placement problem, it has to go through two major conversion: 1)
domain-specific controller traffic and 2) controller traffic to number of controller
conversion. We discuss these two procedures later in this subsection.

– Train ML model: In this study, we have used supervised ML techniques to
train the models. In supervised ML, we can associate each instance (set of
features) of the problem to a class. In our training model, we have used the
22 features defined in [14], which capture the variation of traffic in collected
data. As class (output) that associates with the features (input), we have used
‘number of controllers’ for a given time interval. This means that we train
the ML model to learn from the mapping between features/patterns inside
the traffic data and how many ‘number of controllers’ can handle that traffic
from future time interval. Intuitively, ‘maximum traffic flow (Mbps)’ can be
an option for class/output. But, traffic flow in Mbps would require a very high
number of classes, leading to poor performance. Hence, we use less granular
output (i.e., number of controllers), with less number of classes, leading to good
prediction performance.

– Real-time ML recommendation: Finally, in this step, the domain controllers
can start receiving the predictions made by the ML module (see Algorithm 1).

In order to keep the ML model updated, steps 1 to 3 are re-executed in an
interval (e.g., every 7 days) suitable for the domain and the operator.
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Fig. 2 b) shows the key parameters used by this framework:

– Domain-specific controller traffic generation: Ideally, the ‘ML module’ will
use control traffic data collected from respective domain controller. But the
datasets we have access to consist of only network (data-plane) traffic data.
To mimic domain specific control traffic, we converted the dataset [17] using
these two parameters: i) control traffic in percentage (%) of network traffic
and ii) population distribution. It is not trivial to answer the question: ‘what
percentage of the network traffic is control traffic?’ Based on existing studies,
we can estimate that, depending on the network size, control traffic overhead
can be 1%-10% [18]. Also, the population distribution varies from domain to
domain, impacting the control traffic generated. To incorporate this aspect
in our study, we use population density of four time zones in USA, to create
different sets of control traffic at respective domains. In the results section, we
report our findings on impacts of these two parameters.

– Controller traffic to number of controller conversion: Conversion from
controller traffic (Γ in bps) to number of controllers is not trivial. The controller
traffic (measured or converted as we did) is in bits per second (bps) unit. On the
other hand, the controller capacity (Tµv ) is often reported in number of flows [8]
(not in bps). In order to know how many number of controller instances are
required to serve a certain bps traffic, we need these two parameters: controller
capacity in number of flows and how many bits are typically communicated in
each flow request (b). Based on the controller communication steps described
in [4], we can identify the number of bits used by each control flow (b). Hence,
number of controllers (c) can be derived from the following equation:

c = Γ/(Tµv ∗ b) (8)

Once the ML framework is complete, we train different modules using domain-
specific set of data. Then, the ML modules are ready to be used by Algorithm 1
(proposed in next subsection).

Fig. 2 depends on the control traffic ratio in network data traffic. Now, it is safe
to consider that the optical network operator will know this ratio in their networks
and will be able to use this parameter for our proposed method. This ratio will
vary depending on the network. Hence, for this study, we explored the literature
to gather some insights on the range of this ratio, instead of an exact number. Our
search yielded in this study [18] which reports the ratio can be 1%-10%. We also
did sensitivity analysis over this range and ensured that the method performs well
even after changes in this parameter.

4.6 Algorithm

We propose a polynomial-time heuristic, called Virtualized Controller Deployment
Algorithm (VCDA), as a scalable solution for a heterogeneous optical transport
network (see Algorithm 1). Since turning controllers on/off too often may lead
to instabilities, we introduce a decision epoch (e), i.e., a dynamic variable allow-
ing network operators to tune the decision frequency. We also use two manage-
ment entities: Network Management and Orchestration (NMO) and Distributed
Cloud Management (DCM). NMO takes care of load balancing and assignment
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of switches and traffic with the controllers. DCM takes care of the cloud resource
management for placement of controller instances.

Algorithm 1 Virtualized Controller Deployment Algorithm (VCDA)

1: Input: G(V,E), λ(v), α, e;
2: for each domain v in V do
3: . Forecast/calculate required number of controllers
4: c← predicted by ML or calculated using threshold-based method;
5: if |Mv | == c then
6: Consolidate and load balance traffic flows among the Mvs using Eqns. (1-5);
7: . deploy more controllers
8: else if c > |Mv | then
9: h← Hv ;

10: δ ← c − Mv ;
11: . enough resources at h
12: if (χth − χ

u
h) > δ ∗ Tχv & (ωth − ω

u
h) > δ ∗ Tωv then

13: Turn on additional δ controllers (Tv type) at location h;
14: Load balance and re-route among the Mvs using Eqns. (1-5);
15: . not enough resources at h
16: else
17: h

′ ← find optimum location to host c using Eqns. (1-5);

18: Allocate c controllers (Tv type) at h
′

via DCM;

19: Migrate all Mv instances to h
′

via DCM;
20: Turn on δ additional controller instances via DCM;
21: Load balance and re-route flows among the controller instances;
22: Turn off Mv controllers at h via DCM;
23: end if
24: . remove extra resources
25: else if c < |Mv | then
26: δ ← c − Mv ;
27: DCM finds optimum δ controllers to turn off;
28: Re-route and load balance among the Mv using Eqns. (1-5);
29: Turn off δ controllers;
30: end if
31: end for
32: if e is expired then
33: go to line 2;
34: end if

Our algorithm ensures that, for each domain, enough controllers are deployed
to serve current load, observing the constraints. In a threshold-based approach,
we use the current threshold value to calculate required number of controllers
for next epoch. In an ML-assisted approach, we consult the ‘ML module’ which
forecasts the number of controllers we will require for next epoch e. At a given
epoch, if the controller capacity constraint holds, it means that we do not need
additional controller instances (line 5). But, if the controller capacity constraint
fails (line 9), the algorithm checks if the current hosting location (h) has enough
compute and memory capacity to host the additional δ controllers (line 13). If yes,
we turn on additional controllers and load balance the switches and traffic flows
(line 14-17). If host location h does not have enough resources, the algorithm finds
the next optimal location to host all the instances (line 20) following constraints
as in Eqns. (1-5) and minimizing Eqn. (14). In this step, we utilize the benefits
of consolidation in computing. Placing controllers from the same domain closer to
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each other will reduce delay cost (Eqn. (12)). We consider live VM migration (line
18) to relocate the already-running controller instances to the new location with
least interruption of services.

The algorithm turns off the extra controllers (line 25-29) to save operational
cost. In line 27, we keep at least one controller instance running for each domain.
Installation of a new virtual machine hosting the controller instance may take
time in the range of 100 seconds [5]. However, it does not mean that we do not
have any controller capability during the installation of novel VM instances, as we
consider that at least one instance of a domain controller is always present. After
each iteration, the algorithm waits for the epoch e to expire.

The run-time complexity of VCDA depends on number of domains (|V |), max-
imum number of controllers (max(|Mv|)), maximum number of switches in a do-
main (max(|Sv|)), and number of host locations (|Hv|). The run-time complexity
of VCDA can be expressed as O(|V |∗max(|Mv|)∗max(|Sv|)+|V |∗|Hv|∗max(|Mv|)∗
max(|Sv|).

5 Illustrative Numerical Examples

We present illustrative results on a US-wide topology (see Fig. 3), with heteroge-
neous domains and Edge-DCs/DCs. Each network domain requires domain-specific
controller(s), that are connected to other domains via backbone optical links. We
consider two DC locations (2 and 13) and three Edge-DCs (5, 7, 10) to host
controller instances. Capacities of DCs, racks, and servers vary significantly in
practice. For Edge-DCs, we assume total compute capacity (χtv) is 64 units and
total memory capacity (ωtv) is 256 GB. For DCs, we consider 15000 compute and
30000 memory capacity (to represent significantly large capacity). For illustra-
tive examples in this section, let α = 15 ms, Tµv = 2500 requests per second [8],
per-controller instance compute requirement (Tχv ) = 2 compute units [9], memory
requirement (Tωv ) = 4 GB, γh = $0.01 per controller per hour, γs = $0.02 per
controller per hour and γq = $0.05 for every 10 minutes of degraded service [14].

Fig. 3 Example optical network topology with controller host locations (DCs and Edge-DCs)
and heterogeneous domains (color red and black denote separate controller types).
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5.1 Accuracy of ML Framework

In this part of the study, we report the performance of the proposed ML frame-
work for different scenarios. As the ML algorithm, we use Random Forest (best-
performing algorithm in [14]). We consider e = 10, i.e., VCDA algorithm asks
for ML forecast every 10 minutes, and we use 40 days of data (40 ∗ 144 = 5760
instances), of which 50% is training and rest 50% is used for testing. As the data
was collected every 5 minutes, we have 288 instances of data in 24 hours. Then,
the prediction decision is taken every 10 minutes, leading to 144 instances in a
day.

We consider 47% of US population is in Eastern, 29% in Central, 7% in Moun-
tain, and 17% in Pacific time zone domains. Our study uses this data to generate
domain-specific controller traffic (discussed in Section 4.5). We report the ML
accuracy for 1% control traffic (Table 1) and 2% control traffic (Table 2).

In Tables 1 and 2, we present three different performance metrics: a) Precision

(%): corresponds to the fraction of predicted positives which are in fact positive.
Precision is given by percentage of: TP/(TP+FP ). b) False Positive (FP)(%): FP
is an important indication of ML classifiers as lower FP indicates less classification
mistakes. c) ROC area (%): Receiver Operating Characteristic (ROC) curve is a
graphical plot in which true positive rate (TP/((TP +FN)) is plotted as function
of the false positive rate (FP/(FP + TN)). Here, TP implies true positive, FN
is false negative, and TN is true negative. ROC area is a robust metric for ML
classifier performance evaluation. A higher ROC area value means more robust
ML prediction model.

Table 1 Accuracy of the proposed ML framework (1% control traffic).

Domain Precision (%)
False

Positives (%)
ROC Area (%)

Eastern 96.7 1.2 99.7
Central 96.8 1.0 99.8

Mountain 100.0 0.0 100.0
Pacific 97.8 1.4 99.9

Table 1 shows promising accuracy of our method. The lowest Precision is
achieved for Eastern (96.7%), going up to 100.0% for Mountain. This can be ex-
plained with the population ratio. As Eastern has 47% of total population, it gen-
erates more dynamic traffic, resulting in lower forecasting accuracy. In comparison,
Mountain with only 7% of population, generates less dynamic traffic, resulting in
higher accuracy. This argument is further supported by Table 2 where 2% control
traffic (i.e., twice as much control traffic for all domains). This increase in control
traffic brings down the prediction accuracy to 88.7% (for Eastern). Domains with
lower population (producing less dynamic traffic) show higher precision: Mountain
(99.2%) and Pacific (95.7%). Other performance metrics (false positives and ROC
area) show similar trends in accuracy. Specially, ROC area consistently stays over
99%, showing the robustness of the proposed model.

Fig. 4 a) shows the controller variation over 24 hours for the sample scenario
of the Eastern domain. We compare our ML method with threshold-based (TH)
method [9]. We observe that ML method is faster to capture the future changes
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Table 2 Accuracy of the proposed ML prediction framework (2% control traffic).

Domain Precision (%)
False

Positives (%)
ROC Area (%)

Eastern 88.7 1.5 99.4
Central 93.3 1.3 99.5

Mountain 99.2 1.2 99.9
Pacific 95.7 1.4 99.7

than the TH method (orange line with crosses trails the blue line). We also indi-
cate the situations where TH does not provide enough controllers to support QoS
(yellow dashed circles). We also indicate situations where TH deploys more re-
sources than required (using purple dashed circles). Fig. 4 b) shows the controller
variation over 24 hours for Pacific domain. As discussed earlier, due to population,
the load variation is less, resulting in less variation in number of controllers as well.

Fig. 4 Illustrative 24-hour variation of number of controllers using machine learning (ML)
and threshold-based (TH) approaches with 1% control traffic.

In Fig. 5 a), we present 24-hour variation of controllers for Eastern domain
considering 2% control traffic. With the increased traffic, we observe more variation
and higher number of controllers. Similarly in Fig. 5 b), Pacific domain experiences
more traffic compared to Fig. 4 b).

5.2 Impact on Cost Savings, Electricity Consumption, and QoS

Fig. 6 explores the sum of hardware cost and software leasing cost (using Eqn.
6) and QoS penalty cost (using Eqn. 7) for ML and TH approaches. We com-
pare three methods: a) Static controller placement (realizing prior study [7] in
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Fig. 5 Illustrative 24-hour variation of number of controllers using machine learning (ML)
and threshold-based (TH) approaches with 2% control traffic.

transport network scenario), b) VCDA-TH (mimicking prior study [9] in trans-
port network scenario), and c) VCDA-ML (implementing VCDA powered by the
ML framework). VCDA-ML shows the highest cost savings (45.54%) compared to
the VCDA-TH approach (39.32%). In a large network where cost is in millions of
dollars, our proposed methods can help significantly.

Fig. 6 Cost (%) from VCDA with threshold-based and ML-assisted methods, compared to
the static controller placement.

We also consider electricity consumption (and related cost) and report the re-
sults in Fig. 7. A large portion of DC/Edge-DC and network operational costs
come from electricity cost. For controller power consumption, we borrow electric-
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ity consumption model for servers from Ref. [19]. We also consider four different
virtualization technologies (Xen, KVM, Docker, and LXC) and use practical power
consumption values reported in Ref. [20]. We observe that the ML-assisted method
yields least electricity consumption compared to VCDA-TH and Static placement.
We also observe that container-based technologies (Docker and LXC) use lower
electricity compared to Xen and KVM.

Fig. 7 Electricity consumption saving (Watt-Hour) from VCDA with threshold-based and
ML-assisted methods, compared to the static controller placement.

5.3 Daily Shift of ‘Center of Gravity’ of Controllers

As the sun moves from East to West, due to dynamic controller placement, we
observe that the ‘center of gravity’ of the controllers also shifts. Fig. 8 shows this
shifting phenomena. In the early morning (6AM Eastern time), Eastern domain
has 2 controllers and the rest of the domains each has one controller, i.e., the
‘center of gravity’ is clearly on the Eastern domain. But, as the day progresses,
more controllers ‘light-up’ in Central and Pacific domains, shifting the ‘center of
gravity’ towards the middle of the country. In the afternoon (3PM), the Eastern
domain has 5 controllers, Central has 3, Mountain 1, and Pacific 3, shifting the
‘center’ to the Central domain. As Eastern (47%) population ratio is very high
compared to Mountain (7%) and Pacific (17%), the ‘center’ does not move past
the Central domain. We observe similar trends for 2% control traffic (with higher
number of controllers).

6 Conclusion

Virtualized controller placement in multi-domain heterogeneous optical trans-
port networks introduces new challenges for network management. Our proposed
method for controller placement considers transport-network-specific properties
and constraints such as heterogeneous controller types, resource limitations at
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Fig. 8 ‘Center of gravity’ for controllers shifting as the day progresses (1% control traffic).

edge-hosting locations, etc. In addition, ML-based prediction helps to improve the
performance of the proposed algorithm. Illustrative examples show that our pro-
posed method saves cost and reduces delays significantly, compared to traditional
approaches. Future studies should explore variation of compute/memory require-
ments, variation of Edge-DC capacities, variation of Edge-DC and DC locations,
different prediction methods, and more detailed cost models.
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