
1

META-BASE: a Novel Architecture
for Large-Scale Genomic Metadata Integration

Anna Bernasconi, Arif Canakoglu, Marco Masseroli and Stefano Ceri

Abstract—The integration of genomic metadata is, at the same time, an important, difficult, and well-recognized challenge. It is
important because a wealth of public data repositories is available to drive biological and clinical research; combining information from
various heterogeneous and widely dispersed sources is paramount to a number of biological discoveries. It is difficult because the
domain is complex and there is no agreement among the various metadata definitions, which refer to different vocabularies and
ontologies. It is well-recognized in the bioinformatics community because, in the common practice, repositories are accessed
one-by-one, learning their specific metadata definitions as result of long and tedious efforts, and such practice is error-prone.
In this paper, we describe META-BASE, an architecture for integrating metadata extracted from a variety of genomic data sources,
based upon a structured transformation process. We present a variety of innovative techniques for data extraction, cleaning,
normalization and enrichment. The result is a repository that already integrates several important sources, and a general, open and
extensible pipeline that can easily incorporate any number of new data sources.

Index Terms—Data Integration, Genomic Datasets, Metadata Management, Open Data, Rule-Based Languages, Bioinformatics.

F

1 INTRODUCTION

G ENOMIC research is showing a variety of initiatives
for the production of high-value biological and clin-

ical datasets, stored in open repositories and available to
the research community for secondary research use. Some
examples include the Encyclopedia of DNA Elements (EN-
CODE [36]), The Cancer Genome Atlas (TCGA [43]) and its
successor Genomic Data Commons (GDC [14]), Roadmap
Epigenomics Project (REP [18]), 1000 Genomes [35], GTEx
[19], and many others. Metadata is an essential ingredi-
ent of genomic repositories; it describes the experimental
conditions, the cell lines or tissues, the donors with their
demography, phenotypes, and treatments, and the process
of extraction of stored genomic signals with the used tech-
nological devices. By inspecting metadata, it is possible to
locate the datasets that better fit for formulating queries over
the genome; these in turn can answer important questions
in modern biology and precision medicine.

Unfortunately, while we observe a good convergence in
the definition of data formats and protocols for genomic
information, no agreement for a common metadata format
has been reached so far: metadata of distinct repositories
often disagree on their entities, attributes and values, and
have no associated conceptual representations. In earlier
work, we developed a conceptual approach to metadata
integration and presented the Genomic Conceptual Model
(GCM), which mediates over the most important and com-
plex data sources [3]. This paper is focused on the process
required to generate the GCM content, specifically on a
novel architecture for metadata ingestion and on the result-
ing repository:
• We describe META-BASE, a novel architecture for the

integration of genomic datasets; the architecture is de-

• The authors are with Dipartimento di Elettronica, Informazione e Bioin-
gegneria, Politecnico di Milano, Via Ponzio 34/5, 20133, Italy. E-mail:
first.last@polimi.it

ployed as a generic pipeline of six progressive steps
for data integration, applicable to arbitrary genomic
data sources providing semi-structured metadata de-
scriptions. Two steps are assisted by tools that help the
designer in the progressive creation and adaptation of
data management rules, with the general objective of
minimizing the cognitive effort required from integra-
tion designers.

• The pipeline generates the META-BASE repository,
a very large integrated repository of tertiary genomic
datasets. In this paper, we focus on the integra-
tion of three data sources featuring complex meta-
data: ENCODE [36], GDC [14], and Roadmap Epige-
nomics [18]. In addition, META-BASE integrates other
sources, whose conceptual complexity is much sim-
pler: genomic annotation data from GENCODE [8]
and RefSeq [32]; topologically associating domains
(TADs) [34] from GEO (https://www.ncbi.nlm.nih.
gov/geo/); epigenomic data from Cistrome [26]. The
META-BASE repository will continue to grow in the
next years, responding to biological and clinical needs.

Every step of the META-BASE pipeline produces a data
ingestion program that can be applied to data sources after
an initial design; these programs need to be adapted only in
case of structural changes of the data sources. The process
is extensible, as the designer who wants to add a new
source has just to add new definitions and rules to the data
integration framework.

Within the data enrichment step of the META-BASE
pipeline, we also use some selected ontological sources for
improving value matching, which is extended from exact
match to semantic match inclusive of the use of synonyms,
hyponyms and hyperonyms; they enable simple value con-
version strategies, which capture some value mismatches
that may occur in different repositories.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/

2

Queries upon the META-BASE repository can be used
for producing as a result the URIs of the relevant data
in the source repositories; scientists can build over them
an arbitrary genomic computation, using any bioinformat-
ics system and resource. In this way, the META-BASE
repository provides a conceptual entry point to the sup-
ported genomic data sources. In addition, the META-BASE
pipeline and repository feed an architecture for genomic
data processing, defined in [25], providing portable and
scalable genomic data management on powerful servers
and clusters1; in such distinct environment, metadata can
be queried together with their respective datasets using
GenoMetric Query Language (GMQL), a high-level domain-
specific query language [23].

The most innovative aspects of our work are: from
a computer science perspective, providing an end-to-end
pipeline whose steps make novel use of rewrite rules for
data cleaning, mapping, normalization, enrichment and in-
tegrity verification; from a biological perspective, the par-
titioning schemes for each data source and the selection
of the ontologies providing enrichment for specific GCM
attributes.

Paper organization. Section 2 overviews the GCM, which
is at the base of this work, and provides a motivating
example. Section 3 describes our generalized approach to
metadata management and integration. Section 4 describes
the pipeline to extract metadata from original sources and
to prepare it for integration. Section 5 shows the integration
process towards the final META-BASE repository, which
includes ontological enrichment. Section 6 discusses the
effectiveness of our approach. Section 7 describes the ar-
chitecture of the system. Section 8 overviews related work,
and Section 9 mentions future developments and concludes
the paper.

2 BACKGROUND

In [3] we originally presented the Genomic Conceptual
Model (GCM), an Entity-Relationship model used to de-
scribe metadata of genomic data sources; its current version2

is shown in Fig. 1. The main objective of GCM is to recognize
the common organization for a limited set of concepts that
are supported by most genomic data sources, although with
very different names and formats.

GCM is organized as a star-schema centered the ITEM
entity, representing an elementary experimental file of ge-
nomic regions and their attributes. Files are typically used
by biologists for data extraction, analysis and visualization
operations. Four hierarchical dimensions describe: 1) the bi-
ological elements involved in the experiment: the sequenced
sample, its preparation, its donor; 2) the technology used in
the experiment, including the specific technique; 3) the man-
agement aspects of the experiment: the projects/organiza-
tions behind its preparation and production; 4) the extraction
parameters used for internal selection and organization of
items.

1. Based on Apache Spark http://spark.apache.org/ and Apache
Hadoop http://hadoop.apache.org/

2. Several adaptations of the model w.r.t. what was presented in [3]
have been performed afterwards.

Tech
nolo

gy
 vi

ew

(1,1)

(1,1)

(0,N)

(0,N)

Technique

Platform

ProgramName

ProjectId

ExpTypeId

ProjectName

Target
Antibody

Feature

Project

Experiment
Type

Biological view
Ethnicity

Species

Cell

(1,N)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

Age

Tissue

BioReplicateNum
TechReplicateNum

SourceId

Gender

DonorId

SourceId

BioSampleId

ReplicateId

IsHealthy

Type

Disease

BioSample

Replicate

Donor

SourceId

Man
ag

em
en

t v
iew (1,N)

(0,N)

SourceSite

CaseId

SourceId
Case

ItemId
SourceId
Size

Pipeline
SourceUri

ExternalRef

DataType
Format
Name

Assembly
IsAnn

ContentType

(1,1)

(0,N)

Extraction view
DatasetId

Dataset

Item

LastUpdate
Checksum

LocalUri

Fig. 1. Genomic Conceptual Model.

The Central Entity ITEM features the SourceId attribute,
which identifies it uniquely on the source system, along
with its Size, LastUpdate, and Checksum. Platform and Pipeline
are respectively used to provide references to the meth-
ods and parameters used for production and processing
of sequenced raw data (to which sometimes biologists re-
sort for reprocessing) and its processed data. ContentType
accepts values such as “peaks”/“hotspots”/“exon quan-
tifications” when the contained regions are experimental,
or “gene”/“transcript”/“promoter” when they are annota-
tions. The ITEM is physically available for download at the
LocalUri and, in its original form, at the SourceUri.

The Biological View consists of the chain of entities
ITEM-REPLICATE-BIOSAMPLE-DONOR, representing the bi-
ological elements that contribute to the ITEM production.
An ITEM is associated with one or more REPLICATEs, each
originated by a BIOSAMPLE, each derived from a DONOR.
DONOR is identified by a SourceId. It represents an individ-
ual (characterized by Age, Gender and Ethnicity) or strain
of a specific organism (Species) from which the biologi-
cal material was derived or the cell line was established.
BIOSAMPLE is identified within possibly multiple original
sources by SourceId. Its characterizing Type expresses values
such as “cell line”, “tissue”, or “primary cell”, depending
on the kind of material sample used for the experiment. Cell
includes information of (single) cells in their natural state,
immortalized cell lines, or cells differentiated from specific
cell types. Tissue includes information regarding a multicel-
lular component in its natural state, or the provenance tissue
of the Cell(s) of a biosample. IsHealthy denotes a healthy
(normal/control) or non-healthy (e.g., tumoral) sample, and
Disease stores information about the disease investigated
with the sample. REPLICATE is useful to model cases where
an assay is performed multiple times on similar biological
material. If repeated on separate biological samples, the
generated items are biological replica of a same experiment;
if repeated on two portions from the same biological sam-
ple (treated for example with same growth, excision, and
knockdown), the items are technical replicates. This occurs
only in some epigenomic data sources (such as ENCODE
and Roadmap Epigenomics) that perform assay replication.

http://spark.apache.org/
http://hadoop.apache.org/

3

Genomic	Data	Commons

ENCODE

Assay: ChIP-seq
Target: MYC
Biosample: Homo	sapiens	MCF-10A
Biosample	Type:		cell	line
Description: Mammary	gland,	non-tumorigenic	cell	line
Health	status: Fibrocystic	disease

Assay: ChIP-seq
Target: MYC
Biosample: Homo	sapiens	MCF-7
Biosample	Type:	cell	line
Description: Mammary	gland,	adenocarcinoma
Health	status: Breast	cancer	(adenocarcinoma)

a2027c6e-05e0-4415-9c64-2dcaaf213593-cns

Genomic Data	Commons

Fig. 2. Example of Web interfaces of data sources: GDC and ENCODE.

The Technology View describes the technology used to
produce the data ITEM. An ITEM is associated by means of a
one-to-many relationship with a given EXPERIMENTTYPE,
which includes the Technique (e.g., “ChIP-seq”, “DNase-
seq”, “RRBS”) and the Feature, which denotes the specific
genomic aspect described by the experiment (e.g., “Copy
Number Variation”, “Histone Modification”, “Transcription
Factor”). When the Technique is “ChIP-seq”, Target and Anti-
body are needed to further characterize the experiment.

The Management View consists of the chain of entities
ITEM-CASE-PROJECT describing the organizational process
for the production of items. CASE represents a set of items
that have been collected within the same research study.
SourceId and ExternalRef contain identifiers respectively
taken from the main original source and other sources that
contain the same data. The SourceSite represents the physical
site where the material is analyzed. PROJECT represents a
project, a program, or a single initiative responsible for the
production of the item. It provides a single point of reference
to find diverse data types generated in a same research
context.

The Extraction View includes the entity DATASET, used
to describe common properties of homogeneous items. Its
attributes include a Name, useful to locate and organize data,
the DataType, describing the specific kind of genomic data
contained in the items of such dataset (e.g., “peaks”, “copy
number segments”, “gene expression quantification”), the
Format, which denotes the ITEM data file format (e.g., “bed”,
or more specific ones such as “narrowPeak” and “broad-
Peak”), and the reference genome alignment (Assembly).
IsAnn distinguishes between experimental items (describ-
ing arbitrary genomic regions) and annotations (describing
known genomic regions).

2.1 Motivating Example

To motivate our effort, we introduce an example that sim-
ulates the research of data suitable for a genomics project
on two different sources. We focus on a simple situation,
which can be appreciated even by a reader with limited bio-
logical background. Consider a comparison study between
a human non-healthy breast tissue, affected by carcinoma,
and a healthy sample coming from the same tissue type. A
researcher in the field locates two portals having interest-
ing data for this analysis. The results obtained after some
browsing are reported in Fig. 2.

For the healthy data, the chosen source is GDC Data
Portal, an important repository of human cancer genomic
data. As it can be seen on the top of Fig. 2, typically more

data files can be retrieved by composing a query that allows
locating variation data on “Breast Invasive Carcinoma” from
“Breast” tissue. By browsing several metadata information
sections (sometimes hard to identify), the researcher can find
files corresponding to “normal” (i.e., non-tumoral) tissue.

To compare such data with others from a diseased ref-
erence, the researcher considers additional datasets coming
from cell lines, i.e., cell cultures that have been permanently
established and made immortal. Cell lines are frequently
used in place of primary cells to study biological processes,
as the scientific community tends to accept the derived
findings more readily. On ENCODE, the researcher chooses
both a tumor cell line (bottom left of Fig. 2) and a normal cell
line (bottom right of Fig. 2), to make a control comparison.
“MCF-7” is a cell line from a diseased tissue affected by
“Breast cancer (adenocarcinoma)”, while “MCF-10A” is its
widely considered non-tumorigenic counterpart.

Note that some external knowledge is necessary in order
to find these connections, which cannot be obtained on the
mentioned portals. Regarding the disease, note that “Breast
Invasive Carcinoma” and “breast cancer (adenocarcinoma)”
are related sub-types of “breast carcinoma” (as observed in
the EFO and DOID ontologies [16]); this allows us to com-
pare GDC’s data with the dataset from ENCODE. For what
concerns the cell line, researchers typically query specific
databases (such as the cell line browser of the Catalogue
Of Somatic Mutations In Cancer3) or dedicated forums to
discover tumor/normal matched cell line pairs. This infor-
mation is not encoded in a unique way over data sources
and is often missing.

3 APPROACH

The six phases of the META-BASE approach can be seen in
Fig. 3. Through downloading, metadata is imported at the
repository site. During transformation, they are translated to
raw attribute-value pairs, which are then cleaned, thereby
producing a collection of clean metadata pairs for each
source. The mapper extracts information from these pairs
and adds it to GCM; GCM values are then normalized
(resorting to generic term-ids that may take specific sets
of values) and enriched (by means of external ontologies).
Finally, the consistency of the database content is checked
with respect to integrity constraints.

For exemplifying the META-BASE framework, we con-
sider three important and complex data sources:
• ENCODE contains datasets related to the functional

DNA sequences, which intervene at the protein/RNA
levels, and to the regulatory elements that control gene
expression.

• GDC contains datasets from TCGA program, related to
many aspects of cancer genomics.

• Roadmap Epigenomics (REP) datasets related to epige-
nomic features in human normal tissues often involved
in human diseases.

The above repositories are subject to rapid changes, as each
source is a continuously evolving system. Luckily, most
changes are additive and use already existing metadata in
their descriptions. For this reason, we approach each source

3. https://cancer.sanger.ac.uk/cell_lines/

https://cancer.sanger.ac.uk/cell_lines/

4

GDC

ENCODE

Roadmap
Epigenomics

K V

K V

K V

…

Downloader+Transformer

K V

K V

K V

Cleaner

… …

Mapper Normalizer/Enricher Checker

Relationships

Donor BioSample Item

Source-specific Source-specific
Tool-supported

Source-specific Source-independent
Tool-supported

Source-independent

Synonyms
References

Vocabulary

Data	Preparation Data	Integration

Fig. 3. The overall data preparation and integration process.

with an initial activity for the production of a source-specific
set of metadata transformation rules, followed by periodic
data integration sessions, where new items are discovered
and their metadata are modeled.

At the same time, rules capture only a portion of the data
integration semantics, as we allow for exceptions. Attributes
that are not in common to most sources, while specific for
few experiment types, are modeled as attribute-value pairs;
the corresponding data is directly referenced from the ITEM
entity.

4 DATA PREPARATION

The META-BASE data preparation pipeline allows us to
extract metadata from a set of selected data sources and
arrange it for integration. Metadata is first downloaded in
their original formats (Section 4.1); then, it is transformed
into a 〈key, value〉 equivalent form (Section 4.2); finally, since
it is still raw metadata, it is exposed to a cleaning process that
aims to improve raw attribute names and to filter irrelevant
metadata (Section 4.3) before data integration.

4.1 Data Download

The Downloader module produces files both for the genomic
data and its metadata, in original source-specific format,
at the processing site hosting our repository; it must be
programmed or adapted for each source. In most target
sources, several protocols or APIs are made available for
data downloading, but they do not share any standard for
the metadata description or format (e.g., XML, JSON, tab-
delimited). Some sources provide a metadata file for each
experiment. In other cases, a single metadata file describes
a collection of experiments; also in such a case, we produce
multiple metadata files, one for each experimental data file.

Fig. 4. Selection of portions from ENCODE. In the upper area we specify
parameters names, in the two small bottom slices we specify example
values, defining a partition of the source.

The main difficulty is to identify a specific data par-
titioning scheme at each source; in this way, each parti-
tion can be repeatedly accessed and source files that are
added to or modified within the partition can be selectively
recognized, avoiding the download for those source files
that are unchanged. Table 1 illustrates three endpoints for
data download used for the considered sources, with their
protocol, request format, and example actual parameters for
invocation. A partitioning scheme for the ENCODE data
source is illustrated in Fig. 4, with a specific set of parame-
ters used during download, corresponding to a partition.

Formalization. For a given source i, a Downloader is a
method Di for importing genomic data and metadata from
a specific partition Pi of a data source. At each invocation
of the method, a new set Di of files (one for each data ITEM)
is retrieved at the repository site, and associated with a sig-

5

TABLE 1
Endpoints for data download from sources and example invocations.

ENCODE List of file_id Protocol HTTP GET: https://www.encodeproject.org/metadata/?type=Experiment&〈params〉/metadata.tsv
Example params assembly=hg19 & file.status=released & project=ENCODE & . . . & files.file_type=bed+narrowPeak
Download file https://www.encodeproject.org/files/〈file_id〉/@@download/〈file_id〉.bed.gz

GDC List of file_id Protocol HTTP POST: https://api.gdc.cancer.gov/files with 〈params〉 in Payload
Example params field:cases.project.project_id-value:["TCGA-ACC"], field:files.data_type-value:["Copy Number Segment"], . . .
Download file https://gdc-api.nci.nih.gov/data/〈file_id〉

REP dir paths Protocol FTP: http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/dir
Example dir broadPeak
Download file http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/〈dir〉/〈file_name〉.〈dir〉.gz

nature 〈dataset_name, source, endpoint, parameters〉; pa-
rameters include the timestamp th of the download oper-
ation. In this way, future invocations of Di at time tk > th
will be used to download information from Pi and then
start a data integration session by tracking the changes that
occurred to Pi at the data source between time th and tk.

Method. Each download module first connects to the
data source servers and retrieves the list of the identifiers
of the files that belong to the partition to be downloaded
(corresponding to the ITEMs of the conceptual model). Many
sources provide (semi-)programmatic methods to translate
a query composed on their portal visual interface into an
API request or a downloadable list of files corresponding to
the search; otherwise, this step has to be programmed.

For each ITEM, the downloader typically retrieves the
Size, LastUpdate and Checksum, denoting properties of the
data file; these are provided by most sources.4 We match
these values with data that is stored in GCM, using the Sour-
ceId unique identifier. The matching allows us to pinpoint:
• New items: they are stored as genomic data files and

their metadata are processed by invoking the pipeline
discussed in this section.

• Matching items, having same Size, LastUpdate and
Checksum values as their local values stored in the
conceptual model. In this case, we reprocess just the
metadata by invoking the pipeline discussed in this
section, but we avoid the download of region data,
which is typically much bigger in size. If any one of the
metadata values is different, we then download also the
genomic data files.

• Missing items, i.e., items whose identifier was present
at the previous invocation but it is no longer present:
these items are deprecated, the genomic data and
metadata is copied to an archive, which can only be
inspected by archive lookups (but they are no longer
retrieved by standard queries).

A downloader task splits originally downloaded metadata
into files that correspond each to a single experimental
region data file (e.g., ITEM). Eventually, we collect into the
set of files Di all the metadata relative to new or changed
items; these downloaded files are then used in the next steps
of the pipeline. In parallel, the corresponding genomic data
files are stored in the GMQL data repository (see Section 7).

Example. The ENCODE Web portal, described in [6],
supports a faceted searching system that can be used to
evaluate alternative options for metadata retrieval. Each

4. If some of them are unavailable, we either compute them at the
source or accept a less precise matching by using fewer parameters.

search option produces different JSON objects. After careful
analysis, we selected the option of retrieving the JSON file
associated with an experimental study in “embedded” mode,
as it includes compact information about all data files,
replicates, and biosamples involved in it. Therefore, this was
selected as the ENCODE metadata reference endpoint (see
Table 1): when a downloader is invoked, it retrieves the data
and metadata files partitioned by experiment.

{"accession": "ENCSR635OSG",
"assembly": ["hg19"],
"award": {

"pi": {
"lab": {"name": "michael-snyder",...},

...},
...},
"dbxrefs": [],
"files": [

{"accession": "ENCFF134AVY",
"biological_replicates": [1],...},
{"accession": "ENCFF429VMY",
"biological_replicates": [1,2],
"file_type": "bed narrowPeak",...},
...

],
"replicates": [

{
"@id": "/replicates/4874c170-7124-4822-a058-4bb/",
"biological_replicate_number": 1,
"library": {

"biosample": {
"donor": {"age": "6",...},
"health_status": "healthy",

...},
...},
"antibody": {"lot_id": "940739",...},
...

},
{

"@id": "/replicates/d42ff80d-67fd-45ee-9159-25a/",
"biological_replicate_number": 2,
"library": {

"biosample": {
"donor": {"age": "32",...},
"health_status": "healthy with non-

obstructive coronary artery disease",
...},

...},
"antibody": {"lot_id": "940739",...},
...

}
],
...}

Listing 1. Excerpt from example JSON file retrieved for ENCODE
experiment ENCSR635OSG.

As it can be observed in Listing 1, the information
associated with the specific experiment with accession
ENCSR635OSG is a hierarchically structured JSON file,
including several embedded elements: information about
the whole experimental study, arrays of “files” elements
(a list of items included in the experimental study) and of
“replicates” elements, along with other information.

After retrieval, the identifiers of the items belonging to
the considered partition are recorded together with their
size, last update date and checksum. Then, a downloader
task separates the information retrieved for an experiment

6

into several metadata files, each containing the information
about a specific item of the experimental study. From the
excerpt of Listing 1, two JSON files are created for items
ENCFF134AVY and ENCFF429VMY, where the former
one has one replica while the latter one has two. In this
way, all following data preparation steps apply to metadata
files that are in one-to-one correspondence with data ITEMs.

4.2 Data Transformation
The Transformer module takes as input the metadata files
resulting from the previous phase and transforms them
into key-value pairs (consistent with the Genomic Data
Model [24]).

Formalization. A Transformer is a source-specific method
Ti. When applied to each file in Di downloaded from a
given source i, it produces a file in Ti of 〈key, value〉 pairs,
compatible with the GDM format.

Method. The Transformer process downloads files with
an adaptation strategy that depends on their format: (i) hi-
erarchical formats (JSON, XML, or equally expressive) require
applying a flattening procedure that creates for each value
a pair formed by a key (composed as the concatenation
of all JSON/XML elements from the root to the element
corresponding to the selected value) and the value itself;
(ii) tab-delimited formats (CSV or Excel/Google Sheet) re-
quire pivoting tab-delimited columns into rows (which
corresponds to creating key-value pairs); (iii) completely
unstructured metadata formats, collected from Web pages
or other documentation provided by sources, need case-spe-
cific formatting. The output of a transformer is a lists of key-
value pairs, added to the set Ti. We wrote transformers for
the most used formats for origin metadata. Additional ones
can be easily added.

Algorithm 1 Transformer Procedure
1: function TRANSFORMATION(Di, Ti)
2: for each d ∈ Di do
3: switch d do
4: case d is hierarchical
5: t← flattenPaths(d)

6: case d is tab-delimited
7: t← pivot(d)

8: case d is unstructured
9: t← manualFormatting(d)

10: Ti ← Ti + newTransFile(t)
11: end for
12: return Ti

13: end function

Example. The output of data transformation for EN-
CODE is shown in Listing 2; it is obtained by consid-
ering as input the portion of the JSON file from List-
ing 1, which describes the information extracted for a
specific item with accession ENCFF429VMY (with two
replicates) of experiment ENCSR635OSG. First-level ele-
ments are translated directly to 〈key, value〉 pairs (e.g.,
〈accession,ENCSR635OSG〉); nested elements are flattened
(e.g., "name" inside "lab", inside "pi", inside "award"
becomes award__pi__lab__name, where double under-
score __ is used to separate levels of nesting); arrays are

translated in one 〈key, value〉 pair for each value in the
array (e.g., see file__biological_replicates); empty
arrays are not translated (e.g., "dbxrefs").
accession ENCSR635OSG
assembly hg19
award__pi__lab__name michael-snyder
file__accession ENCFF429VMY
file__biological_replicates 1
file__biological_replicates 2
file__file_type bed narrowPeak
replicates__1__@id /replicates/4874c170-7124-4822-a058-4bb/
replicates__1__biological_replicate_number 1
replicates__1__library__biosample__donor__age 6
replicates__1__library__biosample__health_status healthy
replicates__1__antibody__lot_id 940739
replicates__2__@id /replicates/d42ff80d-67fd-45ee-9159-25a/
replicates__2__biological_replicate_number 2
replicates__2__library__biosample__donor__age 32
replicates__2__library__biosample__health_status

healthy with non-obstructive coronary artery disease
replicates__2__antibody__lot_id 940739

Listing 2. Excerpt from example transformed file corresponding to
ENCODE file accession ENCFF429VMY.

Note that several replicates can be associated with
each file; in such a case, a progressive naming scheme
tracks the replicate to which each 〈key, value〉 pair
relates. In the specific example, the file has two
biological replicates, each with five associated key-
value pairs (in Listing 2 other pairs are omitted for
brevity). All elements in the replicate element with id
4874c170-7124-4822-a058-4bb are transformed into
keys that start with "replicate__1__". Vice versa, ele-
ments in replicate d42ff80d-67fd-45ee-9159-25a are
transformed into keys that start with "replicate__2__".

4.3 Data Cleaning

After the transformation step, a typical key is a long string,
e.g., replicates__1__library__biosample__donor__age. As
this information applies to an ITEM, a much simpler at-
tribute name can be derived, e.g., donor__1__age. Such
name is later used to map values in the conceptual schema,
and is a much simpler key.

The Cleaner module applies transformation rules to com-
plex attribute names, so as to simplify them. Left parts of
rules use the formalism of regular expressions: they recognize
the strings that compose a complex attribute. Then, an
action encoded in the form of pattern matching replacement
strategy builds a simpler string. The use of regular expres-
sions brings a simple formalization of cleaning algorithms
through language containment and language-recognizing
automata. Rules are source-specific, as they depend on the
specific way in which attribute names are encoded at each
source; after an initial design, they are applied to each
transformed file. Rules may require adjustments when the
attribute encoding changes, or new attributes are created.
We provide a tool for rule design and ordering, which assists
designers in rule creation and maintenance.5

Informally, rules consist of an antecedent, recognizing
an input string, and a consequent, transforming it into
a simpler output string. The rule’s antecedent is a reg-
ular expression matching a sequence of keys; it contains
parentheses, which group parts of regular expressions in
order to either apply a quantifier or to restrict alternation
to the entire group, and positionally identify the rule’s

5. https://github.com/DEIB-GECO/Metadata-Manager/wiki/
Rule-Base-Generator

https://github.com/DEIB-GECO/Metadata-Manager/wiki/Rule-Base-Generator
https://github.com/DEIB-GECO/Metadata-Manager/wiki/Rule-Base-Generator

7

parameters, used in the rule’s consequent as numbered
capturing groups.6 Some parameters are typed, e.g., [0-9]
denotes a sequence of digits; some keys may be equiva-
lently used, e.g., (age|sex) denotes an alternative. The
consequent can contain strings of characters or special
"dollar" symbols, which positionally refer to the content of
the antecedent’s variables. The consequent can be empty,
in which case no cleaned key is generated for the trans-
formed key, and the corresponing pair is removed. For
illustration purposes, rules are indicated with the notation
antecedent⇒ consequent.

Rule Example. An example of a rule is:
replicates(__[0-9]__)library__biosample__(donor)__

(age|sex)(.*) ⇒ $2$1$3$4.
When replicates__1__library__biosample__donor__age

is considered as the input key, $2$1$3$4 stands for a
concatenation of the content of the second variable donor,
with the first one __1__, with the third one age and finally
with the fourth one (i.e., anything that follows the third
parenthesis) - in this case an empty string. As a result, the
rule produces the string donor__1__age.

Formalization. A Cleaner is a source-specific method
Ci = 〈Ti,Ci,RBi〉. For every transformed metadata file in
Ti, it converts the key k of each key-value pair 〈k, v〉 from its
transformed syntax to a cleaned version k′ of pair 〈k′, v〉. If
k′ is empty, a related pair is not produced. Files in Ci contain
cleaned key-value pairs and are produced by running the
rule engine Ci over Ti using the set of rules RBi.

Method. The description of the method requires the
definition of relationships between rules and of rule base.

Definition 1. (Rule Equivalence, Containment, and Partial
Overlap) Given two rules r, r′ ∈ RBi, their antecedents r.a
and r′.a, and the corresponding generated languages L(r.a) and
L(r′.a):
• r is equivalent to r′ when L(r.a) = L(r′.a);
• r is contained in r′ when L(r.a) ⊂ L(r′.a);
• r partially overlaps r′ when L(r.a) 6⊂ L(r′.a), L(r′.a) 6⊂
L(r.a), and L(r.a) ∩ L(r′.a) 6= ∅

Definition 2. (Rule Base) The RB Rule Base is a list of rules
such that rule r precedes rule r′ in RB if either 1) r is contained
in r′, or 2) r partially overlaps r′ and the user gives priority to r
over r′.

By effect of the above definitions, rules that are more
specific precede more general rules. When the intersection of
languages recognized by the rules is non-empty, the user can
specify the desired order in which the rules should appear
in the RB. When the intersection is empty, the rules’ order
in the RB corresponds to the order of insertion.

Building a Cleaner requires building the Rule Base (Al-
gorithm 2), by calling the function to insert a rule in the
right order (Algorithm 3), which is based on the comparison
between pairs of rules performed by the function COM-
PARE (Algorithm 4). When the Rule Base is prepared, it is
applied to the transformed files, in particular to the keys
from the 〈key, value〉 pairs in Ti (Algorithm 5). After the

6. The replacement strategy specified by a rule is implemented us-
ing the java.util.regex library (https://docs.oracle.com/javase/
8/docs/api/java/util/regex/package-summary.html), supporting full
regular expressions.

consolidation of cleaning rules, a rule base can be repeatedly
applied to transformed data, until major changes occur at
the sources.

Algorithm 2 Rule Base Creation
1: function RBCREATION(RB,SK,AK)
2: UK ← AK − SK
3: while UK is not empty do
4: newRule← getRuleFromUser()
5: if userApprSimul(RB,newRule) then
6: RULEINSERTION(RB,newRule)
7: matched← matchAll(RB,UK)
8: SK ← SK +matched
9: UK ← UK −matched

10: end if
11: end while
12: end function

Algorithm 2 takes as input RB, which stores the infor-
mation about rules in their order (Def. 1), SK, the set of seen
keys, and AK , the set of all keys retrieved from the files of
a given source. It first finds the unseen keys UK (those that
have not been considered for rule creation yet). Then, until
all unseen keys have been considered, the user is asked to
insert new rules and approve (or not) the simulated effect of
the incremented RB on all keys. When the user is satisfied
with the results, the rule is actually added to the RB and
the sets of keys are updated accordingly.

Algorithm 3 Rule addition in Rule Base
1: function RULEINSERTION(RB,newRule)
2: for r in RB do
3: res← COMPARE(newRule, r)
4: if res is EQUIVALENT then
5: if userPref (newRule, r) = newRule then
6: replaceRule(newRule,RB, indexOf (r))
7: end if
8: return RB
9: else if res is CONTAINED then

10: addRule(newRule,RB, indexOf (r))
11: return RB
12: else if res is PARTIALLY_OVERLAPS then
13: if userPriority(newRule, r) = newRule then
14: addRule(newRule,RB, indexOf (r))
15: return RB
16: end if
17: end if
18: end for
19: addRule(newRule,RB,RB.size)
20: return RB
21: end function

Adding a new rule to the Rule Base means inserting it
in the right position with respect to the order defined in
Def. 2. This is accomplished by Algorithm 3, which iterates
over the RB list and, based on the comparison between each
pre-existing rule with the one to be added, determines the
insertion position (in an “insertion sort” manner).

Comparing rules means evaluating the containment re-
lationship between the languages generated by their an-
tecedents, as described by Algorithm 4. Several procedures

https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html

8

Algorithm 4 Order comparison between rules
1: function COMPARE(r, r′)
2: Ar ← NFA2DFA(RegEx2NFA(r.a))
3: A′r ← NFA2DFA(RegEx2NFA(r′.a))
4: if L(Ar) = L(A′r) then
5: return EQUIVALENT
6: else if L(Ar) ⊂ L(A′r) then
7: return CONTAINED
8: else if L(Ar) 6⊃ L(A′r) ∧ L(Ar ∩ A′r) 6= ∅ then
9: return PARTIALLY_OVERLAPS

10: end if
11: end function

exist to convert regular expressions into equivalent Non-
deterministic Finite Automata (NFA); we use the Brics Java
library [27] for automata implementations, which is based
on Thompson’s construction algorithm [41]. Then, NFA
need to be converted into equivalent Deterministic Finite
State Automata (DFA) Ar and Ar′ – this can be done with
the Rabin-Scott powerset construction [33]. Later, the two
languages are checked for equivalence, containment and
partial overlapping (by using the automaton constructed
from the cross-product of states that accepts the intersection
of the languages). Algorithm 5 describes the Cleaner as
application of the Rule Base to the input dataset; rules are
applied in the order in which they appear in the Rule Base.

Algorithm 5 Application of Rule Base to keys
1: function CLEANER(RB,Ti)
2: Ci ← []
3: for each 〈key, value〉 ⇐Ti do
4: newKey ← matchFirst(key,RB)
5: if nonEmpty(newKey) then
6: add(Ci, 〈newKey, value〉)
7: end if
8: end for
9: return Ci

10: end function

Example. Table 2 shows the cleaning of a set of trans-
formed ENCODE keys. It assumes an initial set of trans-
formed keys from Ti; for each key, the user produces clean-
ing rules, driven by Algorithm 2. Eventually, the method
produces a rule base made of a list of 7 rules; their applica-
tion to keys in Ti produces the set of cleaned keys in Ci.

For instance, rule (2) deletes the key: replicates__1__

library__biosample__sex. Rule (3), applied to the key:
replicates__1__library__biosample__biosample_type,
dictates that the key must be rewritten by concatenating
the content of the second parenthesis (i.e., biosample) with
the content of the first (i.e., 1), and with the content of the
fourth (i.e., type), obtaining at the end biosample__1__type.

5 DATA INTEGRATION

The META-BASE data integration process consists of three
phases. During data mapping, described in Section 5.1,
cleaned metadata is mapped into a global relational schema
that embodies the conceptual schema presented in Sec-
tion 2. Data mapping is a simple syntactic transforma-

TABLE 2
Example of cleaning process.

Transformed keys in Ti

replicates__1__library__biosample__donor__age 32
replicates__1__library__biosample__donor__age_units year
replicates__1__library__biosample__donor__sex male
replicates__2__library__biosample__donor__age 4
replicates__2__library__biosample__donor__age_units year
replicates__2__library__biosample__donor__sex female
replicates__1__library__biosample__sex male
replicates__1__library__biosample__biosample_type tissue
replicates__1__library__biosample__health_status healthy, CAD
file__biological_replicates 1
file__technical_replicates 1_1
file__assembly GRCh38
file__file_type bed narrowPeak
replicates__1__biological_replicate_number 1
replicates__1__technical_replicate_number 1
replicates__2__biological_replicate_number 2
replicates__2__technical_replicate_number 1
assembly hg19

↓ RuleBase RBi

(1) replicates(__[0-9]__)library__biosample__(donor)__(age|sex)(.*)
⇒ $2$1$3$4

(2) replicates__[0-9]__library__biosample__sex.*⇒
(3) replicates(__[0-9]__)library__(biosample)__(biosample_)?(.*)

⇒ $2$1$4
(4) file__(biological|technical)_replicates⇒
(5) (file__)(file_)?(.*)⇒ $1$3
(6) (replicate)s(__[0-9]__)(.*)⇒ $1$2$3
(7) assembly⇒

↓ Cleaned keys in Ci

donor__1__age 32
donor__1__age_units year
donor__1__sex male
donor__2__age 4
donor__2__age_units year
donor__2__sex female
biosample__1__type tissue
biosample__1__health_status healthy, CAD
file__assembly GRCh38
file__type bed narrowPeak
replicate__1__biological_replicate_number 1
replicate__1__technical_replicate_number 1
replicate__2__biological_replicate_number 2
replicate__2__technical_replicate_number 1

tion; the following phase of value normalization and en-
richment, described in Section 5.2, produces homogenized
data equipped with appropriate ontological term labels,
references, hyponyms, hypernyms and synonyms. Finally,
the integrity constraint checker, discussed in Section 5.3,
provides methods for specifying and enforcing integrity
constraints that describe legal values in the META-BASE
repository. For a high-level workflow of the data integration
process refer again to Fig. 3.

5.1 Data Mapping

The Mapper module is in charge of the integration at the
schema-level of a set of cleaned keys produced for each
source. The method extends the work proposed in [3],
where we first introduced local-to-global mappings using
a classical Datalog syntax. The current Mapper is part of a
broader integration workflow in which metadata is made
available as lists of 〈key, value〉 pairs; mapping rules build
relational rows from such pairs.

The global relational schema G is obtained as straight-
forward mapping from the conceptual schema in Fig. 1.

9

donor
donor_id
source_id
species
age
gender
ethnicity

int
varchar
varchar
int
varchar
varchar

PK

N
N
N
N

biosample
biosample_id
donor_id
source_id
type
tissue
cell
is_healthy
disease

int
int
varchar
varchar
varchar
varchar
boolean
varchar

PK
FK

N
N
N
N
N

replicate
replicate_id
biosample_id
source_id
bio_replicate_num
tech_replicate_num

int
int
varchar
int
int

PK
FK

N
N

replicate2item
item_id
replicate_id

int
int

PK FK
PK FK

item
item_id
experiment_type_id
dataset_id
source_id
size
last_update
checksum
content_type
pipeline
platform
source_url
local_uri

int
int
int
varchar
bigint
timestamp
int
varchar
varchar
varchar
varchar
varchar

PK
N FK
N FK

N
N
N
N
N
N
N
N

Powered by Vertabelo, Design Your Database Online, http://vertabelo.com
biological_view 2018-12-20 11:43 PostgreSQL 9.x

1

Fig. 5. Logical schema of the GCM biological view.

It contains the central entity table ITEM, a set of entity
tables DONOR, BIOSAMPLE, REPLICATE, PROJECT, CASE,
DATASET, EXPERIMENTTYPE, which model as well 1:N re-
lationships, and two relationship tables ITEM2REPLICATE
and ITEM2CASE, which model the two N:N relationships.
Fig. 5 shows the logical schema of the biological view,
where PK denotes attributes forming the table’s primary
key, FK denotes foreign keys, N denotes nullable attributes,
multiplicity in the edge denotes a many mapping, a circle
on the edge denotes an optional mapping, and a cut on the
edge denotes a mandatory mapping.

Every source is represented by a set of cleaned files Ci,
each of which contains a set of 〈key, value〉 pairs, where
the keys are produced by the Cleaning phase. Mapping rules
assemble several values extracted from the key-value pairs
into rows of the relations in G. Their format recalls deductive
rules: each table of G corresponds to several rules for each
source, whose head is a predicate named as the table and
with the same arity as the table’s grade; the body lists
several attribute-value pairs such that attribute names are
matched to cleaned keys of files in Ci. The semantics of
mapping rules is also similar to that of deductive rules: if all
the attribute names of the body are matched to keys in Ci (in
deductive terms they unify), then the values corresponding
to those keys are assembled by the rule into relational rows.

It is possible to apply to values a set of prede-
fined syntactic transformations (SynTr), defined in Table 3,
which can be freely composed in the left side of map-

TABLE 3
Example syntactic transformations for mapping rules.

Conc(s1, s2, c): concatenates s1 and s2 using c as separation string
Alt(s1, s2): outputs s1 if present and not null, else s2
Rem(s1, s2): removes the occurrences of string s2 from s1
Sub(s1, s2, s3): substitutes occurrences of s2 in s1 with the new s3
Eq(s, p): outputs true when s is equal to p, else false
ATD(a): converts a, a number followed by space and

unit of measurement, into the correspondent number of days
LCase(s): converts string s into its lower case version
Int(n): casts number n to its correspondent Integer format
Id(...): generates synthetic id for faster indexing of table t

from specified arguments

ping rules; transformations can be easily extended. For
example, to put into lowercase letters two values that
have been first concatenated with a space, the expression
LCase(Conc(value1, value2, “ ”)) can be used to generate a
value for a specific position of a row.

Formalization. A Mapper is a source-specific method
Mi = 〈Ci,MBi〉. For every metadata cleaned file f in
Ci, it assembles several values v present in the pairs 〈k, v〉
of f into rows of the tables of G. Rows are produced by
running the rule engine Mi over Ci using the mapping
rules in MBi. A mapping rule is a declarative rule of
the form: ENTITY(SynTr(v1),...,SynTr(vi),...,SynTr(vN))
 {〈k1, v1〉,..., 〈ki, vi〉,..., 〈kN , vN 〉} ⊆ f , where every vi in
the LHS of the rule also appears in the rule RHS (i.e., rule
evaluations are finite), in a positive form (i.e., rules are safe).

Method. Once mapping rules are fully specified, the
method consists simply in applying the rules to each file
f in Ci of a data source, in arbitrary order. Note that
every file associated with a data source as produced by
the cleaning method may have several versions for the
same key, numbered from 1 to nf ; each rule is applied for
every version, and associates with each version a distinct
row. When a version is present (e.g., in rules for DONOR,
BIOSAMPLE and REPLICATE of Table 4), we denote such
version by generically naming the keys in the rule’s body
using j, and then generating a rule for each value of j. For
each vi in the rule LHS, if the corresponding 〈ki, vi〉 in the
rule RHS exists in f , then we add SynTr(vi) to the result,
i.e., a tuple in the ENTITY specified in the rule LHS.

Example. Table 4 illustrates all the rules that are required
to build the relational schema shown in Fig. 5 for the
ENCODE data source. Note that Oidt is the notation used
for the ObjectIdentifier of table t, which is a unique accession
retrieved from the source.

5.2 Data Normalization and Enrichment
During this step, specific values of the global schema are
associated with controlled terms, lists of synonyms and
hypernyms, and external references to reference ontologies.
We consider nine semantically enrichable attributes of the
global schema: Technique, Feature and Target of experiment
types, Disease, Tissue and Cell of bio samples, Ethnicity and
Species of donors, and Platform of items.

The adoption of a specific knowledge base for each
semantically enrichable attribute provides us with value nor-
malization, as we consider the values of reference knowledge
bases as a restricted vocabulary. Using external knowledge

10

TABLE 4
Mapping rules for biological view of ENCODE source.

CENC = {Ci|i = ENCODE}, ∀f ∈CENC, j ≤ nf

DONOR(Id(OidD),OidD, v1,ATD(Conc(v2, v3, “ ”)), v4, v5)
{〈donor__j__accession,OidD〉,
〈donor__j__organism, v1〉,
〈donor__j__age, v2〉,
〈donor__j__age_units, v3〉,
〈donor__j__sex, v4〉,
〈donor__j__ethnicity, v5〉} ⊆ f

BIOSAMPLE(Id(OidB),Id(OidD),OidB , “tissue”, v2, NULL,Eq(v3, “healthy”), v3)
{〈biosample__j__accession,OidB〉
〈donor__j__accession,OidD〉,
〈biosample__j__type, “tissue”〉
〈biosample__j__term_name, v2〉
〈biosample__j__health_status, v3〉} ⊆ f

BIOSAMPLE(Id(OidB),Id(OidD),OidB , “cell line”, NULL, v2,Eq(v3, “healthy”), v3)
{〈biosample__j__accession,OidB〉
{〈donor__j__accession,OidD〉,
〈biosample__j__type, “cell”〉
〈biosample__j__term_name, v2〉
〈biosample__j__health_status, v3〉} ⊆ f

REPLICATE(Id(OidR),OidR,OidB , v1, v2)
{〈replicate__j__uuid,OidR〉,
〈biosample__j__accession,OidB〉,
〈replicate__j__bio_rep_num, v1〉,
〈replicate__j__tech_rep_num, v2〉} ⊆ f

ITEM(Id(OidI),Id(v1, v2, v3),Id(OidDS),OidI , v4, v5, v6, v7, v8,
Conc(“www.encodeproject.org”, v9, “/”),Conc(“www.gmql.eu...”,OidI , “/”))

{〈assay_term_name, v1〉,
〈target__investigated_as, v2〉,
〈target__label, v3〉,
〈dataset_name,OidDS 〉,
〈file__accession,OidI〉,
〈file__size, v4〉,
〈file__date_created, v5〉,
〈file__md5sum, v6〉,
〈file__pipeline, v7〉,
〈file__platform, v8〉,
〈file__href, v9〉} ⊆ f

ITEM2REPLICATE(Id(OidI),Id(OidR)) {〈file__accession,OidI〉,
〈replicate__j__uuid,OidR〉} ⊆ f

bases (rather than creating a new one) is essential in the
biomedical domain, where specialized ontologies are al-
ready available and their use boosts interoperability.

This process is supervised and requires a preliminary
selection of the most suitable ontologies to describe each
semantically enrichable attribute of the global schema.

5.2.1 Ontology Selection
The choice of attribute-specific ontologies took into account
the rules for selecting a bio-ontology given in [20]. We used
four different services to evaluate the best ontologies for
nine ontological attributes from GCM. These are: (a) Bio-
Portal7 [44], (b) Ontology Recommender8 [22], (c) Ontology
Lookup Service9 (OLS, [16]), and (d) Zooma.10 For each
semantically enrichable attribute, we searched all values
using the four services, and computed the best score for
recommended ontologies.11 Finally, for each pair attribute-
ontology, we considered both the best matching scores and
the coverage (number of values of given attribute that were
successfully annotated, i.e., matched to an ontological term).

The results of our selection are shown in Table 5, where,
for each semantically enrichable attribute, we indicate the
preferred ontology and three normalized indicators. COV-
ERAGE indicates the percentage of attribute values that are

7. http://bioportal.bioontology.org/
8. https://bioportal.bioontology.org/recommender/
9. https://www.ebi.ac.uk/ols/
10. https://www.ebi.ac.uk/spot/zooma/
11. Recommender provides numerical scores, Zooma provides tags

for indicating the annotation quality. For BioPortal and OLS we com-
puted a score by considering the number of words with exact match in
each ontology.

found in the ontologies. SCORE is an average matching score
of all the annotated attribute values weighted by ontology
acceptance. SUITABILITY is a measure of how much an
ontology set is adequate for an attribute. Note that a second
preferred ontology is added when the first one did not reach
0.85 coverage. In this case, indicators refer to the union of
the ontologies.

TABLE 5
Choice of reference ontologies for semantically enrichable attributes.

Attribute Pref. ontologies Coverage Score Suitability

Technique OBI, EFO 0.857 0.486 0.490
Feature NCIT 1.000 0.854 0.893
Target OGG 0.950 0.747 0.948
Disease NCIT 0.978 0.784 0.802
Tissue UBERON 0.957 0.753 0.937
Cell EFO, CL 0.953 0.644 0.577
Platform NCIT 1.000 0.909 0.950
Ethnicity NCIT 0.962 0.907 0.912
Species NCBITaxon 1.000 0.667 1.000

5.2.2 Process
The Normalizer is supported by an interactive tool that:
1) calls external services to annotate values with con-
cepts from controlled vocabularies or dedicated ontologies;
2) asks for user feedback when annotations have a low
matching score; users can either accept one of the proposed
solutions, or manually specify new annotations.

ExperimentType
experiment_type_id
technique
technique_tid
feature
feature_tid
target
target_tid
antibody

int
varchar(128)
int
varchar(128)
int
varchar(128)
int
varchar(128)

PK

FK

FK

FK

Vocabulary
tid
pref_label
source
code
description

int
varchar(128)
varchar(8)
varchar(16)
varchar

PK

N

Synonyms
tid
label
type

int
varchar(128)
char(1)

PK FK
PK
PK

References
tid
source
code

int
varchar(8)
varchar(128)

PK FK
PK
PK

Relationships
tid_parent
tid_child
rel_type

int
int
char(1)

PK FK
PK FK
PK

1

Fig. 6. Relational schema of the Local Knowledge Base K, including
links to attributes of EXPERIMENTTYPE from the global schema G.

The result of the normalization is contained within the
relational databaseK, called Local Knowledge Base, illustrated
in Fig. 6, populated from ontologies and referenced from the
global schema G. Specifically, we maintain the tables:

1) VOCABULARY: contains the term identifier and the term
preferred label, in addition to the ontology providing the
label, the code used for the label in that ontology and
an optional description.

2) REFERENCES: for a given term, contains references to
equivalent labels extracted from other ontologies (in the
form of a pair 〈Source, Code〉).

3) SYNONYMS: contains other labels that can be used as
synonyms of the preferred label in the chosen ontology.

4) RELATIONSHIPS: contains ontological hierarchical rela-
tionships between terms and the type of the relation-
ships (either generalization or containment).

http://bioportal.bioontology.org/
https://bioportal.bioontology.org/recommender/
https://www.ebi.ac.uk/ols/
https://www.ebi.ac.uk/spot/zooma/

11

Online KB ! Lookup
Match available

Local KB " Lookup

⟨$%%&, ($)*+⟩

No match

GCM
Annotation

Yes
Confidence OK?

No match

Yes
Previously annotated?

Match available

No

User feedback

User manual choice
Fail

User feedback

No

OkOk Fail

Fig. 7. Iterative supervised normalization and enrichment procedure.

Disease: Breast cancer

(adenocarcinoma)

SourceId: ENCBS789UPK

Type: cell line

Cell: MCF-7

MCF7

MCF-7 cell

MCF7 cell

BIOSAMPLE

NCIT_C5214

Breast

adenocarcinoma

mammary part of chest

mammary region

UBERON_0000310

IsHealthy: false

EFO_0001203

Breast carcinoma

Breast neoplasm

Ductal breast carcinoma

mammary Paget’s disease

Female reproductive gland

Mammary duct

Tissue: breast

is a

is a

is a

is a

is a

is a

Fig. 8. Normalization and enrichment of a BIOSAMPLE tuple.

The system provides the unfolding of the hierarchies as an
internal materialized view over the table RELATIONSHIPS,
used for faster query processing.

Formalization. The Normalizer is a source-independent
method N = 〈A,O〉. A is the set of sematically enrichable
attributes of the global schema G. For each attribute a in A
and each possible value of a,N generates the corresponding
entries in the Local Knowledge Base K, extracted from the
preferred ontologies of a in O.

Method. Value normalization and enrichment is a su-
pervised procedure illustrated in Fig. 7. The workflow is
executed for all values of semantically enrichable attributes,
and consists of two parts: 1) For each such value, the system
initially looks for a suitable term in the vocabulary of the
Local Knowledge Base; if a match is available, and the
term was already annotated in the past, the procedure is
completed. When the match is successful but annotations
are lacking, a user’s feedback is requested. 2) Terms that
do not match with the vocabulary, or whose annotations
are not approved by the user, are then searched within the
specific ontologies associated with the attribute, as defined
in Section 5.2.1. If matches are of high confidence (i.e.,
matching score), the procedure is completed; if the confi-
dence is low, user feedback is requested. When feedback is
negative or there is no match, users are asked to provide a
new vocabulary term.

Example. Fig. 8 shows a tuple of the BIOSAMPLE global
table. Solid line nodes include normalized attribute values,
dashed line nodes represent some of the synonyms, dotted
line nodes represent hierarchies, labeled by the relevant
ontology (only a small subset is represented for brevity).

5.3 Integrity Checker

At the end of the integration process, we introduce integrity
constraints, which define dependencies between values of
the global schema G. Preliminary versions of dependencies,
called contextual and dependent features, were introduced
in [3]. We consider pairs of attributes (AS ∈ RS and
AE ∈ RE), where RS and RE denote the starting and
ending tables in the G global schema, connected by a join
path in G. Given that G is an acyclic schema, there is just
one join path between any two tables in G.

Definition 3. A dependency rule between attributes
RS .AS and RE .AE of G is an expression of the form:
Boolean(RS .AS) → Boolean(RE .AE), where Boolean(A)
is a Boolean expression over an attribute A of G. The inter-
pretation of the dependency rule is that: 1) when the Boolean
expression in the left part of the rule is true for a value vS ∈ AS ,
2) if there exists one value vE ∈ AE such that 〈vS , vE〉 are
connected by the join path between RS and RE , 3) then the
Boolean expression on the right part of the rule must be true for
vE . Boolean expressions include as special cases the predicates IS
NULL or IS NOT NULL.

Dependencies can be defined during the lifetime of the
META-BASE repository; they are manually defined and
their identification is not assisted by a tool. Table 6 shows
some examples of dependency rules. For example, the first
rule indicates that if the Species of a DONOR is “Homo
sapiens” and the donor is connected to a DATASET through
the only possible path in G, then the Assembly of the dataset
must be one of “hg19”, “hg38”, or “GRCh38”. Dependency
rules allow including in the GCM relevant attributes that
are not common to all data types. For example, attributes
Target and Antibody of EXPERIMENTTYPE are of great interest
in ChIP-seq experiments, but are not significant in other
experiments. Thus, a rule can specify that when Technique
is not “ChIP-seq”, then these attributes are null.

TABLE 6
Examples of dependency rules, including a description of the join path
connecting the two attributes used in the left and right parts of the rule.

〈eS , eE〉 in (DONOR·BIOSAMPLE·REPLICATE·ITEM·DATASET)
eS .Species = "Homo sapiens"→ eE .Assembly ∈ [hg19, hg38, GRCh38]

〈eS , eE〉 in (DONOR·BIOSAMPLE)
eS .Gender = "Male"→ eE .Disease 6= "Ovarian cancer"
eS .Gender = "Male"→ eE .Tissue 6= "Uterus"
eS .Gender = "Female"→ eE .Disease 6= "Prostate cancer"

〈eS , eE〉 in (PROJECT·CASE)
eS .ProgramName = "ENCODE"→ eE .SourceId = "ENCSR.*"

〈eS , eE〉 in (PROJECT·CASE·ITEM)
eS .ProgramName = "ENCODE"→ eE .SourceId = "ENCFF.*"
eS .ProgramName = "TCGA"→ eE .SourceId =

"^[0-9a-z]{8}-([0-9a-z]{4}-){3}[0-9a-z]{12}$"
eS .ProgramName = "ENCODE"→ eE .SourceUrl is not null
eS .ProgramName = "TCGA"→ eE .SourceUrl is not null

〈eS , eE〉 in (BIOSAMPLE)
eS .Type = "tissue"→ eE .Tissue is not null
eS .Type = "cell line"→ eE .Cell is not null

〈eS , eE〉 in (DATASET·ITEM)
eS .IsAnn = true→ eE .ContentType is not null

〈eS , eE〉 in (PROJECT·CASE·ITEM·DATASET)
eS .ProgramName = "ENCODE"→ eE .Name = ".*ENCODE.*"
eS .ProgramName = "Roadmap Epigenomics"→ eE .Name =

".*ROADMAP_EPIGENOMICS.*"

12

6 VALIDATION

Performing a complete evaluation of the integration ap-
proach is hard from many perspectives: 1) reproducing
queries on the source just within a partition of interest is not
always possible; 2) query interfaces at sources may be dif-
ferent from ours (free-text search vs attribute-based search);
3) we cannot generate all possible queries; 4) manual check
of results is very time consuming. Thus, to show the effec-
tiveness of our approach, we performed an evaluation on a
restricted number of meaningful example queries.

Table 7 reports the number of results from seven queries
on human processed files, as found either in the META-
BASE repository or in individual sources. Numbers do not
exactly sum up, but they pinpoint analogies/differences
to guide a manual verification of corresponding instances.
Specifically, “H3K27me3” and “MCF-7”, typically searched
over epigenomics related sources, return a number of
matches in our system comparable with the sum of matches
in the integrated sources; “fat” and “breast”, simple tissue
specifications, are easily matched in all sources. Instead,
disease and platform information, such as “breast cancer”
and “Illumina”, benefit from our enrichment procedure.
The numbers of matches must be correctly interpreted; e.g.,
“RNA-seq” in META-BASE is associated with one third of
the matches of GDC, but every META-BASE item is derived
from three GDC files; hence, there is a full correspondence.

Note that each query to META-BASE repository is tar-
geted to a specific attribute; thus, it finds items that are
correctly related to the query, as we checked. By manually
inspecting the data retrieved by the search interfaces of
the analyzed sources, we noted some false positives. For
example, the string “fat” is matched by Cistrome with genes
like “NFAT5” and by ENCODE with identifiers such as
“ENCSR582FAT”. This explains most discrepancies. In sum-
mary, our metadata integration process enables an enhanced
search functionality without losing matches.

TABLE 7
Validation of the metadata integration process through seven queries.

Attribute Query META-BASE ENCODE GDC REP Cistrome

Target H3K27me3 1,802 649 - 381 1,440
Cell MCF-7 2,428 1,411 - - 1,246
Tissue fat 130 212 - 57 10
Tissue breast 11,746 236 20,448 94 1,970
Disease breast cancer 11,858 - - - 70
Platform Illumina 38,088 2 12,359 - -
Technique RNA-seq 11,491 - 33,279 56 -

The semantic normalization process has been validated
by six experts in molecular biology. They have been asked
to evaluate a random set of 200 matches achieved by the
supervised procedure between metadata values and onto-
logical controlled terms (either preferred label or synonym)
equipped with their descriptions. Overall, 92% of results
were considered adequate.

7 OVERALL ARCHITECTURE

META-BASE is part of a broad architecture, whose main
purpose is providing a cloud-based environment for ge-
nomic data processing.

The overall system architecture is presented in Fig. 9.
In the left part of the figure we show the META-BASE

pipeline discussed in Sections 4 and 5; the whole pipeline
is configured using parameters provided as a single XML
configuration file. Each dataset (on the left) is progressively
downloaded, transformed and cleaned. The data map-
ping method transforms cleaned attribute-value pairs into
the global database G. The normalization and enrichment
method adds references from the semantically enrichable
attributes to the Local Knowledge Base K, which is imple-
mented by relational tables. Interactive access to the META-
BASE repository is provided by a user-friendly interface (not
discussed in this paper), that uses the acyclic structure of the
global schema to support simple conjunctive queries at the
center of Fig. 9), in a style that is similar to DeepBlue’s query
interface [1].

As shown in the right part of Fig. 9, the META-BASE
repository can also be queried using the GMQL System
[25], which supports integrated data managment on the
cloud; the system is accessed through Web Services as
a common point of access from a variety of interfaces,
including a visual user interface, programmatic interfaces
for Python [28] and R/Bioconductor, and workflow-based
interfaces for Galaxy and FireCloud. The implementation is
executed using the Apache Spark engine, deployed either
on a single server or a cloud-based system.

8 RELATED WORK

Several general projects are focused on offering integrated
access to biomedical data and knowledge extracted from
heterogeneous sources, including BioKleisli [5] (for provid-
ing read access to complex structured data), BioMart [40]
(for biomedical databases), NIF [12] (in the field of neuro-
science), and DATS [38] (for scientific datasets in general).
A survey of the data integration challenges in life sciences
with a particular focus on omics subjects, therefore genomics
in the first place, is provided in [10].

Many works in the literature use conceptual models in
the genomics – and more in general biomedical – field. How-
ever, they employ conceptual models’ expressive power to
explain biological entities and their interactions [42], [37],
[31], [30]. Instead, we propose in addition an architecture
that uses a conceptual model for driving data integration.

Some of the large genomics consortia have also pro-
vided data models to organize metadata (see the BioProject
database [2], ENCODE Data Coordination Center [13], or
Genomic Data Commons [14]). However, these models do
not provide so far general integration frameworks that cover
aspects falling outside the specific focus of the consortium.
Perhaps the most comprehensive approach is provided
by DeepBlue [1], the data integration environment of the
BluePrint Consortium, which is however focused only on
epigenomic data (i.e., study of cell epigenetic modifications).

DNADigest [17] investigates the problem of locating
genomic data to download for research purposes. The study
is also documented more informally in a blog.12 This work
differs from our since, in addition to allow the dynamical
and collaborative curation of metadata, they only provide
means to locate raw data, while we provide data to be used
by our genomic data management system (see Section 7).

12. https://blog.repositive.io/

https://blog.repositive.io/

13

�:K:-!K��
�
A��9�

�9�GHP9)LE�!I

�:K:-!K���
 �9��
1��9����18

�GN)DG: ! �I:)-"GIE!

�GN)DG: ! �I:)-"GIE!

�GN)DG: ! �I:)-"GIE!

�I!H:I:KBG)

Q Q

G)"B#LI:KBG)-
D!:)B)#��LD!-

Item Experiment
TypeDonor BioSample Replicate Dataset Case Project

Technology Management

CellLine

H1-hESC

Format

bed narrow

Size

< 100000

Technique
Chip-seq

Assembly

hg19

Biology

Target

MYC

Extraction

Program

ENCODE

Species

Homo S.

!)GEB��

G)�!HKL:D�
�G !D

�G�:D�
-)GND! #!�
	:-!

�
:
H
H
B
)
#

�
)
I
B
�
A
E
!
)
K

�!"!I!)�!�
1)KGDG#B!-

�OK!I):D�

G)KGDG#P�
DGGCLH

�:HHB)#�

�LD!-

�!K: :K:��� �!#BG)� :K:���
Query editor: SELECT…; JOIN…; MATERIALIZE;

�OKI:���-

py
G

M
Q

L

�:K:-!K���
 �9�1�����9���
��1��
�9	�1��

D!:)!

D!:)!

D!:)!

QQ

�
G
:

B
)
#

G
EH

BD
!I

8!���!IMB�!-

�)
#B

)!

�!
HG

-B
KG

IP
�:

):
#!

I

�
3�

�

GI

!
-G

M
Q

L

�����	����HBH!DB)! �����	����I!HG-BKGIP
�3���P-K!E

Fig. 9. Overall architecture for genomic data processing.

As to the process of semantic enrichment of metadata,
many works have tackled the problem of recognizing onto-
logical concepts to annotate data. Among others, we men-
tion [21], [15], [39]. [4] is a very interesting survey (even
if dated) on the use of ontologies in biomedical data man-
agement and integration. [9] focused particularly on GEO.
[21] considers the problem of metadata authoring by using
ontology-based recommendations; the authors use BioPortal
services, focusing on metadata preparation and on manual
creation of experiments documentation. [7] reports semantic
metadata enrichment for the ENCODE dataset.

The choice of the ontologies to be used for semantic
enrichment, discussed in Section 5.2.1, has been addressed
in a number of articles; among them, [29] and [45]. The latter
one presents the FAIR principles, which define the charac-
teristics that contemporary data resources, tools and infras-
tructures should exhibit in order to be Findable, Accessible,
Interoperable and Reusable by third parties. In Section 5.2.1
we presented the BioPortal [44], Ontology Recommender
[22], Ontology Lookup Service [16] and Zooma systems
for ontology lookup. We decided not to use HeTOP [11],
another annotation service, as it was less precise for the
specific annotations that we need.

9 DISCUSSION AND CONCLUSIONS

Genomic metadata integration is a complex process. We
have designed our solution by breaking the process into
several tasks and by associating powerful abstractions to
each task. The Cleaner, Mapper and Checker modules contain
new methods, all based on the interplay of different kinds
of rules. The Cleaner rules are inspired to grammar-based
transformations (where order matters), the Mapper rules are
expressed in a Datalog-like formalism (order independent),
the Checker rules are expressed as logical dependencies
(order independent). Each rule-based method is provided
with a formal description. The iterative process used in nor-
malization and enrichment, where the designer’s feedback
is needed in order to validate or suggest annotations, has

never been applied to genomic metadata. The significance of
our approach stands in providing a single framework where
the interplay of the three kinds of rules and of the effective
interaction with the designer drives the whole process.

The META-BASE repository currently includes datasets
from the ENCODE project (≈ 21 million metadata
〈key, value〉 pairs in 26,111 items from 4 datasets), GDC
(TCGA program, with ≈ 18M pairs, ≈ 100K items, 7
datasets), Roadmap Epigenomics (≈ 200K pairs,≈ 3K items,
6 datasets), Cistrome (≈ 80K pairs, ≈ 6K items, 2 datasets),
GENCODE and RefSeq annotations (≈ 1.3K pairs, 105 items,
4 datasets), and TADs from GEO (272 pairs, 14 items, 2
datasets). In total, our framework has imported ≈ 40M
〈key, value〉 pairs, which correspond to≈ 3.1K distinct keys.
The addition of new sources to the repository is ongoing;
our current commitment is to extend the data integration
process by adding relevant sources one-by-one, in an in-
cremental fashion. The resulting META-BASE repository is
an important resource for supporting biological and clinical
research.

ACKNOWLEDGMENTS

This research is funded by the ERC Advanced Grant
693174 GeCo (data-driven Genomic Computing). The au-
thors would like to thank the contributions of Alessandro
Campi and of the master students Andrea Colombo, Fed-
erico Gatti, Riccardo Mologni, and Jorge Ignacio Vera Pena.

REFERENCES

[1] F. Albrecht et al. Deepblue epigenomic data server: programmatic
data retrieval and analysis of epigenome region sets. Nucleic Acids
Research, 44(W1):W581–W586, 2016.

[2] T. Barrett et al. BioProject and BioSample databases at NCBI:
facilitating capture and organization of metadata. Nucleic Acids
Research, 40(D1):57–63, 2012.

[3] A. Bernasconi et al. Conceptual modeling for genomics: Building
an integrated repository of open data. In H. C. Mayr, G. Guizzardi,
H. Ma, and O. Pastor, editors, Conceptual Modeling, pages 325–339,
Cham, 2017. Springer International Publishing.

14

[4] O. Bodenreider. Biomedical ontologies in action: role in knowledge
management, data integration and decision support. Yearbook of
Medical Informatics, page 67, 2008.

[5] S. B. Davidson et al. Biokleisli: A digital library for biomedical
researchers. International Journal on Digital Libraries, 1(1):36–53,
1997.

[6] C. A. Davis et al. The encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Research, 46(D1):D794–D801,
2017.

[7] J. D. Fernandez et al. Ontology-based search of genomic metadata.
IEEE/ACM transactions on computational biology and bioinformatics,
13(2):233–247, 2016.

[8] A. Frankish et al. GENCODE reference annotation for the human
and mouse genomes. Nucleic Acids Research, 2018.

[9] C. B. Giles et al. ALE: Automated Label Extraction from GEO
metadata. BMC Bioinformatics, 18(14):509, 2017.

[10] Gomez-Cabrero et al. Data integration in the era of omics: current
and future challenges. BMC Systems Biology, 8(Suppl 2):I1, 2014.

[11] J. Grosjean et al. Health multi-terminology portal: a semantic
added-value for patient safety. Studies in Health Technology and
Informatics, 166:129, 2011.

[12] A. Gupta et al. Federated access to heterogeneous information
resources in the Neuroscience Information Framework (NIF). Neu-
roinformatics, 6(3):205–217, 2008.

[13] E. L. Hong et al. Principles of metadata organization at the
ENCODE data coordination center. Database, 1:10, 2016.

[14] M. A. Jensen et al. The NCI Genomic Data Commons as an engine
for precision medicine. Blood, 130(4):453–459, 2017.

[15] C. Jonquet et al. A system for ontology-based annotation of
biomedical data. In International Workshop on Data Integration in
The Life Sciences, pages 144–152. Springer, 2008.

[16] S. Jupp et al. A new Ontology Lookup Service at EMBL-EBI.
In J. Malone et al., editors, Proceedings of SWAT4LS International
Conference 2015, pages 118–119, 2015.

[17] N. V. Kovalevskaya et al. DNAdigest and repositive: connecting
the world of genomic data. PLoS Biology, 14(3):e1002418, 2016.

[18] A. Kundaje et al. Integrative analysis of 111 reference human
epigenomes. Nature, 518(7539):317–330, 2015.

[19] J. Lonsdale et al. The Genotype-Tissue Expression (GTEx) project.
Nature Genetics, 45(6):580, 2013.

[20] J. Malone et al. Ten simple rules for selecting a bio-ontology. PLoS
Computational Biology, 12(2):e1004743, 2016.

[21] M. Martínez-Romero et al. Fast and accurate metadata authoring
using ontology-based recommendations. In AMIA Annual Sym-
posium Proceedings, volume 2017, page 1272. American Medical
Informatics Association, 2017.

[22] M. Martínez-Romero et al. NCBO Ontology Recommender 2.0:
an enhanced approach for biomedical ontology recommendation.
Journal of Biomedical Semantics, 8(1):21, 2017.

[23] M. Masseroli et al. GenoMetric Query Language: a novel ap-
proach to large-scale genomic data management. Bioinformatics,
31(12):1881–1888, 2015.

[24] M. Masseroli et al. Modeling and interoperability of heteroge-
neous genomic big data for integrative processing and querying.
Methods, 111:3–11, 2016.

[25] M. Masseroli et al. Processing of big heterogeneous genomic
datasets for tertiary analysis of Next Generation Sequencing data.
Bioinformatics, page bty688, 2018.

[26] S. Mei et al. Cistrome Data Browser: a data portal for ChIP-Seq
and chromatin accessibility data in human and mouse. Nucleic
Acids Research, 45(D1):D658–D662, 2016.

[27] A. Møller. dk.brics.automaton – finite-state au-
tomata and regular expressions for Java, 2017.
http://www.brics.dk/automaton/.

[28] L. Nanni et al. Exploring genomic datasets: from batch to interac-
tive and back. In ExploreDB’18, Houston, TX, USA, 2018.

[29] D. Oliveira et al. Where to search top-k biomedical ontologies?
Briefings in Bioinformatics, page bby015, 2018.

[30] A. L. Palacio et al. A method to identify relevant genome data:
Conceptual modeling for the medicine of precision. In International
Conference on Conceptual Modeling, pages 597–609. Springer, 2018.

[31] N. W. Paton et al. Conceptual modelling of genomic information.
Bioinformatics, 16(6):548–557, 2000.

[32] K. D. Pruitt, T. Tatusova, and D. R. Maglott. NCBI reference
sequences (RefSeq): a curated non-redundant sequence database
of genomes, transcripts and proteins. Nucleic Acids Research,
35(suppl_1):D61–D65, 2006.

[33] M. O. Rabin and D. Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3(2):114–125,
1959.

[34] S. S. Rao et al. A 3D map of the human genome at kilobase res-
olution reveals principles of chromatin looping. Cell, 159(7):1665–
1680, 2014.

[35] Consortium 1000Genomes. A map of human genome variation
from population-scale sequencing. Nature, 467(7319):1061–1073,
2010.

[36] Consortium ENCODE. An integrated encyclopedia of DNA ele-
ments in the human genome. Nature, 489(7414):57–74, 2012.

[37] J. F. R. Román et al. Applying conceptual modeling to better
understand the human genome. In International Conference on
Conceptual Modeling, pages 404–412. Springer, 2016.

[38] S.-A. Sansone et al. DATS, the data tag suite to enable discover-
ability of datasets. Scientific Data, 4:170059, 2017.

[39] N. H. Shah et al. Ontology-driven indexing of public datasets for
translational bioinformatics. BMC Bioinformatics, 10(2):S1, 2009.

[40] D. Smedley et al. The BioMart community portal: an innovative
alternative to large, centralized data repositories. Nucleic Acids
Research, 43(W1):589–598, 2015.

[41] K. Thompson. Programming techniques: Regular expression
search algorithm. Communications of the ACM, 11(6):419–422, 1968.

[42] L. Wang, A. Zhang, and M. Ramanathan. Biostar models of clinical
and genomic data for biomedical data warehouse design. Interna-
tional Journal of Bioinformatics Research and Applications, 1(1):63–80,
2005.

[43] J. N. Weinstein et al. The Cancer Genome Atlas pan-cancer
analysis project. Nature Genetics, 45(10):1113–1120, 2013.

[44] P. L. Whetzel et al. Bioportal: enhanced functionality via new web
services from the national center for biomedical ontology to access
and use ontologies in software applications. Nucleic Acids Research,
39(suppl_2):W541–W545, 2011.

[45] M. D. Wilkinson et al. The FAIR guiding principles for scientific
data management and stewardship. Scientific Data, 3:160018, 2016.

Anna Bernasconi earned her Masters in Com-
puter Engineering in 2015 from Politecnico di
Milano and University of Illinois at Chicago. Cur-
rently PhD candidate at Politecnico di Milano,
she works in the field of data-driven genomic
computing. Her research interests include bioin-
formatics data and metadata integration method-
ologies to support complex biological queries
answering. She focuses on open data reposito-
ries, biomedical vocabularies and ontologies.

Arif Canakoglu received his PhD Degree in
Computer Engineering in 2016 from Politecnico
di Milano and he is currently a Post-Doc fellow at
Politecnico di Milano, working in the field of data-
driven genomic computing and machine learning
applications in the bioinformatics area. His re-
search interests include databases, ontologies,
big data processing, cloud computing, machine
learning, and bioinformatics.

Marco Masseroli is Associate Professor at the
Dipartimento di Elettronica, Informazione e Bio-
ingegneria (DEIB) of Politecnico di Milano, Italy.
His research interests are in the area of bioin-
formatics, focused on distributed Internet tech-
nologies, biomolecular databases and ontolo-
gies to effectively retrieve, analyze, and integrate
genomic information with clinical and genomic
data. He is the author of more than 200 publi-
cations in international journals, books and con-
ference proceedings.
Stefano Ceri is Professor at the Dipartimento
di Elettronica, Informazione e Bioingegneria
(DEIB) of Politecnico di Milano. His research
has been generally concerned with extending
database technology; he has authored over
350 publications. He received two advanced
ERC Grants, on Search Computing and on
Data-Driven Genomic Computing (GeCo, 2016-
2021). He received the ACM-SIGMOD Innova-
tion Award (2013) and is an ACM Fellow.

	Introduction
	Background
	Motivating Example

	Approach
	Data Preparation
	Data Download
	Data Transformation
	Data Cleaning

	Data Integration
	Data Mapping
	Data Normalization and Enrichment
	Ontology Selection
	Process

	Integrity Checker

	Validation
	Overall Architecture
	Related work
	Discussion and conclusions
	References
	Biographies
	Anna Bernasconi
	Arif Canakoglu
	Marco Masseroli
	Stefano Ceri

