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Abstract Switching components, also named as bad con-
figurations, interchanges, and ghosts (according to different
scenarios), play a key role in the study of ambiguous config-
urations, which often appear in Discrete Tomography and in
several other areas of research. In this paper we give an upper
bound for theminimal size bad configurations associated to a
given set S of lattice directions. In the special but interesting
case of four directions, we show that the general argument
can be considerably improved, and we present an algebraic
method which provides such an improvement. Moreover, it
turns out that finding bad configurations is in fact equivalent
to findingmultiples of a suitable polynomial in two variables,
having only coefficients from the set {−1, 0, 1}. The general
problem of describing all polynomials having such multiples
seems to be very hard (Borwein and Erdélyi, in Ill J Math
41(4):667–675, 1997). However, in our particular case, it is
hopeful to give some kind of solution. In the context of Dig-
ital Image Analysis, it represents an explicit method for the
construction of ghosts, and consequently might be of interest
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in image processing, also in view of efficient algorithms to
encode data.
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1 Introduction

Discrete tomography (DT) often deals with problems which
have application also in different areas, e.g., geometric and
computerized tomography, combinatorics, computer vision,
and image analysis (see for an overview [2,3] and for some
recent works [4–6]). Moreover, as a sub-area of Discrete
Geometry, DT should also provide both a theoretical and
a computational frame-work for digital images ([7]). A basic
problem in DT concerns the recovery of an unknown digital
image consisting of a small, discrete set of gray values from
its X-rays computed along a certain number of directions.
Several imaging models have been considered in the litera-
ture. In the grid model an image is formed by assigning a
numerical value to each point in a regular grid, and X-rays of
the image count the number of points belonging to the inter-
section of the image with lines parallel to given directions.
This can be used tomodel nanocrystals, consisting of discrete
atoms positioned in a regular grid. Electron tomography and
even more modern techniques based on transmission elec-
tron microscopy, statistical parameter estimation theory and
discrete tomography effectively allow the discrete parallel
X-rays of a crystal to be measured (see for instance [8] and
the related bibliography). In different tomography applica-
tions a continuous representation of the object is more real-
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istic, as there is no intrinsic grid structure. In such cases,
the unknown image is typically approximated by an image
defined on a discrete pixel grid, using square pixels. The line
model, or the strip model, is usually exploited for computing
the projections of such a pixelized image.

However, in our paper we assume the grid model.
A major point is, of course, in the accuracy of the recon-

struction. This is made difficult by the availability of limited
data since in several applications such as electron tomog-
raphy or industrial tomography, only few X-rays can be
acquired. This prevents the use of the reconstruction algo-
rithms employed in computerized tomography, where the
reconstruction problem is a highly undetermined inverse
problem. This is due to several noise effects, restrictions, and
constraints which are introduced when the uniqueness theo-
reticalmodel, basedon theRadonTransformand its inversion
formula, is considered in real applications. Even if discrete
Filtered Back Projection (FBP) can be exact when the given
projection set S tiles the image reconstruction region (and no
noise is considered), the general approach provided by FBP
points out that any reconstruction process always leads to an
approximation of the unknown object. The degree of uncer-
tainty can be quantified in some appearing “sub-pictures”
which do not correspond to any really existing structure. A
main problem for a correct image understanding is the local-
ization of such sub-pictures.

The same problem arises when FBP is replaced by alge-
braic reconstruction algorithms, such as ART, SART, or
SIRT, which usually supplymore accurate results in case that
only a few projection angles are available (see, for instance
[6,9,10]). In principle, any algebraic-based reconstruction
algorithm cannot “see” sets having null projections along
each one of the employed X-ray directions. Roughly speak-
ing, one has to invert some non-homogeneous linear system
of equations Ax = b, so that any solution of the homoge-
neous system Ax = 0 might be superimposed to any recon-
struction. Such “pictures” are known as ghost artifacts since
X-rays of the ghost image data vanish (or sum up to zero) for
a range of pre-selected X-rays angles (see e.g., [11], or [12,
Sect. 16.4]). These can be interpreted as a kind of corruption
occurring in the reconstruction process, which is invisible in
the available data.

In [13] the generation of ghosts for digital images -
representing brain cross sections—is used to illustrate the
claim that it is, in practice, dangerous to rely on reconstruc-
tions from a small number of X-rays, as such a ghost to
some extent mimics a malignant tumor, and consequently no
reconstruction algorithm could possibly distinguish between
the presence and absence of this tumor in the brain.

Of course, with fewer projections, such a phenomenon
becomesmore significant. Thus, the study of ghost artifacts is
of main importance in DT, where the usual approach requires
a small number of projections (4 or fewer) so that the choice

of the particular set of projection angles can have a large influ-
ence on the quality of the reconstructions (see for instance
[4,14–18]). Themissing information can be only in part over-
come by exploiting the knowledge that digital images consist
of a low number (2–5) of different materials.

For a prescribed set of directions, the nonexistence of a
ghost for a binary image is necessary and sufficient for the
X-rays to exactly recognize the image (see [19,20]). There-
fore, ghosts are responsible for ambiguous image reconstruc-
tions from the same set of available data and give rise to
serious difficulties in image understanding and analysis.

1.1 Results

In the context of binary tomography, ghosts first appeared
in the reconstruction of binary matrices, under the name of
interchanges [21], and later were called switching compo-
nents [22] or bad configurations. Here it is convenient to
represent a digital image as a finite subset of the integer lat-
tice Z

2. A simple “cube” construction shows that for any
finite set S of lattice directions, it is easy to find two distinct
lattice sets that cannot be distinguished by their X-rays in
the directions in S (see, for instance, [23]). This leads to the
following notion.

Definition 1 An S-weakly bad configuration is a pair of lat-
tice sets (Z ,W ), each consisting of k lattice points, not nec-
essarily distinct (and countedwithmultiplicity), z1, . . . , zk ∈
Z and w1, . . . , wk ∈ W such that for each direction (a, b) ∈
S, and for each zr ∈ Z , the line through zr in direction (a, b)
contains a point wr ∈ W (see Figure 1). If all the points in
each set Z and W are distinct, then (Z ,W ) is called S-bad
configuration (see Fig. 2).

We then say that a lattice set E has a (weakly) bad con-
figuration, if an S-(weakly) bad configuration (Z ,W ) exists
for some k ≥ 2, such that Z ⊆ E , W ⊂ Z

2 \ E .
There is a wide literature concerning (weakly) bad con-

figurations, which highlights their central role in important
issues such as ambiguity in the reconstruction problem, or,
on the contrary, uniqueness (see, for instance, [24,25], or [3]
and the references given there). For instance, as mentioned
above, a set is S-unique if and only if it has no S-bad con-
figuration. Similarly, a set is S-additive (or additive) if and
only if it has no S-weakly bad configuration (recent exam-
ples can be found, for instance, in [26]). Additivity is also
of main importance because the reconstruction problem for
additive set is polynomial using (relaxation of integer) linear
programming.

A related intriguing problem is to find non-additive sets
of uniqueness (see [27]). A complete characterization of bad
configurations (weakly or not weakly) has been obtained in
[25] with a new algebraic approach employed then in several
papers (see for instance [27–30]). S-bad configurations, with
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(a) (b)

Fig. 1 a A weakly bad configuration associated to S =
{(1, 0), (0, 1), (2, 1), (1, 2)}, where Z consists of the gray points and
the white point (counted twice), while W is the set of black points.
b Digital representation of the weakly bad configuration

(a) (b)

Fig. 2 a A bad configuration associated to S = {(1, 0), (1, 1),
(2, 1), (1, 2)}, with Z ,W formed by gray and black points, respectively.
b Digital representation of the bad configuration

the extra condition of convexity, are known as S-polygons,
and reveal to be useful both in geometric tomography and in
discrete tomography (see for instance [31,32], and [33] for
an algorithmic approach), as well as very interesting from a
purely geometric point of view (see for instance [34–36]).

In this paper we focus on “minimal” bad configurations.
Actually, looking for the smallest possible such configura-
tion is of main interest, since it is related to the problem of
finding the largest digital images which are uniquely deter-
mined by their X-rays in the X-ray directions. Results con-
cerning the number of points which can be reconstructed
from a number of given projections have been obtained by
Matoušek, Přívětivý, and S̆kovroň [37] (related results can
also be found in [38,39], and [40]). In general, the size of
a finite set is properly defined by its cardinality. However,
in the reconstruction problem one usually has to recover
discrete images inside a bounded grid by means of their
tomographic data. Thus, it seems meaningful to measure the
size of a finite set by the size m × n of the smallest box
A = {(i, j) ∈ Z

2 : 0 ≤ i < m, 0 ≤ j < n} contain-
ing the set. Here we shall adopt this latter approach so that
“minimal” refers to the rectangular grid containing the S-bad
configuration.

Definition 2 An S-(weakly) bad configuration (Z ,W ) con-
tained in a finite rectangular lattice grid A = {(i, j) ∈ Z

2 :

0 ≤ i < m, 0 ≤ j < n} is said to be minimal if no rectan-
gular lattice grid A′ exists such that (Z ,W ) ⊂ A′ ⊂ A.

As a summary, as ghosts are responsible for ambiguous
reconstructions, their absence implies uniqueness,which rep-
resents the goal for an accurate reconstruction. In this context,
we focus on minimal ghosts and their construction in order
to avoid them toward uniqueness.

Besides, minimal ghosts (see for instance [41–43]) are
largely employed in digital imaging computing as an entan-
glement image/anti-image, which can be used to achieve
forward error correction in redundant data transmission
schemes.

In a different scenario, ghosts are employed to recover
the exact invertibility of the prime-sized array Finite Radon
Transform (FRT) in the case of missing data (see [44]). From
the rich literature focusing on ghosts (see for instance [41–
43], and the related bibliography), it comes out that some of
their fascinating geometric properties are still unclear, so that
any new step throwing light on them would be appreciable.

From an applicative point of view, understanding how
added ghosts into real image data can be managed could
be useful for a comparison among different reconstruction
algorithms according to a same idea as in [13]. In particular,
adding binary ghosts causes the weakest perturbation of the
original data. It follows that explicit procedures for reduc-
ing complex ghosts artifacts to simpler ones would be highly
desirable. In this context our approach shows a theoretical
model for treating ghost artifacts from an algebraic point
of view which allows easy constructions of ghost artifacts,
otherwise inaccessible in a direct geometric investigation.
It turns out that any ghost artifact origins from a simpler
one, which, however, might be hidden under a more com-
plex structure (modeled as colored, or gray-scaled pixels), as
a result of several overlapping and translational procedures.
As far as we know, our strategy represents a first contribution
in reducing such a “structured” artifact to a “simple” binary
ghost, and without changing the set of projections.

1.2 Methods and Paper Organization

To prove our results, we apply the following method. We
introduce a polynomial FS(x, y), related to the set S of direc-
tions. Then, it turns out that finding an S-bad configuration is
in fact equivalent to findingmultiples of FS having only coef-
ficients in the set {−1, 0, 1}. Note that in general, finding such
multiples of polynomials is an interesting, but rather deep
problem (see e.g., the paper [1], and the references there).
However, using certain special properties of the polynomial
FS , it is hopeful to give some kind of solution to the problem.
In particular, in Sect. 3 we determine a general theoretical
upper bound for the size of the smallest bad configurations
associated to a given set S of k lattice directions. In Sect. 4,
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we prove that in the special but interesting case of four direc-
tions, the upper bound can be considerably improved by the
aid of a certain reduction method. Finally, in Sect. 5, we
propose an algorithm based on this reduction method which
permits to remove the multiplicities of a given input polyno-
mial. In the context of tomographically reconstructed digital
images, it leads to a filtering, or reduction, procedure which
returns any binary ghost.

As our proofs and methods are somewhat technical at
certain points, we provide several examples to help a bet-
ter understanding.

2 Notation, Definitions, and Background

Let a, b ∈ Z with gcd(a, b) = 1 and a ≥ 0, with the further
assumption that b = 1 if a = 0. We call (a, b) a lattice
direction. By lines with direction (a, b) ∈ Z

2 wemean lattice
lines defined in the x, y plane by equations of the form ay =
bx + t , where t ∈ Z. We refer to a finite subset of Z2 as a
lattice set.

Let S = {(ai , bi )}ki=1 be a set of directions. For i =
1, . . . , k put

f(ai ,bi )(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xai ybi − 1 if ai �= 0, bi > 0,

xai − y−bi if ai �= 0, bi < 0,

x − 1 if ai = 1, bi = 0,

y − 1 if ai = 0, bi = 1,

and for 1 ≤ j ≤ k let

F ( j)
S (x, y) =

j∏

i=1

f(ai ,bi )(x, y).

Further, we will simply use FS(x, y) to denote F (k)
S (x, y).

Let A = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n} be a finite

grid. For any function g : A → Z, its generating function is
the polynomial defined by

Gg(x, y) =
∑

(i, j)∈A

g(i, j)xi y j .

Conversely, we say that the function g is generated by a
polynomial P(x, y) if P(x, y) = Gg(x, y). Further, the line
sum of g along the lattice line with equation ay = bx + t is
defined as

∑
aj=bi+t g(i, j). It is easy to see that f generated

by FS(x, y) has zero line sums along the lines taken in the
directions in S. Moreover, f vanishes outside A if and only
if the set S = {(ai , bi )}ki=1 of k lattice directions is valid for
A, namely if

k∑

i=1

ai < m,

k∑

i=1

|bi | < n. (1)

2.1 Geometric Interpretation of Ghost Reduction

A monomial t xa yb ∈ Z[x, y] can be associated to the lattice
point p = (a, b), together with theweight t . If |t | > 1 we say
that p is amultiple point and |t | is itsmultiplicity. Therefore,
a generating function corresponds, geometrically, to a lattice
set whose points have associated multiplicities. For a poly-
nomial P(x, y), we denote by P+(x, y) (resp. P−(x, y)) the
polynomial formed by themonomials of P(x, y) having pos-
itive (resp. negative) coefficients. The lattice sets consisting
of the lattice points (counted with their multiplicities) which
correspond to P(x, y), P+(x, y), P−(x, y) are here denoted
by P , P+, and P−, respectively. We also refer to the points
in P+ and P− as points with positive and negative signs,
respectively.

From the geometric point of view, the pair of sets
(P+, P−), associated to a polynomial P(x, y) = Gg(x, y)
(g being a function with zero line sums along the lines taken
in all the directions in S), is a S-weakly bad configuration
(or a complex ghost with respect to S), otherwise a S-bad
configuration (or a binary ghost with respect to S) if its coef-
ficients all belong to {−1, 0, 1}. As we mentioned already,
these notions play a crucial role in investigating uniqueness
problems, since any set S of directions is a set of uniqueness
if and only if it has no bad configurations (or binary ghosts).

In what follows polynomial multiplication is exploited to
reduce a weakly bad configuration to a bad configuration (or
a complex ghosts to a binary ghost), without changing the set
S of projection directions. This reflects geometrically in sev-
eral overlapping and translational procedures. In particular,
when the generating function of a (weakly) bad configuration
is multiplied by xa yb, then this is the same as translating the
(weakly) bad configuration by (a, b). Also, when multiply-
ing by (xa yb − 1), it is equivalent to subtracting the initial
(weakly) bad configuration from its shifting by (a, b). If a
translation by vector (a, b) causes points to overlap, then we
could always cancel such overlapping by translating r times
of (a, b), for some positive or negative integer r . However,
since many different multiplicities are usually involved, the
hard trick is to find the combination of r values that allows the
removal of all multiplicities. We refer the reader to Sect. 4.2
for further geometric insights on the reduction procedure of
complex ghosts.

2.2 Previous Results Employed

In this paperwewillmakeuse frequently of some results from
[28], in particular Lemma 6 and Proposition 1, so, below, we
will briefly recall the statements. For u = (h, k) ∈ Z

2, let
f u− : Z

2 → Z, f u+ : Z
2 → Z be the maps whose gener-

ating functions are G f u−(x, y) = (xh yk − 1)FS(x, y) and

G f u+(x, y) = (xh yk + 1)FS(x, y), respectively. Notice that
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for h < 0 or k < 0, G f u− ,G f u+ are rational functions, which
can bemapped to polynomials by integer translations. In [28]
it was shown that, for |S| = 4, the unique situationswhere FS

has somecoefficient outside {−1, 0, 1} correspond, precisely,
to the choices u1+u2+u3 = u4 or u1+u2−u3 = u4.We rep-
resent S as S = S1 ∪ S2, where S1 = {u1, u2, u3}, S2 = {u4}
in the first case, and S1 = {u1, u2}, S2 = {u3, u4} in the
second case. Also, we define the set S1 − S2 as follows:

S1 − S2 = {±(ui − u j ), ui ∈ S1, u j ∈ S2}.

Lemma 1 (Lemma 6 in [28]) Let S = {u1, u2, u3, u4} be a
set of four lattice directions, such that u4 = u1 + u2 ± u3.
Then the following assertions are valid:

(1) | f u−| ≤ 1 if and only if u = 0, or u ∈ (S1 − S2) and
u4 = u1 + u2 + u3, or u ∈ (S1 − S2) ∪ {±(u1 + u2)}
and u4 = u1 + u2 − u3.

(2) | f u+| ≤ 1 if and only if u ∈ S or −u ∈ S. ��

Let g : Z2 → Z be a non-trivial function whose gener-
ating function is defined by Gg(x, y) = P(x, y)FS(x, y),
for some polynomial P(x, y), consisting of r monomials.
For h ∈ {1, . . . , r}, let gh : Z2 → Z be the function whose
generating function is determined by multiplying FS(x, y)
by the first (with respect to the given order in P(x, y)) h
monomials of P(x, y).

Let

Qh(S) =
{
(i, j) ∈ Z

2 : gh(i, j) �= 0
}

and

Ph = {(i, j) ∈ Qh(S) : gh(i, j) > 0},
Nh = {(i, j) ∈ Qh(S) : gh(i, j) < 0}.

In particular Q0(S) = (F+
S , F−

S ), P0 = F+
S , and N0 =

F−
S . Let Mh denote the set of multiple points of Qh(S), and

let M+
h , M

−
h be the subsets of Mh formed by the points of

Mh belonging toPh andNh , respectively. In particularM0 =
{w}, namely the multiple point of Q(S). Moreover, for any
pair of sets X,Y , we define X − Y = Y − X = {±(x − y) :
x ∈ X, y ∈ Y }.

Proposition 1 (Proposition 1 in [28]) 1 Let S = {u1, u2, u3,
u1 + u2 ± u3} be a set of four lattice directions. Let g :
Z
2 → Z be a non-trivial function whose generating function

is defined by

Gg(x, y) =
r∑

t=1

δ(t)xi(t)y j (t)FS(x, y),

1 In [28, Proposition1] the pair (i(h + 1), i(h + 1)) must be replaced
by (i(h + 1), j (h + 1)), and h ∈ {1, . . . , r} with h ∈ {0, . . . , r − 1}.

where δ(t) = ±1. For each h ∈ {0, . . . , r − 1}, consider the
monomial δ(h+1)xi(h+1)y j (h+1). Suppose that δ(h+1) = 1
and the following conditions hold

(1) If (c, d) ∈ M+
h then (i(h+1), j (h+1)) = (c, d)−(e, f ),

with (e, f ) ∈ N .
(2) If (c, d) ∈ M−

h then (i(h+1), j (h+1)) = (c, d)−(e, f ),
with (e, f ) ∈ P .

(3) (i(h + 1), j (h + 1)) /∈ (Ph − P) ∪ (Nh − N ).
(4) (i(h + 1), j (h + 1)) + w ∈ Nh if w ∈ M+

0 , (i(h +
1), j (h + 1)) + w ∈ Ph if w ∈ M−

0 .

Then Mh+1 ⊆ Mh. ��

3 Minimal Bad Configurations

3.1 k Directions

In this section we derive bounds for the size of a maximal
grid A = {(i, j) ∈ Z

2 : 0 ≤ i < m, 0 ≤ j < n} which
does not contain S-bad configurations. It may happen that
these bounds are not optimal, as it is shown by Example 1
(see also Remark 1).

Theorem 1 Let S = {(ai , bi )}ki=1 be a set of directions,
where 0 ≤ a1 ≤ · · · ≤ ak. Let A = {(i, j) ∈ Z

2 : 0 ≤
i < m, 0 ≤ j < n} be a grid which does not contain S-bad
configurations. Then m ≤ (2k+1−1)ak or n ≤ (2k+1−1)B,
where B = max{|b1|, . . . , |bk |}.

In order to prove the Theorem,we shall need the following
Lemma, which provides an inductive procedure, in the num-
ber of directions belonging to S, to construct a polynomial
G(x, y) having coefficients in {−1, 0, 1}, such that FS(x, y)
divides G(x, y).

Lemma 2 Let S = {(ai , bi )}ki=1 be a set of directions,
where 0 ≤ a1 ≤ · · · ≤ ak. Then there exists a poly-
nomial G(x, y) = R(x, y)FS(x, y), having coefficients in
{−1, 0, 1}, such that degxG ≤ (2k+1 − 1)ak, degyG ≤
(2k+1 − 1)B, where B = max{|b1|, . . . , |bk |}.
Proof Take a∗

1 := a1 and b∗
1 := b1, and let

G+
1 (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xa1 yb1 if a1 �= 0, b1 > 0,

xa1 if a1 �= 0, b1 < 0,

x if a1 = 1, b1 = 0,

1 if a1 = 0, b1 = 1,

G−
1 (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if a1 �= 0, b1 > 0,

y−b1 if a1 �= 0, b1 < 0,

1 if a1 = 1, b1 = 0,

y if a1 = 0, b1 = 1.
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Observe that the above polynomials have only coefficients
in {0, 1}. Thus, putting G1(x, y) = G+

1 (x, y) − G−
1 (x, y),

G1(x, y) has only coefficients in {−1, 0, 1}, and is obviously
divisible by F (1)

S . Moreover, the degrees of G+
1 (x, y) and

G−
1 (x, y) in x are at most a∗

1 = a1.
Assume now that for some j with 1 ≤ j < k, the inte-

gers a∗
j , b

∗
j and polynomials G+

j (x, y), G−
j (x, y) are already

defined, so that both G+
j (x, y), G−

j (x, y) have only 0, 1-
coefficients, the degrees of these polynomials are at most
(2 j+1 − 1)a j in x , and the polynomial

G j (x, y) := G+
j (x, y) − G−

j (x, y)

is divisible by F ( j)
S (x, y). Put a∗

j+1 = 2 j+1a j+1 and b∗
j+1 =

2 j+1b j+1. Note that a j+1 > 0, and let

g+
j+1(x, y) =

⎧
⎪⎨

⎪⎩

xa
∗
j+1 yb

∗
j+1 if b j+1 > 0,

xa
∗
j+1 if b j+1 < 0,

xa
∗
j+1 if a j+1 = 1, b j+1 = 0,

g−
j+1(x, y) =

⎧
⎪⎨

⎪⎩

1 if b j+1 > 0,

y−b∗
j+1 if b j+1 < 0,

1 if a j+1 = 1, b j+1 = 0.

Set G+
j+1(x, y) = g+

j+1(x, y) · G+
j (x, y) + g−

j+1(x, y) ·
G−

j (x, y) and G−
j+1(x, y) = g−

j+1(x, y) · G+
j (x, y) +

g+
j+1(x, y) ·G−

j (x, y). Observe that by the induction hypoth-

esis and the definition of a∗
j+1, both G+

j+1(x, y) and

G−
j+1(x, y) have only 0, 1-coefficients. Further, we easily

get that the degrees of G+
j (x, y) and G−

j (x, y) are at most

(2 j+1 − 1)a j+1 in x . Putting G j+1(x, y) = G+
j+1(x, y) −

G−
j+1(x, y), we have

G j+1(x, y) = (g+
j+1(x, y) − g−

j+1(x, y))(G
+
j (x, y)

−G−
j (x, y)).

The first factor on the right-hand side is obviously divisible
by f(a j+1,b j+1)(x, y), while the second one by F ( j)

S (x, y) by

induction. Hence we also obtain that F ( j+1)
S (x, y) divides

G j+1(x, y).
LetG(x, y) = Gk(x, y). By inductionweget thatG(x, y)

has −1, 0, 1-coefficients, FS(x, y) divides G(x, y) and the
degree ofG(x, y) in x is at most (2k+1−1)ak . Since it is easy
to check that the degree of G(x, y) is at most (2k+1 − 1)B
in y, our claim follows. ��

Notice that the proof is constructive so that it designs the
steps for generating ghosts.

Remark 1 The provided upper bounds on degxG(x, y) and
degyG(x, y) depend only on the directions in S. However,
we could get better results by taking advantage of the pre-
vious steps in the selection of a∗

j+1 and b∗
j+1. For instance,

the above method can be improved in the following way.
At the ( j + 1)-th step instead of taking a∗

j+1 = 2 j+1a j+1

and b∗
j+1 = 2 j+1b j+1, find the smallest positive integer t j+1

such that either t j+1a j+1 >
j∑

i=1
a∗
i or t j+1|b j+1| >

j∑

i=1
|b∗

i |
holds. Then letting a∗

j+1 = t j+1a j+1 and b∗
j+1 = t j+1b j+1,

one can easily check that the resulting polynomialG(x, y) =
Gk(x, y) has the same properties as before.

Proof (of Theorem 1) There is a one-to-one correspondence
between S-bad configurations (Z ,W ) contained in A and
non-trivial functions h : A → {−1, 0, 1} having zero line
sums along the lines corresponding to the directions in S,
by defining h(z) = 1 if z ∈ Z , h(z) = −1 if z ∈ W ,
and h(z) = 0 otherwise. Hajdu and Tijdeman showed that
if h : A → Z has zero line sums along the lines taken in
the directions in S, then FS(x, y) divides Gh(x, y) over Z
([25, Lemma3.1]). Therefore, if m > (2k+1 − 1)ak and n >

(2k+1−1)B then the gridA contains the S-bad configuration
(G+,G−) associated to the polynomial G(x, y) defined in
Lemma 2. ��

Theorem1 states that if, on the contrary,m > (2k+1−1)ak
and n > (2k+1 − 1)B, ghosts may be hidden in A.

Example 1 Assume S = {(0, 1), (1, 0), (1, 2), (2, 1)}, so
that k = 4, a1 = 0, a2 = a3 = 1, a4 = 2, and b1 =
1, b2 = 0, b3 = 2, b4 = 1 (alternatively we could choose
b1 = 1, b2 = 2, b3 = 0, b4 = 1). The inductive steps pro-
vide the following results:

• j = 1a∗
1 = a1 = 0, b∗

1 = b1 = 1, G+
1 (x, y) = 1,

G−
1 (x, y) = y,

G1(x, y) = 1 − y.

• j = 2a∗
2 = 4, b∗

2 = 0, g+
2 (x, y) = x4, g−

2 (x, y) = 1,

G+
2 (x, y) = x4 · 1 + 1 · y = x4 + y

G−
2 (x, y) = 1 · 1 + x4 · y = 1 + x4y

G2(x, y) = (x4 − 1)(1 − y).

• j = 3a∗
3 = 8, b∗

3 = 16, g+
3 (x, y) = x8y16, g−

3 (x, y) =
1,

G+
3 (x, y) = x8y16 · (x4 + y) + 1 · (1 + x4y)

= x12y16 + x8y17 + x4y + 1

G−
3 (x, y) = x8y16 · (1 + x4y) + 1 · (x4 + y)

= x8y16 + x12y17 + x4 + y

G3(x, y) = (x8y16 − 1)(x4 − 1)(1 − y).
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• j = k = 4a∗
4 = 32, b∗

4 = 16, g+
4 (x, y) = x32y16,

g−
4 (x, y) = 1.

G+
4 (x, y) = x32y16 · (x12y16 + x8y17 + x4y + 1)

+1 · (x8y16 + x12y17 + x4 + y)

= x44y33 + x40y33 + x36y17 + x32y16

+x8y16 + x12y17 + x4 + y

G−
4 (x, y) = x32y16 · (x8y16 + x12y17 + x4 + y)

+1 · (x12y16 + x8y17 + x4y + 1)

= x44y33 + x40y32 + x36y16

+x32y17 + x12y17 + x8y17 + x4y + 1

G(x, y) = G4(x, y)

= (x32y16 − 1)(x8y16 − 1)(x4 − 1)(1 − y)

= −x44y33 + x44y32 + x40y33 − x40y32

+x36y17 − x36y16 − x32y17 + x32y16

+x12y17 − x12y16 − x8y17 + x8y16

−x4y + x4 + y − 1.

Note that degxG(x, y) and degyG(x, y) satisfy the upper
bound in Theorem 2 with the strict inequality. These can be
considerably lowered as described in Remark 1. In fact, we
get t2 = 1, t3 = 1, t4 = 2, which gives a∗

2 = 1, b∗
2 = 0,

a∗
3 = 1, b∗

3 = 2, a∗
4 = 4, b∗

4 = 2, and consequently

G(x, y) = G4(x, y)

= (1 − y)(x − 1)(xy2 − 1)(x4y2 − 1)

= −x6y5 + x5y5 + x6y4 − x5y4

+x5y3 − x4y3 + x2y3

−xy3 − x5y2 + x4y2 − x2y2 + xy2

−xy + y + x − 1. (2)

3.2 Four Directions

From an algebraic point of view, the focus of the previous
section is the lowering of the weights of the multiple points
belonging to a basic weakly bad configuration which corre-
sponds to the set of lattice points associated to the polynomial
FS(x, y) (corresponding to a set S of k different lattice direc-
tions, where k is arbitrarily chosen).

We now observe that the procedure described in the proof
of Lemma 2 provides the required polynomial G(x, y) hav-
ing coefficients in {−1, 0, 1} without any check on the start-
ing polynomial FS(x, y). This causes the degree of G(x, y)
to be high compared to the degree of FS(x, y). Note that
FS(x, y) could have nomultiple points at all, so that the prob-
lem would be trivial. Thus, some analysis of the coefficients

of FS(x, y) not belonging to {−1, 0, 1} could provide useful
information for bounding the degree of a possible multiple
polynomial with coefficients in {−1, 0, 1}. For instance, the
set S as in Example 1 provides the following polynomial:

FS(x, y) = x4y4 − x4y3 − x3y4 + x3y3 − x3y2 + x3y

−x2y3 + 2x2y2 − x2y + xy3 − xy2

+xy − x − y + 1,

wherewehave just one coefficient not belonging to {−1, 0,1}.
Such amultiplicity can be removed as required simply taking
G(x, y) = (xh yk+1)FS(x, y),with (h, k) ∈ S (alternatively
also G(x, y) = (xh yk − 1)FS(x, y) for some (h, k) suitably
selected), as shown in [28, Lemma6]. For instance, we can
take (h, k) = (1, 0), so that

G(x, y) = (x + 1)FS(x, y) = x5y4 − x5y3 − x4y2 + x4y

−x3y4 + x3y2 + x2y2 − x2

+xy3 − xy2 − y + 1,

and the degrees in x and y are even lower than those in (2).
Starting from the above remarks, we now approach the

problem presented in the previous section in a different
way. Instead of an arbitrary number of directions in the
set S, we fix the cardinality of S, and consider the poly-
nomial H(x, y)FS(x, y), for a given polynomial H(x, y).
Then, we look for possible polynomials K (x, y), such that
G(x, y) = (H(x, y) + K (x, y))FS(x, y) has all the coef-
ficients in {−1, 0, 1}. In particular, we assume that S =
{u1, u2, u3, u4}, with u1+u2+u3 = u4 or u1+u2−u3 = u4.
Motivation for this choice relies on the fact that by [30, The-
orem 2.4], less than four directions are never sufficient to dis-
tinguish all the subsets of a given gridA, and, for |S| = 4, the
unique situations where FS represents a weakly bad configu-
ration correspond, precisely, to the choices u1+u2+u3 = u4
or u1 + u2 − u3 = u4 (see [28]). Therefore, for a set of four
directions, these are the unique cases where the problem is
not trivial.

We first note that if H(x, y) = 1, then a possible solution
to the above problem is provided by K (x, y) = R(x, y)− 1,
where R(x, y) is obtained according to Theorem 2. However,
if S = {u1, u2, u3, u4}, with u1+u2±u3 = u4, we can find a
significant improvement. It is shown by the following result,
which follows from [28, Lemma6].

Proposition 2 Let S = {ui = (ai , bi )}4i=1 be a set of four
directions, where u1 + u2 ± u3 = u4. Then, for each i ∈
{1, 2, 3, 4} the polynomial

Gi (x, y) =
{(

xai ybi + 1
)
FS(x, y), if bi ≥ 0

(
xai + y|bi |) FS(x, y), if bi < 0

(3)

has coefficients in {−1, 0, 1}.
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This result allows us to improve the bounds obtained in
Theorem 1 on the size of a maximal grid which does not
contain S-bad configurations.

Corollary 1 Let S = {ui = (ai , bi )}4i=1 be a set of four
directions, where u1 + u2 ± u3 = u4. Let A = {(i, j) ∈
Z
2 : 0 ≤ i < m, 0 ≤ j < n} be a grid which does not

contain S-bad configurations. Then m ≤ ai + ∑4
k=1 ak or

n ≤ |bi | + ∑4
k=1 |bk |, for each i ∈ {1, 2, 3, 4}.

Proof Note that the polynomial Gi (x, y) defined in (3) has
degrees degxGi (x, y) = ai + ∑4

k=1 ak , degyGi (x, y) =
|bi | + ∑4

k=1 |bk |, for each i ∈ {1, 2, 3, 4}. Suppose that
m > ai + ∑4

k=1 ak and n > |bi | + ∑4
k=1 |bk |, for each

i ∈ {1, 2, 3, 4}. Then the grid A contains the S-bad con-
figuration (G+

i ,G−
i ) associated to the polynomial Gi (x, y)

defined in (3). ��

4 From Overlapping Weakly Bad Configurations to
Binary Ghosts

We now address the problem for an arbitrary polynomial
H(x, y) and S = {u1, u2, u3, u4}, where u1+u2 ±u3 = u4.

Problem 1 Given a polynomial H(x, y) with integer coef-
ficients, and S = {u1, u2, u3, u4}, where u1 + u2 ±
u3 = u4, find a polynomial K (x, y) such that G(x, y) =
(H(x, y)+K (x, y))FS(x, y) has all the coefficients belong-
ing to {−1, 0, 1}.

The configuration P associated to a given polynomial
P(x, y) = H(x, y)FS(x, y) with integer coefficients can be
seen as an original bad configuration which has been modi-
fied as a result of several overlapping and translational pro-
cedures. Feasible solutions to Problem 1 can be obtained by
providing a filtering (or reduction) procedure, which can be
assumed to be additive as well, which returns a bad config-
uration as an output. This corresponds to the construction of
a new polynomial

K (x, y)FS(x, y),

where K (x, y) is a polynomial with only {0, 1} coefficients,
such that G(x, y) = (H(x, y)+K (x, y))FS(x, y) has all its
coefficients belonging to {−1, 0, 1}.
If a solution exists, then the polynomial

P(x, y) = H(x, y)FS(x, y)

is said to be reducible, andG(x, y) is said to be a reduction of
P(x, y). The corresponding lattice bad configuration is said
to be the binary ghost associated to the original (corrupted)
image.

4.1 Algebraic Approach to a Reduction Procedure

From a geometric point of view, the set P associated to
the polynomial P(x, y) = H(x, y)FS(x, y) corresponds to
mutually overlapping translations of the S-weakly bad con-
figuration FS associated to FS(x, y), where each translation
along a vector (a, b) corresponds to a monomial kxa yb in
H(x, y). We shall find the polynomial K (x, y) by consid-
ering all the possible monomials kxa yb which remove one
or more multiple points in P without adding new multi-
ple points, until a resulting set is obtained with no multiple
points. Our method bases on Proposition 1, which we now
restate in a slightly modified version for a better understand-
ing.

To this, we can assume b ≥ 0 for all (a, b) ∈ S, so that
F+
S consists of the points

0, u1 + u2, u1 + u3, u1 + u4, u2 + u3,
u2 + u4, u3 + u4, u1 + u2 + u3 + u4,

(4)

and F−
S consists of

u1, u2, u3, u4,
u1 + u2 + u3, u1 + u2 + u4,
u1 + u3 + u4, u2 + u3 + u4,

(5)

where the points are not all necessarily distinct.
Note that the choice of S implies that FS has just a single

double point w = (1/2)(u1 + u2 + u3 + u4).
Moreover, if b < 0 for some (a, b) ∈ S, then F+

S and F−
S

consist of the previous sets of points translated by the vector
(0,−b), and the following arguments still hold with simple
modifications.

We also assume, for simplicity, that all the monomials
in H(x, y) have positive coefficients. Let MP denote the
set of multiple points of P , and let M+

P , M−
P be the sets of

multiple points with positive and negative signs, respectively.
Assume (c, d) ∈ MP , and denote by kP (c, d) itsmultiplicity.
Consider a vector (a, b) such that the following conditions
hold:

(A) If (c, d) ∈ M+
P (M−

P , respectively) then (a, b) =
(c, d) − (e, f ), for some (e, f ) ∈ F−

S (F+
S , respec-

tively),
(B) (a, b) /∈ (P+ − F+

S ) ∪ (P− − F−
S ),

(C) (a, b) + w ∈ P− if w ∈ F+
S , (a, b) + w ∈ P+ if

w ∈ F−
S .

Define

Q(x, y) = P(x, y) + xa ybFS(x, y)

= (H(x, y) + xa yb)FS(x, y)
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and denote by MQ the set of multiple points of Q. Then, by
Proposition 1, the weighted lattice configuration Q associ-
ated to the polynomial Q(x, y) is such that MQ ⊆ MP and
kQ(c, d) < kP (c, d), where kQ(c, d) denotes the multiplic-
ity of (c, d) in Q. Note that, in case kP (c, d) > 1, we might
have MQ = MP . However, what is really ensured is that
kQ(c, d) < kP (c, d), and no new multiple points appear in
MQ . Therefore, we can restate Proposition 1 as follows.

Proposition 3 Let S = {u1, u2, u3, u1 + u2 ± u3} be a set
of four lattice directions. Consider a polynomial P(x, y) =
H(x, y)FS(x, y), where H(x, y) consists of monomials with
positive coefficients.

Denote by Q the lattice points configuration associated to
Q(x, y) = (H(x, y) + xa yb)FS(x, y). If (c, d) ∈ MP and
(a, b) satisfies conditions (A), (B), (D), then MQ ⊆ MP and
kQ(c, d) < kP (c, d).

Proof See Proposition 1 with (i(h + 1), j (h + 1)) = (a, b),
P = F+

S , N = F−
S . ��

4.2 Geometric Discussion

For a better understanding of Proposition 3, we now present
a geometric interpretation of conditions (A), (B), (C). Let
(c, d) be a multiple point of P , for instance (c, d) ∈ M+

P
(if (c, d) ∈ M−

P we have analogous interpretations, with the
obvious changes).

– Condition (A) in Proposition 3 means that the transla-
tion of FS along the vector (a, b) moves, in particular, a
negative point of FS to (c, d), namely

(a, b) + n = (c, d) for some n ∈ F−
S . (6)

– Condition (C) means that such a translation must map
the double point w to a point of P having sign different
from that of w.

– Condition (B) means that the translation of any point of
F−
S along (a, b) does not overlap to a negative point of

P , as well as the translation of any point of F+
S along

(a, b) does not overlap to a positive point of P . We can
rephrase this condition as follows:

(a, b) + n′ /∈ P− for all n′ ∈ F−
S (7)

(a, b) + p′ /∈ P+ for all p′ ∈ F+
S . (8)

From (6) the vector (a, b) must be selected among the
pairs of the set

{(c, d) − n′, n′ ∈ F−
S }, (9)

so that the multiple point (c, d) is translated to a point of P
with different sign. Moreover, from (7) and (8), a selection
satisfying (9) is allowed if it does not belong to the set

(P− − F−
S ) ∪ (P+ − F+

S ). (10)

4.3 Reduction Procedure

We say that (a, b) allows the reduction of kP (c, d) if (a, b)
can be selected as in Proposition 3. For a given weighted
lattice set E , denote by E + (a, b) the set of weighted lattice
points obtained by translating the points in E by (a, b).

Proposition 4 Let (c, d) ∈ MP, and suppose that (a, b)
allows the reduction of kP (c, d). Let Q be the weighted lat-
tice configuration associated to the polynomial Q(x, y) =
P(x, y)+xa ybFS(x, y) = (H(x, y)+xa yb)FS(x, y). Then
we have

kQ(z) < kP (z) for each z ∈ P ∩ (FS + (a, b)). (11)

Proof Assume that (c, d) ∈ M+
P and (a, b) are selected as

in Proposition 3. Then (a, b) belongs to the set (9) and does
not belong to the set (10). By (9) there exists n ∈ F−

S such
that (a, b) + n = (c, d). Since (c, d) is a positive (multiple)
point, then there exist p ∈ F+

S , and a monomial xα yβ of
H(x, y), such that (c, d) = (α, β) + p. (We recall that all
the coefficients of the polynomial H(x, y) are assumed to be
positive).

Let us consider a point z ∈ P ∩ (FS + (a, b)). Then
z = (a, b) + x, where x ∈ FS . Assume first x = w. Since
(a, b) allows the reduction of kP (c, d), then Condition (C) in
Proposition 3 is satisfied. This implies that the monomials in
H(x, y)FS(x, y) and xa ybFS(x, y) corresponding to z have
different signs, so that (11) holds.

Assume now x �= w. Then we have

z = (a, b) + x = (c, d) − n + x = (α, β) + p − n + x.

Suppose that x ∈ F−
S . Since z ∈ P and (α, β) ∈ H , then

x + p − n ∈ FS . By (4) and (5), x + p − n ∈ F+
S , since

the points in F+
S (F−

S ) are obtained by adding an even (odd)
number of elements belonging to S. Thus, z = (α, β) + p−
n + x corresponds to a monomial in H(x, y)FS(x, y) with
positive coefficient, since all the monomials in H(x, y) are
supposed to have positive coefficients. Moreover, since z =
(a, b) + x with x ∈ F−

S , then it corresponds to a monomial
in xa ybFS(x, y) with a negative coefficient. Therefore, we
have kQ(z) < kP (z). This proves (11).

If x ∈ F+
S , then (4) and (5) imply x + p − n∈ F−

S . Then
we can argue as above to get (11) for each z∈ P ∩ (FS + (a,

b)). ��
Proposition 3 gives a sufficient condition to lower mul-

tiplicities and Proposition 4 shows that the pair (a, b) can
reduce simultaneously the multiplicity of several points in
MP . In general, however, it is possible that one choice is not
sufficient to reduce all the multiplicities. In this case, to get
a reduction of P(x, y) we have to guarantee that two distinct
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allowed choices (a, b) and (a′, b′) do not produce newmulti-
ple points, that is, points not contained inMP . On this regard,
we notice that condition (B), applied to (a, b) and (a′, b′),
respectively, implies that possible multiple points associated
to the polynomial P(x, y)+(xa yb+xa

′
yb

′
)FS(x, y) and not

contained in MP must come from (xa yb + xa
′
yb

′
)FS(x, y).

This happens when the translation of a point in F+
S (or F−

S )
by (a, b) and the translation of a point in F+

S (or F−
S ) by

(a′, b′) overlap to produce a multiple point not in MP . This
suggests the following definition.

Definition 3 Let (c, d), (c′, d ′) ∈ MP , and suppose that
(a, b), (a′, b′) allow the reduction of kP (c, d), kP (c′, d ′),
respectively. Then (a, b), (a′, b′) are said to be compatible
if (a, b)−(a′, b′) �= x − y, for all x, y ∈ F+

S \ {(c − a, d −
b), (c′−a′, d ′−b′)} and all x, y ∈ F−

S \{(c−a, d−b), (c′−
a′, d ′ − b′)}.

In the above definition we ignore the points (c−a, d−b),
(c′−a′, d ′−b′), as they provide multiple points in MP . Fur-
thermore, we say that a set of choices (a, b), which allows
the reduction of points in MP , is a set of compatible choices
if its elements are pairwise compatible.

We also note that in Proposition 3 we worked with the
extra condition that H(x, y), and all the progressively added
monomials have the same sign, say positive. This is moti-
vated by the applicative purpose of regarding the addition of
a binary ghost into real image data as a result of the combined
addition of two complex ghosts.

Differently, since H(x, y) = H+(x, y) + H−(x, y), we
could look for a solution H ′(x, y) related to the polynomial
H+(x, y)FS(x, y), and simply take K (x, y) = H ′(x, y) −
H−(x, y) to get a solution to Problem 1.

The following theorem gives the theoretical basis for
an algorithm that returns, if allowed, a binary ghost as an
output.

Theorem 2 Let S = {u1, u2, u3, u1 + u2 ± u3} be a set
of four lattice directions. Consider a polynomial P(x, y) =
H(x, y)FS(x, y), where H(x, y) consists of monomials with
positive coefficients. Suppose that for each (c, d) ∈ MP there
are kP (c, d)−1 choices of pairs (a, b), satisfying conditions
(A), (B), (C) and all such pairs (a, b) form a set of com-
patible choices. Let K (x, y) be the polynomial formed by
the monomials xa yb corresponding to all such pairs. Then
G(x, y) = (H(x, y) + K (x, y))FS(x, y) is a reduction of
P(x, y).

Proof We first show that for each pair of choices (a, b),
(a′, b′), which allow the reduction of kP (c, d), kP (c′, d ′)
respectively, the polynomial Q(x, y) = (H(x, y) + xa yb +
xa

′
yb

′
)FS(x, y) has no multiple points distinct from those

in P , i.e., we have MQ ⊆ MP . Since (a, b), (a′, b′) sat-
isfy the conditions (A), (B), and (C), the sets of multiple

points of the polynomials (H(x, y) + xa yb)FS(x, y) and
(H(x, y) + xa

′
yb

′
)FS(x, y) are contained in MP . Thus, we

have to show that the multiple points of the polynomial
(xa yb + xa

′
yb

′
)FS(x, y) are contained in MP . This fol-

lows from the assumption that (a, b), (a′, b′) are compati-
ble. Finally, if for each (c, d) ∈ MP there are kP (c, d) − 1
monomials xa yb in K (x, y), then the statement follows. ��

In general, solutions to Problem 1 are provided by select-
ing several different pairs (a, b) (which constitute the polyno-
mial K (x, y)) satisfying Proposition 2. Each allowed choice
reduces the multiplicity of at least one multiple point. There-
fore, if η is the number of choices, which reflects in the num-
ber of monomials of K (x, y), required to get a reduction, it
results

η ≤
∑

(c,d)∈MP

(kP (c, d) − 1) =
∑

(c,d)∈MP

kP (c, d) − |MP |,

(12)

where |MP | denotes the cardinality of MP .
We resume the previous results in the following algorithm.

Algorithm 3
1: Input: A set S of four lattice directions, and a polynomial

H(x, y) with positive coefficients.
2: Compute the polynomial P(x, y) = H(x, y)FS(x, y).
3: Let MP be the set ofmultiple points: For each (c, d) ∈ MP

select the pairs (a, b) satisfying conditions (A), (B), (C).
Let N (c, d) be the number of such pairs.

4: If N (c, d) < kP (c, d)−1, then return: NO REDUCTION
EXISTS.

5: Consider a polynomial K (x, y) formed by the monomials
corresponding to the selected pairs (a, b).

6: If for every allowed selection, pairs are non-compatible,
then return: NO REDUCTION EXISTS.

7: ELSE Compute the polynomial G(x, y) = (H(x, y) +
K (x, y))FS(x, y).

8: Output: Binary ghost corresponding to the S-bad config-
uration (G+,G−).

We implemented the algorithm in C programming lan-
guage. Steps from 1 to 5 run in polynomial time. Steps 6-7
require to check compatibility from every couple of selected
pairs, so that these steps can be expensive in terms of compu-
tational complexity. Therefore, we implemented this part by
means of a recursive function realizing a backtrack strategy
(as a deep-first search) which terminates as soon as a solu-
tion is found. In addition a branch and bound technique limits
the range of admissible solutions and speeds up the running
time. A systematic testing of the algorithm on real data will
be investigated and discussed in a future work. However, to
a better understanding of the algorithm we show many dif-
ferent case-studies.
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5 Case-Studies and Discussion

We now report and discuss on the application of Algorithm 3
to some selected examples. We usually work with the start-
ing set of directions S = {u1 = (1, 0), u2 = (1, 2), u3 =
(0, 1), u4 = (2, 1)}, where the case u1+u2−u3 = u4 occurs.
Different examples can be easily provided by changing the
input set S = {u1, u2, u3, u4} and the polynomial H(x, y).
In particular, if S is selected such that u4 �= u1 + u2 ± u3
then condition (C) is not necessary, since FS has no multiple
points (see Example 4).

5.1 Applications I: On the Feasible Solutions

Atfirst,we showacasewhere our procedure returns no reduc-
tion.

Example 2 Consider the polynomial H(x, y) = 1 + xy +
x2y2 + x4y3 + x2y3 + x + y, so that we have the following
polynomial P(x, y) = H(x, y)FS(x, y)

(1 + xy + x2y2 + x4y3 + x2y3 + x + y)

(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x8y7 − x8y6 − x7y7 + x7y6 − x7y5

+x7y4 + x6y7 − x6y6 + x6y5 − x6y4 − x5y7

+x5y6 + x5y4 − x5y3 − x4y6 + x4y5

−x4y3 + x4y + x3y6 − x3y5 − x3y4 + x3y3

−x2y4 + x2y3 + 2x2y2 − x2y − x2

+xy4 − xy2 − y2 + 1.

The only multiple pointm = (2, 2) can be obtained from
points in FS as follows:

m = (0, 0) + (2, 2)

translation of (2, 2) ∈ F+
S (double point)

by means of the monomial 1

m = (1, 1) + (1, 1) translation of (1, 1) ∈ F+
S

by means of the monomial xy

m = (2, 2) + (0, 0) translation of (0, 0) ∈ F+
S

by means of the monomial x2y2

m = (0, 1) + (2, 1) translation of (2, 1) ∈ F−
S

by means of the monomial y

m = (1, 0) + (1, 2) translation of (1, 2) ∈ F−
S

by means of the monomial x .

Note that no reduction is allowed. In fact, we can easily
see that, for each choice of n ∈ F−

S , the point (a, b) =
(2, 2)−n does not satisfy conditions (9) or (10) (or both), so
that its multiplicity cannot be reduced without adding new
multiplicities as asked in Problem 1.

Fig. 3 a A corrupted ghost. There are 4 different levels of corruption,
corresponding to the set of coefficients different from {−1, 0, 1} in the
associated polynomial representation. b A corresponding binary ghost

Now we give an example in which Algorithm 3 returns a
solution.

Example 3 Consider the polynomial H(x, y) = 1 + xy +
x2y2. We have

P(x, y) = H(x, y)FS(x, y)

= (1 + xy + x2y2)(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x6y6 − x6y5 − x5y6 + 2x5y5 − 2x5y4

+x5y3 − 2x4y5 + 4x4y4 − 3x4y3 + x4y2 + x3y5

− 3x3y4 + 4x3y3 − 3x3y2 + x3y + x2y4

− 3x2y3 + 4x2y2 − 2x2y + xy3

− 2xy2 + 2xy − x − y + 1.

The set of coefficients different from {−1, 0, 1} is {−3,−2,
2, 4}, which represents the levels of corruption of the binary
ghost. The related digital image is shown in Figure 3(a).

A complete reduction of P(x, y) is obtained just by three
choices, corresponding to the selected pairs (1, 2), (2, 1), and
(1, 0). This provides the following reduction:

G(x, y) = (H(x, y) + xy2 + x2y + x)FS(x, y)

= (1 + xy + x2y2 + xy2 + x2y + x)

(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x6y6 − x6y4 − x5y3 + x5y2

−x4y6 − x4y5 + x4y4 + x4y3 − x4y2

+x4y + x3y3 − x3y + x2y5 − x2y3

+x2y2 − x2 − xy2 + xy − y + 1.

Figure 3b shows the corresponding binary ghost image.
Let us explain the result. Note that

– the pair (1, 2) can be selected as in Proposition 3 for the
multiple positive pointsm2 = (2, 2),m3 = (3, 3),m4 =
(4, 4),m5 = (5, 5). The same pair (1, 2) can be selected
also for the multiple negative points m6 = (1, 2), m8 =
(2, 3), m10 = (3, 4), m11 = (4, 3), m12 = (4, 5),
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– the pair (2, 1) can be selected for the multiple posi-
tive points m2 = (2, 2), m3 = (3, 3), m4 = (4, 4),
m5 = (5, 5). The same pair (2, 1) can be selected also for
the multiple negative points m7 = (2, 1), m9 = (3, 2),
m10 = (3, 4), m11 = (4, 3), m13 = (5, 4),

– the pair (1, 0) can be selected for the multiple positive
points m1 = (1, 1), m2 = (2, 2), m3 = (3, 3), m4 =
(4, 4). The same pair (1, 0) can be selected also for the
multiple negative pointsm7 = (2, 1),m8 = (2, 3),m9 =
(3, 2), m10 = (3, 4), m11 = (4, 3), m13 = (5, 4).

Therefore, the points (2, 2), (3, 3), and (4, 4), havingmul-
tiplicity 4, are covered 3 times, the points (4, 3), (3, 4), (3, 2),
and (2, 3), having multiplicity 3, are covered 3 or 2 times,
and all the double points are covered 1 or 2 times. Conse-
quently (H(x, y) + xy2 + x2y + x)FS(x, y) represents the
corresponding reduced polynomial.

According to Proposition 4, the number of choices
required to get a reduction can be considerably less than the
upper bound provided by (12), since condition (11) often (but
not always, see Example 5) holds.Moreover, different reduc-
tions could be determined by Algorithm 3 for a same starting
polynomial, associated to different orders in the selections
of the allowed pairs. For instance, in Example 3, a further
possible reduction is given by

G ′(x, y) = (1 + xy + x2y2 + x2y + x + y)

(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x6y6 − x6y4 − x5y6 + x5y5 − x5y3

+x5y2 − x4y5 + x4y4 − x4y2

+x4y − x3y4 + x3y3 + x3y2 − x3y

+x2y2 − x2 + xy4 − xy2 − y2 + 1.

Example 4 Consider S = {u1 = (1, 1), u2 = (1, 2), u3 =
(1, 3), u4 = (1, 5)}, where no permutation of indices allows
u4 = u1 + u2 ± u3, so that FS has no multiple points. Also,
assume H(x, y) = xy + xy2 in the input of Algorithm 3, so
that

P(x, y) = H(x, y)FS(x, y)

= (xy+xy2)(xy−1)(xy2 − 1)(xy3 − 1)(xy5−1)

= x5y13 + x5y12 − x4y12 − 2x4y11

− 2x4y10 − x4y9

−x4y8 − x4y7 + x3y10 + 2x3y9

+ 2x3y8 + 2x3y7

+ 2x3y6 + 2x3y5 +x3y4−x2y7−x2y6−x2y5

− 2x2y4 − 2x2y3 − x2y2 + xy2 + xy.

A complete reduction can be obtained, for instance, just
adding K (x, y) = 1+ x2y4 to H(x, y). In fact, according to
Proposition 3, the pair (0, 0) can be selected for the multiple
points (2, 3), (2, 4), (3, 5), (3, 6), (3, 8), (3, 9), (4, 11), and
the pair (2, 4) can be selected for the multiple points (3, 5),
(3, 7), and (4, 10). The resulting binary ghost is as follows:

G(x, y) = (H(x, y) + 1 + x2y4)FS(x, y)

= (xy2 + xy + 1 + x2y4)

(xy − 1)(xy2 − 1)(xy3 − 1)(xy5 − 1)

= x6y15 − x5y14 − x5y10 − x4y10 + x3y8 + x3y7

+x3y5 + x3y4 + x2y8 − x2y3

−x2y2 − xy5 − xy3 + 1.

5.2 Applications II: On the Size of the Solutions

Now, we determine upper bounds for the degrees of any solu-
tion to Problem 1.

Theorem 4 Assume that G(x, y) is a reduction of P(x, y) =
H(x, y)FS(x, y). Then

degxG(x, y) ≤ degx P(x, y) + degx FS(x, y) (13)

and

degyG(x, y) ≤ degy P(x, y) + degy F(x, y). (14)

Proof Since G(x, y) is a reduction of P(x, y), then G(x, y)
= (H(x, y) + K (x, y))FS(x, y), where K (x, y) consists of
monomials xa yb with (a, b) = (c, d) − r, (c, d) ∈ MP , and
r ∈ FS (see condition (A)). Since (c, d) ∈ P , there exists
(α, β) ∈ H , such that (c, d) = q + (α, β), where q ∈ FS .
Therefore, (a, b) = (α, β) + q − r = (α, β) + d, where
d ∈ FS − FS . This implies

a ≤ α + degx FS(x, y)

b ≤ β + degy FS(x, y),

for all (a, b) such that xa yb is amonomial of K (x, y). There-
fore, we get

degx K (x, y)≤degx H(x, y)+degx FS(x, y)=degx P(x, y)

degyK (x, y)≤degy H(x, y)+degy FS(x, y)=degy P(x, y).

From this we get

degx K (x, y)+degx FS(x, y)≤degx P(x, y)+degx FS(x, y)

degyK (x, y)+degy FS(x, y)≤degy P(x, y)+degy FS(x, y).
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Since G(x, y) = (H(x, y) + K (x, y))FS(x, y) =
P(x, y) + K (x, y)FS(x, y), it results

degxG(x, y) = max{degx P(x, y), degx K (x, y)FS(x, y)}
= max{degx P(x, y), degx K (x, y)

+degx FS(x, y)}
degyG(x, y) = max{degy P(x, y), degyK (x, y)FS(x, y)}

= max{degy P(x, y), degyK (x, y)

+degy FS(x, y)},
and (13), (14) follow. ��
Remark 2 If all the monomials in H(x, y) have coefficient
1, then also the following lower bounds hold

degx P(x, y) ≤ degxG(x, y) (15)

and

degy P(x, y) ≤ degyG(x, y). (16)

If equality holds in (15) and (16), then the minimal
grid containing P also contains the S-bad configuration
(G+,G−) (see for instance Example 3). This means that
the maximal size of the sets which are uniquely determined
by the X-rays in the directions in S must be smaller than the
size of P .

In the reduction provided in the previous examples, the
lower bounds in (15) and (16) hold. However, this is not
always the case, as it is shown by the following example,
where we shall assume S = {u1 = (1, 0), u2 = (1, 2), u3 =
(0, 1), u4 = (2, 1)}, where the case u1 + u2 − u3 = u4
occurs.

Example 5 Assume, for instance, the polynomial P(x, y) =
(1 + x5)FS(x, y), so that

P(x, y) = (1 + x5)(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x9y4−x9y3−x8y4+x8y3−x8y2+x8y − x7y3

+ 2x7y2 −x7y+x6y3−x6y2+x6y − x6 − x5y

+x5+x4y4−x4y3−x3y4+x3y3−x3y2 + x3y

−x2y3 + 2x2y2 − x2y

+xy3 − xy2 + xy − x − y + 1.

We have two double points, both positive. A first choice is
(a, b) = (7, 2) − (3, 2) = (4, 0), which removes the double
point (c, d) = (7, 2), and it gives

(1 + x5 + x4)(x − 1)(y − 1)(x2y − 1)(xy2 − 1)

= x9y4−x9y3−x8y2+x8y−x7y4+x7y2+x6y2 − x6

+x5y3−x5y2+x4y4−x4y3−x4y+x4 − x3y4 + x3y3

Fig. 4 Perturbation of the original image by addition of a binary ghost

−x3y2 + x3y − x2y3 + 2x2y2 − x2y + xy3

−xy2 + xy − x − y + 1.

The multiplicity of the remaining double point (c, d) =
(2, 2) can be reduced by selecting (a, b) = (2, 2)− (2, 1) =
(0, 1). This provides the following reduction:

G(x, y) = (1 + x5 + x4 + y)(x − 1)

(y − 1)(x2y − 1)(xy2 − 1)

= x9y4 − x9y3 − x8y2 + x8y − x7y4 + x7y2

+x6y2 − x6 + x5y3 − x5y2 + x4y5 − x4y3

−x4y + x4 − x3y5 + x3y − x2y4 + x2y3

+x2y2 − x2y + xy4 − x − y2 + 1.

Note that degyG(x, y) = 5 > degy P(x, y), and the lower
bound in (16) does not hold. This example also shows that,
being η = 2, in general, the upper bound (12) on the required
number of choices needed to get a reduction cannot be low-
ered.

6 Conclusions

In this paper, a new algebraic approach to the construction of
minimal bad configurations has been introduced. We deter-
mined a general theoretical upper bound for the size of the
smallest bad configurations associated to a given set S of
lattice directions. We proved that in the special but inter-
esting case of four directions, the upper bound can be con-
siderably improved. Moreover, we provided an algorithm
for removing the multiplicities of a given input polyno-
mial of the form H(x, y)FS(x, y) computing a polynomial
(K (x, y)+H(x, y))FS(x, y)with coefficients in {−1, 0, 1}.
We illustrated our method bymeans of several examples, and
for different input polynomials we showed the correspond-
ing output. As a further remark, we point out that, in view of
Theorem 1, which is valid for any choice of S, Algorithm 3
could be extended to sets S of higher cardinality, even if a
deeper investigation seems to be required.
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As we showed that finding bad configurations (i.e., binary
ghosts) is equivalent to finding multiples of a suitable poly-
nomial in two variables having only coefficients from the
set {−1, 0, 1}, our procedure furnishes an explicit method
for the construction of ghosts from projection data, and con-
sequently could be of interest in image processing. Indeed,
adding binary ghosts causes the weakest perturbation of the
original image (see for instance Figure 4) and provides a
way to demonstrate, for example, if any algorithm produces
medical-relevant reconstructions as shown in [13].

Since the coupling between image structure and its pro-
jected versions is the key to exploit redundancy, we feel that
our new approachmight be of interest also in view of efficient
algorithms to encode data.
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