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Abstract

This paper deals with vehicle sideslip angle estimation. The paper introduces
an industrially amenable kinematic-based approach that does not need tire-road
friction parameters or other dynamical properties of the vehicle. The conver-
gence of the estimate is improved by the introduction of a heuristic based on
readily available inertial measurements. The method is tested on a vast collec-
tion of tests performed in different conditions, showing a satisfactory behavior
despite not using any information on the road friction. The extensive experi-
mental validation confirms that the estimate is robust to a wide range of driving
scenarios.

Keywords: automotive estimation, sideslip angle estimation, model free
estimation, four-wheeled vehicles, vehicle stability control.

1. Introduction

Over the last few decades, industrial and academic research has dedicated
great effort towards safer and better performing four-wheeled vehicles. Sensors
and actuators evolution ([1, 2]) has made possible the use of advanced con-
trol techniques acting on vehicle dynamics with the aim of generating suitable5

yaw moment to avoid dangerous conditions or increase performances. Nowa-
days electronic stability control (ESC) is a standard technology in almost all
commercial passenger cars ([3, 4]), while researchers continue to explore the
possibility of using rear axle steering to improve the vehicle stability ([5, 6]).
From a control standpoint, besides the problem of defining the control laws, the10

knowledge/measurement of vehicle states presents a challenge.
From the vehicle stability standpoint, the most important states are sideslip

angle, i.e. the angle between the vehicle longitudinal axis and the direction
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of the vehicle velocity, and the sideslip rate. These are used to determine the
control action, re-schedule the parameters of the control architecture or re-15

establish the vehicle stability. To these ends the fast and road-independent
estimation of the two quantities is crucial, [7, 8].

The sideslip angle and its rate can be measured via optical sensors or GPS
with sufficient accuracy in all road conditions; however these solutions are
prohibitively expensive for commercial cars (optical sensors) or lack reliabil-20

ity (GPS). Methods for integrating inertial measurements with low-cost GPS
measurements ([9, 10, 11, 12, 13, 14], for example) or tire force sensors ([15, 16],
for example) have been proposed. However, GPS is not present in all commer-
cial vehicles and tire force sensors introduce excessive costs and complexity to
the vehicle design [17, 18]. Therefore, online estimation techniques using low-25

cost inertial sensors have been widely studied in the automotive research. The
proposed method exploits low cost off-the-shelf measurements, i.e. vehicle ac-
celerations along the three axis, vehicle angular rates, wheel angular rates and
wheel steering angle.

In the realm of methods using standard measurements, there exist two30

main families of approaches: black-box or white-box estimation. Black-box
approaches derive methods that directly estimate the sideslip angle from the
measurements. Assuming the sideslip angle as a nonlinear function of the yaw
rate and the lateral acceleration, a neural network can model the vehicle be-
havior and can be used to estimate the sideslip angle, [19]. The main drawback35

of the method is that it does not consider the relation with the vehicle speed.
A similar method is used in [20]. The authors propose a nonlinear estimator,
designed based on the direct virtual sensor approach. A neural network ex-
ploits the lateral acceleration, steering angle, yaw rate and longitudinal velocity
measurements and forms the core of the estimator. Despite showing promising40

performance, both papers do not consider the effect of road friction in the anal-
ysis. Varying road conditions could affect the estimation accuracy. These are
data driven approaches; if the training set has not considered a particular type
of ground, there is no way of guaranteeing how the estimator will behave when
driving on such roads.45

For these reason, most solutions include model-based estimation techniques.
An important aspect classifying these methods is the vehicle model type; two
main categories can be identified: dynamic model-based and kinematic model-
based methods.

Dynamic models provide a good description of the vehicle lateral dynamics,50

but require a good knowledge of the vehicle parameters, specially tire-road in-
teraction conditions. As a matter of fact, the tire friction model and its online
estimation plays a key role in many studies. A sliding mode observer, with a
simplified tire model, is proposed in [21], and is shown to have good results
with lateral acceleration not exceeding 0.6 g (i.e., linear region). In [22], the55

authors present a two-step method: the first step includes a sliding mode ob-
server that provides the tire-road forces while in the second step an Extended
Kalman Filter (EKF) estimates the sideslip angle and the cornering stiffness.
[23] presents a dual EKF method. Two filters run in parallel, one dedicated to
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the estimation of the vehicle state while the others estimates. Alternative solu-60

tions relying on the EKF are presented in [24], where a decision tree classifies
the uncertainties and disturbances to assist an EKF, and in [25], where the vehi-
cle state and the tire-road forces are reconstructed. A critical point of dynamic
model-based methods is the difficulty of estimating the tire friction. This task
requires exciting running conditions, which are not always verified. Indeed, the65

aforementioned methods are validated on exciting maneuvers and lack extensive
analysis during low excitation tests. Furthermore, dynamic models lose their
reliability on high acceleration conditions where the vehicle dynamics becomes
nonlinear, mainly due to tires behavior. Experimental results of aforementioned
solutions present limited lateral accelerations (0.6 g). Other disadvantages re-70

garding these methods concern the vehicle mass and yaw inertia sensitivity;
both parameters can experience large variations.

An alternative approach are kinematic model-based methods, which rely on
a simple vehicle model that correlates the vehicle longitudinal and lateral veloci-
ties with longitudinal and lateral accelerations and the yaw rate. These methods75

do not depend on vehicle or tire friction parameters. A well known nonlinear ve-
hicle state observer was introduced in [26] and proved to be asymptotically stable
for all cornering conditions (non-zero yaw rate). In [27], the authors strengthen
the aforementioned method proposing an online offset estimation via a recursive
identification approach. An EKF designed on the kinematic model is presented80

in [28]; the effectiveness of the method is shown on short maneuvers (10 s).
Based on the same model, in [29] the authors propose a sliding mode observer;
the observer is tested and analyzed on a simulation environment and a double
lane change maneuver. According to the best of our knowledge and literature
research, these are the only studies relying on a pure kinematic model and are all85

analyzed on simulation data or short duration experiments. All results evidence
that kinematic model-based methods are reliable for transient maneuvers, but
they suffer from estimation errors on nearly steady-state conditions.

One option for overcoming these limits is to design observers that join the
advantages of the kinematic and dynamic model. The method proposed in [30]90

relies on the kinematic formulation during transient maneuvers and on a state
observer, designed on the single track model, on nearly steady-state maneuvers.
During transient maneuvers the kinematic estimate is used to update the friction
parameters of the single track model. Experimental results prove the validity of
the method. In [31], a feedback algorithm is fed with the side force estimated95

from the lateral acceleration and the side force given by a tire model with
an online estimate of the road friction coefficient. Other methods mixing the
two approaches are shown in [32] and [33]. Both studies combine a kinematic
model and a bicycle model with online friction adaption through a weighted
mean; experimental results for the standard double lane change maneuver are100

shown. In [34], the authors present a method based on a nonlinear observer.
The method joins a kinematic model with a correction term computed on a
friction model which is estimated online. In [35, 36] an online road banking
estimation is added and the results are compared with an EKF. The proposed
approach is tested on different experimental tests. However, exciting running105

3



conditions (i.e., varied driving path) are essential for the stability of the method
and solutions for particular driving conditions have been found.

Although different architectures can be used to combine the kinematic and
the dynamic model, [37], and some studies show good results on standard ma-
neuvers, the excitation of the driving conditions remains a major limitation.110

Especially on strong curves following long straight drivings (i.e., when the fric-
tion estimation can not be updated) and when the friction experiences step
variations during curves, methods relying on the friction estimation are more
prone to sideslip estimation errors. The present work aims to give a reliable
solution to the sideslip angle estimation problem without the need of estimat-115

ing the friction parameters and is based on the kinematic approach. First, the
observer proposed in [26] is modified to overcome the unobservability for zero
yaw rate conditions without using the dynamical model (or road parameters);
the method relies on a heuristic that drives the sideslip angle estimation to
zero when the vehicle is moving straight. The heuristic is computed as a static120

function of the inertial measurements. Therefore, a method for the online offset
estimation and one for the vehicle longitudinal speed estimation are proposed.
The validity and reliability of the method is shown on several realistic driving
tests representing hours worth of driving. These tests include highly dynamic
and nearly steady state maneuvers. To the best of the authors knowledge this125

paper represents the most thorough experimental validation of a sideslip angle
estimation available in the open scientific literature. Results on different road
conditions demonstrate the robustness of the method to varying road conditions.
The method and the equations are described in continuous time. However, to
obtain the experimental results, the method has been implemented on an off-130

the-shelf electronic control unit runnning at 100 Hz.
The paper is organized as follows. In Section 2 the kinematic observer and

the longitudinal vehicle speed estimation are described. Section 3 describes the
structure of the estimation method including the kinematic observer, the offset
estimation, the roll angle estimation and the undesired effects compensation.135

In Section 4, the offset estimation algorithm is presented. In Sections 5 and 6,
experimental results are shown and sensitivity to vehicle mass and road surface
is analyzed. The paper ends with some concluding remarks. Part of the present
work is protected by the patent [38].

2. Kinematic model-based observer140

The vehicle state observer is based on the kinematic model shown in (1),
and quantities refer to the schematic of Figure 1. The model relates the vehicle
accelerations (Ax and Ay) to the vehicle velocities derivatives (V̇x and V̇y) and
the yaw rate (ωz). For straight movement, the vehicle accelerations correspond
to the vehicle velocities derivatives. As the vehicle turns, the longitudinal ac-
celeration is influenced by the lateral velocity (Vy) and the yaw rate while the
lateral acceleration is influenced by the longitudinal velocity (Vx) and the yaw
rate.
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Figure 1: Single track model. δ is the front wheels steer.

{
Ax (t) = V̇x (t)− ωz (t)Vy (t)

Ay (t) = V̇y (t) + ωz (t)Vx (t) .
(1)

Equation (1) can be rewritten as a Linear Parameter Varying system, where the
vehicle velocities represent the system state vector, the yaw rate is considered
to be a time varying parameter and the vehicle accelerations are considered as
inputs:

[
V̇x (t)

V̇y (t)

]

=

[
0 ωz (t)

−ωz (t) 0

]

︸ ︷︷ ︸

[A]

[
Vx (t)
Vy (t)

]

+

[
1 0
0 1

]

︸ ︷︷ ︸

[B]

[
Ax (t)
Ay (t)

]

y (t) =
[
1 0

]

︸ ︷︷ ︸

[C]

[
Vx (t)
Vy (t)

]

.

(2)

The longitudinal velocity is considered as the output variable and is used as
the comparison quantity for the state feedback observer. The sideslip angle is
computed as:

β (t) = arctan

(
Vy (t)

Vx (t)

)

. (3)

Based on this model, the following nonlinear state observer was first introduced
in [26]:

[
˙̂
Vx (t)
˙̂
Vy (t)

]

= (A−KC)

[
V̂x (t)

V̂y (t)

]

+B

[
Ax (t)
Ay (t)

]

+KVx, (4)

where K, the observer gain matrix, was defined as:

K =
[
2α |ωz (t)|

(
α2 − 1

)
ωz (t)

]T
.

The observer is based on two contributions: the vehicle behavior, reproduced
according to the kinematic model and the feedback correction of the longitudinal
velocity measure derived from the wheel velocities. While the stability during
cornering has been proved by the authors in [26], two main issues remain:

1. Longitudinal velocity is updated only on cornering, although on straight145

maneuvers the reliability of the velocity measure through wheel angular
velocities is higher.

2. For straight maneuvers the observability of (2) is lost. In these conditions,
the observer trivially integrates the accelerations. Small measurement off-
sets and errors combined with long straight maneuvers, which are common,150

can cause the filter divergence.
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The main innovation introduced here regards the kinematic model, (2); it ex-
presses the behavior of a free body accelerated on a plane and includes lateral
drift conditions with zero yaw rate. However, it is extremely unlikely for a four-
wheel vehicle to drift laterally without rotating on its vertical axis. Moreover,155

sideslip angle estimators usually are part of an electronic stability control pack-
age designed to specifically avoid getting in those conditions. In other words, it
is extremely unlikely for the sideslip angle to be different from zero if the vehicle
is moving straight. This information can be accounted for by adding a stabiliz-
ing term (−F (t) Vy (t)) in the second equation of (2). Choosing F (t) > 0 and160

sufficiently high when the vehicle is moving straight, the lateral velocity (and
thus the sideslip angle) is forced to converge to zero since on straight driving
Ay and ωz are nearly zero. Accordingly, F (t) is scheduled by a heuristic that
identifies straight driving.

The observer expression is given in (5); it is derived from the one presented
in [26], introducing two major novelties to cope with the aforementioned issues.
The observer state consists of the vehicle longitudinal and lateral velocity, the
acceleration measures are considered as inputs and the yaw rate is considered
as a measurable time-varying parameter.

[
˙̂
Vx (t)
˙̂
Vy (t)

]

=

[
−α0 − α1 |ωz (t)| ωz (t)
− (α2 + 1)ωz (t) −F (t)

]

︸ ︷︷ ︸

[A−Kn(ωz)C]

[
V̂x (t)

V̂y (t)

]

+

[
1 0
0 1

]

︸ ︷︷ ︸

[B]

[
Ax (t)
Ay (t)

]

+

[
α0 + α1 |ωz (t)|

α2ωz (t)

]

︸ ︷︷ ︸

[Kn(ωz)]

Vx

(5)

The gain matrixKn (ωz) is composed of yaw rate dependent and constant terms.165

α1 |ωz| and α2ωz update the observer state on cornering, while α0 guarantees
the V̂x update also on straight maneuvers. Vx is the vehicle longitudinal velocity
and is obtained from the equivalent linear wheel velocity, as described in Section
2.3. In accordance with the reasoning on the straight driving, the term F (t) is
added in order to drive the sideslip angle to zero.170

In principle, the behavior of the observer is the following: (i) if F is small (i.e.,
close to 0) the vehicle state is estimated from the kinematic model dynamics and
the Vx measurement; (ii) if F is large the estimated lateral velocity is driven
to a small value, while the longitudinal velocity is updated by Vx. A proper
modulation of F is proposed in Section 2.1.175

2.1. Heuristic scheduling

The main function of the heuristic is to merge the kinematic model with
empirical information. F determines the strength of the stabilizing effect; it
needs to be carefully weighted to make sure it intervenes only when needed.
Figure 2 proposes the F scheduling block diagram, where δ is the steering wheel
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angle and β̇ is the sideslip angle derivative, given by (6).

β̇ (t) =
Ay (t)− ωz (t)Vx (t)

Vx (t)
. (6)

!z d

dt

F!z_!z

d

dt

_δ
Fδ

δ

d

dt

β̈

Fβ
_β

×

F

Figure 2: Heuristic dynamics computation.

The scheduling of F is based on the idea that, as the vehicle curves, the kine-
matic model is observable and the closed loop observer performs correctly; on
the other hand, during straights driving, F should be large to drive the sideslip
estimation to zero. Therefore measurements used to schedule F are cornering
indicators. β̇ and ωz are clear indicators of cornering maneuvers. However, ma-
neuvers on low grip roads and maneuvers close to pure drift can present small
yaw rate values, while nearly steady-state maneuvers can present small β̇. For
these maneuvers, the steering angle is highly informative in discerning straight
driving from cornering.
Fωz

, Fδ and Fβ behave as follows: (i) if ωz or ω̇z is different from zero Fωz
is

driven to zero; (ii) if δ or δ̇ is different from zero Fδ is driven to zero and (iii)
if β̇ or β̈ is different from zero Fβ is driven to zero. If one of the three terms
composing F is set to zero, F is zero. Fωz

,Fδ and Fβ smoothly vary from zero
to a maximum value and can be computed through static maps or mathemati-
cal expressions. Using mathematical expressions with few parameters, however,
reduces the tuning effort. The expression computing the three terms of F (Fωz

,
Fδ and Fβ) is the bivariate Gaussian Distribution:

Fi = e
− 1

2

(

i2

σ2

i

+ di2

σ2

di

)

i = ωz, δ, β̇. (7)

One advantage of expression (7) is its easy tuning. For each measurement and
derivative involved, only one parameter determines the influence on F. Moreover,
the Gaussian shape guarantees an insensitive region on the top of the bell,180
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that is when the corresponding measurement is zero. More in details, for each
variable and its related derivative, the corresponding parameter (σi and σdi)
indicates the vehicle conditions in which the observer output is driven towards
zero. Ideally, this should happen only when the mentioned variables are close
to zero (the sideslip angle is not observable). However, care must be paid no to185

classify measurement noise as vehicle motion; the amplitude of the bell provides
a tuning for this aspect. Thus a good starting guess for parameters tuning comes
from the amplitude of the noise of the corresponding signal: the width of each
bell should be large enough such that the variations of F due to measurement
noises is negligible. The bell can be then further increased to “activate” the190

kinematic observer only during highly dynamic maneuvers. The derivatives
of the signals are computed by derivative filters with a cutoff frequency of 10
Hz. The filters are designed in continuous time and converted in discrete time
through the Euler forward method. The sampling frequency (100 Hz) and the
cutoff frequency are such that the discretization process does not produce any195

relevant deviation from the continuous time form. The filters combined with
the shape of the gaussian distribution cancel the effect of measurements noise.

2.2. Stability analysis

The error dynamics of the proposed kinematic model-based observer (5) are
given by:

[
ėx
ėy

]

=

[

V̇x −
˙̂
Vx

V̇y −
˙̂
Vy

]

=

[
−α0 − α1 |ωz| ωz

− (α2 + 1)ωz −F

][
ex
ey

]

+

[
0
F

]

Vy. (8)

The latter is a non-autonomous system and the vehicle lateral speed (Vy) plays
the role of the external excitation. Given the heuristic nature of F, the ana-200

lytic stability of (8) is performed with a simplified, yet insightful, procedure,
distinguishing three running conditions:

1. During curves, the heuristic F is driven to zero and (8) reduces to an
autonomous system. The stability of the reduced system can be analyzed
using the following Lyapunov function:

V

([
ex
ey

])

=
(α2 + 1) e2x + e2y

2
. (9)

Combining equation (9) and (8) with F ≈ 0, one can obtain the following
Lypunov function derivative:

V̇

([
ex
ey

])

= − (α2 + 1) (α0 + α1 |ωz|) e
2
x. (10)

Therefore, choosing α0, α1, α2 > 0, on curve the new observer (5) presents
similar stability behavior of the original observer (4).

2. During straight driving, (8) reduces again to an autonomous system, since205

ωz ≈ 0 and Vy ≈ 0. In these conditions α0 and F determine the conver-

gence speed of the system to V̂x ≈ Vx and V̂y ≈ 0.
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3. During the transition from a corner to straight driving and viceversa, both
F and Vy are different from zero and the exogenous input influences the
error dynamics. Since Vy is limited (i.e., physical quantity) and F is210

limited by construction, the estimation error is limited. If the corner in
and out are short the influence of the exogenous term is negligible. Al-
though the latter claim is not proven formally, the extensive experimental
results shown in Section 5 evidence that these conditions do not cause any
instability and do not deteriorate the estimate.215

2.3. Longitudinal velocity estimation

The vehicle longitudinal velocity measurement (Vx) is essential for the vehi-
cle state observer (5). However, the longitudinal velocity is difficult to measure
directly and has to be derived from the wheel velocities. Considering a constant
wheel radius the equivalent linear wheel velocities (VFL, VFR, VRL, VRR) are
trivially obtained from the wheel rotational velocity measurements. Although
wheel velocity measurements represent a reliable source of information, they
have to be properly processed to mitigate undesired effects. In [26], the authors
do not account for any effect and compute the vehicle longitudinal velocity as
the average of the equivalent linear velocity of the wheels. Here we propose a
method to compensate the measurement error due to yaw rate, wheel longitu-
dinal slip and steering angle. The method is based on kinematic considerations
and does not require any additional sensor. Figure 3 shows the effects influenc-

Y

X

!z

δ

L

CG

!z
L

2

!z
L

2

!z
L

2

!z
L

2

δ

Figure 3: Steer and yaw rate effects on the wheel velocity measurements

ing the wheel velocities. The front wheel velocities measurements are affected
by the front wheel steer angle and the vehicle yaw rate affects all the wheels as
they are distant from the vehicle center of mass. All the cited phenomena are
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compensated as follows:

VFL=V meas
FL cosδ − ωz

L

2
VFR=V meas

FR cosδ + ωz

L

2

VRL=V meas
RL − ωz

L

2
VRR=V meas

RR + ωz

L

2
,

(11)

where Vmeas
FL , V meas

FR , V meas
RL and V meas

RR are the measured equivalent linear ve-
locities of the wheels and L is the wheel track, assumed equal between front
and rear wheels without any loss of generality. Besides the kinematic effects
described above, the wheel velocity measurements are affected by longitudinal
slip, i.e., the discrepancy between the linear velocity of the wheel center and the
linear velocity of the wheel contact point. The longitudinal slip is the cause for
the longitudinal force generated by the wheel, [39]. If the wheel is accelerated,
the linear wheel velocity at the contact point will be higher than the vehicle
velocity and the generated force will be positive (i.e., in the sense that it will
accelerate the vehicle). Viceversa, if the wheel is decelerated (braking), the lin-
ear wheel velocity at the contact point will be smaller than the vehicle velocity
and the generated force will be negative (i.e., it will decelerate the vehicle). To
cope with the slip problem and estimate the vehicle slip, in [40] the authors
propose an algorithm based on the selection of the best-wheel velocity, i.e. the
wheel that presents the lower slip. The algorithm relies on the measurement of
the wheel torques and requires expensive sensors, not available in commercial
cars. Here the estimation is based entirely on kinematic considerations and op-
erates a smooth selection between the wheel velocities. The idea is to identify
the lowest slip wheel by exploiting the acceleration of the vehicle and the afore-
mentioned reasoning on the wheel slips. If the vehicle is accelerating, the wheels
tend to have higher velocity than the vehicle, thus the lowest wheel velocity is
the closest to the vehicle velocity. Viceversa, if the vehicle is decelerating, the
wheels tend to have lower velocity and the highest wheel velocity is the closest
to the vehicle velocity. Acceleration and deceleration maneuvers are identified
through thresholds on the longitudinal acceleration measurement (Figure 4).
For nearly zero longitudinal acceleration the vehicle velocity is computed as a

Vx = min (VFL; VFR; VRL; VRR)
Ax

Vx = max (VFL; VFR; VRL; VRR)

Vx = Wmean (VFL; VFR; VRL; VRR)

Athreshold
x

−Athreshold
x

Figure 4: Vx estimation algorithm.

weighted mean of the wheel velocities according to the following equation:

Wmean =
1

∑

iWi

∑

i

WiVi i = FL, FR,RL,RR. (12)
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For each wheel (Vi), the weight (Wi) indicates the reliability of the wheel velocity
measurement and its influence on the estimated velocity. Weights are computed
with the following idea: if the derivative of a wheel velocity is different from the
measured Ax or the wheel velocity itself is different from the estimated velocity
than the weight is driven to zero and the wheel velocity is not considered in the
weighted average. A bivariate Gaussian Distribution (Figure 5) computes the
weigths:

Wi=e
−
(Ax−

dVi
dt )

2

2·σ2
w1

−
(V̂ t−1

x −Vi)
2

2·σ2
w2 i=FL, FR,RL,RR. (13)

V̂ t−1
x is the estimated vehicle velocity at the previous time step. Since the

bandwidth of V̂x is much lower than the bandwidth of wheel velocities (Vi),
considering the vehicle velocity estimated at the previous time step introduces
a negligible effect. The weighting algorithm automatically discards the wheels220

that diverge due to strong braking or acceleration. The derivative of the wheel
velocities are computed by real derivative filters with a cutoff frequency of 10
Hz.

0
10 10

0.5

0 0

1

-10 -10

Figure 5: Wheel velocity weight function.

3. Side slip angle estimate: complete observer

The complete observer is shown in Figure 6. The core of the method is225

the Vehicle State Observer, presented in Section 2, that requires the vehicle
center of mass (CG) accelerations, the yaw rate and the estimated vehicle lon-
gitudinal velocity. It represents the main contribution of the work. The core
estimator requires additional blocks to properly process the IMU measurements
and avoid undesired effects. Gravity acceleration influences the measurements230

through the vehicle roll. A roll estimation and gravity compensation algorithm
is also included and presented in Section 3.1. An online offset estimation algo-
rithm is presented in Section 4. As the inertial measurement unit (IMU) is not
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placed at the center of mass and might be misaligned with the vehicle axes, the
measurements are rotated and transferred to CG.235

+

-

Roll

estimation

and gravity

compensation

Mounting

correction and

center of mass

transfer

Offset

estimation

Longitudinal

speed

estimation

Vehicle state

observer

IMU
measurements

Wheel
speed
measurements

Side slip angle
(β)

Measurements
offsets

!z; Ax

Vx

Ax; Ay; !z

Measurement

filtering

Steer
measurement

(·)f

(·)f

(·)f

(·)CG (·)OFF

(·)RAW

(·)RAW

(·)RAW

(·)OFF

Figure 6: Complete sideslip observer block diagram

3.1. Roll estimation and gravity compensation

The sideslip angle observer requires the vehicle accelerations along its axes.
However the vehicle rolls, and gravity acceleration influences the lateral acceler-
ation measurement. To compensate this effect an algorithm for estimating the
vehicle roll is introduced. The vehicle rolls as a consequence of the centrifugal
force that causes a load transfer between left and right part of the vehicle. The
lateral acceleration is a measurement of the centrifugal force, hence a model that
relates the vehicle roll to Ay can be written, [41]. Figure 7 shows the vehicle
vertical dynamics schematic, where the front and the rear part of the body are
considered to have the same behavior. Writing the vertical axis and momentum

FL
z FR

z

+

Y

Z

L

Ks Ks

M
CG

h

θ
roll

Fy

Fz

Figure 7: Vertical dynamics schematics
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equilibrium one obtains:

FL
z =

FN
z

2
−∆Fz FR

z =
FN
z

2
+ ∆Fz (14)

hFy −
L

2
FR
z +

L

2
FL
z = 0 (15)

where Fy, F
N
z , FL

z , FR
z and ∆Fz are the lateral force, the total vertical force,

the vertical force acting on the left wheels, the vertical force acting on the right
wheels and the load transfer respectively. Considering that the vehicle lateral
force depends on the lateral acceleration (Fy = MAy) and the nominal vertical
force is given by gravity acceleration

(
FN
z = Mg

)
, during steady state turning,

the following expression relates the roll angle with the lateral acceleration:

θroll ≈ −
Mh

KsL2
Ay (16)

where Mh
KsL2 represents the inverse of the vehicle roll stiffness, M is the vehicle

mass and h is the center of mass altitude. Figure 8 shows the measured roll
angle and lateral acceleration for different steady state cornering maneuvers. It
clearly shows that the steady state roll angle depends on the lateral acceleration240

and the vehicle roll stiffness.

-10 -5 0 5 10

-5

0

5

Figure 8: Roll static model vaidation: step steer maneuvers

Equation (16) is a static relation between Ay and the roll angle; it neglects
the load transfer dynamics. To improve also the dynamic estimate, the roll rate
measurement can be exploited. This is done through a complementary filter.
This approach has been derived from [42] where the complementary filter has
been used for the estimate of the roll angle in motorcycles. If measurement
errors are not present, the roll angle can be obtained by simply integrating the
roll rate, however offsets may cause the integral divergence. The complemen-
tary filter fuses the high frequency information carried by the roll rate with the
static model. Figure 9 shows the schematic of the method. High frequency
components of the roll angle are obtained by integrating the high frequency
components of the roll rate, and low frequency components are computed by
low-pass filtering the static model output.
The estimated roll angle is then used to compensate the measured lateral accel-
eration according to:

Aoff
y = ACG

y − g · sin
(
θest

)
. (17)
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Figure 9: Roll estimation schematic: complementary filter block diagram

A similar method can be used to estimate the pitch angle of the vehicle and
compensate the gravity effect on Ax. The pitch angle can be estimated by
using a complementary filter to merge the pitch rate measurement with the
information of the vehicle pitch static model. However, this is a second order245

effect which does not directly influence the lateral acceleration and the lateral
velocity estimate and can be neglected without affecting the overall performance.

4. Online measurement offset estimation

The state observer is robustly stable with respect to measurement offsets
and it can not drift as a result of the heuristic dynamics; yet, an offset esti-250

mation algorithm is introduced to improve the estimation performance. The
algorithm is based on the frequency separation principle. Offsets are consid-
ered slowly varying with respect to other dynamics, hence they are estimated
online through low-pass filtering the measurements in properly selected condi-
tions. The low-pass filter used for the gyro offsets has a settling time of 150 s255

while the acceleration low-pass filters have a settling time of 1500 s. Each offset
is managed separately to exploit the properties of the corresponding measure-
ment. They all however behaves according to the same rationale: an activation
logic selects the data that satisfy certain properties and activates the low-pass
filtering. When the logic is not active the filters are stopped and their state held260

at the values of deactivation.
Gyros are not affected by gravity; their offsets can be thus estimated during

the time period when the vehicle is not moving, regardless of vehicle attitude.
The estimation of the longitudinal offset exploits the estimated longitudinal

velocity (Vx). An alternative measurement of the longitudinal acceleration can265

be obtained by derivation of Vx, properly filtered to remove the high frequency
noise. The discrepancy between the measured longitudinal acceleration (Aoff

x )
and Vx derivative (dV x

dt
) is caused by undesired effects acting on both Aoff

x and

Vx.
dV x
dt

is influenced by the wheel slips and is not affected by an offset as it
is obtained by derivation; Aoff

x is influenced by the lateral dynamic, the gravity270

acceleration and the sensor offset. Therefore the offset can be estimated by
low-pass filtering the discrepancy between dV x

dt
and Aoff

x in conditions where
the lateral dynamics, gravity and slip effects are negligible. The estimation
schematic is shown in Figure 10; Aoff

x is compared with dV x
dt

, any discrepancy
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between the two quantities in the selected conditions is considered a measure-275

ment offset. The selected running conditions are the following:

1. vehicle moving conditions (Vx(t) > 0);

2. limited longitudinal acceleration conditions (A
off |<1 m

s2

x ): large Aoff
x causes

the vehicle to pitch that in turns leads to a gravity acceleration component
on the longitudinal acceleration. Moreover large Aoff

x correspond to large280

wheel slips;

3. straight moving conditions ωz(t) ≤ 5
◦

s
): on cornering Aoff

x is influenced
by lateral dynamics.

Selected samples are then filtered through a low-pass filter.

Low pass
filter

Vx (t)
Sample
selector

Vx (t), A
off
x (t) ; !z (t)

d
dt -

Aoff
x (t) ∆Ax+

Figure 10: Longitudinal acceleration (Ax) offset estimation block diagram

The lateral acceleration offset estimation takes advantage of the kinematic model
combined with the Ay sensor output model. The processed sensor output
(Aoff

y (t)) is considered to be a combination of the real vehicle lateral accel-
eration (Ay), the time varying sensor offset (∆Ay) and a zero mean white noise
(ǫy (t)). {

V̇y (t) = Ay (t)− ωz (t)Vx (t)

Aoff
y (t) = Ay (t) + ∆Ay (t) + ǫy (t)

(18)

Combining the two equations of (18) one obtains an expression of the sensor
offset:

∆Ay (t) = Aoff
y (t)− ωz (t)Vx (t)− V̇y (t)− ǫy (t) . (19)

Since the problem of offset estimation concerns slow varying dynamics, only
mean values of the quantities in (19) are considered. ǫy (t) has zero mean by

definition, while V̇y mean value requires a more detailed analysis. The mean
value of the derivative of the lateral velocity on a certain time interval can be
related to the vehicle lateral velocity with the following:

E
[

V̇y (t)
]

=
1

tf − t0

∫ tf

t0

V̇y (t) dt =
Vy (tf )− Vy (t0)

tf − t0
, (20)

for a generic route, starting and finishing with a straight movement, the deriva-

tive of the lateral velocity is zero on average
(

E
[

V̇y (t)
]

≈ 0
)

and it can be

ignored for the offset estimation goal. At the end an expression for Ay offset
estimation is given by:

∆Ay (t) = Aoff
y (t)− ωz (t)Vx (t) . (21)
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Figure 11: Lateral acceleration (Ay) offset estimation block diagram

Figure 11 shows the estimation schematic and, as for the previous cases data
are filtered by a low-pass filter. If the vehicle runs constantly on a slant or285

banked road the methods estimate the sum of the sensor offset and the constants
component of the gravity acceleration. This behavior is correct, as the goal is
the sideslip estimation.

5. Experimental results

This section experimentally validates the estimation approach. All the ex-290

periments are performed on an instrumented Alfa Romeo 159 with a nominal
mass of 1875 Kg, a 2.4 L engine with all wheel drive. The vehicle is equipped
with an automotive certified solid state 6 DoF inertial measurement unit (IMU),
wheels speed measurements, steer angle measurement and optical sideslip angle
measurement. Two different set-ups are used to evaluate the method perfor-295

mance:

1. Roll estimate set-up: to evaluate the algorithm introduced in Section 3.1
a specific set-up for the measurement of the roll angle is needed. A three-
point laser measurement system provides the distances from ground of
three corners and the vehicle roll angle is obtained through straightforward300

geometrical considerations.

2. Sideslip angle set-up: for the evaluation of the other estimation algorithms
introduced here, the vehicle is equipped with an optical system for the
measurement of the vehicle velocity with respect to the ground.

Except for roll angle and optical sideslip angle measurements, all other quantities305

are measured by series production off-the-shelf sensors.
A total of seven tests will be shown. One test is used for the validation of

the roll angle estimate, one is used for the validation of the measurements offset
estimation and the rest are used for the sideslip angle validation in various
conditions. Sideslip angle validation is done on high adherence surface (high310

and low sideslip maneuvers) and low adherence surface. For all the tests the
vehicle is equipped with different controllers acting on the lateral dynamics and
longitudinal dynamics. The sideslip estimation has no information on these
controllers.

The method depends on different tuning parameters. The longitudinal veloc-315

ity method relies upon the Athreshold
x , σw1 and σw2; the parameters are tuned by

minimizing the RMS of the longitudinal velocity error. The sideslip estimation
parameters, the closed loop observer parameters (α0,α1,α2) and the heuristic
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functions, are tuned by minimizing the RMS of the sideslip angle error. The
tuning is done on all the available data in order to obtain a single set of param-320

eters used for all the experimental tests. The values of the parameters used for
the results of this Section are provided in Table 1.

Table 1: Tuning parameter values

Parameter Value Parameter Value
α0 10 α1 5
α2 10 Athreshold

x 1m
s2

σdω1
4.5 σdω2

1
σωz

0.18 σdωz
0.18

σδ 0.1 σdδ 0.1
σβ̇ 0.06 σdβ̇ 0.3

5.1. Roll angle estimation

Figure 12 presents the results of the roll angle estimate. The algorithm
performs well for all maneuvers. It presents a maximum estimate error of 0.6◦.325

The latter corresponds to an error of 0.1m/s2 on the lateral acceleration which
is negligible compared to the vehicle acceleration. The average of the estimate
error is 0 and its RMS value is 0.12◦.
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Figure 12: Roll estimatimation results: RMS(Estimate error)=0.12◦
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5.2. Offset estimation results

The offset estimation validation requires a long test because of the inherently330

slow dynamics of the offset. To better assess the convergence of the algorithm,
the estimation has been initialized to purposely large offset. In reality, the
algorithm is always initialized at the most recent estimation at every key-on of
the vehicle.

Figure 13 plots the results in terms of offset estimation on a road with vary-335

ing adherence; the figure compares the estimate against the true offset estimated
offline. The gyro offset estimation is straightforward; the estimate converges to
the offset during the vehicle stops and is insensitive to measurement noise. Ax

and Ay offset estimation is more critical as the acceleration measurements are
influenced by road banking. From t = 2000 s to t = 2500 s, the vehicle runs340

on the parabolic curve track and the algorithm tends to estimate the gravity
component influencing the measures together with the sensor offset. Two con-
siderations are due: (i) if the vehicle is permanently running on a banked road
then it is correct to consider the gravity effect as a measurement offset, since
the objective is that of estimating the sideslip angle with respect to the road345

plane; (ii) on long driving tests the road banking can be considered as a zero
average effect, in fact after a transient phase the estimated offset converges to
the real sensor offset.
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Figure 13: Offset estimation experimental results
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5.3. Step steer maneuver

The step steer maneuver is an objective test. The limited impact of the350

driver driving style allows for a good repeatability. The maneuver consists of a
steer step of 7◦ while the speed is kept constant. Figure 14 shows the inertial
measurements (corrected and transferred to the center of mass). The longitu-
dinal acceleration is nearly zero while the lateral acceleration and the yaw rate
reach 9 m/s2 and 25◦/s respectively. This maneuver evaluates the best perfor-
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Figure 14: Step steer test: vehicle inertial measurements

355

mance of the method for low sideslip angle conditions as no road bank/slope is
present. The estimation results are shown in Figure 15; the algorithm performs
well with an RMS of the estimate error of 0.48◦ and a maximum estimation
error of 1◦.

5.4. High µ test360

High friction roads represent the majority of road conditions where commer-
cial vehicles are used. Two tracks, both with µ ≈ 1, are tested; one track is
used to evaluate the method performances on city driving (i.e., driving char-
acterized by low sideslip maneuvers) while the other is used for sporty driving
(i.e., driving characterized by large sideslip maneuvers).365

The first track is characterized by two long straight paths, a smooth and long
curve and different sharp and fast curves. The vehicle speed experiences time
intervals with small variations during the curves and time intervals with large
variation during straight driving. Figure 16 and 17 show respectively the inertial
measurements and the longitudinal velocity estimation which is compared with370

the measured velocity and the average of the wheel velocities. Ax presents
relevant peaks during the braking maneuvers; a clear example is the maneuver
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Figure 15: Step steer test: side slip estimate. RMS(εβ)=0.48◦

-10
-5
0
5

-10

0

10

0 20 40 60 80 100 120 140 160
time [s]

-40
-20

0
20
40

Figure 16: High adherence low sideslip test: vehicle inertial measurements
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Figure 17: High adherence low sideslip test: longitudinal speed estimate. The average error
is the difference between the measured speed and the wheel velocities average; RMS(average
error)=2.09 km/h. The estimate error is is the difference between the measured speed and
the speed estimated by the proposed method; RMS(estimate error)=1.41 km/h.
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Figure 18: High adherence low sideslip test: sideslip estimate. RMS(εβ)=0.85◦
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at t≈ 120 s, immediately before starting a curve. The driver performs a sharp
braking maneuver and enters the curve; in this condition estimations based
on wheel velocities lose reliability and the introduced algorithm outperforms375

the average speed (computed as 1
4

∑

i Vi), both in the error RMS sense and
maximum error sense. The lateral acceleration and the yaw rate (Figure 16) are
small during straight and nearly straight drivings (t< 20 s, 90 s<t<100 s, 105
s<t<115 s, t>160 s). During curves Ay and ωz reach large values, respectively
10 m/s2 and 50◦/s. In all conditions, the observer performs well; although the380

sideslip estimation (Figure 18) deteriorates compared to the step steer case, the
error RMS is 0.85◦. The main reasons for this deterioration are:

1. rapid variations of road banking and slope;

2. severe acceleration that cause high wheels longitudinal slip and deterio-
rates the longitudinal speed estimation;385

3. vehicle pitch caused by strong acceleration that is not taken into consid-
eration.

The results also show the main advantage of the heuristic dynamics, during
straight maneuvers the estimated sideslip angle is zero. The method is robust to
any measurement error or gravity effect and does not present drift. Executing390

the observer on the same maneuver, but with weaker heuristic correction term
the results of Figure 19 are obtained. Without the heuristic the performance
of the observer considerably deteriorates. During strong turning maneuvers (98
s<t<105 s) the observer without heuristic can estimate the sharp variations of
the sideslip angle, since the kinematic model is observable. However, during395

straight maneuvers (t>140 s) the estimation tends to diverge as the kinematic
model loses its observability for ωz ≈ 0.

The second track is used to test the method during aggressive driving that
reaches high sideslip angle. The inertial measurement evolution (Figure 20)
reflects the track characteristics; since the track is mostly composed of curves,400

Ay and ωz are nearly zero only for a limited number of short time intervals
(t<15 s, 40 s<t<45 s, 74 s<t<82 s, 210 s<t<214 s, t>265 s). Ax presents
sharp variations as the driver brakes and accelerates brusquely while entering
and exiting the curves. The vehicle speed estimation and the wheel speeds are
shown in Figure 21. During sharp accelerations, such as 55 s<t<75 s and 190405

s<t<200 s, the rear wheels tend to diverge since the vehicle is a rear wheel drive.
In these conditions, the Vx estimation algorithm presents the major advantages;
it discards the diverging wheel limitng the estimation error. The sideslip angle
estimation results are shown in Figure 22. The test presents high β, low β as
well as straight maneuvers. In all conditions the estimation performs well; the410

estimation error maximum value and RMS are similar to the low β condition.

5.5. Low µ test

The fourth test that is considered is a low adherence test track (µ ≈ 0.3).
The track is composed of one straight path followed by soft curves. During
this test, the vehicle reaches high sideslip angle in most maneuvers. However,415
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Figure 21: High adherence high sideslip test: longitudinal speed estimate. RMS(average
error)=8.36km/h, RMS(estimate error)=4.01km/h.
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measured accelerations present lower values compared to the high adherence
track. The low grip influences also the wheel velocities behavior (Figure 23),
with lower grip the velocities are noisier despite the low longitudinal acceleration
(30 s<t< 45 s).

Although the driving and road conditions are severe the observer works420

correctly and preserves an estimation error comparable with the previous tests
(RMS value of 1.10◦). In particular the maneuver at time 30 s <t< 37 s shows
that at low grip and large β the method preserves its accuracy and presents
absolute errors similar to the maneuvers at high grip and small β (Figure 18).

To further validate the accuracy and robustness of the method, the accuracy425

indexes are computed on a 4000 s test. The sideslip estimation presents a
RMS(εβ) of 0.78

◦ and a maximum error of 6.73◦.

6. Robustness analysis

The main advantage of the kinematic approach is its independence from the
vehicle parameters, which can be difficult to estimate and can vary. The core430

of the proposed method is unaffected by vehicle parameters. However, in order
to obtain the vehicle center of mass accelerations, the IMU position has to be
known and the roll angle estimation needs the roll stiffness. While the IMU
position is constant during the use of the vehicle, the roll stiffness depends on
the vehicle mass. The following tests highlight the performance of the method435

in non nominal conditions and on data that were not used during the tuning
phase.

The effect of the vehicle mass on the sideslip angle estimate is analyzed
by testing the method on a steer step maneuver and the vehicle loaded with
additional 300 Kg. The accelerations measured during the test are similar to440

the step steer test with nominal load. The vehicle speed is nearly constant,
hence the measured Ax is nearly zero. The lateral acceleration and the yaw
rate reach 9m/s2 and 25◦/s respectively and demonstrate the severity of the
maneuver. β estimation results in Figure 25 show the robustness of the method
to vehicle mass, as the estimation error presents negligible differences with the445

nominal load case.
An additional test is performed on a mix high and low adherence track,

Figure 26. The first part corresponds to the high adherence track used for the
test of Figure 18 and the second part corresponds to a track with a friction
coefficient of approximately 0.2. For both parts the method uses the same450

parameters and has no information on the friction. The overall performance
deteriorate compared to high friction test. However, the method is designed to
estimate fast sideslip variations on unknown road characteristics and to this end
the results are satisfactory.

As described, the core vehicle state observer is sided by a number of addi-455

tional terms and correction. Each term improves the performance under specific
conditions. It is therefore useful to try and quantitatively assess the contribu-
tion of each term. Table 2 summarizes the relative loss of accuracy when the
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Figure 25: Step steer test with loaded vehicle. RMS(estimate error)=0.50◦
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Figure 26: High and low grip combined test. RMS(estimate error)=0.96◦. Note the sharp
increase of the sideslip estimation error at around 180 s. At that time, the rider performs
a sudden acceleration from a standing still; at such low speed (v¡20km/h), also the optical
sensor is subject to measurement errors.

27



different blocks are selectively disabled in the high grip, low β scenario. The
estimation algorithm is run on the same data disabling a single correction term460

at the time. All blocks play an important role in the reduction of the estima-
tion error, some of them have a prevalent impact on the maximum error, some
of them on the overall RMS performance. Generally speaking, the blocks that
aim at correcting the lateral acceleration (namely Ay offset computation, and
roll estimation) are the most important. The center of mass translation is im-465

portant especially during sharp maneuvers when the crosstalk between different
axes is the strongest, and thus it mainly affects the maximum error. For similar
reasons, the speed estimation algorithm mainly impacts the maximum error as
it intervenes more heavily during aggressive maneuvers.

Table 2: Summary of the effect of additional blocks

Disabled block ∆ MAX(εβ) ∆ RMS(εβ)
Ax Offset est. 4% 1%
Ay Offset est. 14% 22%
ωz Offset est. 7% 24%
Center of mass translation 74% 8%
Roll estimation 37% 30%
Speed estimation 28% 1%

7. Conclusions470

This paper discusses a complete, robust and industrially viable method for
estimating sideslip angle in cars making use of low-cost off-the-shelf sensors,
such as body accelerometers, rate gyros, wheel velocities and steering wheel
angle.

The algorithm is composed of different components estimating the vehicle475

longitudinal speed, the sensor offsets, the vehicle roll angle and the center of
mass accelerations. All the components exploit kinematic considerations and are
designed to be independent from the vehicle parameters and road conditions.
These algorithms are used to process the measured accelerations and angular
rates in order to obtain the center of mass quantities.480

The observer combines the vehicle kinematic model, that is unaffected by
the vehicle parameters, and a heuristic term that adds experience-based infor-
mation. Compared with previous solutions presented in literature the method
presents two main advantages:

1. being based on the kinematic model the method is unaffected by vehicle485

parameters and tire-road friction. All the methods relying on a grip model
require an online estimate of the grip in order to work properly, which is
possible only if excited driving maneuvers are executed;

2. the heuristic term ensures a correct behavior also during straight driving.
Methods relying purely on the kinematic model present a critical behavior490
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on straight driving; the kinematic model becomes unobservable and the
estimate tends to diverge due to measurement offsets.

The method is tested on a vast collection of trials: step steer maneuver,
high grip track and low β conditions, high grip track and high β conditions
and low grip track. The paper discusses at length the features of the algorithm495

for each test. The results of the algorithm can be summarized in Figure 27
that summarizes the estimation error statistics in different conditions. The
estimation results are satisfactory (maxRMS=1.1◦) although the method does
not have any information about the grip condition. Finally, the estimation
methods are computationally efficient and are implemented on a production500

electronic control unit.
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