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Abstract 

In advanced manufacturing, surface topographical designs with deterministic freeform and 
embedded structures have proven to contain effective, additive functionalities. These surfaces 
need to be geometrically characterised regarding the designed form and structures. However, 
this is problematic since existing characterisation techniques such as polynomial form removal, 
Gaussian/spline/wavelet filtration, field-based statistical parameterisation, spectral and fractal 
analysis do not provide satisfying results. In this paper, we, therefore, propose to characterise 
the complex surfaces in T-spline spaces, i.e. basis spline spaces along with T-junctions, using 
an efficient T-spline fitting algorithm. Several case studies show that the proposed method is 
compatible and has notable potentials for the challenging characterisation tasks, including non-
Euclidean freeform removal, edge-reserving filtration with multiscale analysis, scattered data 
interpolation and smoothing, and smart large-data downsampling or compression. 

Keywords: Surface topography, characterisation, T-splines 

1. Introduction 

Characterisation of engineered surface topography usually 
comprises areal profiling of a surface portion and its 
subsequent analyses [1, 2]. A series of techniques and their 
standards have been developed for the task, e.g. ASME B46.1, 
ISO 4287 and 25178 series [3-5], to compare results from 
different users. In these standards, a set of characterising 
parameters and functions have been developed, such as 
surface filtration with Gaussian, splines and wavelets; form 
removal with least square or minimum zone polynomial fitting; 
height, spatial and hybrid parameters based on field statistics; 
areal and volume parameters based on material ratio analysis; 
and analysis with auto-correlation, Fourier transform and 
fractals [5-8]. Novel watershed segmentation-based feature 
characterisation techniques [9, 10] further enable particle-like 
geometrical features of surface topography to be flexibly 

recognised and analysed. These techniques can characterise 
general, stochastic features-dominated surfaces with a 
primitive shape. However, they are reported to produce 
distorted results [11] when dealing with advanced surfaces, 
such as those with designed freeform or embedded with 
micro/nano-structures [12]. These surfaces are usually 
developed for additive function control, e.g. with improved 
friction, wear, lubrication, corrosion, hydrophobicity, bio-
interactions and optical reflectivity or diffraction [13-18].  

1.1. Characterisation challenges 

The main characterisation challenges brought by freeform, 
structured surfaces include the following aspects: 
1) Freeform removal.  

To evaluate manufacturing errors in varying scales or 
frequency domains, e.g. waviness and roughness [2], 
underlying form and form errors must first be removed. For 
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this purpose, as presented in Figure 1(a), existing techniques 
such as polynomial fitting is reported to present distortion. 
This can be attributed to the following two reasons: first, 
polynomial models with a limited order is not flexible for 
complex geometric fitting; Second, current fitting methods are 
planar projection-based, where height deviations of measured 
points from a fitted model is simply minimised, instead of 
working with normal distances. Therefore, new non-
Euclidean freeform fitting methods with flexible representing 
models need to be developed [19-21].  
2) Filtration and smoothing.  

Analysis of surface topography is usually conducted on a 
specific scale or multiple-scale domain, for which unwanted 
scale components, like noise and periodic tool marks, need to 
be smoothed or removed. For this process, mature filtering 
algorithms have been developed, including the ISO 
standardised Gaussian, morphological, spline and wavelet 
filters [6, 22, 23]. However, as presented in Figure 1(b), these 
methods treat all surface points isotropically, which distorts 
valid feature edges or boundaries when suppressing the 
measurement noise. For precision edge-preserving filtration, 
anisotropic diffusion filters, based on partial differential 
equations, have recently been developed [19]. However, the 
existing numerical difference-based algorithms only apply to 
regular, grid data [24].  
3) Interpolation and reconstruction. 

Interpolation of grid or scattered sample set for missing 
data restoration, and reconstruction from a sample set to a 
mathematical model for reverse engineering, are widely found 
in engineering surface measurement. They are both required 
to construct a continuous model either locally or globally. 
There are many explicit and implicit, parametric and non-
parametric methods developed for these purposes, e.g. 
neighbour averaging, polynomial and spline interpolation, 
radial basis functions and kriging [25-27]. Among them, B-
spline and NURBS have proved to be flexible and robust for 
freeform reconstruction. However, evidence [28, 29] shows 
that they are not an optimal solution when reconstructing 
geometry with complex, sparse features. For example, as 
presented in Figure 1(d), a laser textured surface topography 
for hydrodynamic control [30] is reconstructed via NURBS 
with superfluous control points in each parametric row and 
column.  
4) Down-sampling and compression. 

Process control with large-area full-field inspection instead 
of statistical sampling [31, 32] is highly expected for high-
reliability manufacturing. For this purpose, large 
measurement data of a 3D freeform object from multiple 
sensors or inspection views need to be fused, compressed and 
characterised efficiently [33]. Therefore, intelligent 
algorithms for complex point cloud down-sampling, 
compression and compatible reconstruction are required [34]. 
Many smart down-sampling algorithms, e.g. adaptive 

subdivision and iso-parametric sampling [35], have been 
developed. A smart down-sampling example from a human 
face is presented in Figure 1(c) in which dense sample points 
are located at the features with complex geometries, e.g. eyes, 
nostrils and lips. However, very few of them have been widely 
accepted as a default for practical use. 
5) Other Challenges 

Other challenges include automatic freeform matching and 
stitching. The former registers a measured freeform point 
cloud to a CAD model for error evaluation; the latter breaks 
the range limitation of a sensor by fusing locally measured 
surface portions to a complete, unified dataset. Due to the 
geometrical or structural similarities of freeform, structured 
surfaces, general registration algorithms based on local, 
statistical feature descriptions, e.g. heat kernel signatures and 
fast point feature histogram [36], easily result in a high 
probability of failure. Further challenges may include exact 
feature extraction, contouring analysis and geometrical 
morphing [37].  
 

Figure 1. Characterisation challenges of freeform, structured surfaces. (a) 
Ordinary three-knot uniform NURBS fit produces a remarkable fitting error, 
compared to an orthogonal distance fit using the same model; (b) noise 
removal distorts feature edges; (c) 1,000 point smart down-sampling of a 
dense human face dataset with a root mean squared error of 0.3 mm; (d) 
NURBS reconstruction of a hard-disk landing zone produces 14,400 control 
points (black cross vertices) with a peak to valley error of 1 nm. 

1.2. Surface characterisation using splines 

A spline is a piecewise, polynomial function 𝑓 𝑥  that is 
usually derived with minimised curvature 𝑓′′ 𝑥 𝑑𝑥 . 
Splines have been extensively used for interpolation, 
smoothing and modelling-related problems in computer-aided 
geometrical designs, graphics and digital signal processing 
[37]. For example, thin-plate splines in the form of global, 
radial basis functions were used for medical imaging and 
climate surface interpolation [38, 39]. Cardinal splines [40] 
were used as a standard to filter regularly spaced data in 
mechanical engineering [41]. As an important type, B-splines, 
mainly 4th order B-splines are extensively used in various 
scientific and engineering problems, including 
electromagnetic scattering or diffraction, computed 
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tomography and magnetic resonance imaging, freeform 
architecture and manufacturing modelling, and manufacturing 
error analysis [42-46].  

Along with the development of wavelet theory and shift-
invariant space theory [47-49], B-splines and their rational 
versions (NURBS) [50] are recognised as probably the best 
options for signal approximation. A B-spline of degree (r-1) 
can be defined in the following form: 

 
1,...,

( ) ( )r
i i ii n

f u c u u


     (1) 

where 𝑢 ∈ ℝ is a parametric location; 𝑢  is a sequence of 
parametric knots of size n, including r repeating (or non-
repeating) knots at the borders; 𝑐  is the coefficients or control 
points of the spline model; while 𝛽  is a basis function of 
order r associated to the ith knot, which can be conveniently 
calculated using de Boors’ recursion formula [51]. Assuming 
that knots are equidistant, e.g. integers, the basis functions of 
different orders are presented in Figure 2(a). Eq. (1) also 
applies to two-dimensional (2D) cases by using tensor product 
basis functions 𝛽 ∙  in the parametric space of ℝ . B-splines 
have the following advantages.  

1) 𝐶  continuity. If the multiplicities of knots are one, B-
splines of order r are 𝐶  continuous. Specifically, B-splines 
of order four are 𝐶  continuous with minimised curvature [37].  

2) Short support. B-spline basis functions possibly have the 
shortest support [48]. This results in the estimation of model 
parameters, predicting and modifying model values can be 
done locally. The short support also results in band-diagonal 
observation matrices. The sparse structure can significantly 
reduce the computational complexity of least-square model 
estimation to 𝑂 𝑚𝑟  using QR factorisation, instead of 
𝑂 𝑚𝑛  when using dense matrix inversion [52], where m is 
the number of sample points.  

3) Flexibility. B-splines and NURBS are theoretically 
flexible to approximate any smooth geometry by choosing 
sufficient knots. As presented in Figure 2(b-d), B-spline basis 
functions can be linearly combined to generate different 
equivalents, such as interpolation (or cardinal), dual and 
wavelet basis functions. They can be used as a convolution 
kernel for high-efficiency calculations of interpolation, 
parameter estimation and multi-resolution analysis (MRA) 
[48], instead of a general matrix inversion. This is very useful 
when manipulating large body of data. 

4) Optimised time-frequency localising capability. A B-
spline interpolant of order four as plotted in Figure 2(b), shows 
exponentially faster decay than the traditional, band-limited 
interpolant – sinc [8]. As presented in Figure 1(a), B-spline 
basis functions converge to Gaussian as the order increases. A 
B-spline basis of order four has already optimised time-
frequency bandwidth product, within the 1% limit specified 
by the uncertainty principle [53].  

5) Simplicity. B-spline basis functions can be easily 
calculated using de Boors’ recursion formula from a square 
wave function. Derivatives and integrals can also be 

conveniently calculated from corresponding lower or higher 
orders of basis functions [37]. 

6) Affine invariance. B-spline model coefficients are called 
control points, which are affine invariant to B-splines. If an 
affine transformation, such as translation, rotation, scaling and 
shear, is applied to a B-spline, the result can be simply 
calculated by transforming its control. 

Figure 2. B-spline basis functions (a) and their equivalents, including the 4th

order interpolation basis (b), the dual basis (c) and the wavelet basis (d). 
 

Figure 3. Approximation of the hard-disk landing zone using T-splines. (a) A 
parametric space view and (b) a physical space view of the T-model, which 
uses 4900 control points to achieve to a peak to valley error of 1 nm. 
 

B-spline and NURBS surfaces are tensor product models. 
Tensor product models have regular control point grids, which 
are suitable for isotropic signal characterisation, e.g. machined 
surfaces with uniformly distributed tool marks. However, they 
are not optimal for freeform, structured surfaces. Instead, 
advanced B-splines using truncated control point nets, i.e. T-
splines [28, 54-57], have proved to be optimised in control 
point mesh management. Figure 3 demonstrates that the 
previous laser textured surface of Figure 1(d) can be 
reconstructed to the same error level using a T-spline, with a 
limited number of control points that is approximately one 
third of that when using a NURBS.  

T-splines breaks the topological limit of tensor-product 
grids. However, they may lead to increased computational 
complexity, and the basis functions are not of a partition of 
unity or linear independence. Therefore, advanced T-splines, 
e.g. analysis-suitable T-splines [58], are still in development. 
Thus, geometric approximation and characterisation using T-
splines is still at an initial stage. 

1.3. The contribution 

In this paper, we initially proposed to characterise freeform, 
structured surfaces in T-spline spaces, using a developed local 
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fitting algorithm. Similarly to what B-splines do in signal 
characterisation [37], we demonstrate that the T-spline fitting 
can be used to cope with most of the aforementioned 
challenges, including freeform removal, noise removal and 
filtration, interpolation and reconstruction, smart down-
sampling and data compression, with improved performance 
on computing efficiency. 

2. Locally fitted T‐splines 

2.1. The algorithm 

T-splines with a fast local fitting algorithm [34, 59], 
namely locally fitted T-splines, are introduced. Given a set of 
control points 𝒑 ∈ ℝ  and an associated 2D mesh of knots Φ 
with T-junctions, i.e. T-mesh as seen in Figure 4, a T-spline 
surface is defined as follows: 
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where 𝑠, 𝑡  is a parametric location in a domain Ω ∈ ℝ ; bi is 
the ith blending function, i.e. basis function, associated to the 
ith knot vertex, with b being a row vector comprising 𝑏 𝑠, 𝑡 ; 
while P is an n-by-d control point matrix. If all the knot 
junctions of a T-mesh are cross-shaped, it degenerates into a 
B-spline knot mesh, or B-lattice. The ith blending function has 
the following tensor product form: 

      , ,
i iib s t s t  s t   (3) 

with 𝛽𝒔  and 𝛽𝒕  being respectively the B-spline basis 

functions supported by local knot vectors 𝒔  and 𝒕 , which can 
be inferred following Sederberg’s rule one [28]. Examples of 
cubic blending functions are presented in Figure 4(a). 
 

 
Figure 4. Definition of the locally fitted T-splines. (a) Three blending 
functions of a T-mesh, (b) the iterative fitting process flow and (c) the local 
characteristics of the fitting. In the local refinement process, if a T-mesh 
element (yellow) is split, two new knots or vertices (blue dots) with a 
connecting edge are introduced. Due to the local support, only the neighbour 
knots (red dots)-associated blending functions alter. Fitting of the new and 
neighbour knots-assoxiated control points using the local data in the affected 
area (gray) instead of global fitting can, thus reduce the computational 
complexity. 

 
As presented in Figure 4(b), the locally fitted T-splines 

follows the computational flow of general, locally refined T-

splines [60]. In each refining iteration, the violating T-mesh 
element, which contains the points that have the Euclidean 
fitting errors larger than a preset threshold ε, is split dyadically. 
The control point matrix P of the refined T-meshes are then 
updated by solving the least squares problem as shown below: 
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 v f V BP  (4) 

where V is an m-by-d measurement matrix comprised of the 
sampling points 𝒗 , and B is an m-by-n model matrix with the 
jth row, ith column element 𝑏 , 𝑏 𝑠 , 𝑡 . The corresponding 
parametric location 𝑠 , 𝑡  of each sampling point can be 
obtained using conformal mapping algorithms [61] or using 
normalised x and y coordinates [60].  

To ensure the computational efficiency, Eq.(4) is solved 
using a local fitting strategy instead of a global fitting. As 
presented in Figure 4(c), for each refined element, only the 
neighbour control points PL with altered blending functions 
are updated, using the sampling data in a local, affected area. 
This local fitting can be expressed by solving the following 
equation: 

 , ( )
1

,diag
n

i j K N K L K N L NK N L L
i
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 V B P B P PB   (5) 

where K denotes the sampling point indices of an affected area; 
N denotes all the control point indices of a T-spline; L and (N-
L) denote respectively the index sets of the updated and the 
remaining control points. Thus, the updated control points can 
be efficiently calculated using 

  ,
1

diag ,
n

K L i jL N LK L
i

K Nb
  



 
 

 
 
 


 
P B V B P   (6) 

where ∙  denotes a matrix pseudo-inverse. Because 𝑩  

and 𝑷  can inherit from the previous iteration, calculation 
of Eq.(6) degenerates into a small-scale least squares problem, 
which is solved using the pseudo-inverse of 𝑩 . In other 
words, the local fitting speeds up the computation 
significantly by reducing the matrix dimension of pseudo-
inverse from 𝑚 𝑛 to |𝐾| |𝐿|, where | ∙ | denotes the size 
of a set. 

2.2. Performance evaluation 

The locally fitted T-spline algorithm was evaluated by 
comparing it with simple global fitting [60] regarding fitting 
accuracy and computational time costs. Two typical z-map 
data were used as experimental objects. One is the hard-disk 
surface previously used with sparse, repetitive bumps. 
Another one is a steel plate topography with randomly 
distributed particles. The analysing results are presented in 
Figure 5, where the fitting accuracy is indicated using the 
signal-to-noise ratio (SNR), i.e. 
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The SNR normalises the reconstruction errors so that the 
results of different surface samples are comparable. 

The results show that the locally fitted T-splines can 
approximate the complex surface topographies with 
reasonably small fitting errors. The computational time costs 
are about 1/4~1/2 of that of the global fitting-based T-splines. 
The higher the fitting SNR, the more significant the decrease 
in computational time. 
 

 
Figure 5. Performance evaluation of the locally fitted T-splines. Typical 
fitting results of a hard-disk surface (a) and steel plate surface (b) with pseudo-
coloured fitting errors, and their corresponding computational time cost 
analysis versus different root mean squared fitting errors (c-d), compared to 
that with general global fitting-based T-splines. 

3. Freeform removal 

Arbitrary freeform surface topography can be described in 
the following parametric form [21]: 

   form res, , ( , ) ( , ) ( , )
T

x y z s t s t q s t   q q n   (8) 

where q is a 3D surface point defined on a 2D parametric 
location (s,t); qform and qres are respectively an underlying form 
and residual S-F surface topography, i.e. surface texture [1]; n 
is the local norm vector of the form. Once a form is fitted, 
surface texture can be extracted as a simple height map for 
post-analysis, such as filtration and pattern recognition. 

To demonstrate the freeform removal performance of T-
spline fitting, we conducted the first case study using 
simulations. As presented in Figure 6(a-c), a saddle-shaped 
surface with superimposed surface texture was first generated. 
Using an initial, empty T-mesh, i.e. a B-lattice without splits 
expect border extensions [29], and setting the maximum 
fitting error threshold as 0.5, an ordinary fit of the data using 
the above iterative algorithm was implemented. In this case, 
x- and y-data are normalised as the parameters, while z-data 
are fitted by scalar control points. The ordinary fit result shows 
enlarged magnitudes of surface texture in the area of high 
slopes. Using the same initial T-mesh and algorithm, an 
orthogonal distance fit was also implemented. In this case, the 
point cloud was conformally mapped [61] to parameter points 
in a square domain of ℝ , with which sample points were 
fitted by 3D control points. The results show that the extracted 
surface texture coincided well with the simulated one, without 
obvious distortion. It must be noted that the final resulted 
splines are simple B-splines in the simulation, due to the 
simplicity of the surface. 

 

 
Figure 6. Freeform removal from a simulated saddle surface and a real artefact. (a) The simulated saddle surface with additive artificial, surface texture (pseudo-
coloured) of Gaussian process with an Sq of 0.033; (b) an ordinary T-spline fitting results in a remaining surface texture with an Sq of 0.062; (c) a parametric 
space T-spline fitting results in a remaining surface texture with an Sq of 0.032. (d) The freeform artefact with visible tool marks measured using a structured 
light scanner and (e) a parametric space T-spline form-fitting results in a remaining surface texture with an Sq of 0.139 mm.  

 



T-spline fitting was then applied to an artificial freeform 
artefact measured using a structured light scanner [62]. As 
presented in Figure 6(d), the freeform surface shows visible 
tool marks, which are the main components of surface texture 
to be extracted. By using conformally mapped parameters as 
the independent variables and setting the maximum fitting 
error threshold as 0.8 mm, the 3D sample points were fitted, 
using the iterative algorithm. The result in Figure 6(e) shows 
that the tool marks were properly extracted with an Sq of 0.139 
mm. 

4. Shape‐preserving filtration with MRA 

The T-spline fitting can be applied for geometric filtration 
with notable shape-preserving capabilities. If a Euclidean 
fitting error threshold is used as the filtering index, filtered 
results of a measured step surface are initially presented in 
Figure 7. The figures show that the filtered surface contains 
smaller scales of components when the index diminishes 
gradually. The results show significant edge-preserving 
performance, as the remaining texture shows uniform 
irregularities across the surface including the regions of edges. 

However, the above fitting error-indexed T-spline filtration 
lacks accurate cut-off control of frequency or scales. To 
address the issue, we first consider the filtration problem in 
nested B-spline spaces [63, 64]. We follow the convention of 
[63] to define a hierarchy of B-lattices Φ ∈ℤ  overlaid on a 

parametric domain Ω ∈ ℝ , e.g. 0,1 0,1 , each of which 
has a total of 𝑛 3 𝑛 3  uniformly distributed knots 
of spacing 1/ n 1 , with indices from -1 to 𝑛 1  on both 
parametric dimensions. Let 𝑉  be a space of uniform B-spline 
functions defined on Φ , then any function of Φ  with 
𝑛 3 𝑛 3  control points, can be exactly represented 

by a function of Φ  with 2𝑛 3 2𝑛 3  control 
points, using B-spline refinement or knot insertion algorithms 
[51, 63]. Thus, the increasingly resolution-refined B-splines 
nested relationship is guaranteed: 

 0 1 .nV V V       (9) 
The locally fitted T-splines degenerate to the above 

hierarchical B-splines, providing the fitting error threshold of 
refinement 𝜀 → 0. In general cases with 𝜀 0, the nesting 
relationship holds if only the refining topology is followed, as 
described in [28]. For the dyadic split topology used in the 
locally fitted T-splines, the nesting relationship in Eq. (8) can 
only be held approximately. However, we benefitted from 
their simplicity at the initial stage. Figure 8 presents a multi-
resolution analysis of an artificial, freeform surface data, using 
the above iterative algorithm with a slight modification, where 
local fitting calculations are applied to the residual maps from 
a global approximation and previous iterations. The results 
show visibly fitting resolution improvement and a remarkable 
approximation to the original surface. 

 

 
Figure 7. Edge-preserving filtering of a step surface. (a) The original surface, (b-g) filtered results using the maximum fitting error thresholds of 1/2, 1/4, 1/8, 
1/16, 1/32 and 1/64 respectively of the surface magnitude, (h) remaining surface roughness subtracted from (g). 
 

 
Figure 8. Multi-resolution analysis of the Matlab Peaks function with additive Gaussian process noise. (a) The original surface, (b) an initial approximation of 
the original surface using a B-lattice, (c-g) locally fitted T-spline approximations of the residual maps using iteratively refined T-meshes, (h) synthesised 
surfaces using the data of (b-g). 
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5. Missing data Interpolation  

Missing data are widely found in surface topography 
measurement. Figure 9(a) shows a typical surface topography 
with missing data obtained using a focus variation microscope. 
The majority of existing topography processing algorithms, 
e.g. filtration, the Fourier transform and auto-correlation, only 
work for grid data. This indicates that missed data need to be 
filled.  

The selected surface sample is a structured surface with 
missing data at both the feature edges and centres, with a high 
missing rate of 21.1%. Figure 9(b-c) report an interpolation 
result of the structured surface using the locally fitted T-spline 
fitting. For reference, an interpolation result using multi-level 
B-splines (probably the most stable interpolation method up 
to now) [63] with an equivalent level is presented in Figure 
9(b). The result illustrates that locally fitted T-splines 
performs equivalently as multi-level B-splines, but with an 
adaptive knot mesh.  

However, it needs to be noted that the T-spline 
interpolation result has slightly visible ripples at the feature 
edges. Besides, the experiment was not an exact interpolation 
due to the smoothing effect. Exact interpolation using T-
splines was abandoned for this case, because it was found to 
consume an unacceptable time cost, with extremely dense T-
meshes. Interpolation algorithms with T-splines need to be 
improved. 

 

Figure 9. Missing data interpolation for a structured surface. (a) Raw data 
from a focus variation microscope, (b-c) a locally fitted T-mesh and its 
interpolation result, (d) interpolation using an equivalent eight-level B-splines 
with a minimum knot spacing of 0.004 in the parametric space,. 

6. Smart down‐sampling and data compression 

6.1. Smart down‐sampling 

Optical, areal surface topography measurement usually 
produce sizable measurement data, particularly in on-line 
metrology. Smart down-sampling of the large measurement 
data with limited or without accuracy loss, is highly expected 
for storage space-saving; thus, reducing the cost of production 
management. Based on the shift-invariant spacing sampling 
theory [49], we have shown in [34] that an arbitrary surface in 

a T-spline space can be exactly recovered from several smartly 
designed sample points, based on least squares regression. 
Here, we apply the smart sampling method, namely T-patch 
sampling [34], to execute data down-sampling. 

Firstly, the locally refined T-spline algorithm is applied 
which maps an arbitrary surface to an approximated T-spline 
space. The T-patch sampling is then applied, which randomly 
or uniformly selects from each T-mesh element with several 
data points. Theoretically, four sample points within an 
element are enough to recover the surface without accuracy 
loss, in a spline space. In the surface recovery stage, the down-
sampled data are used to estimate the control points of the T-
spline, using least squares regression. Thus the original 
surface can be recovered at any observing location. A down-
sampling case study is presented in Figure 10. A 9300 control 
points T-spline metamodel with an RMSE of 0.1 nm was fitted 
to the original surface. Subsequently, the T-patch sampling, 
with different sample sizes, was implemented and the 
reconstruction accuracy was analysed. Compared with 
popular, existing sampling strategies, the T-patch sampling 
indicates up to half an order of magnitude reduction of 
reconstruction error or sample size, for the same level of 
sample size or sampling accuracy requirement. More case 
studies can be found in  [34]. 
 

Figure 10. Accuracy analysis of smart-down sampling in T-spline spaces. (a) 
Reconstructed hard-disk surface topography with pseudo-coloured errors 
from a T-patch sample set of 20,000 points, based on a T-spline model with 
9300 control points in (b); (c) a statistic of the sampling errors by applying 
different sampling strategies to the structured surface.  

6.2. Data compression 

Conversion of a point cloud to T-splines can be used for 
data compression, by saving a corresponding T-spline model 
instead of the point set itself. A T-spline surface is completely 
determined by its control mesh, including the 2D coordinates 
of its control vertices or knots, the corresponding topological 
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connections of each vertex, and the corresponding control 
point coordinates. With a T-spline model, surface topography 
with an arbitrary resolution can be recovered. 

Considering that surface topography data are usually in the 
form of z-maps, we assume that a control point is saved in 
double using 8 bytes; a 2D control vertex or knot is saved in 
single using 8 bytes; four corresponding connection indices 
are saved in short using 8 bytes. This indicates that, a total 
number of 24 bytes are required for saving a control point. 

Compared to z-maps which use 8 bytes to save a sample point, 
a T-spline model can achieve compression only if the number 
of control points is, at most, one third that of sampling points. 
For the majority of freeform, structured surfaces which can be 
efficiently characterised using T-splines, data compression 
with reduced sizes of storage can usually be achieved. Figure 
11 presents a compression rate analysis of two complex 
surface topographies. The results reveal that the compression 
was achieved with reasonably small approximation errors.  
 

 
Figure 11. Compression rate analysis using the locally fitted-splines for periodically laser-textured bumps (a) and steel plate with random particles (b). 

 

7. Conclusion 

In this paper, a locally fitted T-spline fitting method is 
proposed for the characterisation of freeform, structured 
surfaces. Several case studies were provided, including 
freeform removal in non-Euclidean spaces, filtration with 
shape-preserving capabilities and multi-resolution analysis, 
missing data interpolation, smart down-sampling and data 
compression. Similar to B-splines, T-splines should also work 
for surface matching and stitching, feature extraction, 
contouring and geometrical morphing, though they are not 
presented at the initial stage of development.  

However, the proposed method is not perfect at the moment. 
We have found that, the iterative results do not always have a 
monotonous convergence. This could be because in each 
iteration, only the local control points with altered blending 
functions are updated, which cannot adapt to the situations 
with complex local behaviours. Second, the least squares-
based model estimation may produce ripples when fitting 
complex geometries, e.g. interpolation, using a very dense T-
mesh, particularly those with significant noise. Third, the 
algorithm complexity increases, though T-splines show useful 
control point saving in comparison with B-splines. The 

computational efficiency of the algorithm still needs to be 
optimised. 
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