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Abstract. This paper studies the derivation of the nonlinear system of Schrödinger–Klein–
Gordon (S-KG) equations, coupled by a Yukawa-type interaction, from a microscopic quantum field
model of nonrelativistic particles interacting with a relativistic scalar field introduced by Edward
Nelson in the mid 1960s. In particular, we prove that the quantum states evolved by the microscopic
dynamics converge, in the classical limit, to their Wigner measures pushed forward by the S-KG
flow. To define the microscopic dynamics it is not sufficient to quantize the classical energy, since the
system requires a self-energy renormalization; it is therefore noteworthy, as well as one of the main
technical difficulties of the analysis, that the classical limit is not affected by such renormalization.
This last fact is proved with the aid of a classical dressing transformation.
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1. Introduction. Modern theoretical physics explains how matter interacts
with radiation and proposes phenomenological models of quantum field theory that in
principle describe such fundamental interaction. Giving firm mathematical founda-
tions to these models is known to be a difficult task related to renormalization theory
[21, 55, 72, 73, 81, 94]. Since the 1950s there have been spectacular advances in these
problems culminating with the perturbative renormalization of quantum electrody-
namics, the birth of the renormalization group method, and the renormalizability of
gauge field theories. Nevertheless, conceptual mathematical difficulties remain as well
as outstanding open problems; see [85, 103]. The purpose of the present article is
to study the quantum-classical correspondence for a simple renormalized model of
particles interacting with a scalar field: the Nelson model. We believe that the study
of the relationship between classical and quantum nonlinear field theories sheds light
on the mathematical foundation of renormalization theory. In particular, in the case
considered here the renormalization procedure turns out to be related to a normal
form implemented by nonlinear symplectic transformations on the classical phase-
space. The interested reader may find a formal discussion concerning the possibility
of a different point of view on renormalization in an extended version of this article
[6].

The so-called Nelson model is a system of quantum field theory that has been
widely studied from a mathematical standpoint; see, e.g., [1, 14, 15, 16, 17, 23, 43,
53, 58, 62, 63, 64, 96, 100, 110]. It consists of nonrelativistic spin zero particles
interacting with a scalar boson field and can be used to model various systems of
physical interest, such as nucleons interacting with a meson field. In the mid 1960s
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5032 ZIED AMMARI AND MARCO FALCONI

Edward Nelson rigorously constructed a quantum dynamics for this model free of
ultraviolet (high energy) cutoffs in the particle-field coupling; see [97]. This is done
by means of a renormalization procedure: roughly speaking, we need to subtract a
divergent quantity from the Hamiltonian so the latter can be defined as a self-adjoint
operator in the limit of the ultraviolet cutoff being removed. The quantum dynamics is
rather singular in this case (renormalization is necessary); and the resulting generator
has no explicit form as an operator, though it is unitarily equivalent to an explicit
one. Since the work of Gross [79] and Nelson [97] it has been believed, but never
proved, that the renormalized dynamics is generated by a canonical quantization of
the Schrödinger–Klein–Gordon (S-KG) system with Yukawa coupling. In other words,
the quantum fluctuations of the particle-field system are centered around the classical
trajectories of the S-KG system at a certain scale, and the renormalization procedure
preserves the suitable quantum-classical correspondence as well as being necessary to
define the quantum dynamics. We give a mathematical formulation of such a result
in Theorem 1.1 in the form of a Bohr correspondence principle. Consequently, our
result justifies in some sense the use of the S-KG system as a model of nucleon-meson
interaction; see, e.g., [18, 19, 40, 59, 70, 99].

Recently, the authors of this paper have studied the classical limit of the Nel-
son model in its regularized version [5, 51]. We have proved that the quantum
dynamic converges when an effective semiclassical parameter ε → 0, toward a non-
linear Hamiltonian flow on a classical phase space. This flow is governed by an
S-KG system with a regularized Yukawa-type coupling. To extend the classical-
quantum correspondence to the system without ultraviolet cutoff, we partially rely on
the recent techniques elaborated on in the mean-field approximation of many-body
Schrödinger dynamics in [9, 10, 11, 12], as well as on the result with cutoff [5]. As
a matter of fact, the renormalization procedure, implemented by a dressing trans-
form, generates a many-body Schrödinger dynamics in a mean-field scaling; see, e.g.,
[7, 20, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 47, 48, 49, 50, 75, 76, 77,
78, 83, 86, 87, 88, 90, 95, 101, 107, 108, 109] for an overview on rigorous derivations
of mean field dynamics for bosonic systems. So it has been convenient for us that the
mean-field approximation has already been derived with the same general techniques
that equally allow study of the classical approximation of quantum field theory mod-
els. The result is further discussed in subsection 1.2, and all the details and proofs
are provided in section 4.

For the sake of presentation, we collected the notation and basic definitions used
throughout the paper in the subsection 1.1 below. In subsection 1.2 we present our
main result on the classical-quantum correspondence principle. The rest of the paper
is organized as follows: in section 2 we review the basic properties of the quantum
system and the usual procedure of renormalization with some crucial uniform esti-
mates; in section 3 we analyze the classical S-KG dynamics and the classical dressing
transformation; in section 4 we study in detail the classical limit of the renormalized
Nelson model and prove our main theorem, Theorem 1.1.

1.1. Notation and general definitions.

* We fix once and for all ε̄,m0,M > 0. We also define the function ω(k) =√
k2 +m2

0.

* The effective (semiclassical) parameter will be denoted by ε ∈ (0, ε̄).

* Let Z be a Hilbert space; then we denote by Γs(Z) the symmetric Fock space
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5033

over Z. We have that

Γs(Z) =
∞⊕
n=0

Z⊗sn with Z⊗s0 = C ,

where Z⊗sn is the n-fold symmetrized tensor product.

* Let X be an operator on a Hilbert space Z. We will usually denote by
D(X) ⊂ Z its domain of definition and by Q(X) ⊂ Z the domain of definition
of the corresponding quadratic form.

* Let S : Z ⊇ D(S) → Z be a densely defined self-adjoint operator on Z. Its
second quantization dΓ(S) is the self-adjoint operator on Γs(Z) defined by

dΓ(S)|
D(S)⊗

alg
s n

= ε

n∑
k=1

1⊗ · · · ⊗ S︸︷︷︸
k

⊗ · · · ⊗ 1 ,

where D(S)⊗
alg
s n denotes the algebraic tensor product. In particular, the

operator dΓ(1) is the scaled number operator which we simply denote by N
without stressing the ε-dependence.

* We denote by C∞0 (N) the subspace of finite particle vectors:

C∞0 (N) = {Ψ ∈ Γs(Z) ; ∃n̄ ∈ N,Ψ
∣∣
Z⊗sn = 0 ∀n > n̄} .

* Let U be a unitary operator on Z. We define Γ(U) to be the unitary operator
on Γs(Z) given by

Γ(U)|Z⊗sn =
n⊗
k=1

U .

It then follows that for any one-parameter group U = eitS of unitary opera-
tors on Z, its second quantization satisfies the following identity: Γ(eitS) =
ei
t
εdΓ(S).

* On Γs(Z), we define the annihilation/creation operators a#(g), g ∈ Z, by
their action on f⊗n ∈ Z⊗sn (with a(g)f0 = 0 for any f0 ∈ Z⊗s0 = C):

a(g)f⊗n =
√
εn 〈g, f〉Z f⊗(n−1) ,

a∗(g)f⊗n =
√
ε(n+ 1) g ⊗s f⊗n .

They satisfy the canonical commutation relations (CCR), [a(f), a∗(g)] =
ε〈f, g〉Z .
If Z = L2(Rd), it is useful to introduce the operator valued distributions
a#(x) defined by

a(g) =
∫
Rd
ḡ(x)a(x)dx, a∗(g) =

∫
Rd
g(x)a∗(x)dx.

* H = Γs(L2(R3)⊕L2(R3)) ' Γs(L2(R3))⊗Γs(L2(R3)). We denote by ψ#(x)
and N1 the annihilation/creation and number operators corresponding to
the nucleons (conventionally taken to be the first Fock space) and by a#(k)
and N2 the annihilation/creation and number operators corresponding to the
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5034 ZIED AMMARI AND MARCO FALCONI

meson scalar field (second Fock space). In particular, we will always use the
following ε-dependent representation of the CCR if not specified otherwise:

[ψ(x), ψ∗(x′)] = εδ(x− x′), [a(k), a∗(k′)] = εδ(k − k′).

* We will sometimes use the following decomposition:

H =
∞⊕
n=0

Hn, with Hn =
(
L2(R3)

)⊗sn ⊗ Γs(L2(R3)) .

We denote by T (n) := T
∣∣
Hn

the restriction to Hn of any operator T on H.

* On H, the Segal field operator is given for ξ = ξ1 ⊕ ξ2 ∈ L2(R3)⊕L2(R3) by

R(ξ) =
(
ψ∗(ξ1) + ψ(ξ1) + a∗(ξ2) + a(ξ2)

)
/
√

2 ,

and therefore the Weyl operator becomes

W (ξ) = e
i√
2

(
ψ∗(ξ1)+ψ(ξ1)

)
e
i√
2

(
a∗(ξ2)+a(ξ2)

)
.

* Given a Hilbert space Z, we denote by L(Z) the C∗-algebra of bounded
operators; by K(Z) ⊂ L(Z) the C∗-algebra of compact operators; and by
L1(Z) ⊂ K(Z) the trace-class ideal.

* We denote classical Hamiltonian flows by boldface capital letters (e.g., E(·))
and their corresponding energy functional by script capital letters (e.g., E ).

* Let f ∈ S ′(Rd) be a tempered distribution. We denote by F(f)(k) its Fourier
transform

F(f)(k) =
1

(2π)d/2

∫
Rd
f(x)e−ik·xdx .

* We denote by C∞0 (Rd) the space of infinitely differentiable functions of com-
pact support. We denote by Hs(Rd) the nonhomogeneous Sobolev space

Hs(Rd) =
{
f ∈ S ′(Rd) ,

∫
Rd

(1 + |k|2)s|F(f)(k)|2dk < +∞
}

and denote its “Fourier transform” by

FHs(Rd) =
{
f ∈ S ′(Rd) , F−1f ∈ Hs(Rd)

}
.

* Let Z be a Hilbert space. We denote by P(Z) the set of Borel probability
measures on Z.

1.2. The classical limit of the renormalized Nelson model. The S-KG
equations with Yukawa-like coupling are a widely studied system of nonlinear PDEs
in three dimensions; see, e.g., [18, 19, 40, 59, 60, 61, 70, 99]. This system is usually
written as i∂tu = − ∆

2M
u+ V u+Au,

(�+m2
0)A = −|u|2,
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5035

where m0,M > 0 are real parameters and V is a nonnegative potential that is confin-
ing or equal to zero. For our purposes, it is more useful to rewrite it in an equivalent
form using the complex field α as a dynamical variable instead of (A, Ȧ) (see (47) of
section 3 for the details):

(S-KG)


i∂tu = − ∆

2M
u+ V u+A(α)u,

i∂tα = ωα+
1√
2ω
F
(
|u|2
)
,

where ω(k) =
√
k2 +m2

0, and

A(α)(t, x) = 1
(2π)

3
2

∫
R3

1√
2ω(k)

(
ᾱ(t, k)e−ik·x + α(t, k)eik·x

)
dk .

The aforementioned system of equations can be seen as a Hamiltonian system corre-
sponding to the following energy functional, densely defined on1 L2 ⊕ L2:

E (u, α) :=
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2

+ 1
(2π)3/2

∫
R6

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk .

With suitable assumptions on the external potential V , one proves the global existence
of the associated flow E(t). A more detailed discussion of global well-posedness can
be found in subsection 3.3, where sufficient conditions on V are given (assumption
(A-V)). In other words, there exist a Hilbert space D, densely embedded in L2 ⊕ L2,
such that E : R×D → D associates to a given point (u, α) on D, and to a given time
t, the solution at time t of the Cauchy problem associated S-KG equation (S-KG)
above with initial datum (u, α).

A question of significant interest, both mathematically and physically, is whether
it is possible to quantize the S-KG dynamics with Yukawa coupling as a consistent
theory that describes quantum-mechanically the particle-field interaction. As men-
tioned previously, Nelson rigorously constructed a self-adjoint operator satisfying in
some sense the above requirement [97]. Afterward the model was proved to satisfy
some of the main properties that are familiar in the axiomatic approach to quantum
fields; see [24]. Furthermore, asymptotic completeness was proved to be true in [4].
The problem of quantization of such infinite dimensional nonlinear dynamics is related
to constructive quantum field theory. The general framework is as follows.

Let Z be a complex Hilbert space with inner product 〈 · , · 〉. We define the
associated symplectic structure Σ(Z) as the pair {Y, B( · , · )} where Y is Z considered
as a real Hilbert space with inner product 〈 · , · 〉r = Re〈 · , · 〉, and B( · , · ) is the
symplectic form defined by B( · , · ) = Im〈 · , · 〉. Following [106], we define a (bosonic)
quantization of the structure Σ(Z) to be any linear map R(·) from Y to self-adjoint
operators on a complex Hilbert space such that

* the Weyl operator W (z) = eiR(z) is weakly continuous when restricted to any
finite dimensional subspace of Y;

* W (z1)W (z2) = e−
i
2B(z1,z2)W (z1 + z2) for any z1, z2 ∈ Y (Weyl’s relations).

1Sometimes the shorthand notation L2 ⊕L2 is used instead of L2(R3)⊕L2(R3) if no confusion
arises.
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5036 ZIED AMMARI AND MARCO FALCONI

When the dimension of Z is not finite, there are uncountably many irreducible unitar-
ily inequivalent Segal quantizations of Σ(Z) (or representations of Weyl’s relations).
A representation of particular relevance in physics is the so-called Fock representa-
tion [42, 54] on the symmetric Fock space Γs(Z). Once this representation is consid-
ered, there is a natural way to quantize polynomial functionals on Z into quadratic
forms on Γs(Z) according to the Wick or normal order (we briefly outline the essential
features of Wick quantization in subsection 4.3; the reader may refer to [9, 22, 44] for
a more detailed presentation).

Applying these rules, the formal quantization of the classical energy E yields a
quadratic form h on the Fock space Γs(L2 ⊕ L2) which plays the role of a quantum
energy. The difficulty now lies in the fact that the quadratic form h does not define
straightforwardly a dynamical system (i.e., h may not define a self-adjoint operator).
Nevertheless, according to the work of Nelson, it is possible to define a so-called
renormalized self-adjoint operator Hren associated in some specific sense to h. Let us
briefly outline how (the reader can find a detailed derivation in section 2). Since the
quadratic form h is ill-behaved for high momenta of the scalar field, it is customary to
introduce a (smooth) ultraviolet cutoff χσ that cuts all fields’ momenta of magnitude
bigger than σ ∈ R+ off the interaction. The resulting quadratic form hσ now takes
the form hσ( · , · ) = 〈 · , Hσ · 〉, where Hσ is the self-adjoint and bounded from below
operator on Γs(L2 ⊕ L2) defined by

Hσ = dΓ(− ∆
2M +V ) +dΓ(ω) + 1

(2π)3/2

∫
R3
ψ∗(x)

(
a∗
(
e−ik·x√

2ω
χσ
)

+a
(
e−ik·x√

2ω
χσ
))
ψ(x)dx.

In order to define the dynamics, one should find a way to let σ → ∞ and still
obtain a self-adjoint operator. This is done by means of a unitary transformation Uσ,
σ ≤ ∞, called dressing transformation (see subsection 2.1) and subtracting a divergent
constant from the Hamiltonian (energy renormalization). The action of the dressing
transformation on Hσ singles out both the “natural” domain of the Hamiltonian and
the divergent constant. In fact, define the operator Ĥσ = UσHσU

∗
σ − εN1Eσ, where

Eσ is the so-called particle’s self-energy that diverges as σ → ∞. The number ε > 0
is the semiclassical parameter, which will be introduced shortly, and which can be
seen as a constant in this quantum setting. The dressing Uσ and therefore Ĥσ depend
on the function (1 − χσ0), σ0 < σ arbitrary. Hence (1 − χσ0) acts as an effective
cutoff from below on the momenta. The possibility of choosing σ0 big enough plays
a crucial role in proving self-adjointness in the limit σ → ∞. How big σ0 should be
depends, however, on the number of nonrelativistic particles in a given state. Hence
it is useful to exploit the fact that Ĥσ (and also Hσ) commute with the particle’s
number operator N1, and could therefore be written

Ĥσ =
⊕
n∈N

Ĥ(n)
σ ,

where each Ĥ
(n)
σ is a self-adjoint operator on the n-particle sector Hn.

It can be proven (see Theorem 2.11), that for any n ∈ N there exists a σ0(n, ε)
big enough2 such that the quadratic form ĥ

(n)
σ , associated to Ĥ

(n)
σ , is closed and

bounded from below for any σ ≤ ∞ (in particular for σ = ∞) on the same dense
form domain D

(
(H(n)

0 )1/2
)
, and that Ĥ(n)

σ converges to Ĥ(n)
∞ in the norm resolvent

2Again the ε-dependence is not important for the present discussion, but we should keep track
of it since it plays a prominent role in the classical limit.
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sense as σ → ∞. The Hamiltonian Ĥ
(n)
∞ is the dressed renormalized Hamiltonian

with n fixed nonrelativistic particles. There are several possible ways to extend the
Hamiltonian, and the dynamics generated by it, to the whole Fock space H = Γs(L2⊕
L2). Motivated by the type of quantum states that we want to study in the classical
limit, we choose to define the dynamics as e−i

t
ε Ĥ

(n)
∞ only up to a maximal number of

nonrelativistic particles N, and for more particles we fix it to be trivial (i.e., generated
by zero). Such N is defined by inversion of the function n 7→ σ0(n, ε): for any σ0 ∈ R+,
there exists an N(ε, σ0) such that ĥ(n)

σ is closed and bounded from below for any
n ≤ N(ε, σ0). The renormalized dressed Hamiltonian Ĥren

ε is then defined as

Ĥren
ε

∣∣
Hn

=

{
Ĥ(n)
∞ if n ≤ N(ε, σ0),

0 if n > N(ε, σ0),

and it generates a nontrivial dynamics for any n-particle sector up to N(ε, σ0). The
undressed renormalized Hamiltonian is accordingly defined as

Hren
ε = U∗∞Ĥ

ren
ε (ε)U∞ .

The ε-dependence of the Hamiltonians has been emphasized for later convenience.
It should be apparent that the renormalization procedure above substantially

obscures the relationship between the classical and the quantum theory. In particular
it is unclear, even at the formal level, whether the quantum dynamics generated by
Hren
ε is still related to the original S-KG equation (S-KG) or not. Therefore, we

believe that it is mathematically interesting to study Bohr’s correspondence principle
in the renormalized Nelson model.

Bohr’s principle: “The quantum system should reproduce, in the
limit of large quantum numbers, the classical behavior.”

This principle may be reformulated as follows. We make the quantization proce-
dure dependent on the effective semiclassical parameter ε (already introduced above),
which would converge to zero in the limit. The physical interpretation is that ε
is a quantity of the same order of magnitude as the Planck constant, which be-
comes negligible when large energies and orbits are considered. In the Fock repre-
sentation, we introduce the ε-dependence in the annihilation and creation operator
valued distributions ψ#(x) and a#(k), whose commutation relations then become
[ψ(x), ψ∗(x′)] = εδ(x − x′) and [a(k), a∗(k′)] = εδ(k − k′). If in the limit ε → 0 the
quantum unitary dynamics converges toward the Hamiltonian flow generated by the
S-KG equation with Yukawa interaction, Bohr’s principle is satisfied.

If the phase space Z is finite dimensional, the quantum-classical correspondence
has been proved in the context of semiclassical or microlocal analysis, with the aid
of pseudodifferential calculus, Wigner measures, or coherent states; see, e.g., [2, 39,
41, 65, 66, 80, 82, 84, 91, 93, 104]. If Z is infinite dimensional, the situation is more
complicated, and there are fewer results for systems with an unconserved number
of particles [5, 9, 13, 56, 57, 67]. The approach we adopt here makes use of the
infinite dimensional Wigner measures introduced by [9, 10, 11, 12]. Note that Wigner
measures are related to phase-space analysis and are in general an effective tool for
the study of the classical limit. Let us consider a family of quantum states (%ε)ε∈(0,ε̄)
that are normal with respect to the Fock representation; i.e., each %ε is a positive and
trace class operator on the Fock space, with trace one. Given such a family, we say
that a Borel probability measure µ on Z is a Wigner measure associated to it if there

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5038 ZIED AMMARI AND MARCO FALCONI

exists a sequence (εk)k∈N ⊂ (0, ε̄) such that εk → 0 and3

(1) lim
k→∞

Tr[%εkW (ξ)] =
∫
Z
ei
√

2Re〈ξ,z〉Zdµ(z) ∀ξ ∈ Z .

We denote by M
(
%ε, ε ∈ (0, ε̄)

)
the set of Wigner measures associated to (%ε)ε∈(0,ε̄).

Let e−i
t
εH

ren
ε be the quantum dynamics on Γs(Z), Z = L2 ⊕ L2; then the time-

evolved quantum states can be written as (e−i
t
εH

ren
ε %εe

i tεH
ren
ε )ε∈(0,ε̄). Bohr’s principle

is satisfied if the Wigner measures of the time-evolved quantum states are exactly the
push-forward, by the classical flow E(t), of the initial Wigner measures at time t = 0;
i.e.,

(2) M
(
e−i

t
εH

ren
ε %εe

i tεH
ren
ε , ε ∈ (0, ε̄)

)
=
{

E(t)#µ , µ ∈M(%ε, ε ∈ (0, ε̄))
}
.

To ensure thatM
(
%ε, ε ∈ (0, ε̄)

)
is not empty, it is sufficient to assume that there

exist δ > 0 and C > 0 such that, for any ε ∈ (0, ε̄), Tr[%εNδ] < C, where N is the
number operator of the Fock space Γs(Z) with Z = L2 ⊕ L2. Actually, we make the
following more restrictive assumptions: Let (%ε)ε∈(0,ε̄) be a family of normal states
on Γs(L2(R3)⊕ L2(R3)); then

∃C > 0 , ∀ε ∈ (0, ε̄) , ∀k ∈ N , Tr[%εNk
1 ] ≤ Ck ,(A-n)

∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε(N + U∗∞H0U∞)] ≤ C ,(A-h)

where N1 is the nucleonic number operator, N = N1 + N2 is the total number op-
erator, H0 is the free Hamiltonian defined by (5), and U∞ is the unitary quantum
dressing defined in Lemma 2.3. Therefore, under these assumptions, the set of Wigner
measures associated to (%ε)ε∈(0,ε̄) is not empty, as proved in Lemma 4.12. As a matter
of fact, it could even be possible to remove assumption (A-n), but it has an important
role in connection with the parameter σ0 related to the renormalization procedure.
This condition restricts the considered states %ε to be at most with [C/ε] nucleons.

We are now in a position to state precisely our result: the Bohr’s correspondence
principle holds between the renormalized quantum dynamics of the Nelson model gen-
erated by Hren

ε and the S-KG classical flow generated by E . The operator Hren
ε is

constructed in subsection 2.3 according to Definition 2.14. The Hilbert space D of
global well-posedness for (S-KG) is, explicitly, D = Q(−∆ +V )⊕FH 1

2 (R3), with the
form domain endowed with the graph norm.

Theorem 1.1. Let E : R × D → D be the S-KG flow provided by Theorem 3.15
and solving the equation (S-KG) with a potential V satisfying assumption (A-V).
Let (%ε)ε∈(0,ε̄) be a family of normal states in Γs

(
L2(R3) ⊕ L2(R3)

)
that satisfies

assumptions (A-n) and (A-h). Then, the following hold:

(i) There exists a σ0 ∈ R+ such that the dynamics e−i
t
εH

ren
ε is nontrivial on the

states %ε.

(ii) M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø.

(iii) For any t ∈ R,

(3) M
(
e−i

t
εH

ren
ε %εe

i tεH
ren
ε , ε ∈ (0, ε̄)

)
=
{

E(t)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.

3W (ξ) is the εk-dependent Weyl operator explicitly defined by (65).
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Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0 and
M
(
%εk , k ∈ N

)
= {µ}; i.e., for any ξ ∈ L2 ⊕ L2,

lim
k→∞

Tr[%εkW (ξ)] =
∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ(z);

then for any t ∈ R, M
(
e
−i tεkH

ren
εk %εke

i tεk
Hren
εk , k ∈ N

)
= {E(t)#µ}; i.e., for any

ξ ∈ L2 ⊕ L2,

(4) lim
k→∞

Tr
[
e
−i tεkH

ren
εk %εke

i tεk
Hren
εk W (ξ)

]
=
∫
L2⊕L2

ei
√

2Re〈ξ,z〉d(E(t)#µ)(z) .

Remark 1.2.

* The choice of σ0 is related to our Definition 2.14 of the renormalized dynam-
ics and the localization of states (%ε)ε∈(0,ε̄) satisfying assumption (A-n) (see
Lemma 4.2). Actually, one can take any σ0 ≥ 2K(C + 1 + ε̄) where K > 0 is
a constant given in Theorem 2.11.

* We remark that every Wigner measure µ ∈M(%ε, ε ∈ (0, ε̄)), with (%ε)ε∈(0,ε̄)
satisfying assumption (A-h), is a Borel probability measure on D equipped
with its graph norm; hence the push-forward by means of the classical flow
E is well defined (see subsection 4.4).

* Adopting a shorthand notation, the last assertion of the above theorem can
be written as

%εk → µ⇔
(
∀t ∈ R , e

−i tεkH
ren
εk %εke

i tεk
Hren
εk → E(t)#µ

)
.

2. The quantum system: Nelson Hamiltonian. In this section we define the
quantum system of “nucleons” interacting with a meson field and briefly review the
standard renormalization procedure due to [97]. Since we are interested in the classical
limit and our original and dressed Hamiltonians depend on an effective parameter
ε ∈ (0, ε̄), it is necessary to check that several known estimates of the quantum
theory are uniform with respect to ε. This step is crucial and motivates this brief
revisitation of the Nelson renormalization procedure.

On H = Γs(L2(R3)) ⊗ Γs(L2(R3)) we define the following free Hamiltonian as
the positive self-adjoint operator given by

H0 =
∫
R3
ψ∗(x)

(
− ∆

2M + V (x)
)
ψ(x)dx+

∫
R3
a∗(k)ω(k)a(k)dk

= dΓ(− ∆
2M + V ) + dΓ(ω),

(5)

where M > 0, V ∈ L2
loc(R

3,R+), and ω(k) =
√
k2 +m2

0 , m0 > 0. We denote its
domain of self-adjointness by D(H0). We denote by dΓ the second quantization acting
either on the first or second Fock space, when no confusion arises.

Now let χ ∈ C∞0 (R3), 0 ≤ χ ≤ 1, and χ ≡ 1 if |k| ≤ 1, and χ ≡ 0 if |k| ≥ 2. Then,
for all σ > 0 define χσ(k) = χ(k/σ); it will play the role of an ultraviolet cutoff in the
interaction. The Nelson Hamiltonian with cutoff thus has the form

(6) Hσ = H0 + 1
(2π)3/2

∫
R3
ψ∗(x)

(
a∗
(
e−ik·x√

2ω
χσ
)

+ a
(
e−ik·x√

2ω
χσ
))
ψ(x)dx .

We will denote the interaction part by HI(σ) = Hσ −H0.
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5040 ZIED AMMARI AND MARCO FALCONI

Remark 2.1. There is no loss of generality in the choice of χ as a radial function;
see [4, Proposition 3.9].

The following proposition shows the self-adjointness of Hσ; see, e.g., [5, Proposi-
tion 2.5] or [52].

Proposition 2.2. For any σ > 0, Hσ is essentially self-adjoint on D(H0) ∩
C∞0 (N).

To obtain a meaningful limit when σ → ∞, we use a dressing transformation,
introduced in the physics literature by [74] following the work of van Hove [112, 113].
The dressing and the renormalization procedures are described in subsections 2.1
and 2.2, respectively. In subsection 2.3 we discuss a possible extension of the renor-
malized Hamiltonian on Hn to the whole Fock space H. The extension we choose is
not the only possible one; however, the choice is motivated by two facts: other exten-
sions should provide the same classical limit, and our choice Ĥren

ε is, in our opinion,
more consistent with the quantization procedure of the classical energy functional.

2.1. Dressing. The dressing transform was introduced as an alternative way of
doing renormalization in the Hamiltonian formalism and has been utilized in a rigorous
fashion in various situations; see, e.g., [68, 71, 81, 97]. For the Nelson Hamiltonian,
it consists of a unitary transformation that singles out the singular self-energy.

From now on, let 0 < σ0 < σ, with σ0 fixed. Then define

gσ(k) = − i

(2π)3/2

1√
2ω(k)

χσ(k)− χσ0(k)
k2

2M + ω(k)
,(7)

Eσ =
1

2(2π)3

∫
R3

1
ω(k)

(χσ − χσ0)2(k)
k2

2M + ω(k)
dk − 1

(2π)3

∫
R3

χσ(k)
ω(k)

(χσ − χσ0)(k)
k2

2M + ω(k)
dk .(8)

The dressing transformation is the unitary operator generated by (the dependence
on σ0 will be usually omitted)

(9) Tσ =
∫
R3
ψ∗(x)

(
a∗(gσe−ik·x) + a(gσe−ik·x)

)
ψ(x)dx .

The function gσ ∈ L2(R3) for all σ ≤ ∞; therefore, it is possible to prove the following
lemma, e.g., utilizing the criterion of [52].

Lemma 2.3. For any σ ≤ ∞, Tσ is essentially self-adjoint on C∞0 (N). We denote
by Uσ(θ) the corresponding one-parameter unitary group Uσ(θ) = e−i

θ
εTσ .

For the sake of brevity, we will write Uσ := Uσ(−1). We remark that Tσ and Hσ

preserve the number of “nucleons”; i.e., for any σ ≤ ∞, σ′ <∞,

(10) [Tσ, N1] = 0 = [Hσ′ , N1] .

The above operators also commute in the resolvent sense. We are now in a position
to define the dressed Hamiltonian

(11) Ĥσ := Uσ
(
Hσ − εN1Eσ

)
U∗σ .

The operator Ĥσ is self-adjoint for any σ < ∞, since Hσ and N1 are commuting
self-adjoint operators and Uσ is unitary. The purpose is to show that the quadratic
form associated with Ĥσ

∣∣
Hn

satisfies the hypotheses of the Kato–Lax–Milgram–Nelson
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theorem (KLMN theorem), even when σ = ∞, so it is possible to define uniquely a
self-adjoint operator Ĥ∞. In order to do that, we need to study in detail the form
associated with Ĥ

(n)
σ . For the sake of completeness, let us recall the aforementioned

KLMN theorem; see also [102, Theorem X.17].

Theorem 2.4 (KLMN). Let T0 be a positive self-adjoint operator on a Hilbert
space K and q0 : Q(T0)→ R+ be its associated quadratic form, defined on the dense
domain Q(T0) ⊂ K . Let q : Q(T0) → R be a symmetric quadratic form such that
there exist 0 ≤ a < 1 and b ∈ R+ such that

∀ψ ∈ Q(T0) , |q(ψ)| ≤ a q0(ψ) + b 〈ψ,ψ〉K .

Then there exist a unique self-adjoint operator T with domain D(T ) ⊂ Q(T0), asso-
ciated quadratic form qT , and form domain Q(T ) = Q(T0), such that

∀ψ ∈ Q(T0) , qT (ψ) = q0(ψ) + q(ψ) ,

T is bounded from below by −b, and any domain of essential self-adjointness of T0 is
a core for qT .

By (11), it follows immediately that

(12) Ĥ(n)
σ = εU (n)

σ

(
H

(n)
σ

ε
− (εn)Eσ

)
(U (n)

σ )∗ .

A suitable calculation yields (see, e.g., [4, 97, equations (15)–(20) of the second refer-
ence]

Ĥ(n)
σ = H(n)

σ0
+ ε2

∑
i<j

Vσ(xi − xj) +
ε

2M

n∑
j=1

((
a∗(rσe−ik·xj )2 + a(rσe−ik·xj )2

)

+ 2a∗(rσe−ik·xj )a(rσe−ik·xj )− 2
(
Dxja(rσe−ik·xj ) + a∗(rσe−ik·xj )Dxj

))
,

(13)

where Dxj = −i∇xj and
rσ(k) = −ikgσ(k) ,

(14) Vσ(x) = 2Re
∫
R3
ω(k)|gσ(k)|2e−ik·xdk − 4Im

∫
R3

ḡσ(k)
(2π)3/2

χσ(k)√
2ω(k)

e−ik·xdk .

It is also possible to write Ĥσ in its second quantized form as

Ĥσ = H0 + ĤI(σ) ,(15)

ĤI(σ) = HI(σ0) +
1
2

∫
R6
ψ∗(x)ψ∗(y)Vσ(x− y)ψ(x)ψ(y)dxdy

+ 1
2M

∫
R3
ψ∗(x)

((
a∗(rσe−ik·x)2 + a(rσe−ik·x)2

)
+ 2a∗(rσe−ik·x)a(rσe−ik·x)

−2
(
Dxa(rσe−ik·x) + a∗(rσe−ik·x)Dx

))
ψ(x)dx .

(16)
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Remark 2.5. The dressed interaction Hamiltonian ĤI(σ) contains a first term
analogous to the undressed interaction with cutoff, a second term of two-body inter-
action between nucleons, and a more singular term that can be only defined as a form
when σ =∞.

2.2. Renormalization. We will now define the renormalized self-adjoint oper-
ator Ĥ(n)

∞ . A simple calculation shows that Eσ → −∞ when σ → +∞; hence the
subtraction of the self-energy in the definition (11) of Ĥσ is necessary. It is actually
the only renormalization necessary for this system. We prove that the quadratic form
associated with Ĥ

(n)
σ of (13) has meaning for any σ ≤ ∞, and the KLMN theorem

can be applied, with a suitable choice of σ0, and bounds that are uniform with respect
to ε ∈ (0, ε̄). Let us start with some preparatory lemmas.

Lemma 2.6. For any 0 ≤ σ ≤ ∞, the symmetric function Vσ satisfies

(i) Vσ(1−∆)−1/2 ∈ L(L2(R3)),

(ii) (1−∆)−1/2Vσ(1−∆)−1/2 ∈ K(L2(R3)).

In particular, Vσ ∈ Ls(R3) ∩ L3,∞(R3) for any s ∈ [2,+∞[.

Proof. It is sufficient to show [12, Corollary D.6] that Vσ ∈ L3,∞(R3) (weak-Lp

spaces). Write Vσ = V
(1)
σ + V

(2)
σ ,

V (1)
σ (x) = 2Re

∫
R3
ω(k)|gσ(k)|2e−ik·xdk = 2(2π)3/2ReF

(
ω|gσ|2

)
(x) ,(17)

V (2)
σ (x) = −2

√
2Im

∫
R3

ḡσ(k)
(2π)3/2

χσ(k)√
ω(k)

e−ik·xdk = −2
√

2ImF
(
ḡσ
χσ√
ω

)
(x) .(18)

•
[
V

(1)
σ

]
. For any σ ≤ ∞, ω|gσ|2 ∈ Ls

′
(R3), 1 ≤ s′ ≤ 2. Then V

(1)
σ ∈ Ls(R3)

for any s ∈ [2,+∞]; furthermore, V (1)
σ ∈ C0(R3) (the space of continuous

functions converging to zero at infinity). Hence V (1)
σ ∈ L3,∞(R3).

•
[
V

(2)
σ

]
. For any σ ≤ ∞, ḡσ χσ√ω ∈ Ls

′
(R3), 1 < s′ ≤ 2. Therefore, V (2)

σ ∈
Ls(R3) for any s ∈ [2,+∞[. It remains to show that V (2)

σ ∈ L3,∞(R3).
Define f(k) ∈ L2(R3):

(19) f(k) :=
χσ(k)
ω(k)

(
χσ − χσ0

)
(k)

k2

2M + ω(k)
.

Then there is a constant c > 0 such that |V (2)
σ (x)| ≤ c|F(f)(x)|, where the

Fourier transform is intended to be on L2(R3). The function f is radial, so
we introduce the spherical coordinates (r, θ, φ) ≡ k ∈ R3, such that the z-axis
coincides with the vector x. We then obtain

lim
R→+∞

∫
B(0,R)

f(k)e−ik·xdk = lim
R→+∞

∫ R

0
dr

∫ π

0
dθ

∫ 2π

0
dφ r2f(r),

e−ir|x| cos θ sin θ = 2π lim
R→+∞

∫ R

0
dr

∫ 1

−1
dy r2f(r)e−ir|x|y

=
4π
|x|

lim
R→+∞

∫ R

0
f(r)r sin(r|x|)dr .
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Since for any σ ≤ +∞, f(r)r ∈ L1(R), we can take the limit R → +∞ and
conclude that

(20) F(f)(x) =
4π
|x|

∫ +∞

0
f(r)r sin(r|x|)dr .

Therefore, for any x ∈ R3 r {0}, there exists a 0 < c̃ ≤ 4πc‖f(r)r‖L1(R) such
that

(21) |V (2)
σ (x)| ≤ c̃

|x|
.

Let λ be the Lebesgue measure in R3. Since
{
x : |V (2)

σ | > t
}
⊂
{
x : c̃
|x| > t

}
,

there is a positive C such that

(22) λ
{
x : |V (2)

σ (x)| > t
}
≤ λ

{
x :

c̃

|x|
> t
}
≤ C

t3
.

Finally, (22) implies V (2)
σ ∈ L3,∞(R3).

Lemma 2.7. There exists c > 0 such that for any ε ∈ (0, ε̄), σ ≤ +∞,∥∥∥[(H0 + 1)−1/2Dxja(rσe−ik·xj )(H0 + 1)−1/2](n)
∥∥∥
L(Hn)

≤ c√
nε
‖ω−1/2rσ‖2 ,(23) ∥∥∥[(H0 + 1)−1/2a∗(rσe−ik·xj )Dxj (H0 + 1)−1/2](n)

∥∥∥
L(Hn)

≤ c√
nε
‖ω−1/2rσ‖2 .(24)

Moreover, (23) holds if we replace the left H0 by dΓ(− ∆
2M + V ) and the right H0 by

dΓ(ω), and similarly (24) holds if we replace the left H0 by dΓ(ω) and the right H0
by dΓ(− ∆

2M + V ).

Proof. Let Sn ≡ Sn⊗1 be the symmetrizer onHn (acting only on the {x1, . . . , xn}
variables) and Ψn ∈ Hn with n > 0. Then

〈Ψn, dΓ(−∆)Ψn〉 = 〈Ψn, (nε)Sn(Dx1)2 ⊗ 1n−1Ψn〉 = (nε)〈Ψn, (Dxj )
2Ψn〉 .

Hence (nε)‖DxjΨn‖2 ≤
∥∥(dΓ(−∆) + 1

)1/2Ψn

∥∥2. It follows that

(25)

∥∥∥[Dxj

(
dΓ(−∆) + 1

)−1/2](n)
∥∥∥
L(Hn)

≤ 1√
nε

,∥∥∥[(dΓ(−∆) + 1
)−1/2

Dxj

](n)
∥∥∥
L(Hn)

≤ 1√
nε

.

Using (25), we obtain for any Ψn ∈ Hn, with ‖Ψn‖ = 1,∥∥∥(H0 + 1)−1/2Dxja(rσe−ik·xj )(H0 + 1)−1/2Ψn

∥∥∥
≤ c√

nε

∥∥∥a(rσe−ik·xj )
(
dΓ(ω) + 1

)−1/2Ψn

∥∥∥
≤ c√

nε
‖ω−1/2rσ‖2 ,

where the last inequality follows from standard estimates on the Fock space; see [5,
Lemma 2.1]. The bound (24) is obtained by adjunction.
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5044 ZIED AMMARI AND MARCO FALCONI

Lemma 2.8. There exists c > 0 such that for any ε ∈ (0, ε̄), σ ≤ +∞,∥∥∥[(H0 + 1)−1/2a∗(rσe−ik·xj )a(rσe−ik·xj )(H0 + 1)−1/2](n)
∥∥∥
L(Hn)

≤ c‖ω−1/2rσ‖22 ,
(26)

∥∥∥[(H0 + 1)−1/2(a∗(rσe−ik·xj ))2(H0 + 1)−1/2](n)
∥∥∥
L(Hn)

≤ c‖ω−1/4rσ‖22 ,(27) ∥∥∥[(H0 + 1)−1/2(a(rσe−ik·xj )
)2(H0 + 1)−1/2](n)

∥∥∥
L(Hn)

≤ c‖ω−1/4rσ‖22 .(28)

The same bounds hold if H0 is replaced by dΓ(ω).

Proof. First, observe that, since m0 > 0, there exists c > 0 such that, uniformly
in ε ∈ (0, ε̄),∥∥∥(H0 + 1)−1/2(dΓ(ω) + 1

)1/2∥∥∥
L(H)

≤ c ,
∥∥∥(H0 + 1)−1/2(N2 + 1)1/2

∥∥∥
L(H)

≤ c .

Inequality (26) is easy to prove:∥∥∥[(H0 + 1)−1/2a∗(rσe−ik·xj )a(rσe−ik·xj )(H0 + 1)−1/2](n)
∥∥∥
L(Hn)

≤ c
∥∥∥[(dΓ(ω) + 1

)−1/2
a∗(rσe−ik·xj )

](n)
∥∥∥
L(Hn)

·
∥∥∥[a(rσe−ik·xj )

(
dΓ(ω) + 1

)−1/2](n)
∥∥∥
L(Hn)

≤ c‖ω−1/2rσ‖22 .

For the proof of (27) the reader may refer to [4, Lemma 3.3 (iv)]. Finally, (28) follows
from (27) by adjunction.

Lemma 2.9. There exists c(σ0) > 0 such that for any ε ∈ (0, ε̄) and λ ≥ 1,∥∥∥[(H0 + λ
)−1/2

HI(σ0)
(
H0 + λ

)−1/2](n)
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2(nε) ,(29) ∥∥∥[(H0 + λ
)−1/2

ε2
∑
i<j

Vσ(xi − xj)
(
H0 + λ

)−1/2](n)
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2
√
nε(1 + nε) .

(30)

Proof. The inequality (29) can be proved by a standard argument on the Fock
space; see, e.g., [51, Proposition IV.1].

To prove (30) we proceed as follows. First, by means of (i) of Lemma 2.6, we can
write ∥∥∥(−∆xi + λ

)−1/2
Vσ(xi − xj)

(
−∆xi + λ

)−1/2
∥∥∥
L(Hn)

≤ λ−1/2
∥∥∥Vσ(xi)

(
−∆xi + λ

)−1/2
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2 .

Therefore, Vσ(xi − xj) ≤ c(σ0)λ−1/2
(
−∆xi + λ

)
. Let Ψn ∈ Hn; using its symmetry
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5045

and some algebraic manipulations, we can write〈
Ψn, ε

2
∑
i<j

Vσ(xi − xj)Ψn

〉
≤ c(σ0)(nε)2〈Ψn,

(
λ−1/2(Dx1)2 + λ1/2)Ψn

〉
= c(σ0)

〈
Ψn, N1

(
λ−1/2dΓ(D2

x) + λ1/2N1
)
Ψn

〉
≤ c(σ0)λ−1/2

[∥∥∥N1/2
1

(
dΓ(D2

x) + λ
)1/2Ψn

∥∥∥2
+
∥∥∥N1

(
dΓ(D2

x) + λ
)1/2Ψn

∥∥∥2]
≤ c(σ0)λ−1/2〈Ψn,

(
N1 +N2

1
)(
dΓ(D2

x) + λ
)
Ψn

〉
,

where the constant c(σ0) is redefined in each inequality. The result follows since N1
commutes with dΓ(D2

x).

Combining Lemmas 2.7 to 2.9 together, we can prove easily the following propo-
sition.

Proposition 2.10. There exist c > 0 and c(σ0) > 0 such that for any ε ∈ (0, ε̄),
λ ≥ 1, σ0 < σ ≤ +∞, and for any Ψ ∈ D(N1),∥∥∥(H0 + λ

)−1/2
ĤI(σ)

(
H0 + λ

)−1/2Ψ
∥∥∥ ≤ [c(‖ω−1/2rσ‖22

+ ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2
)

+ c(σ0)λ−1/2
] ∥∥∥(N1 + 1)Ψ

∥∥∥ .(31)

Consider now ĤI(σ)(n). It follows easily from (31) above that for any σ0 < σ ≤
+∞ and Ψn ∈ D(H1/2

0 ) ∩Hn,∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ [c(nε+ 1)
(
‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
+c(σ0)(nε+ 1)λ−1/2

]〈
Ψn, H

(n)
0 Ψn

〉
+λ
[
c(nε+ 1)

(
‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
+c(σ0)(nε+ 1)λ−1/2

]〈
Ψn,Ψn〉 .

(32)

Consider now the term
(
‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
; by definition of rσ,

there exists c > 0 such that, uniformly in σ ≤ +∞,

(33) ‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2 ≤ c
(
σ−2

0 + σ−1
0

)
.

Hence for any σ0 ≥ 1 there exist K > 0 (K = 2c), c(σ0) > 0, and C(n, ε, λ, σ0) > 0
such that (32) becomes∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ [K(nε+1)
σ0

+ c(σ0)(nε+ 1)λ−1/2
]〈

Ψn, H
(n)
0 Ψn

〉
+C(n, ε, λ, σ0)

〈
Ψn,Ψn〉 .

(34)

Therefore, choosing

(35) σ0 > 2K(nε+ 1)

and then λ >
(
2c(σ0)(nε+1)

)2, we obtain the following bound for any Ψn ∈ D(H1/2
0 )∩

Hn, with a < 1, b > 0, and uniformly in σ0 < σ ≤ +∞:

(36)
∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ a〈Ψn, H
(n)
0 Ψn

〉
+ b
〈
Ψn,Ψn〉 .
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5046 ZIED AMMARI AND MARCO FALCONI

Applying the KLMN theorem, (36) proves the following result; see, e.g., [4, 97] for
additional details.

Theorem 2.11. There exists K > 0 such that, for any n ∈ N and ε ∈ (0, ε̄) the
following statements hold:

(i) For any
(
2K(nε + 1)

)
< σ0 < σ ≤ +∞, there exists a unique self-adjoint

operator Ĥ
(n)
σ with domain D̂

(n)
σ ⊂ D

(
(H(n)

0 )1/2
)
⊂ Hn associated to the

symmetric form ĥ
(n)
σ (·, ·), defined for any Ψ,Φ ∈ D

(
(H(n)

0 )1/2
)

as

(37) ĥ(n)
σ (Ψ,Φ) =

〈
Ψ, H(n)

0 Φ
〉
+
〈
Ψ, ĤI(σ)(n)Φ

〉
.

The operator Ĥ(n)
σ is bounded from below, with bound −bσ0(σ) (where |bσ0(σ)|

is a bounded increasing function of σ).

(ii) The following convergence holds in the norm topology of L(Hn):

(38) lim
σ→+∞

(z − Ĥ(n)
σ )−1 = (z − Ĥ(n)

∞ )−1 ∀ z ∈ CrR.

(iii) For any t ∈ R, the following convergence holds in the strong topology of
L(Hn):

(39) s− lim
σ→+∞

e−i
t
ε Ĥ

(n)
σ = e−i

t
ε Ĥ

(n)
∞ .

Remark 2.12. The operator Ĥ(n)
∞ can be decomposed only in the sense of forms,

i.e.,

(40) Ĥ(n)
∞ = H

(n)
0 u Ĥ

(n)
I (∞) ,

where u has to be intended as the form sum.

2.3. Extension of Ĥ(n)
∞ to H. We have defined the self-adjoint operator Ĥ(n)

∞
which depends on σ0 for each n ∈ N. Now we are interested in extending it to
the whole space H. This can be done in at least two different ways. However, we
choose the one that is more suitable for interpreting Ĥ∞ as the Wick quantization of
a classical symbol.

Let K be defined by Theorem 2.11. Then define N(ε, σ0) ∈ N by

(41) N(ε, σ0) =
[σ0 − 2K

2Kε
− 1
]
,

where the square brackets mean that we take the integer part if the number within is
positive, and zero otherwise.

Definition 2.13 (Ĥren
ε ). Let 0 ≤ σ0 < +∞ be fixed. Then we define Ĥren

ε on
H by

(42) Ĥren
ε

∣∣
Hn

=

{
Ĥ(n)
∞ if n ≤ N(ε, σ0),

0 if n > N(ε, σ0),

where N(ε, σ0) is defined by (41). We may also write Ĥren
ε = H0 u Ĥren

I as a sum of
quadratic forms.
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5047

The operator Ĥren
ε is self-adjoint on H, with a domain of self adjointness:

(43) D̂ren(ε, σ0) =
{

Ψ ∈ H , Ψ
∣∣
Hn
∈ D̂(n)

∞ for any n ≤ N(ε, σ0)
}
.

Acting with the dressing operator U∞ defined in Lemma 2.3 (with the same fixed σ0
as for Ĥren

ε ), we can also define the undressed extension Hren
ε .

Definition 2.14 (Hren
ε ). Let 0 ≤ σ0 < +∞ be fixed. Then we define the

following operator on H:

(44) Hren
ε = U∗∞ Ĥren

ε U∞ .

The operator Hren
ε is self-adjoint on H, with a domain of self adjointness:

(45) Dren(ε, σ0) =
{

Ψ ∈ H , Ψ
∣∣
Hn
∈ e− iεT

(n)
∞ D̂(n)

∞ for any n ≤ N(ε, σ0)
}
.

Remark 2.15. Let σ0 ≥ 0 be fixed. Then the Ĥσ given by (11) defines, in the
limit σ →∞, a symmetric quadratic form ĥ∞ on D(H1/2

0 ) ⊂ H. Also Ĥren
ε defines a

quadratic form ĥren
ε . We have4

(46) ĥ∞(1[0,N](N1) · , · ) = ĥren
ε (1[0,N](N1) · , · ) .

However, we are not able to prove that there is a self-adjoint operator on H associated
to ĥ∞, and it is possible that there is none.

3. The classical system: S-KG equations. In this section we define the
Schrödinger–Klein–Gordon (S-KG) system, with initial data in a suitable dense subset
of L2(R3)⊕L2(R3), that describes the classical dynamics of a particle-field interaction.
Then we introduce the classical dressing transformation (viewed itself as a dynamical
system) and then study the transformation it induces on the Hamiltonian functional.
Finally, we discuss the global existence of unique solutions of the classical equations,
both in their original and dressed forms.

The Yukawa coupling. The S-KG[Y] system (Schrödinger–Klein–Gordon with
Yukawa interaction), or undressed classical equations, is defined by

(S-KG[Y])

i∂tu = − ∆
2M

u+ V u+Au,

(�+m2
0)A = −|u|2,

where V : R3 → R is an external potential. The Klein–Gordon equation can be
rewritten as a system of two first-order equations with respect to time, considering A
and its time derivative Ȧ = ∂tA as independent variables. In our context, it is even
more useful to introduce the complex field α, defined by

A(x) = 1
(2π)

3
2

∫
R3

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
dk ,(47)

Ȧ(x) = − i

(2π)
3
2

∫
R3

√
ω(k)

2

(
α(k)eik·x − ᾱ(k)e−ik·x

)
dk .(48)

41[0,N](N1) is the orthogonal projector on
⊕N
n=0Hn.
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5048 ZIED AMMARI AND MARCO FALCONI

Then it is possible to rewrite (S-KG[Y]) as the equivalent system5

(S-KG)


i∂tu = − ∆

2M
u+ V u+Au,

i∂tα = ωα+
1√
2ω
F
(
|u|2
)
.

The “dressed” coupling. The system that arises from the dressed interaction
is quite complicated. We will denote it by S-KG[D], and it has the following form:6

(S-KG[D])

i∂tu = − ∆
2M

u+ V u+ (W ∗ |u|2)u+ [(ϕ ∗A) + (ξ ∗ ∂tA)]u

+
3∑
i=1

[(ρ(i) ∗A)∂(i) + (ζ(i) ∗A)2]u,

(�+m2
0)A = −ϕ ∗ |u|2 + i

3∑
i=1

ρ(i) ∗ [(u∂(i)u)−
√

2M(ζ(i) ∗ ∂tA)],

where V,W,ϕ : R3 → R with W,ϕ even; ξ : R3 → C, even; ρ : (R3)3 → C, odd; and
ζ : (R3)3 → R, odd. Obviously also (S-KG[D]) can be written as an equivalent system
with unknowns u and α (omitted here). As discussed in detail in subsection 3.3, with
a suitable choice of W , ϕ, ξ, ρ, and ζ the global well-posedness of (S-KG[D]) follows
directly from the global well-posedness of (S-KG[Y]).

3.1. Dressing. We look for a classical correspondent of the dressing transfor-
mation U∞(θ). Since U∞(θ) is a one-parameter group of unitary transformations on
H, the classical counterpart of its generator is expected to induce a nonlinear evolu-
tion on the phase-space L2(R3)⊕L2(R3), using the quantum-classical correspondence
principle for systems with infinite degrees of freedom; see, e.g., [9, 69, 82]. The re-
sulting “classical dressing” Dg∞(θ) plays a crucial role in proving our results: on one
hand it is necessary to link the S-KG classical dynamics with the quantum dressed
one; on the other it is at the heart of the “classical” renormalization procedure.

Let g ∈ L2(R3); define the functional Dg : L2(R3)⊕ L2(R3)→ R,

(49) Dg(u, α) :=
∫
R6

(
g(k)ᾱ(k)e−ik·x + ḡ(k)α(k)eik·x

)
|u(x)|2dxdk .

The functional Dg induces the following Hamiltonian equations of motion:

(50)

{
i∂θu = Agu,

i∂θα = gF (|u|2),

where

Ag(x) =
∫
R3

(
g(k)ᾱ(k)e−ik·x + ḡ(k)α(k)eik·x

)
dk ,(51)

F (|u|2)(k) =
∫
R3
e−ik·x|u(x)|2dx .(52)

5The two systems are equivalent since (1+ως)Reα ∈ L2(R3)⇔ A ∈ Hς+1/2(R3), (1+ως)Imα ∈
L2(R3)⇔ ∂tA ∈ Hς−1/2(R3). In (S-KG) the unknowns are u and α.

6We denote by ∂(i) the derivative with respect to the ith component of the variable x ∈ R3.
Analogously, we denote by v(i) the ith component of a 3-dimensional vector v.
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Observe that for any g ∈ L2(R3) and x ∈ R3, Ag(x) ∈ R. This will lead to an
explicit form for the solutions of the Cauchy problem related to (50). The latter can
be rewritten in integral form, for any θ ∈ R:

(53)


uθ(x) = u0(x) exp

{
−i
∫ θ

0
(Ag)τ (x) dτ

}
,

αθ(k) = α0(k)− ig(k)
∫ θ

0
F (|uτ |2)(k) dτ,

where (Ag)τ is defined by (51) with α replaced by ατ ; analogously we define Bg by
(51) with α replaced by β.

Lemma 3.1. Let s ≥ 0, s− 1
2 ≤ ς ≤ s + 1

2 ; (1 + ω
1
2 )g ∈ L2(R3). Also, let u, v ∈

Hs(R3) and (1 + ως)α, (1 + ως)β ∈ L2(R3). Then there exist constants Cs, Cς > 0
such that

‖(Ag −Bg)u‖Hs ≤ Cs max
w∈{u,v}

‖w‖Hs‖(1 + ω
1
2 )g‖2‖(1 + ως)(α− β)‖2 ,(54)

‖Ag(u− v)‖Hs ≤ Cs max
ζ∈{α,β}

‖(1 + ως)ζ‖2‖(1 + ω
1
2 )g‖2‖u− v‖Hs ,(55) ∥∥∥(1 + ως)g

∫
R3
e−ik·x

(
(u− v)v̄ + (ū− v̄)u

)
dx
∥∥∥

2
≤ Cς max

w∈{u,v}
‖w‖Hs

·‖(1 + ω
1
2 )g‖2‖u− v‖Hs .

(56)

Proof. If s ∈ N, the results follow by standard estimates, keeping in mind that
|k| ≤ ω(k) ≤ |k| + m0. The bounds for noninteger s are then obtained by interpola-
tion.

Proposition 3.2. Let θ ∈ R, (u0, α0) ∈ L2⊕L2. If (uθ, αθ) ∈ C0(R, L2⊕L2) is a
solution of (53), then it is unique; i.e., any (vθ, βθ) ∈ C0(R, L2⊕L2) that satisfies (53)
is such that (vθ, βθ) = (uθ, αθ).

Proof. We have

i

2
∂θ

(∥∥uθ − vθ∥∥2
2 +

∥∥αθ − βθ∥∥2
2

)
= Im

(〈
uθ − vθ,

(
(Ag)θ − (Bg)θ

)
uθ

+(Bg)θ
(
uθ − vθ

)〉
2

+
〈
αθ − βθ, g

∫
R3
e−ik·x

(
(uθ − vθ)v̄θ + (ūθ − v̄θ)uθ

)
dx
〉

2

)
.

The result hence is an application of the estimates of Lemma 3.1 with s = 0 and
Gronwall’s lemma.

Now that we are assured that the solution of (53) is unique, we can construct it
explicitly. Since Ag(x) is real, it follows that for any θ ∈ R, |uθ| = |u0|. Therefore,
F (|uθ|2) = F (|u0|2), and

αθ(k) = α0(k)− iθg(k)F (|u0|2)(k) .

Substituting this explicit form into the expression for uθ, we obtain the solution for
any (u0, α0) ≡ (u, α) ∈ L2(R3)⊕ L2(R3):

(57)

uθ(x) = u(x) exp
{
−iθAg(x) + iθ2Im

∫
R3
F (|u|2)(k)|g(k)|2eik·xdk

}
,

αθ(k) = α(k)− iθg(k)F (|u|2)(k).
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This system of equations defines a nonlinear symplectomorphism: the “classical dress-
ing map” on L2 ⊕ L2.

Definition 3.3. Let g ∈ L2(R3). Then Dg(·) : R ×
(
L2 ⊕ L2

)
→ L2 ⊕ L2 is

defined by (57) as
Dg(θ)(u, α) = (uθ, αθ) .

The map Dg(·) is the Hamiltonian flow generated by Dg.

Using the explicit form (57) and Lemma 3.1, it is straightforward to prove some
interesting properties of the classical dressing map. The results are formulated in the
following proposition, after the definition of useful classes of subspaces of L2 ⊕ L2.

Definition 3.4. Let s ≥ 0, s − 1
2 ≤ ς ≤ s + 1

2 . We define the spaces Hs(R3) ⊕
FHς(R3) ⊆ L2(R3)⊕ L2(R3):

Hs(R3)⊕FHς(R3) =
{

(u, α) ∈ L2(R3)⊕ L2(R3) , u ∈ Hs(R3)

and F−1(α) ∈ Hς(R3)
}
.

Proposition 3.5. Let s ≥ 0, s− 1
2 ≤ ς ≤ s+ 1

2 ; and g ∈ FH 1
2 (R3). Then

Dg : R×
(
Hs ⊕FHς

)
→ Hs ⊕FHς ;

i.e., the flow preserves the spaces Hs ⊕ FHς . Furthermore, it is a bijection with
inverse

(
Dg(θ)

)−1 = Dg(−θ). Hence the classical dressing is a Hamiltonian flow on
Hs ⊕FHς .

Corollary 3.6. Let s ≥ 0, s− 1
2 ≤ ς ≤ s+ 1

2 , θ ∈ R, and g ∈ FH 1
2 (R3). Then

there exist a constant C(g, θ) > 0 and a λ(s) ∈ N∗ such that for any (u, α) ∈ Hs⊕FHς

(58) ‖Dg(θ)(u, α)‖Hs⊕FHς ≤ C(g, θ)‖(u, α)‖λ(s)
Hs⊕FHς .

Using the positivity of both −∆ and V , and using Corollary 3.6, one also obtains
the following result.

Corollary 3.7. Let V ∈ L2
loc(R

d,R+); and let Q(−∆ + V ) ⊂ L2(R3) be the
form domain of −∆ + V . Then for any 1

2 ≤ ς ≤
3
2 and g ∈ FH 1

2 (R3)

Dg : R×
(
Q(−∆ + V )⊕FHς

)
→ Q(−∆ + V )⊕FHς .

3.2. Classical Hamiltonians. In this section we define the classical Hamilto-
nian functionals that generate the undressed and dressed dynamics on L2⊕L2. Then
we show that they are related by a suitable classical dressing: the quantum procedure
described in subsection 2.2 is reproduced, in simplified terms, on the classical level.

Definition 3.8 (E , Ê ). The undressed Hamiltonian (or energy) E is defined as
the following real functional on L2(R3)⊕ L2(R3):

E (u, α) : =
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2

+ 1
(2π)3/2

∫
R6

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk .
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We denote by E0 the free part of the classical energy, namely

E0(u, α) =
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2 .

Let χσ0 ∈ L∞(R3)∩FH−1/2(R3) such that χσ0(k) = χσ0(−k) for any k ∈ R3. Then
(again as a real functional on L2 ⊕ L2) the dressed Hamiltonian Ê is defined as7

Ê (u, α) : =
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2

+ 1
(2π)3/2

∫
R6

χσ0 (k)√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk

+ 1
2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x

+ r̄∞(l)α(l)eil·x
)
|u(x)|2dxdkdl

− 2
MRe

∫
R6
r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk

+ 1
2

∫
R6
V∞(x− y)|u(x)|2|u(y)|2dxdy .

Remark 3.9. We denote by D(E ) ⊂ L2⊕L2 the domain of definition of E and by
D(Ê ) ⊂ L2 ⊕ L2 the domain of definition of Ê . We have that D(E ) ⊃ C∞0 ⊕ C∞0 and
D(Ê ) ⊃ C∞0 ⊕ C∞0 . Therefore, both E and Ê are densely defined, and D(E ) ∩D(Ê )
is dense in L2 ⊕ L2.

We are interested in the action of E and Ê on H1 ⊕ FH 1
2 , since this emerges

naturally as the energy space of the system, at least when V = 0.

Lemma 3.10. Let θ ∈ R, g ∈ FH 1
2 (R3). Then for any u ∈ Q(V ) ∩H1(R3) and

α ∈ FH 1
2 (R3), Dg(θ)(u, α) ∈ D(E ).

Proof. Let u ∈ Q(V ) and α ∈ L2(R3). Then

〈uθ, V uθ〉2 = 〈u, V u〉2 ,

where uθ is as defined in (57), and it is the first component of Dg(θ)(u, α). Also, for
any (u, α) ∈ H1 ⊕FH 1

2 we have that∣∣∣∫
R6
|u(x)|2 1√

ω(k)
α(k)eik·xdxdk

∣∣∣
= C

∣∣∣∫
R3

1
|k|ω(k)

(
ω1/2α

)
(k)
(∫

R3

(
Dx|u(x)|2

)
eik·xdx

)
dk
∣∣∣

≤ 2C
∥∥∥ 1
|k|ω(k)

∥∥∥
2
‖ω1/2α‖2‖u‖2‖u‖H1 < +∞ .

The result then follows since Dg(θ) maps H1⊕FH 1
2 into itself by Proposition 3.5.

7We recall that g∞(k) = −i (2π)−3/2
√

2ω(k)

1−χσ0 (k)
k2
2M +ω(k)

; V∞(x) = 2Re
∫
R3 ω(k)|g∞(k)|2e−ik·xdk −

4Im
∫
R3

ḡ∞(k)
(2π)3/2

1√
2ω(k)

e−ik·xdk. Also, Dx = −i∇x; r∞(k) = −ikg∞(k).
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The functional E is independent of g∞, while Ê depends on it. In addition,
we know that g∞ has been fixed, at the quantum level, to renormalize the Nelson
Hamiltonian, and it is the function that appears in the generator of the dressing
transformation U∞. Hence, since we are establishing a correspondence between the
classical and quantum theories, we expect it to be the function that appears in the
classical dressing too. Two features of g∞ are very important in the classical setting:
the first is that g∞ ∈ FH

1
2 (R3) for any χσ0 ∈ L∞ ∩ FH− 1

2 ; the second is that it
is an even function, i.e., g∞(k) = g∞(−k) for any k ∈ R3. Using the first fact, one
shows that Dg∞(·) maps the energy space into itself (and that will be convenient when
discussing global solutions); using the second property we can simplify the explicit
form of Dg∞(·).

Lemma 3.11. Let θ ∈ R and g ∈ L2(R3). If g is an even or odd function, then
the map Dg(θ) defined by (57) becomes

(59) Dg(θ)(u(x), α(k)) =
(
u(x)e−iθAg(x) , α(k)− iθg(k)F (|u|2)(k)

)
.

Proof. Consider I(x) :=
∫
R3 F (|u|2)(k)|g(k)|2eik·xdk. We will show that Ī(x) =

I(x). We have that

Ī(x) =
∫
R6
|u(x′)|2|g(k)|2e−ik·(x−x

′)dx′dk =
∫
R6
|u(x′)|2|g(−k)|2eik·(x−x

′)dx′dk .

Now if g is either even or odd, |g(−k)| = |g(k)|. Hence Ī(x) = I(x); therefore,
ImI(x) = 0.

We conclude this section proving its main result: E and Ê are related by the
Dg∞(1) classical dressing.8

Proposition 3.12. For any u ∈ Q(V ) ∩ H1(R3), α ∈ FH 1
2 (R3), and for any

χσ0 ∈ L∞(R3) ∩ FH− 1
2 (R3),

(1) (u, α) ∈ D(E );

(2) (u, α) ∈ D(Ê );

(3) Ê (u, α) = E ◦Dg∞(1)(u, α).

Remark 3.13. Relation (3) of Proposition 3.12 actually holds for any (u, α) ∈
Dg∞(−1)D(E ).

Remark 3.14. The Wick quantization of E yields the quadratic form 〈 · , H(n)
∞ · 〉Hn ,

which is not closed and not bounded from below for any n ∈ N∗. On the other hand,
if χσ0 is the ultraviolet cutoff of section 2, then the Wick quantization of Ê yields
directly the renormalized quadratic form 〈 · , Ĥ(n)

∞ · 〉Hn that is closed and bounded
from below for any n ≤ N(ε, σ0).

Proof of Proposition 3.12. The statement (1) is just an application of Lemma 3.10
when θ = 0. If (3) holds formally, then (2) follows directly, since by Lemma 3.10 the
right-hand side of (3) is well defined. It remains to prove that the relation (3) holds
formally. This is done by means of a direct calculation, which we will briefly outline

8We recall again that g∞ = −i (2π)−3/2
√

2ω(k)

1−χσ0 (k)
k2
2M +ω(k)

.
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here.

E ◦Dg∞(1)(u, α) =
〈
ue−iAg∞ ,

Dx

2M
Dx

(
ue−iAg∞

)〉
2

+ 〈u, V u〉2 + 〈α, ωα〉2

+ 2Im〈α, ωg∞Fu〉2 + 1
(2π)3/2 2Re

∫
R6

1√
2ω(k)

ᾱ(k)e−ik·x|u(x)|2dxdk(a)

+ ‖ωg∞Fu‖22 + 1
(2π)3/2 2Im

∫
R6

1√
2ω(k)

g∞(k)Fu(k)eik·x|u(x)|2dxdk .(b)

After some manipulation, taking care of the ordering, the first term on the right-hand
side becomes〈
ue−iAg∞ ,

Dx

2M
Dxy

(
ue−iAg∞

)〉
2

=
〈
u,− ∆

2M
u
〉

2

+ 1
2M 〈Ar∞u,Ar∞u〉2(c)

− i〈u,A k2
2M g∞

u〉2(d)

− 1
M

〈
u,

∫
R3
dk
(
Dxr̄∞(k)α(k)eik·x + r∞(k)ᾱ(k)e−ik·xDx

)
u
〉

2
.(e)

The proof is concluded by making the following identifications (the other terms sum
to the free part):

(a) + (d) =
1

(2π)3/2

∫
R6

χσ0√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk ;

(b) =
1
2

∫
R6
V∞(x− y)|u(x)|2|u(y)|2dxdy ;

(c) =
1

2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x

+ r̄∞(l)α(l)eil·x
)
|u(x)|2dxdkdl ;

(e) = − 2
M

Re
∫
R6
r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk .

3.3. Global existence results. In this section we discuss uniqueness and global
existence of the classical dynamical system: using a well-known result on the undressed
dynamics, we prove uniqueness and existence also for the dressed system.

The Cauchy problem associated to E by the Hamilton equations is9 (S-KG). The-
orem 3.15 below is a straightforward extension of [40, 99] that includes a (confining)
potential on the nonlinear Schrödinger equation. As proved in [25, 98], the quadratic
potential is the maximum we can afford to still have Strichartz estimates and global
existence in the energy space. Therefore, we make the following standard assumption
on V :

V ∈ C∞(R3,R+) , and ∂αV ∈ L∞(R3) for any α ∈ N3 , with |α| ≥ 2 ;(A-V)

i.e., it is at most a quadratic positive confining potential.

9The Cauchy problem associated to Ê is equivalent to (S-KG[D]), setting W = V∞,

ϕ = (2π)−3/2F(χσ0 ), ξ = (2π)−3/2
√

2M

(
F( k

2
√
ω
g∞) − F(i k

2

ω
g∞)

)
, ρ =

√
2

M
F(
√
ωkg∞), and ζ =

i√
M
F( k√

ω
g∞).
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Theorem 3.15 (undressed global existence). Assume (A-V). Then there is a
unique Hamiltonian flow solving (S-KG):

(60) E : R×
(
Q(−∆ + V )⊕FH 1

2 (R3)
)
→ Q(−∆ + V )⊕FH 1

2 (R3) .

If V = 0, then there is a unique Hamiltonian flow

(61) E : R×
(
Hs(R3)⊕FHς(R3)

)
→ Hs(R3)⊕FHς(R3)

for any 0 ≤ s ≤ 1, s− 1
2 ≤ ς ≤ s+ 1

2 .

Theorem 3.16 (dressed global existence). Assume (A-V). Then for any χσ0 ∈
L∞(R3) ∩ FH− 1

2 (R3), there is a unique Hamiltonian flow:

(62) Ê : R×
(
Q(−∆ + V )⊕FH 1

2 (R3)
)
→ Q(−∆ + V )⊕FH 1

2 (R3) .

If V = 0, then there is a unique Hamiltonian flow

(63) Ê : R×
(
Hs(R3)⊕FHς(R3)

)
→ Hs(R3)⊕FHς(R3)

for any 0 ≤ s ≤ 1, s − 1
2 ≤ ς ≤ s + 1

2 . For any V that satisfies (A-V), the flows Ê
and E are related by

(64) Ê = Dg∞(−1) ◦E ◦Dg∞(1), E = Dg∞(1) ◦ Ê ◦Dg∞(−1).

Proof of Theorem 3.16. The theorem is a direct consequence of the global well-
posedness result of Theorem 3.15, the relation Ê = E ◦ Dg∞(1) proved in Proposi-
tion 3.12, and the regularity properties of the dressing proved in Proposition 3.5.

3.4. Symplectic character of Dχσ0
. To complete our description of the S-KG

system, we explicitly prove that the classical dressing is a (nonlinear) symplecto-
morphism for the real symplectic structure

{
(L2 ⊕ L2)R, Im〈 · , · 〉L2⊕L2

}
. We de-

note by dDg(θ)(u,α) ∈ L(L2 ⊕ L2) the (Fréchet) derivative of Dg(θ) at the point
(u, α) ∈ L2 ⊕ L2.

Proposition 3.17. Let g ∈ L2(R3) be an even or odd function. Then for any
θ ∈ R, Dg(θ) is differentiable at any point (u, α) ∈ L2(R3)⊕ L2(R3). In addition, it
satisfies for any (v1, β1), (v2, β2) ∈ L2(R3)⊕ L2(R3)

Im〈dDg(θ)(u,α)(v1, β1),dDg(θ)(u,α)(v2, β2)〉L2⊕L2 = Im〈(v1, β1), (v2, β2)〉L2⊕L2 .

Proof. We recall that with the assumptions on g, Dg(θ) has the explicit form

Dg(θ)(u(x), α(k)) =
(
u(x)e−iθAg(x) , α(k)− iθg(k)F (|u|2)(k)

)
,

where Ag and F are defined by (51) and (52), respectively. The Fréchet derivative of
Dg(θ) is easily computed and yields

dDg(θ)(u,α)(v(x), β(k)) =
( (
v(x)− iθBg(x)u(x)

)
e−iθAg(x) , β(k)

−2iθg(k)Re
(
F (ūv)(k)

) )
=
(

i(v, β) , ii(v, β)
)
,
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where we recall that Bg(x) is Ag(x) with α substituted by β. Then we have

Im〈i(v1, β1), i(v2, β2)〉L2 = Im〈v1, v2〉L2 + 2θRe
(
〈B(1)

g u, v2〉L2 − 〈v1, B
(2)
g u〉L2

)
,

Im〈ii(v1, β1), ii(v2, β2)〉L2 = Im〈β1, β2〉L2 + 2θRe
(
〈gReF (ūv1), β2〉L2

−〈β1, gReF (ūv2)〉L2

)
.

The result then follows, noting that 〈gReF (ūv1), β2〉L2 = 〈v1, B
(2)
g u〉L2 and

〈β1, gReF (ūv2)〉L2 = 〈B(1)
g u, v2〉L2 .

4. The classical limit of the renormalized Nelson model. In this section
we discuss in detail the classical limit of the renormalized Nelson model, both dressed
and undressed, and prove the main result Theorem 1.1. A schematic outline of the
proof is given in subsection 4.1 to improve readability. Subsections 4.2–4.6 are dedi-
cated to proving the convergence of the dressed dynamics. The obtained results are
summarized by Theorem 4.26. In subsection 4.7 we study the classical limit of the
dressing transformation. Finally, in subsection 4.8 we put all the pieces together to
prove Theorem 1.1.

4.1. Scheme of the proof. First, let us explain the main ideas behind our proof
of Theorem 1.1. Since the explicit form of Hren

ε is not known, it seems a very hard
task to directly study the limit of a time-evolved family of states e−i

t
εH

ren
ε %ε e

i tεH
ren
ε ,

at least using established techniques. The introduction of the classical dressing, and
the relation E = Dg∞(1)◦ Ê◦Dg∞(−1) (equation (64), proved in Theorem 3.16) play
therefore a crucial role. Once we combine them with the convergence of the quantum
dressing to the classical dressing “as a dynamical system” (see Proposition 4.25), we
can relate the undressed and dressed dynamics throughout the entire limit procedure.
The final ingredient is the convergence of a family of states %ε(t) = e−i

t
ε Ĥ

ren
ε %ε e

i tε Ĥ
ren
ε

evolved with the quantum dressed dynamics to the corresponding Wigner measure
Ê(t)#µ0 evolved with the classical dressed dynamics. Despite being technically de-
manding, the proof of the latter takes advantage of the explicit expression of the
quadratic form ĥren

ε (·, ·) = 〈 · , Ĥren
ε · 〉 associated to the dressed Hamiltonian. We

shall from time to time omit the explicit ε-dependence in the quantum operators to
avoid heavy notation. The lengthier part of the aforementioned proof is to control each
term that arises from the expansion of the quadratic form associated to [Ĥren

I ,W (ξ̃s)]:
it is necessary to prove that each associated classical symbol either is compact or can
be approximated with a compact one.

In light of the discussion above, the proof of Theorem 1.1 can be schematized
through the following steps.

(i) (Subsection 4.2.) Express the average of the Weyl operator W (ξ) with re-
spect to the dressed time-evolved state %̃ε(t) = ei

t
εH0 %ε(t) e−i

t
εH0 (in the

interaction picture) as the integral formula

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+
i

ε

∫ t

0
Tr
[
%ε(s)[Ĥren

I ,W (ξ̃s)]
]
ds.

(ii) (Subsection 4.3.) Characterize the quadratic form associated to [Ĥren
I ,W (ξ̃s)];

in particular, prove that the associated classical symbol can be approximated
with a compact symbol (Proposition 4.9).

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5056 ZIED AMMARI AND MARCO FALCONI

(iii) (Subsections 4.4 and 4.5.) Take the limit ε→ 0 in the integral formula of step
(i) (extracting a common subsequence for all times), thus obtaining a time-
dependent family (µ̃t)t∈R of Wigner measures characterized by a transport
equation

∂tµ̃t +∇T
(
V(t)µ̃t

)
= 0 .

(iv) (Subsection 4.6.) The transport equation of step (iii) is solved by
E0(−t)#Ê(t)#µ0. Prove that the family (µ̃t)t∈R can be uniquely identi-
fied with (E0(−t)#Ê(t)#µ0)t∈R provided that %ε(0) → µ0. This is achieved
by applying a general uniqueness result for probability measure solutions of
transport equations proved in [8].

(v) (Subsection 4.7.) Prove that the dressed state e−i
θ
εT∞ %ε e

i θεT∞ converges
when ε→ 0 to Dg∞(θ)#µ for any θ ∈ R, provided that %ε → µ.

(vi) (Subsection 4.8.) Combine the results together, and use the relation E =
Dg∞(1) ◦ Ê ◦Dg∞(−1) to prove that %ε → µ yields

e−i
t
εH

ren
ε %ε e

i tεH
ren
ε → E(t)#µ .

4.2. The integral formula for the dressed Hamiltonian. The results of this
subsection and the next are similar in spirit to those previously obtained in [5, section
3] for the Nelson model with cutoff and in [12, section 3] for the mean field problem.
However, some additional care has to be taken, for in this more singular situation the
manipulations below are allowed only in the sense of quadratic forms. We start with
a couple of preparatory lemmas. The proof of the first can be essentially obtained
following [5, Lemma 6.1]; the second is an equivalent reformulation of assumption
(A-n):

∃C > 0 , ∀ε ∈ (0, ε̄) , ∀k ∈ N , Tr[%εNk
1 ] ≤ Ck .

We recall that the Weyl operator W (ξ), L2 ⊕ L2 3 ξ = ξ1 ⊕ ξ2, is defined as

(65) W (ξ) = e
i√
2

(
ψ∗(ξ1)+ψ(ξ1)

)
e
i√
2

(
a∗(ξ2)+a(ξ2)

)
.

Lemma 4.1. For any ξ = ξ1 ⊕ ξ2 such that ξ1 ∈ Q(−∆ + V ) ⊂ H1 and ξ2 ∈
D(ω1/2) ≡ FH1/2, there exists C(ξ) > 0 that depends only on ‖ξ1‖H1 and ‖ξ2‖FH1/2 ,
such that for any ε ∈ (0, ε̄),

‖H1/2
0 W (ξ)Ψ‖ ≤ C(ξ)‖(H0 + ε̄)1/2Ψ‖ ∀Ψ ∈ Q(H0) ;

‖(H0 + 1)1/2(N1 + 1)1/2W (ξ)Ψ‖ ≤ C(ξ)‖(H0 + ε̄)1/2(N1 + ε̄)1/2Ψ‖
∀Ψ ∈ Q(H0) ∩Q(N1) .

In an analogous fashion, for any ξ ∈ L2 ⊕ L2, r > 0, there exists C(ξ) > 0 that
depends only on ‖ξ1‖2 and ‖ξ2‖2, such that for any ε ∈ (0, ε̄),

‖(N1 +N2)r/2W (ξ)Ψ‖ ≤ C(ξ)‖(N1 +N2 + ε̄)r/2Ψ‖ ∀Ψ ∈ Q(Nr
1 ) .

Lemma 4.2. Let (%ε)ε∈(0,ε̄) be a family of normal states on H. Then (%ε)ε∈(0,ε̄)
satisfies assumption (A-n) if and only if for any ε ∈ (0, ε̄) there exists a sequence
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5057

(Ψi(ε))i∈N of orthonormal vectors in H with nonzero components only in
⊕[C/ε]

n=0 Hn
and a sequence (λi(ε))i∈N ∈ l1, with each λi(ε) > 0, such that

%ε =
∑
i∈N

λi(ε)|Ψi(ε)〉〈Ψi(ε)| .

The explicit ε-dependence of Ψi and λi will be often omitted.

Proof. We start assuming (A-n). Let %ε =
∑
i∈N λi|Ψi〉〈Ψi| be the spectral de-

composition of %ε. Then

Tr
[
%εN

k
1
]

=
∑
i∈N

λi〈Ψi, N
k
1 Ψi〉 ≤ Ck ⇒

∑
i∈N

λi〈Ψi, (N1/C)kΨi〉 ≤ 1 .

Let 1[L,+∞)(N1) be the spectral projection of N1 on the interval [L,+∞), and choose
L > C. Then it follows that

1 ≥ Tr
[
%ε1[L,+∞)(N1)(N1/C)k

]
=
∑
i∈N

λi〈Ψi,1[L,+∞)(N1)(N1/C)kΨi〉

≥
∑
i∈N

λi(L/C)k〈Ψi,1[L,+∞)(N1)Ψi〉 .

Therefore, (L/C)k〈Ψi,1[L,+∞)(N1)Ψi〉 ≤ 1 for any k ∈ N and for any Ψi. Now
(L/C)k diverges when k → ∞, while 〈Ψi,1[L,+∞)(N1)Ψi〉 does not depend on k, so
their product is uniformly bounded if and only if 1[L,+∞)(N1)Ψi = 0 for any L > C.
The result follows immediately, recalling that the eigenvalues of N1 are of the form
εn1, with n1 ∈ N.

The converse statement, that assumption (A-n) follows if %ε =
∑
i∈N λi|Ψi〉〈Ψi|,

with each Ψi with at most [C/ε] particles, is trivial to prove.

In this subsection, we will consider only families of states (%ε)ε∈(0,ε̄) that satisfy
assumption (A-n) and the following assumption:

(A(h)’) ∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε(N1 +H0)] ≤ C .

Definition 4.3 (%ε(t), %̃ε(t)). We define the dressed time evolution of a state
%ε to be

%ε(t) = e−i
t
ε Ĥ

ren
%ε e

i tε Ĥ
ren

,

where the σ0 on which Ĥren depends is chosen such that the dynamics is nontrivial
on the whole subspace with at most [C/ε] nucleons (see Lemma 4.2 and the discussion
in subsection 1.2). We also define the dressed evolution in the interaction picture to
be

%̃ε(t) = ei
t
εH0 %ε(t) e−i

t
εH0 .

To characterize the evolved Wigner measures corresponding to %̃ε(t), it is sufficient
to study its Fourier transform; this is done by studying the evolution of Tr[%̃ε(t)W (ξ)]
by means of an integral equation.
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5058 ZIED AMMARI AND MARCO FALCONI

Proposition 4.4. Let (%ε)ε∈(0,ε̄) be a family of normal states on H satisfying
assumptions (A-n) and (A(h)’). Then for any t ∈ R, Q(−∆ + V ) ⊕D(ω1/2) 3 ξ =
ξ1 ⊕ ξ2,

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+
i

ε

∫ t

0
Tr
[
%ε(s)[Ĥren

I ,W (ξ̃s)]
]
ds ,(66)

where ξ̃s = eis(−∆+V )ξ1 ⊕ e−isωξ2. The commutator [Ĥren
I ,W (ξ̃s)] has to be intended

as a densely defined quadratic form with domain Q(H0), or equivalently as an operator
from Q(H0) to Q(H0)∗.

Proof. The family (%ε)ε∈(0,ε̄) satisfies assumption (A-n); therefore, by Lemma 4.2,

Tr
[
%̃ε(t)W (ξ)

]
=
∑
i∈N

λi〈ei
t
εH0e−i

t
ε Ĥ

ren
Ψi,W (ξ)ei

t
εH0e−i

t
ε Ĥ

ren
Ψi〉 .

By assumption (A(h)’), it follows that Ψi ∈ Q(H0) for any i ∈ N. Hence the right-
hand side is differentiable in t by Lemma 4.1, since Q(H0) is the form domain of both
H0 and Ĥren. Using the Duhamel formula and the fact that e−i

s
εH0W (ξ)ei

s
εH0 =

W (ξ̃s), we then obtain

Tr
[
%̃ε(t)W (ξ)

]
=
∑
i∈N

λi

(
〈Ψi,W (ξ)Ψi〉

+
i

ε

∫ t

0
〈e−i sε Ĥ

ren
Ψi, [Ĥren

I ,W (ξ̃s)]e−i
s
ε Ĥ

ren
Ψi〉ds

)
,

where [Ĥren
I ,W (ξ̃s)] makes sense as a quadratic form on Q(H0). The result is then

obtained using Lebesgue’s dominated convergence theorem on the right-hand side, by
virtue of Assumption (A(h)’) and Lemma 4.1.

4.3. The commutator [Ĥren
I ,W (ξ̃s)]. In this subsection we study the explicit

form of the commutator [Ĥren
I ,W (ξ̃s)]. The goal is to show that each of its terms

converges in the limit ε→ 0, either to zero or to a suitable phase space symbol.
For convenience, we recall some terminology related to quantization procedures

in infinite dimensional phase spaces (see [9] for additional information). Let Z be a
Hilbert space (the classical phase space). In the language of quantization, we call a
densely defined functional A : D ⊂ Z → C a (classical) symbol. We say that A is
a polynomial symbol if there are densely defined bilinear forms bp,q on Z⊗sp × Z⊗sq,
0 ≤ p ≤ p̄, 0 ≤ q ≤ q̄ (with p, p̄, q, q̄ ∈ N), such that

(67) A (z) =
∑

0≤p≤p̄
0≤q≤q̄

bp,q(z⊗p, z⊗q) .

The Wick quantized quadratic form (A )Wick on Γs(Z) is then obtained, roughly
speaking, by replacing each z(·) with the annihilation operator valued distribution
a(·) and each z̄(·) with the creation operator valued distribution a∗(·), and putting
all the a∗(·) to the left of the a(·). We denote, with a straightforward notation, the
class of all polynomial symbols on Z by

⊕alg
(p,q)∈N2 Qp,q(Z). If A : Z → C and

the bilinear forms bp,q(z⊗p, z⊗q) in (67) can all be written as 〈z⊗q, b̃p,qz⊗p〉Z⊗sq for
some bounded (resp., compact) operator b̃p,q : Z⊗sp → Z⊗sq, we say that A is
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5059

a bounded (resp., compact) polynomial symbol. We denote the class of all bounded
(resp., compact) polynomial symbols by

⊕alg
(p,q)∈N2 Pp,q(Z) (resp.,

⊕alg
(p,q)∈N2 P∞p,q(Z)).

We remark that E , Ê , and Dg defined in section 3 are all polynomial symbols10 on
L2 ⊕ L2.

Lemma 4.5. Let (%ε)ε∈(0,ε̄) satisfy the same assumptions as in Proposition 4.4.
Then there exist maps Bj(·) : Q(−∆ + V ) ⊕ D(ω1/2) →

⊕alg
(p,q)∈N2 Qp,q

(
L2 ⊕ L2

)
,

j = 0, . . . , 3, such that for any t ∈ R, ξ ∈ Q(−∆ + V )⊕D(ω1/2),

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+

3∑
j=0

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)

(
Bj(ξ̃s)

)Wick
]
ds

= Tr
[
%εW (ξ)

]
+

3∑
j=0

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds ,

(68)

where the
(
Bj(ξ̃s)

)Wick make sense as densely defined quadratic forms. To simplify

the notation, we have set Bj(·) :=
(
Bj(·)

)Wick.

Proof. We only sketch the proof here since it follows the same lines as in [5,
section 3.2] for the Nelson model with cutoff; see also [12, 89] for detailed accounts
of the general strategy. By (66), the only thing we have to prove is that, in the
sense of quadratic forms, i

ε [Ĥren
I ,W (ξ̃s)] =

∑3
j=0W (ξ̃s)Bj(ξ̃s). First, we remark that

Ĥren
I = ĤI(∞), defined by (16), is the Wick quantization of a polynomial symbol;11

i.e., Ĥren
I =

(
ÊI
)Wick, with

ÊI(u, α) = 1
(2π)3/2

∫
R6

χσ0√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk

+ 1
2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x

+ r̄∞(l)α(l)eil·x
)
|u(x)|2dxdkdl

− 2
MRe

∫
R6
r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk

+ 1
2

∫
R6
V∞(x− y)|u(x)|2|u(y)|2dxdy .

(69)

We also recall, according to [9, Proposition 2.10 for bounded polynomial symbols]
and [89, Proposition 2.1.30 for the general case], that essentially for any A ∈⊕alg

(p,q)∈N2 Qp,q(L2 ⊕ L2) the following formula is true, in the sense of forms, for any
suitably regular ξ ∈ L2 ⊕ L2:

(70) W ∗(ξ)
(
A
)Wick

W (ξ) =
(

A
(
·+ iε√

2
ξ
))Wick

.

10In L2(R3) ⊕ L2(R3), we adopt the notation z = (u, α); and to each u(x) corresponds the
operator valued distribution ψ(x), and to each α(k) the distribution a(k). The Wick quantization
is again obtained by substituting each

(
u#(x), α#(k)

)
with

(
ψ#(x), a#(k)

)
, and using the normal

ordering of creators to the left of annihilators.
11To be precise, we are considering here the quadratic form ĥren

I , defined and different from zero
on the whole space H, since it agrees with 〈 · , Ĥren

I · 〉 when restricted to vectors that belong to⊕
n≤[C/ε]Hn (this is the case by Lemma 4.2).
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5060 ZIED AMMARI AND MARCO FALCONI

Roughly speaking, the Weyl operators W (ξ) translate each creation/annihilation op-
erator by ∓ iε√

2
ξ. The result then follows immediately on the states %ε(s):

[Ĥren
I ,W (ξ̃s)] = W (ξ̃s)

(
W ∗(ξ̃s)Ĥren

I W (ξ̃s)−Ĥren
I

)
= W (ξ̃s)

(
ÊI(·+ iε√

2
ξ̃s)−ÊI(·)

)Wick

;

finally, we define
∑3
j=0 ε

jBj(ξ)(z) = i
ε (ÊI(z + iε√

2
ξ) − ÊI(z)) to factor out the ε-

dependence.

We state the next lemma without giving the tedious proof, which is based on the
same type of estimates given in subsection 2.2 for the full operator Ĥren

I .

Lemma 4.6. For any j = 0, 1, 2, 3, ξ ∈ Q(−∆ + V ) ∩D(ω1/2), and C > 0, there
exists Cj(ξ) > 0 such that for any Φ,Ψ ∈ D(H1/2

0 )∩D(N1), with Φ or Ψ in
⊕[C/ε]

n=0 Hn
and for any s ∈ R and ε ∈ (0, ε̄),

(71) |〈Φ, Bj(ξ̃s)Ψ〉| ≤ Cj(ξ)‖(N1 +H0 + ε̄)1/2Φ‖ · ‖(N1 +H0 + ε̄)1/2Ψ‖ .

Thanks to this lemma we are now in a position to prove that the higher order
terms in ε of (68) (namely those with j > 0) vanish in the limit ε→ 0.

Proposition 4.7. Let (%ε)ε∈(0,ε̄) satisfy assumptions (A-n) and (A(h)’); let ξ ∈
Q(−∆ + V ) ∩D(ω1/2). Then the following limit holds for any t ∈ R:

(72) lim
ε→0

3∑
j=1

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds = 0 .

Proof. By Lemma 4.2 we can write %ε =
∑
i λi|Ψi〉〈Ψi〉, where each Ψi has

nonzero components only in the subspace
⊕

n≤[C/ε]Hn, and each λi > 0. Assump-
tion (A(h)’) then translates to the fact that each Ψi is on the domain Q(H0)∩Q(N1),
and in addition

∑
i λi〈Ψi, (N1 + H0)Ψi〉 ≤ C, uniformly with respect to ε ∈ (0, ε̄).

Therefore, we can write

∣∣∣∣∣
3∑
j=1

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣
≤

3∑
j=1

εj
∑
i

λi

∫ t

0

∣∣∣∣〈W ∗(ξ̃s)e−i sε Ĥren
Ψi, Bj(ξ̃s)e−i

s
ε Ĥ

ren
Ψi〉
∣∣∣∣ds .

Using now Lemma 4.6 and then Lemma 4.1 and the fact that N1 commutes with Ĥren,

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5061

we obtain∣∣∣∣∣
3∑
j=1

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣
≤

3∑
j=1

εjCj(ξ)
∑
i

λi

∫ t

0
‖(N1 +H0 + ε̄)1/2W ∗(ξ̃s)e−i

s
ε Ĥ

ren
Ψi‖

· ‖(N1 +H0 + ε̄)1/2e−i
s
ε Ĥ

ren
Ψi‖ds

≤
3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

∫ t

0
〈e−i sε Ĥ

ren
Ψi, (N1 +H0 + ε̄)e−i

s
ε Ĥ

ren
Ψi〉ds

≤
3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

(
t〈Ψi, (N1 + ε̄)Ψi〉

+
∫ t

0
〈e−i sε Ĥ

ren
Ψi, H0e

−i sε Ĥ
ren

Ψi〉ds
)
.

Now we consider the term 〈e−i sε Ĥren
Ψi, H0e

−i sε Ĥ
ren

Ψi〉. First we write it as

〈e−i sε Ĥ
ren

Ψi, H0e
−i sε Ĥ

ren
Ψi〉 = 〈e−i sε Ĥ

ren
Ψi, (Ĥren − Ĥren

I )e−i
s
ε Ĥ

ren
Ψi〉

=
[C/ε]∑
n=0

〈
e−i

s
ε Ĥ

(n)
∞ Ψ(n)

i ,
(
Ĥ(n)
∞ − Ĥ(n)

I (∞)
)
e−i

s
ε Ĥ

(n)
∞ Ψ(n)

i

〉

=
[C/ε]∑
n=0

〈Ψ(n)
i , Ĥ(n)

∞ Ψ(n)
i 〉 − 〈e

−i sε Ĥ
(n)
∞ Ψ(n)

i , Ĥ
(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ(n)

i 〉

≤
[C/ε]∑
n=0

(∣∣∣〈Ψ(n)
i , Ĥ(n)

∞ Ψ(n)
i 〉

∣∣∣ +
∣∣∣〈e−i sε Ĥ(n)

∞ Ψ(n)
i , Ĥ

(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ(n)

i 〉
∣∣∣) .

(73)

The idea now is to use the bound of (36) on∣∣∣〈e−i sε Ĥ(n)
∞ Ψ(n)

i , Ĥ
(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ(n)

i 〉
∣∣∣ .

The crucial point is that since we have chosen σ0 such that the dynamics is nontrivial
for any n ≤ [C/ε], it follows that there exist an a < 1 and a b <∞ both independent
of ε and n such that the bound (36) holds for any n ≤ [C/ε]. Therefore, we obtain

〈e−i sε Ĥ
ren

Ψi, H0e
−i sε Ĥ

ren
Ψi〉 ≤ a〈e−i

s
ε Ĥ

ren
Ψi, H0e

−i sε Ĥ
ren

Ψi〉 + b〈Ψi,Ψi〉

+
[C/ε]∑
n=0

∣∣∣〈Ψ(n)
i , Ĥ(n)

∞ Ψ(n)
i 〉

∣∣∣ .(74)

Now, since a < 1, we may take it to the left-hand side and use again (36) on
|〈Ψ(n)

i , Ĥ
(n)
∞ Ψ(n)

i 〉|:

〈e−i sε Ĥ
ren

Ψi, H0e
−i sε Ĥ

ren
Ψi〉 ≤

1
1− a

〈Ψi, H0Ψi〉 +
2b

1− a
〈Ψi,Ψi〉 .(75)
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5062 ZIED AMMARI AND MARCO FALCONI

Finally, since the state is normalized (i.e.,
∑
i λi〈Ψi,Ψi〉 = 1), we conclude that∣∣∣∣∣

3∑
j=1

εj
∫ t

0
Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣
≤ t

3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

(
〈Ψi, N1Ψi〉 + 1

1−a 〈Ψi, H0Ψi〉 + ( 2b
1−a + ε̄)〈Ψi,Ψi〉

)

≤ t
3∑
j=1

εjC(ξ)Cj(ξ)
((

1 + 1
1−a

)∑
i

λi〈Ψi, (N1 +H0)Ψi〉 + 2b
1−a + ε̄

)

≤ t
3∑
j=1

εjC(ξ)Cj(ξ)
((

1 + 1
1−a

)
C + 2b

1−a + ε̄

)
.

The right-hand side has no implicit dependence on ε, so it converges to zero when
ε→ 0.

By the same argument used from (73) to (75) above, we can prove the following
useful lemma.

Lemma 4.8. If a family of states (%ε)ε∈(0,ε̄) satisfies assumptions (A-n) and
(A(h)’), then for any t ∈ R,

(
%ε(t)

)
ε∈(0,ε̄) and

(
%̃ε(t)

)
ε∈(0,ε̄) satisfy assumptions (A-n)

and (A(h)’). In particular, there exist a(C) < 1 and b(C) > 0 such that uniformly on
ε ∈ (0, ε̄)

Tr[%ε(t)Nk
1 ] ≤ Ck ∀k ∈ N ,(76)

Tr[%ε(t)(N1 +H0)] ≤ 1
1− a(C)

C +
2b(C)

1− a(C)
,(77)

and the same bounds hold for
(
%̃ε(t)

)
ε∈(0,ε̄).

It remains to study the limit of the B0(·)-term in (68). As already pointed out
in Lemma 4.5, we know that B0 is a Wick quantization. More precisely, there ex-
ists a densely defined map from the one-particle space to polynomial symbols in⊕

(p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3}Qp,q
(
L2⊕L2

)
. In order to apply the convergence results

of [9], we need to show that the symbol of B0 may be approximated by a compact
one, with an error that vanishes in the limit ε→ 0.

To improve readability, we will write B0(ξ) in a schematic fashion. The precise
structure of each term will be discussed and analyzed in the proof of the sequent
proposition. In addition, as seen in (16), the dressed interaction quadratic form
ĤI(∞) can be split into three terms: the first is just the interaction term HI(σ0) of
the Nelson model with cutoff (with σ replaced by σ0), whose classical limit has been
analyzed by the authors in [5]; the second is a “mean-field” term for the nucleons,
of the same type as the ones analyzed by Ammari and Nier in [12]; the last one
has a structure similar to the interaction part of the Pauli–Fierz model (see, e.g.,
[15, 16, 17, 111]) and thus will be called of “Pauli–Fierz type.” We will concentrate
on the analysis of the Pauli–Fierz type terms of B0, while for a precise treatment of
the others the reader may refer to [5, 12]. In order to highlight the different parts
of B0(ξ) = B0(ξ1, ξ2), we will use different styles of underlining to distinguish the
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Nelson, . . . . . . . . . . . .mean-field, and Pauli–Fierz type terms:

B0(ξ1, ξ2) =
(
B0(ξ1, ξ2)

)Wick = (a∗ + a)(ξ1ψ∗ − ξ̄1ψ) + Im(ξ2)ψ∗ψ

+ ξ̄1ψ
∗ψψ − ξ1ψ∗ψ∗ψ. . . . . . . . . . . . . . . . . . . .

+ (a∗a∗ + aa+ a∗a)(ξ1ψ∗ − ξ̄1ψ) + (ξ2a∗ − ξ̄2a)ψ∗ψ

+ (a∗Dx +Dxa)(ψ∗ξ1 − ξ̄1ψ) + ψ∗Dxξ2ψ − ψ∗ξ̄2Dxψ .

(78)

Proposition 4.9. There exists a family of maps (B(m)
0 )m∈N such that the fol-

lowing hold:
* For any m ∈ N

B
(m)
0 (·) : Q(−∆ + V )⊕D(ω3/4)→

⊕
(p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3}

P∞p,q
(
L2 ⊕L2).

* For any ξ ∈ Q(−∆ + V ) ⊕ D(ω3/4), there exists a sequence
(
C(m)(ξ)

)
m∈N

that depends only on ‖ξ‖
Q(−∆+V )⊕D(ω3/4) such that limm→∞ C(m) = 0, and

such that for any two vectors Φ,Ψ ∈ H ∩D(N1), and for any ε ∈ (0, ε̄),∣∣∣〈(H0 + 1)−1/2Φ,
(
B0(ξ)−B

(m)
0 (ξ)

)Wick(H0 + 1)−1/2Ψ
〉∣∣∣

≤ C(m)(ξ)
∥∥(N1 + ε̄)1/2Φ

∥∥ ∥∥(N1 + ε̄)1/2Ψ
∥∥ .(79)

Remark 4.10. Contrary to what it was previously assumed throughout section 4,
in this proposition we need additional regularity on ξ2, namely ξ2 ∈ D(ω3/4) ⊂
D(ω1/2). This will not be a problem in the following, since we will extend our results
to any ξ ∈ L2(R3) ⊕ L2(R3) by a density argument, and D(ω3/4) is still dense in
L2(R3).

Proof of Proposition 4.9. To prove the proposition, we need to analyze each term
of (78) and prove that either it has a compact symbol or it can be approximated by
one, in a way that (79) holds. The analysis for the Nelson terms has been carried out
in [5, Proposition 3.11 and Lemma 3.15]. In addition, using Lemma 2.6, we see that
V∞ satisfies the hypotheses of the mean field potentials in [12], and therefore (79)
holds also for the . . . . . . . . . . .mean-field terms; see in particular section 3.2 of [12]. For the sake
of completeness, we explicitly write the Nelson and mean field parts of (78):

(a∗+a)(ξ1ψ∗ − ξ̄1ψ)

= − 1√
2(2π)3/2

∫
R3

(
a∗
(
e−ik·x√

2ω
χσ0

)
+ a
(
e−ik·x√

2ω
χσ0

))(
ξ1(x)ψ∗(x)− ξ̄1(x)ψ(x)

)
dx ;

Im(ξ2)ψ∗ψ = − 1√
2(2π)3/2

∫
R6

(
χσ0 (k)√

2ω(k)

(
ξ2(k)eik·x − ξ̄2(k)e−ik·x

))
ψ∗(x)ψ(x)dxdk ;

ξ̄1ψ
∗ψψ. . . . . . . .−ξ1ψ

∗ψ∗ψ. . . . . . . . . . .

= 1√
2

∫
R6
V∞(x− y)

(
ξ̄1(y)ψ∗(x)ψ(x)ψ(y)− ξ1(y)ψ∗(x)ψ∗(y)ψ(x)

)
dxdy .
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5064 ZIED AMMARI AND MARCO FALCONI

It remains to study the terms of Pauli–Fierz type. This is done in six parts; in each
part we group terms that are either adjoint of each other or can be treated in a similar
fashion.

Part 1 (ξ̄1aaψ, ξ1a∗a∗ψ∗).

ξ̄1aaψ = − 1
2
√

2M

∫
R3

(
a
(
r∞e

−ik·x))2
ξ̄1(x)ψ(x)dx .

We recall that r∞ ∼ kg∞, where gσ is defined by (7) for any σ ≤ ∞. Let ξ̄1ααu be the
symbol12 associated to ξ̄1aaψ; i.e., ξ̄1aaψ = (ξ̄1ααu)Wick. Now, since r∞ /∈ L2(R3),
we cannot expect that ξ̄1ααu is defined for any u, α ∈ L2(R3) and therefore that it is
a compact symbol. We introduce the approximated symbol ξ̄1ααu(m) defined by

ξ̄1aaψ
(m) = (ξ̄1ααu(m))Wick = − 1

2
√

2M

∫
R3

(
a
(
rσme

−ik·x))2
ξ̄1(x)ψ(x)dx ,

with (σm)m∈N ⊂ R such that limm→∞ σm = ∞. First, we prove that (79) holds for
ξ̄1aaψ − ξ̄1aaψ(m):∣∣∣〈(H0 + 1)−1/2Φ, (ξ̄1aaψ − ξ̄1aaψ(m))(H0 + 1)−1/2Ψ

〉∣∣∣ ≤ 1
2
√

2M
‖ξ1‖2

∥∥(dΓ(ω) + 1)1/2

(H0 + 1)−1/2Φ
∥∥

· sup
x∈R3

∥∥(dΓ(ω) + 1)−1/2
(
a
(
(r∞ − rσm)e−ik·x

))2
(dΓ(ω) + 1)−1/2

·(dΓ(ω) + 1)1/2(H0 + 1)−1/2(N1 + ε)1/2Ψ
∥∥ .

We use (28) of Lemma 2.8 and the fact that (dΓ(ω) + 1)1/2(H0 + 1)−1/2 is bounded
with norm smaller than one to obtain∣∣∣〈(H0 + 1)−1/2Φ, (ξ̄1aaψ − ξ̄1aaψ(m))(H0 + 1)−1/2Ψ

〉∣∣∣
≤ c

2
√

2M
‖ξ1‖2‖ω−1/4(r∞ − rσm)‖22

∥∥Φ
∥∥ ∥∥(N1 + ε̄)1/2Ψ

∥∥
≤ C(m)(ξ1)

∥∥(N1 + ε̄)1/2Φ
∥∥ · ∥∥(N1 + ε̄)1/2Ψ

∥∥ ,
with C(m)(ξ1) = C(ε̄, ξ1)‖ω−1/4(r∞ − rσm)‖22 for some C(ε̄, ξ1) > 0. The sequence(
C(m)(ξ1)

)
m∈N converges to zero since by our choice of (σm)m∈N

lim
m→∞

‖ω−1/4(r∞ − rσm)‖22 = 0 .

It remains to show that ξ̄1ααu(m) is a compact symbol. Such a symbol can be written
as

ξ̄1ααu
(m) = − 1

2
√

2M

∫
R9
ξ̄1(x)r̄σm(k)r̄σm(k′)ei(k+k′)·xα(k)α(k′)u(x)dxdkdk′ .

Now we can define an operator b̃ααu :
(
L2⊕L2

)⊗s3 → C in the following way. Let the
maps π1, π2 : L2(R3) ⊕ L2(R3) → L2(R3) be the projections on the first and second

12We recall that for the Nelson model Z = L2(Rd) ⊕ L2(Rd); thus we denote the variable z by
u⊕ α.
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spaces, respectively. Then we define the operator b̃ααu as

b̃ααu : (u, α)⊗3 ∈
(
L2 ⊕ L2

)⊗s3
α(k)α(k′)u(x) ∈ L2(R9)

〈f, ααu〉L2(R9) ∈ C,

π2⊗π2⊗π1

where f(k, k′, x) = − 1
2
√

2M
ξ̄1(x)r̄σm(k)r̄σm(k′)ei(k+k′)·x ∈ L2(R9). Therefore, b̃ααu is

bounded and of finite rank and therefore compact. The proof for the corresponding
adjoint term

ξ1a
∗a∗ψ∗ = − 1

2
√

2M

∫
R3

(
a∗
(
r∞e

−ik·x))2
ξ1(x)ψ∗(x)dx

can be obtained directly from the above, using the following approximation with
compact symbol:

ξ1a
∗a∗ψ∗(m) = (ξ1ᾱᾱū(m))Wick = − 1

2
√

2M

∫
R3

(
a∗
(
rσme

−ik·x))2
ξ1(x)ψ∗(x)dx .

Part 2 (ξ1aaψ∗, ξ̄1a∗a∗ψ).

ξ1aaψ
∗ = − 1

2
√

2M

∫
R3

(
a
(
r∞e

−ik·x))2
ξ1(x)ψ∗(x)dx .

Again we approximate this term by

ξ1aaψ
∗(m) = (ξ1ααū(m))Wick = − 1

2
√

2M

∫
R3

(
a
(
rσme

−ik·x))2
ξ1(x)ψ∗(x)dx

as above. The proof that it satisfies (79) is perfectly analogous to the one for the
previous term. Therefore, we only prove that ξ1ααū(m) is a compact symbol. We
define an operator bααū :

(
L2 ⊕ L2

)⊗s2 → L2 ⊕ L2 by

b̃ααū : (u, α)⊗2 ∈
(
L2 ⊕ L2

)⊗s2
α(k)α(k′) ∈ L2(R6)

(∫
R6 f̄(k, k′, ·)α(k)α(k′)dkdk′ ⊕ 0

)
∈ L2 ⊕ L2,

π2⊗π2

c̃ααū

where f(k, k′, x) = − 1
2
√

2M
ξ1(x)rσm(k)rσm(k′)e−i(k+k′)·x. By definition, we have that

ξ1ααū
(m) = 〈(u, α), b̃ααū(u, α)⊗2〉L2⊕L2 .

It is easily seen that the operator c̃ααū is bounded. It is in fact compact:
let βj ⇀ β in L2(R6) be a weakly convergent (bounded) sequence such that
max

{(
supj‖βj‖L2(R6)

)
, ‖β‖L2(R6)

}
= X <∞; then∥∥c̃ααū(β − βj)

∥∥
L2⊕L2 =

∥∥〈f(k, k′, x), (β − βj)(k, k′)〉L2
k,k′ (R

6)

∥∥
L2
x(R3) −→j→∞ 0 ,
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5066 ZIED AMMARI AND MARCO FALCONI

by Lebesgue’s dominated convergence theorem, using the uniform bound∣∣∣〈f(k, k′, x), (β − βj)(k, k′)〉2L2
k,k′ (R

6)

∣∣∣ ≤‖f(k, k′, x)‖2L2
k,k′ (R

6)

(
‖β‖2L2(R6) + ‖βj‖2L2(R6)

)
≤ 2X

8M2 ‖rσm‖42|ξ1(x)|2 ∈ L1
x(R3) .

Therefore, since c̃ααū is compact and π2 ⊗ π2 is bounded, it follows that b̃ααū is
compact. Again, that implies the result holds also for the adjoint term

ξ̄1a
∗a∗ψ = − 1

2
√

2M

∫
R3

(
a∗
(
r∞e

−ik·x))2
ξ̄1(x)ψ(x)dx .

Part 3 (ξ̄1a∗aψ, ξ1a∗aψ∗).

ξ̄1a
∗aψ = − 1√

2M

∫
R3
a∗
(
r∞e

−ik·x)a(r∞e−ik·x)ξ̄1(x)ψ(x)dx ,

ξ1a
∗aψ∗ = − 1√

2M

∫
R3
a∗
(
r∞e

−ik·x)a(r∞e−ik·x)ξ1(x)ψ∗(x)dx .

The proof for this couple of terms goes on exactly like the previous one, i.e., approx-
imating r∞ with rσm and showing that the corresponding operator c̃ᾱαu is compact,
for it maps weakly convergent sequences into strongly convergent ones.

Part 4 (ξ̄2aψ∗ψ, ξ2a∗ψ∗ψ).

ξ̄2aψ
∗ψ = −

√
2i
M

∫
R6

Im
(
ξ2(k′)r̄∞(k′)eik

′·x)a(r∞e−ik·x)ψ∗(x)ψ(x)dxdk′ .

We approximate it by the symbol ξ̄2αūu(m) defined by

ξ̄2aψ
∗ψ(m) = (ξ̄2αūu(m))Wick

= −
√

2i
M

∫
R6
ψ∗(x)χm(Dx)Im

(
ξ2(k′)r̄∞(k′)eik

′·x)a(rσme−ik·x)ψ(x)dxdk′ ,

where χm is the smooth cutoff function defined at the beginning of section 2, while rσm
is the usual regularization of r∞ defined above. First we check that the approximation
satisfies (79). By the chain rule, two parts have to be checked:∣∣∣〈(H0 + 1)−1/2Φ,(ξ̄2aψ∗ψ − ξ̄2aψ∗ψ(m))(H0 + 1)−1/2Ψ

〉∣∣∣
≤
√

2(2π)3/2

M

(∣∣∣〈(H0 + 1)−1/2Φ,
∫
R3
dx ψ∗(x)

(
1− χm(Dx)

)
ImF−1(ξ2r̄∞)(x)a

(
r∞e

−ik·x)ψ(x)(H0 + 1)−1/2Ψ
〉∣∣∣

+
∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3
dx ψ∗(x)χm(Dx)

ImF−1(ξ2r̄∞)(x)a
(
(r∞ − rσm)e−ik·x

)
ψ(x)(H0 + 1)−1/2Ψ

〉∣∣∣) ;
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and we will consider them separately. For the first part we have∣∣∣〈(H0 + 1)−1/2Φ,
∫
R3
dx ψ∗(x)

(
1− χm(Dx)

)
ImF−1(ξ2r̄∞)(x)a

(
r∞e

−ik·x)
ψ(x)(H0 + 1)−1/2Ψ

〉∣∣∣
≤
∞∑
n=0

nε
∣∣∣〈(H(n)

0 + 1)−1/2Φn, (1− χm(Dx1))ImF−1(ξ2r̄∞)(x1)a
(
r∞e

−ik·x1
)

(H(n)
0 + 1)−1/2Ψn

〉
Hn

∣∣∣
≤
∞∑
n=0

nε
∥∥(1−D2

x)−1/2(1− χm(Dx)
)∥∥
L(L2(R3)) ·

∥∥F−1(ξ2r̄∞)
∥∥
∞∥∥ω−1/2r∞

∥∥
2 ·
∥∥(1−D2

x1
)1/2(H(n)

0 + 1)−1/2Φn
∥∥
Hn
·
∥∥dΓ(ω)1/2(H(n)

0 + 1)−1/2Ψn

∥∥
Hn

≤ (1 + ε̄)‖ξ2‖FH1/2 ·
∥∥ω−1/2r∞

∥∥2
2 ·
∥∥(1−D2

x)−1/2(1− χm(Dx)
)∥∥
L(L2(R3))

·
∥∥(N1 + ε̄)1/2Φ

∥∥ · ∥∥N1/2
1 Ψ

∥∥ ,
where in the last inequality we have utilized the following bound:

nε
∥∥(1−D2

x1
)1/2(H(n)

0 + 1)−1/2Φn
∥∥2
Hn

=
〈
Φn, (H

(n)
0 + 1)−1/2dΓ(1−∆)(H(n)

0 + 1)−1/2Φn
〉
Hn

≤
∥∥N1/2

1 Φn
∥∥
Hn

+
∥∥dΓ(−∆)1/2(H(n)

0 + 1)−1/2Φn
∥∥
Hn

≤ (1 + ε̄)
∥∥(N1 + ε̄)1/2Φn

∥∥
Hn

.

So the first part satisfies (79), since

lim
m→∞

∥∥(1−D2
x)−1/2(1− χm(Dx)

)∥∥
L(L2(R3)) = 0 .

A similar procedure for the second part yields∣∣∣〈(H0 + 1)−1/2Φ,
∫
R3
dx ψ∗(x)χm(Dx)ImF−1(ξ2r̄∞)(x)a

(
(r∞ − rσm)e−ik·x

)
ψ(x)(H0 + 1)−1/2Ψ

〉∣∣∣
≤ ‖ξ2‖FH1/2 ·

∥∥ω−1/2r∞
∥∥

2 ·
∥∥ω−1/2(r∞ − rσm)

∥∥
2

∥∥N1/2
1 Φ

∥∥ · ∥∥N1/2
1 Ψ

∥∥ ;

i.e., it satisfies (79) for limm→∞‖ω−1/2(r∞ − rσm)‖2 = 0. Now it remains to show
that ξ̄2αūu(m) is a compact symbol:

ξ̄2αūu
(m) = − (2π)3/2√2i

M

∫
R6
ū(x)χm(Dx)ImF−1(ξ2r̄∞)(x)r̄σm(k)eik·xα(k)u(x)dxdk .

As for the previous terms, we define an operator bαūu :
(
L2 ⊕ L2

)⊗s2 → L2 ⊕ L2 by

b̃αūu : (u, α)⊗2 ∈
(
L2 ⊕ L2

)⊗s2
α(k)u(x) ∈ L2(R6)

(
f ′(x,Dx)u(x)⊕ 0

)
∈ L2 ⊕ L2,

π2⊗π1

c̃αūu
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where f ′(x,Dx) = − (2π)3√2i
M χm(Dx)F−1

(
r̄σmα

)
(x)ImF−1

(
ξ2r̄∞

)
(x). We can easily

prove that f ′ : L2(R3) → L2(R3) is a compact operator. The cutoff function χm
belongs to L∞0 (R3) by hypothesis.13 Now both r̄σmα and ξ2r̄∞ belong to L1(R3), since
rσm , α, ω

1/2ξ2, ω
−1/2r∞ ∈ L2(R3). Therefore, F−1

(
r̄σmα

)
ImF−1

(
ξ2r̄∞

)
∈ L∞0 (R3);

hence f ′(x,Dx) ∈ K(L2(R3)). It immediately follows that b̃αūu is compact, and the
proof is complete. As usual, this result implies the one for the adjoint term

ξ2a
∗ψ∗ψ = −

√
2i
M

∫
R6

Im
(
ξ2(k′)r̄∞(k′)eik

′·x)a∗(r∞e−ik·x)ψ∗(x)ψ(x)dxdk′ .

Part 5 (Dxaξ̄1ψ, a∗Dxψ
∗ξ1, Dxaψ

∗ξ1, a∗Dxξ̄1ψ).

Dxaξ̄1ψ = 1√
2M

∫
R3
ξ̄1(x)Dxa

(
r∞e

−ik·x)ψ(x)dx .

The approximated symbol Dxaξ̄1ψ
(m) is given by

Dxaξ̄1ψ
(m) = 1√

2M

∫
R3
ξ̄1(x)Dxa

(
rσme

−ik·x)ψ(x)dx .

First we prove that (79) is satisfied. Given Φ ∈ H, we denote by Φn,p its restriction
to the subspace Hn,p = (L2(R3))⊗sn ⊗ (L2(R3))⊗sp with n nucleons and p mesons.
We also denote by Xn = {x1, . . . , xn} a set of variables, and dXn = dx1, . . . , dxn
the corresponding Lebesgue measure (and analogously for Kp, dKp). The proof is
obtained by a direct calculation on the Fock space as follows:∣∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3
ξ̄1(x)Dxa

(
(r∞ − rσm)e−ik·x

)
ψ(x)dx(H0 + 1)−1/2Ψ

〉∣∣∣∣
=
∣∣∣∣ ∞∑
n,p=0

ε
√

(n+ 1)(p+ 1)
∫
R(n+p+2)d

(
(H0 + 1)−1/2Φ

)
n,p

(Xn;Kp)

ξ̄1(x)Dx(r̄∞ − r̄σm)(k)eik·x
(

(H0 + 1)−1/2Ψ
)
n+1,p+1

(x,Xn; k,Kp)dxdXndkdKp

∣∣∣∣
≤

∞∑
n,p=0

√
ε(n+ 1)

∣∣∣∣∫
R(n+p+2)d

(
(H0 + 1)−1/2Φ

)
n,p

(Xn;Kp)Dxξ1(x) r∞−rσm√
ω

(k)

eik·x
√
ε(p+ 1)ω(k)

(
(H0 + 1)−1/2Ψ

)
n+1,p+1

(x,Xn; k,Kp)dxdXndkdKp

∣∣∣∣
≤

∞∑
n,p=0

√
ε(n+ 1)

∥∥(−∆ + V )1/2ξ1
∥∥

2 ·
∥∥ω−1/2(r∞ − rσm)

∥∥
2 ·
∥∥(H0 + 1)−1/2Φn,p

∥∥
Hn,p

·
∥∥eik·x√ε(p+ 1)ω(k1)(H0 + 1)−1/2Ψn+1,p+1(Xn+1;Kp+1)

∥∥
Hn+1,p+1

≤
∥∥(−∆ + V )1/2ξ1

∥∥
2 ·
∥∥ω−1/2(r∞ − rσm)

∥∥
2 ·
∥∥(N1 + ε̄)1/2Φ

∥∥ · ∥∥Ψ
∥∥ ,

where in the last bound we have used Schwarz’s inequality and the fact that pω(k1) ≡∑p
j=1 ω(kj) when acting on vectors of Hn,p. Now, since limm→∞

∥∥ω−1/2(r∞ −
rσm)

∥∥
2 = 0, (79) holds with C(m)(ξ1) = 1√

2M

∥∥(−∆+V )1/2ξ1
∥∥

2 ·
∥∥ω−1/2(r∞−rσm)

∥∥
2.

13We denote by L∞0 (R3) the set of bounded functions on R3 that vanish at infinity.
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It remains to show that the classical symbol

Dxαξ̄1u
(m) = 1√

2M

∫
R6
ξ̄1(x)Dxα(k)r̄σm(k)eik·xu(x)dxdk

is compact. Here we have written Dxαξ̄1u
(m) = 〈ξ1, Dxv〉2, with v(x) =

(2π)3/2
√

2M
F−1

(
αr̄σm

)
(x)u(x); and that is defined for any v ∈ Ḣ1(R3). However, since

ξ1 ∈ Q(−∆ + V ) ⊂ H1(R3) and Dx is self-adjoint, we can write Dxαξ̄1u
(m) =

〈Dxξ1, v〉2 for any v ∈ L2(R3). It follows that Dxαξ̄1u
(m) is defined for any

u, α ∈ L2(R3), since α, rσm ∈ L2 implies αr̄σm ∈ L1, and therefore F−1
(
αr̄σm

)
∈ L∞.

It follows that the operator b̃Dxαu :
(
L2 ⊕ L2

)⊗s2 → C defined as

b̃Dxαu : (u, α)⊗2 ∈
(
L2 ⊕ L2)⊗s2 −→

π2⊗π1
α(k)u(x) ∈ L2(R6) −→ 〈f ′′, αu〉L2(R6) ∈ C ,

with f ′′(x, k) = 1√
2M

(Dxξ1)(x)rσm(k)e−ik·x, is bounded and of finite rank and there-
fore compact.

a∗Dxξ̄1ψ = 1√
2M

∫
R3
ξ̄1(x)a∗

(
r∞e

−ik·x)Dxψ(x)dx .

Again, the approximated symbol a∗Dxξ̄1ψ is given by

a∗Dxξ̄1ψ
(m) = 1√

2M

∫
R3
ξ̄1(x)a∗

(
rσme

−ik·x)Dxψ(x)dx .

Inequality (79) is satisfied, and the proof follows the same guidelines as the one for
the previous term Dxaξ̄1ψ. We give the compactness proof for the symbol

ᾱDxξ̄1u
(m) = 1√

2M

∫
R6
ξ̄1(x)ᾱ(k)rσm(k)e−ik·xDxu(x)dxdk .

We rewrite it as ᾱDxξ̄1u
(m) = 〈(u, α), b̃ᾱDxu(u, α)〉L2⊕L2 , with b̃ᾱDxu : L2 ⊕ L2 →

L2 ⊕ L2 defined as

b̃ᾱDxu : (u, α) ∈ L2 ⊕ L2 −→
π1

u(x) ∈ L2(R3) −→
c̃ᾱDxu

(
0 ⊕ f ′′′(k)

)
∈ L2 ⊕ L2 ,

where f ′′′(k) = 1√
2M

rσm(k)(k〈eik·xξ1, u〉L2
x

+ 〈eik·xDxξ1, u〉L2
x
). Now suppose that

uj ⇀ u is a weakly convergent (bounded) sequence with bound X. It follows that,
uniformly in j,

|f ′′′j (k)|2 =
∣∣∣ 1√

2M
rσm(k)

(
k〈eik·xξ1, uj〉L2

x
+ 〈eik·xDxξ1, uj〉L2

x

)∣∣∣2
≤ 1

2M2X
2|rσm(k)|2(k2 + 1)‖ξ1‖2H1 ∈ L1

k(R3) .

In addition, limj→∞|f ′′′(k)− f ′′′j (k)|2 = 0; therefore, c̃ᾱDxu is a compact operator by
Lebesgue’s dominated convergence theorem. So b̃ᾱDxu is compact. The proofs above
extend immediately to the adjoint terms

a∗Dxψ
∗ξ1 = 1√

2M

∫
R3
ψ∗(x)a∗

(
r∞e

−ik·x)Dxξ1(x)dx ,

Dxaψ
∗ξ1 = 1√

2M

∫
R3
ψ∗(x)Dxa

(
r∞e

−ik·x)ξ1(x)dx .
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5070 ZIED AMMARI AND MARCO FALCONI

Part 6 (ψ∗Dxξ2ψ, ψ∗ξ̄2Dxψ).

ψ∗Dxξ2ψ = (2π)3/2
√

2M

∫
R3
ψ∗(x)DxF−1

(
ξ2r̄∞

)
(x)ψ(x)dx .

The approximated symbol, as for the terms of part 4, contains χm(Dx):

ψ∗Dxξ2ψ
(m) = (2π)3/2

√
2M

∫
R3
ψ∗(x)χm(Dx)DxF−1

(
ξ2r̄∞

)
(x)ψ(x)dx .

As usual, we start proving that (79) holds. We remark that this is the only term
where we need ξ2 ∈ D(ω3/4) instead of D(ω1/2).∣∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3
ψ∗(x)

(
1− χm(Dx)

)
DxF−1

(
ξ2r̄∞

)
(x)ψ(x)dx(H0 + 1)−1/2Ψ

〉∣∣∣∣
≤
∞∑
n=0

nε

∣∣∣∣〈(H0 + 1)−1/2Φn,
(
1− χm(Dx1)

)
Dx1F−1

(
ξ2r̄∞

)
(x1)(H0 + 1)−1/2Ψn

〉∣∣∣∣
≤
∞∑
n=0

nε
∥∥(1−∆)−1/2(1− χm(Dx)

)∥∥
L(L2(R3))

(∥∥F−1
(
ξ2r̄∞

)∥∥
∞+

∥∥F−1
(
kξ2r̄∞

)∥∥
∞

)
·
∥∥(1−∆x1)1/2(H0 + 1)−1/2Φn

∥∥
Hn
·
(∥∥Dx1(H0 + 1)−1/2Ψn

∥∥
Hn

+
∥∥(H0 + 1)−1/2Ψn

∥∥
Hn

)
≤2
∥∥(1−D2

x)−1/2(1− χm(Dx)
)∥∥
L(L2(R3)) ·

∥∥ω3/4ξ2
∥∥

2 ·
∥∥ω−1/4r∞

∥∥
2 ·
∥∥Φ
∥∥

·
(∥∥(N1 + ε̄)1/2Ψ

∥∥ +
∥∥Ψ
∥∥) ;

hence the result follows with

C(m)(ξ2) = 2
√

2(2π)3/2

M

∥∥(1−D2
x)−1/2(1− χm(Dx)

)∥∥
L(L2(R3))

∥∥ω3/4ξ2
∥∥

2

∥∥ω−1/4r∞
∥∥

2 ,

since limm→∞
∥∥(1−D2

x)−1/2
(
1−χm(Dx)

)∥∥
L(L2(R3)) = 0. It remains to show that the

symbol

ūDxξ2u
(m) = (2π)3/2

√
2M

∫
R3
ū(x)χm(Dx)DxF−1

(
ξ2r̄∞

)
(x)u(x)dx

is compact. We introduce the operator b̃ūDxu : L2 ⊕ L2 → L2 ⊕ L2 such that
ūDxξ2u

(m) = 〈(u, α), b̃ūDxu(u, α)〉L2⊕L2 :

b̃ūDxu : (u, α) ∈ L2 ⊕ L2 −→
π1

u(x) ∈ L2(R3) −→
c̃ūDxu

(
f ′′′′(x,Dx)u(x) ⊕ 0

)
∈ L2 ⊕ L2 ,

where f ′′′′(x,Dx) = (2π)3/2
√

2M
Dx χm(Dx)F−1(ξ2r̄∞)(x). Now f ′′′′(x,Dx) is a compact

operator: both xχm(x) and F−1(ξ2r̄∞)(x) are in L∞0 (R3). Therefore, b̃ūDxu is com-
pact. The proof extends immediately to the adjoint term

ψ∗ξ̄2Dxψ = (2π)3/2
√

2M

∫
R3
ψ∗(x)F

(
ξ̄2r∞

)
(x)Dxψ(x)dx .D

ow
nl

oa
de

d 
12

/1
5/

17
 to

 1
30

.6
0.

18
8.

14
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5071

4.4. Defining the time-dependent family of Wigner measures. The last
tool we need in order to take the limit ε → 0 of the integral formula (68) is Wigner
measures. Throughout this section, we will leave some statements unproven; the
reader may refer to [9, section 6] for the proofs and a detailed discussion of Wigner
measures’ properties. We recall the definition of a Wigner measure associated with a
family of states on H = Γs

(
L2(R3)⊕ L2(R3)

)
.

Definition 4.11. Let (%ε)ε∈(0,ε̄) ⊂ L1
(
H
)

be a family of normal states; µ ∈
P
(
L2 ⊕ L2

)
is a Borel probability measure. We say that µ is a Wigner (or semiclas-

sical) measure associated to (%ε)ε∈(0,ε̄), or in symbols µ ∈ M
(
%ε, ε ∈ (0, ε̄)

)
, if there

exists a sequence (εk)k∈N ⊂ (0, ε̄) such that limk→∞ εk = 0 and

(80) lim
k→∞

Tr
[
%εkW (ξ)

]
=
∫
L2⊕L2

ei
√

2Re〈ξ,z〉L2⊕L2dµ(z) ∀ξ ∈ L2 ⊕ L2 .

We remark that the right-hand side is essentially the Fourier transform of the measure
µ, so considering the sequence (εk)k∈N there is at most one probability measure that
could satisfy (80). If (80) is satisfied, we say that to the sequence (%εk)k∈N corresponds
a single Wigner (or semiclassical) measure µ, or simply %εk → µ.

First, it is necessary to ensure that such a definition of Wigner measures is mean-
ingful, i.e., that under suitable conditions the set of Wigner measures M associated
to a family of states is not empty. Since m0 > 0, it turns out that assumption (A(h)’)
is sufficient. Assumption (A-h) would be sufficient as well, even if we will not use it
for the moment.

Lemma 4.12. Let (%ε)ε∈(0,ε̄) be a family of normal states on H that satisfies as-
sumptions (A(h)’) and (A-n). Then for any t ∈ R, the following hold:

(i) M
(
%ε(t), ε ∈ (0, ε̄)

)
6= Ø; M

(
%̃ε(t), ε ∈ (0, ε̄)

)
6= Ø.

(ii) Any µ ∈M
(
%ε(t), ε ∈ (0, ε̄)

)
or in M

(
%̃ε(t), ε ∈ (0, ε̄)

)
14 satisfies

µ
(
Bu(0,

√
C) ∩Q(−∆ + V )⊕D(ω1/2)

)
= 1.

(iii) Moreover,∫
z=(u,α)∈L2⊕L2

‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 dµ(z) < +∞ .

We recall that Bu(0,
√

C) = {(u, α) ∈ L2 ⊕ L2, ‖u‖2 ≤
√

C}.
Proof. By (77) of Lemma 4.8, we see that %ε(t) and %̃ε(t) satisfy (A-n) and (A(h)’)

at any time. Now (i) follows by [9, Theorem 6.2] and (ii) by (iii) and [11, Lemma 2.14].
The third point is essentially a consequence of [12, Lemma 3.12]. However, the latter
result requires more regularity on the states %ε. So we indicate here how to adapt the
argument to our case. It is enough to assume t = 0 and {µ} =M

(
%ε, ε ∈ (0, ε̄)

)
. The

operators − ∆
2M + V and ω are positive (self-adjoint). So one can find nondecreasing

sequences of finite rank operators Ak and Bk that converge weakly to − ∆
2M + V and

ω, respectively. In particular,

bWick
k = dΓ(Ak)⊗ 1 + 1⊗ dΓ(Bk) ≤ dΓ

(
− ∆

2M
+ V

)
⊗ 1 + 1⊗ dΓ(ω) = H0 ,

14In this section, we have used mostly the notation D(ω1/2); however, D(ω1/2) = FH1/2, where
the latter is defined in Definition 3.4.
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5072 ZIED AMMARI AND MARCO FALCONI

where bk(u, α) = 〈u,Aku〉 + 〈α,Bkα〉 ∈ P∞1,1(L2 ⊕ L2). Let Pk and Qk be the or-
thogonal projections on Ran(Ak) and Ran(Bk), respectively. Using the Fock space
decomposition Γs(L2⊕L2) ≡ Γs(PkL2⊕QkL2)⊗Γs(P⊥k L

2⊕Q⊥k L2) where P⊥k = 1−Pk
and Q⊥k = 1 − Qk, one can write bWick

k ≡ (bk)Wick
|Γs(PkL2⊕QkL2) ⊗ 1Γs(P⊥k L

2⊕Q⊥k L2) and
%ε ≡ %̂ε. Hence

Tr
[
%εb

Wick
k

]
= Tr

[
%̂εb

Wick
|Γs(PkL2⊕QkL2)⊗1Γs(P⊥k L

2⊕Q⊥k L2)

]
= TrΓs(PkL2⊕QkL2)

[
%kεb

Wick
k

]
,

where %kεj is a given reduced density matrix which is trace-class in Γs(PkL2⊕QkL2). So
the problem is in some sense reduced to finite dimension. Now using Wick calculus (in
finite dimension) bWick

k can be written as an anti-Wick operator by moving all the a∗

to the right of a. So, one obtains that bWick
k = bA−Wick

k +εT with T (dΓ(Pk⊕Qk)+1)−1

is bounded uniformly with respect to ε ∈ (0, ε̄). Hence

lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
= lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

Wick
k

]
≤ lim
ε→0

Tr
[
%εH0

]
≤ C .

For details on the anti-Wick quantization we refer the reader to [9]; in particular, it
is a positive quantization (see, e.g., [9, Proposition 3.6]). Hence, we see that

TrΓs(PkL2⊕QkL2)

[
%kε(bk,χ)A−Wick

]
≤ TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
,

where bk,χ(u, α) = χ(u)〈u,Aku〉+ χ(α)〈α,Bkα〉 for any cutoff function χ ∈ C∞0 (R3),
0 ≤ χ ≤ 1. Finally, [9, Theorem 6.2] gives∫

z=(u,α)∈L2⊕L2
bk,χ(u, α) dµ(z) = lim

ε→0
Tr
[
%ε(bk,χ)A−Wick

]
= lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
≤ C ,

and the monotone convergence theorem proves (iii).

As we said above, our aim is to take the limit εk → 0 on the integral equation (68)
for a suitable sequence contained in (0, ε̄). We may suppose that the sequence (εk)k∈N
is chosen in such a way that there exists µ0 ∈M

(
%ε, ε ∈ (0, ε̄)

)
such that (80) holds,

i.e., M
(
%εk , k ∈ N

)
= {µ0}. However, nothing a priori ensures that the sequence, or

one of its subsequences (εki)i∈N ⊂ (εk)k∈N, is such that for any t ∈ R

lim
i→∞

Tr
[
%̃εki (t)W (ξ)

]
=
∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ̃t(z) ∀ξ ∈ L2(R3)⊕ L2(R3) ,

where µ̃t : R→ P
(
L2⊕L2

)
is a map such that µ̃0 = µ0. The possibility of extracting

such a common subsequence is crucial, since the integral equation involves all measures
from zero to an arbitrary time t. To prove it is possible, we exploit the uniform
continuity properties of Tr[%̃ε(t)W (ξ)] in both t and ξ, proved in the following lemma.

Lemma 4.13. Let (%ε)ε∈(0,ε̄) be a family of quantum states on H that satisfies
assumptions (A-n) and (A(h)’). Then the family of functions (t, ξ) 7→ G̃ε(t, ξ) :=
Tr[%̃ε(t)W (ξ)] is uniformly equicontinuous on bounded subsets of R×

(
Q(−∆ + V )⊕

D(ω1/2)
)
.
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Proof. Let (t, ξ), (s, η) ∈ R×
(
Q(−∆+V )⊕D(ω1/2)

)
. Without loss of generality,

we may suppose that s ≤ t. We write∣∣∣G̃ε(t, ξ)− G̃ε(s, η)
∣∣∣ ≤ ∣∣∣G̃ε(t, η)− G̃ε(s, η)

∣∣∣ +
∣∣∣G̃ε(t, ξ)− G̃ε(t, η)

∣∣∣
and define X1 := |G̃ε(t, η) − G̃ε(s, η)|, X2 := |G̃ε(t, ξ) − G̃ε(t, η)|. Consider X1; we
get by standard manipulations and Lemma 4.2

X1 ≤
3∑
j=0

εj
∑
i∈N

λi

∫ t

s

∣∣∣〈e−i sε Ĥren
Ψi,W

( ˜(η)s
)
Bj
( ˜(η)s

)
e−i

s
ε Ĥ

ren
Ψi

〉∣∣∣ds .
Now using Lemma 4.6 we obtain

X1 ≤
3∑
j=0

εjCj(η)
∑
i∈N

λi

∫ t

s

∥∥∥(N1 +H0 + ε̄)1/2W ∗
( ˜(η)s

)
e−i

s
ε Ĥ

ren
Ψi

∥∥∥
·
∥∥∥(N1 +H0 + ε̄)1/2e−i

s
ε Ĥ

ren
Ψi

∥∥∥ds ;

then using Lemma 4.1, and the fact that ‖ ˜(η1)s‖H1 = ‖η1‖H1 , ‖ ˜(η2)s‖FH1/2 =
‖η2‖FH1/2 we get

X1 ≤ C(η)
3∑
j=0

εjCj(η)
∫ t

s

Tr
[
%ε(s)(N1 +H0 + ε̄)

]
ds

≤ |t− s|C(η)
3∑
j=0

ε̄jCj(η)
(

C
1−a(C) + 2b(C)

1−a(C) + ε̄
)
,

where in the last inequality we used (77) of Lemma 4.8. Now let us consider X2; a
standard manipulation using Weyl’s relation yields

X2 ≤
∥∥∥(ei ε2 Im〈ξ,η〉L2⊕L2W (ξ − η)− 1

)
(N1 +N2 + 1)−1

∥∥∥
L
(

Γs(L2⊕L2)
)

·Tr
[
%̃ε(t)(N1 +N2 + 1)

]
.

Now we use the estimate in [9, Lemma 3.1] and obtain

X2 ≤ ‖ξ − η‖L2⊕L2

(
ε̄‖η‖L2⊕L2 + 1

)
Tr
[
%̃ε(t)(N1 +N2 + 1)

]
≤ ‖ξ − η‖L2⊕L2

(
ε̄‖η‖L2⊕L2 + 1

)(
C

1−a(C) + 2b(C)
1−a(C) + 1

)
,

where in the last inequality we used again (77) of Lemma 4.8, keeping in mind that
N2 ≤ dΓ(ω) ≤ H0.

Now using Lemma 4.13 with the estimates on X1, X2 above and a diagonal ex-
traction argument, we prove the following proposition. We omit the proof since it is
similar to [12, Proposition 3.9].

Proposition 4.14. Let (%ε)ε∈(0,ε̄) be a family of quantum states on H that sat-
isfies assumptions (A-n) and (A(h)’). Then for any sequence (εk)k∈N ⊂ (0, ε̄) with
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5074 ZIED AMMARI AND MARCO FALCONI

limk→∞ εk = 0, there exists a subsequence (εki)i∈N such that there exists a map
µt : R→ P

(
L2 ⊕ L2

)
verifying the following statements:

%εki (t)→ µt ∀t ∈ R ;(81)

%̃εki (t)→ µ̃t ∀t ∈ R , with µ̃t = E0(−t)#µt ;(82)

%εki (t)W (ξ̃t)→ µξ,t ∀t ∈ R ,∀ξ ∈ L2 ⊕ L2, with dµξ,t(z) = ei
√

2Re〈ξ̃t,z〉dµt(z) ,(83)

where E0(t)z = e−it(−∆+V )u⊕e−itωα is the Hamiltonian flow associated with the free
classical energy E0, and ξ̃t = E0(−t)ξ. Moreover, µt and µ̃t are both Borel probability
measures on Q(−∆ + V )⊕D(ω1/2).

4.5. The classical limit of the integral formula. We are finally ready to
discuss the limit ε→ 0 of the integral formula (68). As a final preparation, we state a
couple of preliminary lemmas. The first is a slight improvement of [9, Theorem 6.13].
The second can be easily proved by standard estimates on the symbol B

(m)
0 (ξ) which

we recall for convenience:

B
(m)
0 (ξ)(u, α) = 2i

√
2
〈

ReF
(χσ0 ᾱ√

2ω

)
(x), Im

(
ξ̄1u
)
(x)
〉

2

+ i
√

2
〈
u(x), χm(Dx)Im

(
F
(χσ0 ξ̄2√

2ω

))
(x)u(x)

〉
2

+ i
√

2Im
〈
u(x),

(
χm(D(·))V∞ ∗ ξ̄1u

)
(x)u(x)

〉
2

+ i(2π)3/2

2M Im
〈
ξ1(x),

(
F−1(r̄σmα)2 + F(rσm ᾱ)2

+ F−1(r̄σmα)F(rσm ᾱ)
)

(x)u(x)
〉

2

− 2
√

2(2π)3

M Im
〈
u(x), χm(Dx)Im

(
F−1(r̄∞ξ2)

)
(x)F−1(r̄σmα)(x)u(x)

〉
2

− i
√

2(2π)3/2

M Im
〈
ξ1(x), DxF−1(r̄σmα)(x)u(x)

〉
2

− i
√

2(2π)3/2

M Im
〈
ξ1(x),F(rσm ᾱ)(x)Dxu(x)

〉
2

+ i
√

2(2π)3/2

M Im
〈
u(x), χm(Dx)DxF−1(r̄∞ξ2)(x)u(x)

〉
2
.

(84)

Lemma 4.15. Let (εj)j∈N ⊂ (0, ε̄), limj→∞ εj = 0, and δ > 0. Furthermore, let
(%εj )j∈N be a sequence of normal states in H such that for some C(δ) > 0,

(85)
∥∥∥(N1 +N2)δ/2%εj (N1 +N2)δ/2

∥∥∥
L1(L2⊕L2)

≤ C(δ) ,

uniformly in ε ∈ (0, ε̄). Suppose that %εj → µ ∈ P(L2 ⊕ L2); then the following
statement is true:(

∀A ∈
⊕

(p,q)∈N2

p+q<2δ

P∞p,q
(
L2 ⊕ L2) , lim

j→∞
Tr
[
%εj (A )Wick

]
=
∫
L2⊕L2

A (z)dµ(z)
)
.

Proof. By linearity it is enough to assume A ∈ P∞p,q
(
L2 ⊕ L2

)
for (p, q) ∈ N2

with p + q < 2δ. Let (PR)R>0 be an increasing family of finite rank orthogonal
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projections on L2 such that the strong limit s−limR→+∞ PR = 1 holds. Let AR(z) :=
A (PR ⊕ PRz) for any z ∈ L2 ⊕ L2. One writes∣∣∣∣Tr

[
%εj (A )Wick

]
−
∫
L2⊕L2

A (z)dµ(z)
∣∣∣∣

≤
∣∣∣∣Tr
[
%εj (A )Wick

]
− Tr

[
%εj (AR)Wick

]∣∣∣∣(86)

+
∣∣∣∣Tr
[
%εj (AR)Wick

]
−
∫
L2⊕L2

AR(z)dµ(z)
∣∣∣∣(87)

+
∣∣∣∣∫
L2⊕L2

AR(z)dµ(z)−
∫
L2⊕L2

A (z)dµ(z)
∣∣∣∣ .(88)

Using standard number estimates and the regularity of the states (%εj )j , one shows∣∣∣Tr
[
%εj (A −AR)Wick

]∣∣∣ ≤ ||(N1 +N2)δ/2%εj (N1 +N2)δ/2||L1(L2⊕L2) ||Ã − ÃR|| ,

where Ã and ÃR denote the compact operators satisfying A (z) = 〈z⊗q, Ã z⊗p〉 and
AR(z) = 〈z⊗q, ÃRz

⊗p〉, respectively. Since ÃR = (PR⊕PR)⊗qÃ (PR⊕PR)⊗p and Ã
is compact, one shows that limR→+∞ ||Ã − ÃR|| = 0. So the right-hand side of (86)
can be made arbitrarily small by choosing R large enough.

According to [9, Theorem 6.2], the regularity of (%εj )j ensures the bound∫
L2⊕L2

||z||2δL2⊕L2 dµ(z) ≤ C(δ) .

Hence by dominated convergence the right-hand side of (88) can also be made ar-
bitrarily small when R is large enough since A (z) and AR(z) are both bounded by
c||z||p+qL2⊕L2 and AR(z) converges pointwise to A (z).

To handle the right-hand side of (87), we use a further regularization. Let χ ∈
C∞0 (R), 0 ≤ χ ≤ 1, χ(x) = 1 in a neighborhood of 0 and χm(x) = χ( xm ) for m >
0. Recall that the Fock space has the decomposition Γs(L2 ⊕ L2) ≡ Γs(PRL2 ⊕
PRL

2) ⊗ Γs(P⊥R L
2 ⊕ P⊥R L2), where P⊥R = 1 − PR. In this representation A Wick

R ≡
(AR)Wick

|Γs(PRL2⊕PRL2) ⊗ 1Γs(P⊥R L
2⊕P⊥R L2) and %εj ≡ %̂εj . Hence using reduced density

matrices %Rεj that are normalized positive trace-class operators in Γs(PRL2 ⊕ PRL2),
one writes

Tr
[
%εj (AR)Wick

]
= Tr

[
%̂εj (AR)Wick

|Γs(PRL2⊕PRL2) ⊗ 1Γs(P⊥R L
2⊕P⊥R L2)

]
= TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)Wick

]
.

As in the proof of Lemma 4.12, the Wick calculus gives that (AR)Wick can be written
as an anti-Wick operator by moving all the a∗ to the right of a. So, one obtains that
(AR)Wick = (AR)A−Wick + εT with T (dΓ(PR ⊕ PR) + 1)−

p+q
2 is bounded uniformly

with respect to ε ∈ (0, ε̄). We refer the reader to [9], where Weyl and anti-Wick
quantization are explained for “cylindrical” symbols. Hence

lim
j→∞

Tr
[
%εj (AR)Wick

]
= lim
j→∞

TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)Wick

]
= lim
j→∞

TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)A−Wick

]
.
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5076 ZIED AMMARI AND MARCO FALCONI

Now we define χm,R(z) := χm(|PR ⊕ PRz|2) and

%R,mεj := χm,R(z)Weyl %Rεj χm,R(z)Weyl .

So one writes∣∣∣∣Tr
[
%Rεj (A )A−Wick

]
−
∫
L2⊕L2

A (z)dµ(z)
∣∣∣∣

≤
∣∣∣∣Tr
[
(%Rεj − %

R,m
εj )(A )A−Wick

]∣∣∣∣(89)

+
∣∣∣∣Tr
[
%R,mεj (AR)A−Wick

]
−
∫
χ2
m,R(z)AR(z)dµ(z)

∣∣∣∣(90)

+
∣∣∣∣∫ χ2

m,R(z)AR(z)dµ(z)−
∫

AR(z)dµ(z)
∣∣∣∣ ,(91)

where the traces are on the Fock space Γs(PRL2 ⊕ PRL2) and the integrals are over
L2 ⊕ L2. By dominated convergence the right-hand side of (91) tends to 0 when
m → ∞ at fixed R. The right-hand side of (89) can be made arbitrarily small when
m→∞ using the following decomposition:

(%R,mεj − %Rεj ) = (χWeyl
m,R − 1) %Rεj χ

Weyl
m,R︸ ︷︷ ︸

(A)

+ %Rεj (χWeyl
m,R − 1)︸ ︷︷ ︸
(B)

,

which gives Tr[(A) (AR)A−Wick] = Tr[T1T2T3T4] and a similar expression for (B) with

T1 = (NR + 1)
p+q

4 (χWeyl
m,R − 1)(NR + 1)−

δ
2 , T2 = (NR + 1)

δ
2 %Rεj (NR + 1)

δ
2 ,

T3 = (NR + 1)−
δ
2χWeyl

m,R (NR + 1)
p+q

4 , T4 = (NR + 1)−
p+q

4 (AR)A−Wick(NR + 1)−
p+q

4 ,

where NR = dΓ(PR ⊕ PR). The Weyl–Hörmander pseudodifferential calculus gives
that T1 →m→∞ 0 in norm (since δ > p + q) and that Ti, i = 2, 3, 4, are uniformly
bounded with respect j ∈ N and m > 0 at fixed R (see, e.g., [9, Proposition 3.2 and
3.3]).

To complete the proof, we remark that

Tr
[
%R,mεj (AR)A−Wick

]
= Tr

[
%Rεj χ

Weyl
m,R (AR)A−Wick χWeyl

m,R

]
.

So again by pseudodifferential calculus we know (AR)A−Wick = (AR)Weyl+ε b(ε)Weyl

with b(ε) belonging to the Weyl–Hörmander class symbol SPR⊕PR(〈z〉p+q−2, dz
2

〈z〉2 ) uni-
formly in ε (see [9, sections 3.2 and 3.4]). Therefore,

lim
j→∞

Tr
[
%R,mεj (AR)A−Wick

]
= lim
j→∞

Tr
[
%Rεj χ

Weyl
m,R (AR)Weyl χWeyl

m,R

]
,

since (dΓ(PR ⊕ PR) + 1)−(q+p)/2 b(ε)Weyl (dΓ(PR ⊕ PR) + 1)−(p+q)/2 is uniformly
bounded with respect to ε. The Weyl–Hörmander pseudodifferential calculus gives
χWeyl
m,R (AR)Weyl χWeyl

m,R = (χ2
m,RAR)Weyl + ε c(ε)Weyl with c(ε) ∈ SPR⊕PR(1, dz2)

uniformly in ε (see, e.g., [9, Proposition 3.2]). Hence, according to [9, Theorem 6.2]
one obtains

lim
j→∞

Tr
[
%R,mεj (AR)A−Wick

]
= lim
j→∞

Tr
[
%εj (χ2

m,R AR)Weyl
]

=
∫
L2⊕L2

χ2
m,R(z)AR(z)dµ(z) .
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This yields the intended bound on (87) and completes the proof.

Lemma 4.16. There exists C(σ0) > 0 depending only on σ0 ∈ R+ such that the
following bound holds for B

(m)
0 uniformly in m ∈ N:∣∣∣B(m)

0 (ξ)(u, α)
∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

+‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2

+‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

(92)

It follows that

* for any ξ ∈ L2 ⊕ L2, for any (u, α) ∈ Q(−∆ + V ) ⊕ D(ω1/2),
limm→∞B

(m)
0 (ξ)(u, α) = B0(ξ)(u, α), and therefore the bound (92) holds

also for B0;

* for any m ∈ N, B
(m)
0 (·),B0(·) are are jointly continuous with respect to

ξ ∈ L2 ⊕ L2 and (u, α) ∈ Q(−∆ + V )⊕D(ω1/2).

Recall that for any σ0 ≥ 2K(C + 1 + ε̄) there exists b > 0 such that the operator
Ĥren
ε + b is nonnegative uniformly for ε ∈ (0, ε̄). Let (%ε)ε∈(0,ε̄) be a family of normal

states on Γs(L2(R3)⊕ L2(R3)); we consider the additional assumption

∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε (Ĥren
ε + b)2] ≤ C .(A(h)”)

Proposition 4.17. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that
satisfy assumptions (A-n), (A(h)’), and (A(h)”) such that15 σ0 ≥ 2K(C + 1 + ε̄).
Then the following hold:

(i) For any sequence (εk)k∈N ⊂ (0, ε̄) converging to zero, there exist a subse-
quence (εkι)ι∈N and a map µt : R→ P

(
L2 ⊕ L2

)
such that %εkι (t)→ µt and

%̃εkι (t)→ µ̃t = E0(−t)#µt for any t ∈ R.

(ii) The action of e−i
t
ε Ĥ

ren
ε is nontrival on the states %ε.

(iii) The Fourier transform of µ̃(·) satisfies the following transport equation for all
ξ ∈ L2 ⊕ L2:∫

L2⊕L2
ei
√

2Re〈ξ,z〉dµ̃t(z) =
∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ0(z)

+
∫ t

0

(∫
L2⊕L2

B0(ξ̃s)(z)ei
√

2Re〈ξ̃s,z〉dµs(z)
)
ds ,

(93)

where the right-hand side makes sense since B0(ξ̃t)(z)ei
√

2Re〈ξ̃t,z〉 ∈ L∞t (R,
L1
z

[
L2 ⊕ L2, dµt(z)

]
) for any ξ ∈ L2 ⊕ L2.

Proof. The first part of the proposition, points (i) and (ii), is just a par-
tial restatement of Proposition 4.14. We discuss the last assertion in (iii) about
B0(ξ̃t)(z)ei

√
2Re〈ξ̃t,z〉 before proving (93). Recall the fact that for any ξ ∈ L2 ⊕ L2

15We recall that C appears in assumption (A-n) and σ0 in Definition 2.13 of Ĥren
ren . The condition

σ0 ≥ K(C + 1) ensures that the dressed dynamics is nontrivial on
⊕[C/ε]
n=0 Hn and hence nontrivial

on the state %ε according to Lemma 4.2.
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5078 ZIED AMMARI AND MARCO FALCONI

and for any t ∈ R, ‖ξ̃t‖L2⊕L2 = ‖ξ‖L2⊕L2 . Using bound (92) of Lemma 4.16, we
obtain, setting Q(−∆ + V )⊕D(ω1/2) 3 z = (u, α),∣∣∣B0(ξ̃t)(z)ei

√
2Re〈ξ̃t,z〉

∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

+‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

Now µt ∈ M
(
%ε(t), ε ∈ (0, ε̄)

)
; therefore by Lemma 4.12, µt(Bu(0,

√
C) ∩ Q(−∆ +

V ) ⊕ D(ω1/2)) = 1 for any t ∈ R. Then it follows that there exists C(C) > 0 such
that∣∣∣∣∫

L2⊕L2
B0(ξ̃t)(z)ei

√
2Re〈ξ̃t,z〉dµt(z)

∣∣∣∣
≤ C(C)‖ξ‖L2⊕L2

∫
L2⊕L2

(
‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

)
dµt(z)

≤ C(C)‖ξ‖L2⊕L2J(t) ,

where J(t) < ∞ by Lemma 4.12. Actually, using the fact that the bound (77) is
independent of t, it is easily proved that J(t) does not depend on t as well, i.e.,
J(t) ∈ L∞(R).

We prove (93) by successive approximations. Consider Tr[%̃εkι (t)W (ξ)], ξ ∈
L2 ⊕ L2. We can approximate ξ with (ξ(l))l∈N ⊂ Q(−∆ + V ) ⊕ D(ω3/4), since
the latter is dense in L2⊕L2, and liml→∞ Tr[%̃εkι (t)

(
W (ξ)−W (ξ(l))

)
] = 0 uniformly

in εkι by Lemma 4.13. Now, for Tr[%̃εkι (t)W (ξ(l))] the integral equation (68) holds.
Proposition 4.14 implies that %̃εkι (t)→ µ̃t = E0(t)#µt for any t ∈ R. Therefore, the
left-hand side of (68) converges when ι → ∞ to

∫
L2⊕L2 e

i
√

2Re〈ξ(l),z〉dµ̃t(z); and that

in turn converges when l→∞ to
∫
L2⊕L2 e

i
√

2Re〈ξ,z〉dµ̃t(z) by dominated convergence
theorem. In addition,

lim
ι→∞

3∑
j=1

εj
∫ t

0
Tr
[
%εkι (s)W ( ˜ξ(l)

s)Bj(
˜ξ(l)
s)
]
ds = 0

by Proposition 4.7. It remains to show the convergence of the B0 term in (68).
We approximate B0 by the compact B

(m)
0 , because using Lemma 4.2 and (79) of

Proposition 4.9 we obtain∣∣∣Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣

≤
∑
i∈N

λi

∣∣∣〈W ∗( ˜ξ(l)
s)e
−i s

εkι
Ĥren

Ψi,
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)
e
−i s

εkι
Ĥren

Ψi

〉∣∣∣
≤
∑
i∈N

λiC
(m)( ˜ξ(l)

s)
∥∥∥(H0 + 1)1/2(N1 + ε̄)1/2W ∗( ˜ξ(l)

s)e
−i s

εkι
Ĥren

Ψi

∥∥∥
·
∥∥∥(H0 + 1)1/2(N1 + ε̄)1/2e

−i s
εkι

Ĥren

Ψi

∥∥∥ .
Now, using the fact that C(m)( ˜ξ(l)

s) depends only on ‖ ˜ξ(l)
s‖Q(−∆+V )⊕D(ω3/4) =
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5079

‖ξ(l)‖
Q(−∆+V )⊕D(ω3/4) and Lemma 4.1, we obtain∣∣∣Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣

≤
∑
i∈N

λiC
(m)(ξ(l))C(ξ(l))

∥∥∥(H0 + 1)1/2e
−i s

εkι
Ĥren

(N1 + ε̄)1/2Ψi

∥∥∥2
.

We then use (77) of Lemma 4.8:∣∣∣Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣

≤
∑
i∈N

λiC
(m)(ξ(l))C(ξ(l))(C + ε̄) 1

1−a(C)C + 2b(C)
1−a(C) .

The right-hand side goes to zero when m → ∞ uniformly with respect to εkι and s
by Proposition 4.9, and therefore

lim
m→∞

∫ t

0
Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]
ds = 0 .

So the next step is to prove

lim
ι→∞

Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(

B
(m)
0 ( ˜ξ(l)

s)
)Wick]

=
∫
L2⊕L2

B
(m)
0 (ξ̃(l)

s )(z) ei
√

2Re〈ξ̃(l)
s ,z〉dµs(z).

This statement follows by applying Lemma 4.15 with δ = 2 and by checking the
assumption

(94) ||(N1 +N2) %εkι (s)W ( ˜ξ(l)
s) (N1 +N2)||L1(L2⊕L2) ≤ C ,

uniformly in kι for some C > 0. In fact, (94) holds true by assumptions (A-n)–
(A(h)”), the higher order estimate of Proposition A.4 and Lemma 4.1. Note that
while %εkι (s)W ( ˜ξ(l)

s) is not a nonnegative trace-class operator, one can still apply
Lemma 4.15. In fact, one can write

Tr
[
%εkι (s)W ( ˜ξ(l)

s) B
(m)
0 ( ˜ξ(l)

s)
]

= Tr
[
W (η)%εkι (s)W (η) A Wick

]
for some A ∈

⊕
p+q<4 P∞p,q

(
L2 ⊕ L2

)
and with η = 1

2
˜ξ(l)
s. We note now that

W (η)%εkι (s)W (η) decomposes explicitly into a linear combination of nonnegative
trace-class operators satisfying the assumption (85) of Lemma 4.15. Note that the
Wigner measures of %εkι (s)W ( ˜ξ(l)

s) are identified through (83). Hence the dominated
convergence theorem yields

lim
ι→∞

∫ t

0
Tr
[
%εkι (s)W ( ˜ξ(l)

s)B
(m)
0 ( ˜ξ(l)

s)
]
ds

=
∫ t

0

(∫
L2⊕L2

B
(m)
0 ( ˜ξ(l)

s)(z)e
i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds .

By Lemma 4.16, limm→∞B
(m)
0 ( ˜ξ(l)

s)(z) = B0( ˜ξ(l)
s)(z), so by the dominated conver-

gence theorem

lim
m→∞

∫ t

0

(∫
L2⊕L2

B
(m)
0 ( ˜ξ(l)

s)(z)e
i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds

=
∫ t

0

(∫
L2⊕L2

B0( ˜ξ(l)
s)(z)e

i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds .

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5080 ZIED AMMARI AND MARCO FALCONI

Above it is possible to apply the dominated convergence theorem due to a reasoning
analogous to that done at the beginning of this proof: roughly speaking, we have that
B

(m)
0 ( ˜ξ(l)

t)(z)ei
√

2Re〈 ˜ξ(l)
t,z〉 ∈ L∞t (R, L1

z

[
L2 ⊕ L2, dµt(z)

]
) uniformly with respect to

m ∈ N. In an analogous fashion we finally obtain

lim
l→∞

∫ t

0

(∫
L2⊕L2

B0( ˜ξ(l)
s)(z)e

i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds

=
∫ t

0

(∫
L2⊕L2

B0(ξ̃s)(z)ei
√

2Re〈ξ̃s,z〉dµs(z)
)
ds .

Corollary 4.18. The transport equation (93) may be rewritten as∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ̃t(z) =
∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ0(z)

+ i
√

2
∫ t

0

(∫
L2⊕L2

ei
√

2Re〈ξ,z〉Re〈ξ,V(s)(z)〉L2⊕L2 dµ̃s(z)
)
ds ,

(95)

with the vector field V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê − E0

)
◦ E0(t)(z). In addition, µ̃t =

E0(−t)#Ê(t)#µ0 is a solution of (95).

Proof. The proof is by direct calculation, since µt
(
Q(−∆ + V )⊕FH1/2

)
= 1 for

any t ∈ R by Lemma 4.12, and Ê(t),E0(t) are globally well defined on this space (for
Ê(t), it is proved in Theorem 3.16; for E0(t) it is trivial). The second point is proved
by differentiating with respect to time and using Lemmas 4.16 and 4.12(iii).

4.6. Uniqueness of solutions for the transport equation. As discussed in
Corollary 4.18, the dressed flow yields in the classical limit a solution of the transport
equation (95). The second part of the same corollary suggests that it is important to
study uniqueness properties of (95): it is by means of uniqueness that we can close
the argument and reach a satisfactory characterization of the dynamics of classical
states (Wigner measures). This subsection is devoted to proving that the family of
Wigner measures µ̃t of Proposition 4.17 satisfies sufficient conditions, induced by the
properties of (%ε)ε∈(0,ε̄), to be uniquely identified with E0(−t)#Ê(t)#µ0. We use an
optimal transport technique introduced by [3], then extended by [12] to propagation
of Wigner measures, and improved recently by [8] (see also [89, 92]).

In order to do that, we need to introduce a suitable topology on P
(
L2⊕L2

)
. Let

(ej)j∈N ⊂ L2 ⊕ L2 be an orthonormal basis. Then

(96) dw(z1, z2) =
(∑
j∈N

|〈z1 − z2, ej〉L2⊕L2 |2

(1 + j)2

)1/2

,

where z1, z2 ∈ L2 ⊕ L2, defines a distance on L2 ⊕ L2. The topology induced by(
L2 ⊕ L2, dw

)
is homeomorphic to the weak topology on bounded sets.

Definition 4.19 (weak narrow convergence of probability measures). Let
(µi)i∈N ⊂ P

(
L2 ⊕ L2

)
. Then (µi)i∈N weakly narrowly converges to µ ∈ P

(
L2 ⊕ L2

)
,

in symbols µi
n
⇀ µ, if

∀f ∈ Cb
((
L2 ⊕ L2, dw

)
,R
)
, lim
i→∞

∫
L2⊕L2

f(z)dµi(z) =
∫
L2⊕L2

f(z)dµ(z) ,
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BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5081

where Cb((L2⊕L2, dw),R) is the space of bounded continuous real-valued functions on
(L2 ⊕ L2, dw).

It is actually more convenient to use cylindrical functions to prove narrow conti-
nuity properties. We define below two useful spaces of smooth cylindrical functions
on L2 ⊕ L2.

Definition 4.20 (spaces of cylindrical functions). Let f : L2 ⊕ L2 → R. Then
f ∈ Scyl

(
L2 ⊕ L2

)
if there exists an orthogonal projection p : L2 ⊕ L2 → L2 ⊕ L2,

dim(Ran p) = d < ∞, and a rapidly decreasing function g in the Schwartz space
S(Ran p), such that

∀z ∈ L2 ⊕ L2 , f(z) = g(pz) .

Analogously, if g ∈ C∞0 (Ran p), then f ∈ C∞0,cyl
(
L2 ⊕ L2

)
, the cylindrical smooth

functions with compact support.

We remark that neither Scyl
(
L2⊕L2

)
nor C∞0,cyl

(
L2⊕L2

)
possesses a vector space

structure. Finally, for cylindrical Schwartz functions we define the Fourier transform:

F [f ](η) =
∫

Ran p
e−2πiRe〈η,z〉L2⊕L2 f(z)dLp(z) ,

where dLp denotes integration with respect to the Lebesgue measure on Ran p. The
inversion formula is then

f(z) =
∫

Ran p
e2πiRe〈η,z〉L2⊕L2F [f ](η)dLp(η) .

With these definitions in mind, we can prove the following lemma.

Lemma 4.21. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfies
assumptions (A-n), (A(h)’), and (A(h)”); µ̃t : R→ P

(
L2⊕L2

)
such that for any t ∈

R , µ̃t ∈ M
(
%̃ε(t), ε ∈ (0, ε̄)

)
. If, in addition, µ̃t satisfies the integral equation (95),

then the following statements are true:

* For any t ∈ R, and for any (ti)i∈R ⊂ R such that limi→∞ ti = t,

µ̃ti
n
⇀ µ̃t ;

i.e., µ̃t is a weakly narrowly continuous map in P(L2 ⊕ L2).

* The map µ̃t solves the transport equation16

∂tµ̃t +∇T
(
V(t)µ̃t

)
= 0

in the weak sense, i.e., for any f ∈ C∞0,cyl(R×
(
L2 ⊕ L2

)
),

(97)
∫
R

∫
L2⊕L2

(
∂tf + Re〈∇f,V(t)〉L2⊕L2

)
dµ̃tdt = 0 .

Proof. Let f ∈ Scyl
(
L2 ⊕ L2

)
. Fubini’s theorem gives∫

L2⊕L2
f(z)dµ̃t(z) =

∫
Ran p

F [f ](ξ)
(∫

L2⊕L2
e2πiRe〈ξ,z〉dµ̃t(z)

)
dLRan p(ξ) ,

16Recall that V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê − E0

)
◦E0(t)(z).

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5082 ZIED AMMARI AND MARCO FALCONI

where dLRan p is the Lebesgue measure on Ran p and

F(f)(ξ) =
∫

Ran p
f(z)e−2πiRe〈ξ,z〉dLRan p(z) .

Now we define G̃0(t, ξ) :=
∫
L2⊕L2 e

2πiRe〈ξ,z〉dµ̃t(z). Hence (93) of Proposition 4.17
gives

(98) G̃0(t, ξ)− G̃0(s, ξ) =
∫ t

s

(∫
L2⊕L2

B0(ξ̃τ )(z)ei
√

2Re〈ξ̃τ ,z〉dµτ (z)
)
dτ ,

and this proves that t 7→ G̃0(t, ξ) is continuous for any ξ ∈ L2⊕L2 since the integrand
in the right-hand side of (98) is bounded with respect to τ by Proposition 4.17. Note
that G̃0(t, ξ) is bounded by one for any (t, ξ) ∈ R × (L2 ⊕ L2). Therefore, the map
t 7→

∫
L2⊕L2 f(z)dµ̃t(z) is continuous for any f ∈ Scyl

(
L2 ⊕ L2

)
. Finally, by an

argument analogous to the one used at the beginning of the proof of Proposition 4.17,
it is easy to prove that

∫
L2⊕L2‖z‖2L2⊕L2dµ̃t(z) ∈ L∞t (R). In fact, we know that

µ̃t(Bu(0,
√

C) ∩ Q(−∆ + V ) ⊕D(ω1/2)) = 1 by Lemma 4.12; and if z = (u, α), then
the functions α 7→ ‖α‖22 ≤ ‖α‖2FH1/2 belong to L1

z[L
2 ⊕ L2, dµ̃t(z)] uniformly in t by

Lemmas 4.8 and 4.12. Then it follows that µ̃t is weakly narrowly continuous by [3,
Lemma 5.1.12 - f], thus proving the first point.

Now we prove the second point by a similar argument as in [12] which we repro-
duce here for completeness. Let g ∈ C∞0,cyl

(
L2 ⊕ L2

)
; we integrate (95) with respect

to the measure F [g](η)dLp obtaining∫
L2⊕L2

g(z)dµ̃t(z) =
∫
L2⊕L2

g(z)dµ̃0(z)

+ 2πi
∫ t

0

∫
Ran p

(∫
L2⊕L2

Re〈η,V(s)(z)〉L2⊕L2dµ̃s(z)
)
F [g](η)dLp(η)ds .

Let ∇g be the differential of g : L2 ⊕ L2 → R, where here L2 ⊕ L2 is considered as a
real Hilbert space with scalar product Re〈·, ·〉L2⊕L2 . Then, by Fubini’s theorem and
the properties of the Fourier transform, we get∫

L2⊕L2
g(z)dµ̃t(z) =

∫
L2⊕L2

g(z)dµ̃0(z)

+
∫ t

0

∫
L2⊕L2

Re〈∇g(z),V(s)(z)〉L2⊕L2dµ̃s(z)ds .

By Lebesgue’s differentiation theorem (with respect to t), we obtain

∂t

∫
L2⊕L2

g(z)dµ̃t(z)−
∫
L2⊕L2

Re〈∇g(z),V(t)(z)〉L2⊕L2dµ̃t(z) = 0 .

Equation (97) is then obtained for f(t, z) = ϕ(t)g(z), multiplying by ϕ(t) ∈ C∞0 (R,R),
integrating with respect to t, and finally using integration by parts. The result for
a generic f ∈ C∞0,cyl(R × (L2 ⊕ L2)) follows immediately: f(t, z) = g(t,pz) for some
g ∈ C∞0 (R×Ran p), and the latter can be approximated by a sequence (gj(t,pz))j∈N ⊂

C∞0 (R)
alg
⊗ C∞0 (Ran p).

D
ow

nl
oa

de
d 

12
/1

5/
17

 to
 1

30
.6

0.
18

8.
14

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOHR’S CORRESPONDENCE IN THE NELSON MODEL 5083

We need to check a hypothesis on the vector field V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê −

E0
)
◦ E0(t)(z) to prove the sought uniqueness result. This is done in the following

lemma.

Lemma 4.22. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfies
assumptions (A-n) and (A(h)’); µ̃t : R → P

(
L2 ⊕ L2

)
such that for any t ∈ R,

µ̃t ∈ M
(
%̃ε(t), ε ∈ (0, ε̄)

)
. Then ‖V(t)(z)‖L2⊕L2 ∈ L∞t (R, L1

z

[
L2 ⊕ L2, dµt(z)

]
), i.e.,

the norm of the vector field is integrable with respect to µ̃t, uniformly in t ∈ R.

Proof. By (92) of Lemma 4.16 and the definition of V(t), we have that for any
ξ ∈ L2 ⊕ L2,∣∣∣Re〈ξ,V(t)(z)〉

∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22

+ ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2

+ ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

It is easy to prove an equivalent bound for the imaginary part and hence obtain for
any ξ ∈ L2 ⊕ L2∣∣∣〈ξ,V(t)(z)〉

∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

+ ‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2

+ ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

Therefore, it follows immediately that

‖V(t)(z)‖L2⊕L2 ≤ C(σ0)
(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

+ ‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2

+ ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

The right-hand side of the above equation is in L∞t (R, L1
z

[
L2⊕L2, dµt(z)

]
), as shown

at the beginning of the proof of Proposition 4.17.

At this stage, we appeal to a result proved in [8, Proposition 4.1] concerning the
uniqueness of measure-valued solutions of the Liouville equation (97), which we briefly
recall in Appendix B.

Proposition 4.23. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that
satisfies assumptions (A-n), (A(h)’), and (A(h)”). In addition, let µ̃t : R→ P

(
L2 ⊕

L2
)

such that for any t ∈ R, µ̃t ∈ M
(
%̃εk(t), k ∈ N

)
for some sequence (εk)k∈N with

εk → 0 and µ̃t satisfies the integral equation (95). Then µ̃t = (E0(−t) ◦ Ê(t))#µ0.

Proof. Observe that Lemmas 4.21 and 4.22 and Lemma 4.12 (ii)–(iii) are sufficient
to apply Proposition B.1 with v(t, z) = V(t)(z) and (µ̃t)t∈R. Hence, we obtain the
existence of a probability measure η verifying the properties (i)–(ii) in Proposition B.1.
The next step is to show that η is concentrated on solutions of the dressed equation
(S-KG[D]) written in the interaction representation. For simplicity one can take the
interval I such that [0, T ] ⊂ I for some T > 0.

By Hölder’s inequality, Lemma 4.12(iii), and Proposition B.1(ii),∫
X

(∫
I

||γ(t)||2H1⊕FH1/2dt

)1/2

dη(x, γ) ≤
(∫

I

∫
H1⊕FH1/2

||z||2H1⊕FH1/2dµ̃t

)1/2

<∞ .
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5084 ZIED AMMARI AND MARCO FALCONI

This means that γ ∈ L2(I,H1 ⊕ FH1/2) for η-a.e. So we conclude that there exists
an η-negligible set N such that for any (x, γ) ∈ X r N , γ ∈W 1,1(I, L2⊕L2) satisfy
the equation

γ(t) = x+
∫ t

0
V(s)(γ(s))ds ∀t ∈ I ;

and furthermore γ ∈ L2(I,H1⊕FH1/2)∩L∞(I, L2⊕L2) and V(·)(γ(·)) ∈ L1(I, L2⊕
L2). Remember that Dg∞(−1) and E0(t) preserve the spaces H1⊕FH1/2 and L2⊕L2

(see Proposition 3.5). So by a simple computation one checks that for any γ as before,
the curve

t→ γ̃(t) := Dg∞(1) ◦E0(t)(γ(t)) ∈ L2(I,H1 ⊕FH1/2) ∩ L∞(I, L2 ⊕ L2)

and satisfies the Duhamel formula,

γ̃(t) = E0(t) ◦Dg∞(1)x− i
∫ t

0
E0(t− s)∂z̄(E − E0)(γ̃(s))ds ∀t ∈ I ,

which is the original Cauchy problem (S-KG[Y]) with the energy E given by Defini-
tion 3.8. Remember that we have already checked that Dg∞(θ) are nonlinear symplec-
tomorphisms on the phase-space L2 ⊕ L2 (see Proposition 3.17). Now appealing to
the result [40, Theorem 1.3], we need to show that γ̃1 ∈ L10/3([0, T ], L10/3(R3)) ∩
L8([0, T ], L12/5(R3)) where γ̃ = (γ̃1, γ̃2) in order to conclude that γ̃ is actually
the unique strong and global solution of the S-KG equation with initial condition
γ(0) = x ∈ H1 ⊕ FH1/2 and belonging to C(R, H1 ⊕ FH1/2). The last statement
follows by Strichartz estimates since γ̃1 ∈ L2([0, T ], L6(R3) ∩ L∞([0, T ], L2(R3). So
going back to γ, we conclude that γ(t) = E0(−t)#Ê(t)(x). Hence, for any Borel
bounded function ϕ on L2 ⊕ L2 and t ∈ R,∫

L2⊕L2
ϕ(x)dµ̃t =

∫
X

ϕ(γ(t))dη =
∫

X

ϕ ◦E0(−t) ◦ Ê(t)(x)dη

=
∫
L2⊕L2

ϕ(E0(−t) ◦ Ê(t)(x)) dµ0(x) .

4.7. The classical limit of the dressing transformation. Let us consider
now the dressing transformation U∞(θ) = e−i

θ
εT∞ on H, with self-adjoint generator:

T∞ =
(
Dg∞

)Wick =
∫
R3
ψ∗(x)

(
a∗(g∞e−ik·x) + a(g∞e−ik·x)

)
ψ(x)dx ,

g∞(k) = − i

(2π)3/2

1√
2ω(k)

1− χσ0(k)
k2

2M + ω(k)
∈ L2(R3) .

The family
(
e−i

θ
εT∞

)
θ∈R ⊂ L(H) is a strongly continuous unitary group and therefore

can be seen as a dynamical system acting on quantum states. Therefore, given a family
(%ε)ε∈(0,ε̄) of normal quantum states on H, we could determine the Wigner measures
of

(99) %̂ε(θ) = e−i
θ
εT∞ %ε e

i θεT∞ .

Since T∞ =
(
Dg∞

)Wick, where Dg∞ is the classical dressing generator defined in
subsection 3.1, we expect that under suitable assumptions, (%εk → µ ⇒ %̂εk(θ) →
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Dg∞(θ)#µ), where Dg∞(θ) is the classical dressing transformation. The last assertion
is indeed true, as explained in the following. Observe that the dressing generator T∞
is equal to the interaction part HI(σ) of the Nelson model with cutoff, where χσ√

2ω
is

replaced by g∞, i.e., T∞ = HI(σ)
∣∣
χσ√
2ω

=g∞
. The classical limit of the Nelson model

with cutoff has been treated by the authors in [5]; thus the results below can be
immediately deduced by the results in [5, d = 3, H0 = 0, and χ√

ω
= g∞]. We recall

also that g∞ and therefore also T∞ and Dg∞ depend on σ0 ∈ R+.

Lemma 4.24. Let (%ε)ε∈(0,ε̄) be a family of normal (quantum) states on H that
satisfies assumptions (A-n) and (A-h). Then for any σ0 ∈ R+, (%̂ε(−1))ε∈(0,ε̄) satis-
fies assumptions (A-n) and (A(h)’).

Proposition 4.25. Let Dg∞ : R×Q(−∆ +V )⊕FH1/2 → Q(−∆ +V )⊕FH1/2

be the classical dressing transformation. Let (%ε)ε∈(0,ε̄) be a family of normal quantum
states on H that satisfies assumption (A-n) and assumption (A-h) or (A(h)’). Then
M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø; and for any σ0 ∈ R+ and θ ∈ R ,

(100) M
(
%̂ε(θ), ε ∈ (0, ε̄)

)
=
{

Dg∞(θ)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.

Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0. Then the
following statement is true:

(101) %εk → µ⇔
(
∀θ ∈ R , ∀σ0 ∈ R+ , %̂εk(θ)→ Dg∞(θ)#µ

)
.

4.8. Overview of the results: Linking the dressed and undressed sys-
tems. Since as discussed in the previous subsection we can treat the dressing as a
dynamical transformation with its own “time” parameter θ, we are able to link the
classical limit of the dressed and undressed quantum dynamics via the classical dress-
ing. In this way we are able to recover the expected classical S-KG dynamics for the
undressed dynamics and finally prove Theorem 1.1.

First, we put together the results proved from subsection 4.2 to subsection 4.6 on
the renormalized dressed dynamics and remove assumption (A(h)”) with the help of
an approximation argument worked out in [11]. This is done in the following theorem.

Theorem 4.26. Let Ê : R × Q(−∆ + V ) ⊕ FH1/2 → Q(−∆ + V ) ⊕ FH1/2 be
the dressed S-KG flow associated to Ê . Let (%ε)ε∈(0,ε̄) be a family of normal states in
H that satisfies assumptions (A-n) and (A(h)’). Then for any σ0 ≥ 2K(C + 1 + ε̄)
the dynamics e−i

t
ε Ĥ

ren
ε is nontrivial on every relevant sector with fixed nucleons of the

state %ε; M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø; and for any t ∈ R

(102) M
(
e−i

t
ε Ĥ

ren
ε %εe

i tε Ĥ
ren
ε , ε ∈ (0, ε̄)

)
=
{

Ê(t)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.

Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0. Then the
following statement is true:

(103) %εk → µ⇔
(
∀t ∈ R , e

−i tεk Ĥ
ren
εk %εke

i tεk
Ĥren
εk → Ê(t)#µ

)
.

Proof. Thanks to the argument briefly sketched below, we no longer need assump-
tion (A(h)”). Let χ ∈ C∞0 (R) such that 0 ≤ χ ≤ 1 , χ ≡ 1, in a neighborhood of 0
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5086 ZIED AMMARI AND MARCO FALCONI

and χR(x) = χ( xR ). The approximation

%ε,R =
χR(Ĥren

ε ) %ε χR(Ĥren
ε )

Tr
[
χR(Ĥren

ε ) %ε χR(Ĥren
ε )

]
satisfies assumptions (A-n), (A(h)’), and (A(h)”) and the property

||e−i tε Ĥ
ren
ε (%ε − %ε,R) ei

t
ε Ĥ

ren
ε ||L1(H ) = ||%ε − %ε,R||L1(H) ≤ ν(R) ,

where ν(R) is independent of ε and limR→∞ ν(R) = 0 . The last claim follows by
assumption (A(h)’), Theorem 2.11, and Definition 2.13. Up to extracting a sequence
which a priori depends on R and t, we can suppose that M (%εn,R, n ∈ N) = {µ0,R},
M (%εn , n ∈ N) = {µ0}, and M(%εn(t), n ∈ N) = {µt}. In particular, applying
Proposition 4.23, we obtain

M
(
e−i

t
εn
Ĥren
εn %εn,R e

i tεn Ĥ
ren
εn , n ∈ N

)
=
{

Ê(t)#µ0,R

}
.

A general estimate proved in [11, Proposition 2.10] compares the total variation dis-
tance of Wigner (probability) measures with the trace distance of their associated
quantum states. In our case, it implies∫
L2⊕L2

|µt − Ê(t)#µ0,R| ≤ lim inf
n→∞

||e−i
t
εn
Ĥren
εn (%εn − %εn,R) ei

t
εn
Ĥren
εn ||L1(H) ≤ ν(R) ,∫

L2⊕L2
|µ0 − µ0,R| ≤ lim inf

n→∞
||%εn − %εn,R||L1(H) ≤ ν(R) ,

where the left-hand side denotes the total variation of the signed measures µt −
Ê(t)#µ0,R and µ0 − µ0,R, respectively. Hence, by the triangle inequality, we obtain∫

L2⊕L2
|µt − Ê(t)#µ0| ≤

∫
L2⊕L2

|µt − Ê(t)#µ0,R|+
∫
L2⊕L2

|µ0,R − µ0| ≤ 2ν(R) .

This proves that {
Ê(t)#µ0

}
⊂M(e−i

t
εn
Ĥren
εn %εne

i tεn Ĥ
ren
εn , n ∈ N) .

By reversing time and utilizing the analogous inclusion above, we prove (103).

Proof of Theorem 1.1. Observe that using the definition of the renormalized
dressed evolution %ε(t) (Definition 4.3) and the definition of the “dressing dynamics”
%̂ε(θ) (equation (99)), we obtain

e−i
t
εH

ren
ε %ε e

i tεH
ren
ε = e−

i
εT∞e−i

t
ε Ĥ

ren
ε e

i
εT∞ %ε e

− iεT∞ei
t
ε Ĥ

ren
ε e

i
εT∞

=
((
%̂ε(−1)

)
(t)
)

ˆ(1) .

Let (%ε)ε∈(0,ε̄) be a family of normal states in H that satisfies assumptions (A-n)
and (A-h). In addition, as usual, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that
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limk→∞ εk = 0. Then we can use Lemma 4.24, Proposition 4.25, and Theorem 4.26
to prove the following statement:

%εk → µ⇔
(
∀t ∈ R , e

−i tεkH
ren
εk %εke

i tεk
Hren
εk → Dg∞(1)#Ê(t)#Dg∞(−1)#µ

= [Dg∞(1) ◦ Ê(t) ◦Dg∞(−1)]#µ
)
.

Therefore, Theorem 1.1 is proved, since by (64) of Theorem 3.16 Dg∞(1) ◦ Ê(t) ◦
Dg∞(−1) = E(t). To be more precise, we use the following chain of inferences:

(
%εk → µ

) Lem. 4.24
Prop. 4.25

=⇒
(
∀σ0 ∈ R+ , %̂εk(−1)→ Dg∞(−1)#µ and

(
%̂εk(−1)

)
k∈N

satisfies ass. (A-n), (A(h)’)
)

Thm. 4.26
Lem. 4.8=⇒

(
∃σ0 ∈ R+ , ∀t ∈ R ,

(
%̂εk(−1)

)
(t)→ Ê(t)#Dg∞(−1)#µ

and
((
%̂εk(−1)

)
(t)
)
k∈N

satisfies ass. (A-n), (A(h)’)
)

Prop. 4.25
=⇒

(
∀t ∈ R ,

((
%̂εk(−1)

)
(t)
)

ˆ(1)→ Dg∞(1)#Ê(t)#Dg∞(−1)#µ

)
Thm. 3.16=⇒

(
∀t ∈ R , e

−i tεkH
ren
εk %εke

i tεk
Hren
εk → E(t)#µ

)
.

The inference in the opposite sense is trivial.
As has become evident with the above discussion, we do not prove Theorem 1.1

directly; and it would be very difficult to do so, due to the fact that we do not know
the explicit form of the generator Hren

ε of the undressed dynamics. We know instead
how the dressed generator Ĥren

ε acts as a quadratic form, and that is sufficient to
characterize its dynamics in the classical limit and obtain the results of Theorem 4.26.
The properties of the dressing transformation and of its classical counterpart are then
crucial to translate the results on the dressed dynamics to the corresponding results
on the undressed one.

Appendix A. Uniform higher-order estimate. We prove in this appendix
a higher-order estimate that bounds the meson number operator N2 by the dressed
Hamiltonian Ĥ

(n)
σ uniformly with respect to the effective (semiclassical) parameter ε

and the cutoff parameter σ. Such types of estimates rely on the pull-through formula,
and they are known for the P (ϕ)2 model [105] and for the Nelson model [4]. However,
since the dependence of the dressed Hamiltonian Ĥ

(n)
σ on ε is somewhat nontrivial,

we briefly indicate in this appendix how to obtain a uniform estimate.

Lemma A.1. For any ε ∈ (0, ε̄) and any ψ ∈ D(N2) ⊂ H,∥∥N2ψ
∥∥2 =

∫
R3

∥∥(N2 + ε)
1
2 a(k)ψ

∥∥2
dk .

Proof. Recall that N2 and a(k) depend on the parameter ε according to the
notation of subsection 1.1. Taking care of domain issues as in [4, Lemma 2.1], one
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proves∥∥N2ψ
∥∥2 =

〈
N

1
2

2 ψ,

∫
R3
a∗(k)a(k) dkN

1
2

2 ψ

〉
=
∫
R3

∥∥a(k)N
1
2

2 ψ
∥∥2
dk

=
∫
R3

∥∥(N2 + ε)
1
2 a(k)ψ

∥∥2
dk .

Recall that the interaction term ĤI(σ)(n) is given by (13). A simple computation
yields

[a(k), ĤI(σ)(n)] = ε2

[
n∑
j=1

1
2
√

(2π)3

χσ(k)√
ω(k)

e−ik.xj +
1
M

n∑
j=1

rσ(k)e−ik·xja∗(rσe−ik·xj )

+rσ(k)e−ik·xja(rσe−ik·xj )− rσ(k)e−ik·xjDxj

]
.

Lemma A.2. For any C > 0 and σ0 ≥ 2K(C + 1 + ε̄) there exist c, b > 0 such that
for any ε ∈ (0, ε̄), σ0 < σ ≤ +∞, and n ∈ N such that nε ≤ C, we have

∥∥(b+εω(k)+Ĥ(n)
σ )−

1
2 [a(k), ĤI(σ)(n)](b+Ĥ(n)

σ )−
1
2
∥∥ ≤ c(| χσ(k)√

ω(k)
|+ |rσ(k)|ω(k)−1/4

)
.

Proof. According to Proposition 2.10 and Theorem 2.11, ĤI(σ)(n) is H(n)
0 -form

bounded with small bound that is uniform with respect to ε ∈ (0, ε̄), σ0 < σ ≤ +∞,
and n ∈ N such that nε ≤ C. Hence (H(n)

0 )
1
2 (b + Ĥ

(n)
σ )−

1
2 is uniformly bounded

for some b > 0. So it is enough to prove the claimed bound with H
(n)
0 instead of

Ĥ
(n)
σ . Now using similar estimates as in Lemma 2.7 and the fact that

√
εω(k)(b +

εω(k) + Ĥ
(n)
σ )−

1
2 is uniformly bounded, one correctly bounds all the terms of the

commutator except the one with a∗. Note that the commutator contains the power
ε2 that controls the sum over 1 ≤ j ≤ n and the factor 1/

√
εω(k). In order to bound

the term with a∗, one uses the type of estimate in [4, Lemma 3.3(ii)] with s = 1/2.
Note that one gets an ε-dependent estimate from [4, Lemma 3.3(ii)] by noticing that
ε1/4(H(n)

0 + 1)−1/4(dΓ1(ω) + 1)1/4 and ε1/4(N2 + 1)−1/4(dΓ1(1) + 1)1/4 are uniformly
bounded17 and that a∗ contains

√
ε which cancels the latter ε−1/4 · ε−1/4.

Let C > 0 and σ0 ≥ 2K(C + 1 + ε̄) as in the above lemma. In particular, Ĥ(n)
σ is

a self-adjoint operator for any ε ∈ (0, ε̄), σ0 < σ ≤ +∞, and n ∈ N such that nε ≤ C.

Lemma A.3 (the pull-through formula). The following identity holds true for

some b < 0, any φ ∈ D(N
1
2

2 ) ∩Hn, and k almost everywhere in R3:

a(k)(b− Ĥ(n)
σ )−1φ = (b− εω(k)− Ĥ(n)

σ )−1a(k)φ

+ (b− εω(k)− Ĥ(n)
σ )−1 [a(k), ĤI(σ)(n)] (b− Ĥ(n)

σ )−1φ .

Proof. According to [4, Lemma 4.4] there exists ψ ∈ (H(n)
0 + 1)−1D(N

1
2 ) such

that φ = (b− Ĥ(n)
σ )ψ for some b < 0. So the claimed formula is equivalent to

(b− εω(k)− Ĥ(n)
σ )a(k)ψ = a(k)(b− Ĥ(n)

σ )ψ + [a(k), ĤI(σ)(n)]ψ .

17dΓ1(·) is the ε-independent second quantization operator in [4].
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The latter identity follows by a simple computation.

Proposition A.4. For any C > 0 and σ0 ≥ 2K(C + 1 + ε̄) there exist c, b > 0
such that the operator Ĥ(n)

σ is self-adjoint and the following bound holds true:∥∥N2ψ
∥∥ ≤ c∥∥(Ĥ(n)

σ + b)ψ
∥∥ ∀ψ ∈ D(Ĥ(n)

σ ) ,

for any ε ∈ (0, ε̄), σ ∈ (σ0,+∞], n ∈ N such that nε ≤ C.

Proof. The operator Ĥ(n)
σ is uniformly bounded from below. So by choosing b > 0

large enough one can take ψ = (−b−Ĥ(n)
σ )−1φ. Now it is enough to prove the estimate

for φ ∈ (H(n)
0 + 1)−1/2D(N

1
2

2 ). Using Lemmas A.1 and A.3,

∥∥N2ψ
∥∥2 =

∫
R3

∥∥(N2 + ε)
1
2 a(k)(b+ Ĥ(n)

σ )−1φ
∥∥2
dk

≤ 2
∫
R3

∥∥(N2 + ε)
1
2 (b+ εω(k) + Ĥ(n)

σ )−1a(k)φ
∥∥2
dk(104)

+ 2
∫
R3

∥∥(N2 + ε)
1
2 (b+ εω(k) + Ĥ(n)

σ )−1[a(k), ĤI(σ)(n)] (b+ Ĥ(n)
σ )−1φ

∥∥2
dk .(105)

Since (N2 +ε)
1
2 (b+εω(k)+Ĥ(n)

σ )−1/2 is uniformly bounded, by Lemma A.2 one shows

(105) ≤ c
∫
R3
| χσ(k)√

ω(k)
|+ |rσ(k)|ω(k)−1/4 dk ·

∥∥(b+ Ĥ(n)
σ )−1/2φ

∥∥2
.

For simplicity we denote by c any constant. In the same way, one also shows

(104) ≤ c
∫
R3

∥∥(b+ εω(k) + Ĥ(n)
σ )−1/2a(k)φ

∥∥2
dk

≤ c
∫
R3

∥∥(b+ εω(k) +H
(n)
0 )−1/2a(k)φ

∥∥2
dk = c

∥∥N1/2
2 (b+H

(n)
0 )−1/2φ

∥∥2
.

The last equality follows by an argument similar to that in the proof of Lemma A.1.
Hence, one obtains∥∥N2ψ

∥∥2 ≤ c
(∥∥φ∥∥2 +

∥∥(b+H
(n)
0 )−1/2φ

∥∥2
)

= c
(∥∥(b+ Ĥ(n)

σ )ψ
∥∥2 +

∥∥(b+H(n)
σ )1/2ψ

∥∥2
)

≤ c
∥∥(b+ Ĥ(n)

σ )ψ
∥∥2
.

The last inequality is a consequence of the uniform boundedness of the operator
(b+H

(n)
0 )−1/2(b+ Ĥ

(n)
σ )−1/2 with respect to ε, σ, and n ∈ N such that nε ≤ C.

Appendix B. Probabilistic representation. For any open bounded interval
I, we denote by ΓI the space of all continuous curves from Ī into (L2⊕L2, || · ||L2⊕L2)
and define the following metric space:

(106) X =
(
L2 ⊕ L2 × ΓI , || · ||(L2⊕L2,dw) + sup

t∈Ī
|| · ||(L2⊕L2,dw)

)
,

where the norm || · ||(L2⊕L2,dw) is associated to the distance introduced in (96). For
each t ∈ I, we define the continuous evaluation map,

et : (x, γ) ∈ E × ΓI(E) 7→ γ(t) ∈ E .
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Consider the transport or Liouville equation,

∂tµt +∇T (v.µt) = 0 ,

understood in a weak sense as the integral equation: for any ϕ ∈ C∞0,cyl(I × L2 ⊕ L2),∫
I

∫
L2⊕L2

∂tϕ(t, x) + Re〈v(t, x),∇ϕ(t, x)〉L2⊕L2 dµt(x) dt = 0.(107)

The following result is an adaptation of [8, Propositon 4.1].

Proposition B.1. Let v : R × H1 ⊕ FH1/2 → L2 ⊕ L2 be a Borel vector field
such that v is bounded on bounded sets. Let t ∈ I → µt ∈ P(H1⊕FH1/2) be a weakly
narrowly continuous solution in P(L2 ⊕ L2) of the Liouville equation (107) defined
on an open bounded interval I with the following estimate satisfied:∫

I

∫
H1⊕FH1/2

‖v(t, x)‖L2⊕L2 dµt(x) dt <∞ .

Then there exists a Borel probability measure η on the space X given in (106) satisfying
the following:

(i) η is concentrated on the set of (x, γ) ∈ H1 ⊕ FH1/2 × ΓI such that
γ ∈ W 1,1(I, L2 ⊕ L2) and γ are solutions of the initial value problem
γ̇(t) = v(t, γ(t)) for a.e. t ∈ I and γ(t) ∈ H1 ⊕ FH1/2 for a.e. t ∈ I
with γ(s) = x for some fixed s ∈ I.

(ii) µt = (et)]η for any t ∈ I.

Here W 1,1(I, L2 ⊕ L2) is the Sobolev space of functions in L1(I, L2 ⊕ L2)
with distributional first derivatives in L1(I, L2 ⊕ L2). In particular, functions in
W 1,1(I, L2 ⊕ L2) are absolutely continuous curves in L2 ⊕ L2.
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Henri Poincaré, 7 (2006), pp. 21–43, https://doi.org/10.1007/s00023-005-0240-x.

[68] J. Ginibre and G. Velo, Renormalization of a quadratic interaction in the Hamiltonian
formalism, Comm. Math. Phys., 18 (1970), pp. 65–81, http://projecteuclid.org/euclid.
cmp/1103842445.

[69] J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic
many-boson systems. I, Comm. Math. Phys., 66 (1979), pp. 37–76, http://projecteuclid.
org/getRecord?id=euclid.cmp/1103904940.

[70] J. Ginibre and G. Velo, Long range scattering and modified wave operators for the wave-
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[81] K. Hepp, Théorie de la renormalisation, Lecture Notes in Phys. 2, Springer-Verlag, Berlin,
1969.

[82] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math.
Phys., 35 (1974), pp. 265–277, http://projecteuclid.org/euclid.cmp/1103859623.

[83] Y. Hong, K. Taliaferro, and Z. Xie, Unconditional uniqueness of the cubic Gross–
Pitaevskii hierarchy with low regularity, SIAM J. Math. Anal., 47 (2015), pp. 3314–3341,
https://doi.org/10.1137/140964898.
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