
ar
X

iv
:1

50
4.

06
41

5v
2 

 [
m

at
h-

ph
] 

 8
 M

ay
 2

01
5

COVARIANT MUTUALLY UNBIASED BASES

CLAUDIO CARMELI, JUSSI SCHULTZ, AND ALESSANDRO TOIGO

Abstract. The connection between maximal sets of mutually un-
biased bases (MUBs) in a prime-power dimensional Hilbert space
and finite phase-space geometries is well known. In this article we
classify MUBs according to their degree of covariance with respect
to the natural symmetries of a finite phase-space, which are the
group of its affine symplectic transformations. We prove that there
exist maximal sets of MUBs that are covariant with respect to the
full group only in odd prime-power dimensional spaces, and in this
case their equivalence class is actually unique. Despite this limita-
tion, we show that in dimension 2r covariance can still be achieved
by restricting to proper subgroups of the symplectic group, that
constitute the finite analogues of the oscillator group. For these
subgroups, we explicitly construct the unitary operators yielding
the covariance.

1. Introduction

As already outlined in the seminal work of Schwinger [1] and later
clarified by Bandyopadhyay, Boykin and Roychowdhury [2], the con-
struction of mutually unbiased bases (MUBs) is closely related to the
representation theory of finite Heisenberg groups. This connection
explains the considerable interest that MUBs have raised among the
mathematical community in recent times, and which has been further
strengthened by the wealth of symmetry structures involved in this
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topic [3]. It is well known that there exists a striking analogy between
the construction of a maximal set of MUBs in a prime-power dimen-
sional Hilbert space and the definition of the quadrature observables
in quantum homodyne tomography. This analogy originates from the
possibility to extend the concept of phase-space to finite dimensional
systems [4, 5], and introduce objects like the Schrödinger representa-
tion, the symplectic group and its metaplectic representation also in
the finite dimensional setting [6, 7].
Here we recall that a finite phase-space is an affine space modeled

on a 2-dimensional symplectic vector space over a finite field. Asso-
ciating a finite phase-space with a prime-power dimensional quantum
system simply consists in establishing a correspondence between quan-
tum states and functions on such a space. Like in quantum homodyne
tomography, this is done by means of the (finite) Wigner transform; its
definition relies on two choices: (a) the selection of a maximal set of
d+1 MUBs in the d-dimensional Hilbert space of the system; (b) their
labeling with the affine lines of the phase-space. In this way, each basis
corresponds to a set of d parallel affine lines, being the finite dimen-
sional analogue of a quadrature observable along the common direction
of the lines; moreover, different MUBs are associated with sets of par-
allel lines having different directions, in agreement with the fact that
there are exactly d+1 such directions in the finite phase-space [4]. It is
worth stressing that in (b) different labelings of the same d+ 1 MUBs
can result in inequivalent definitions of the Wigner map. Therefore,
the ordering of the bases actually is as relevant as their choice.
When representing quantum states as functions on the phase-space,

it is important that the affine and symplectic structures of the phase-
space are somehow taken into account and preserved. This is exactly
the point where covariance enters the game. Indeed, the group of
phase-space translations acts on the set of quantum states by means
of the Schrödinger representation [8, 9, 10, 11]; moreover, when p is
odd, this representation can be extended to the whole group of affine
symplectic maps by means of the Weil (or metaplectic) representation
[12, 13, 14, 15]. It is then desirable that the finite Wigner transform in-
tertwines the combined actions of the translation and symplectic groups
on the phase-space with the corresponding actions on quantum states,
or, equivalently, that its associated set of ordered MUBs is covariant
with respect to such group actions.
The study of the maximal sets of MUBs that are covariant with re-

spect to the phase-space translations goes back to [5]. In this paper, the
authors considered a particular Schrödinger representation and classi-
fied all the equivalence classes of translation covariant MUBs associated
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with it. Here, equivalence is understood in the sense of equivalence un-
der unitary conjugation, and we again stress that the ordering of the
MUBs, i.e., their labeling with the phase-space lines, actually matters.
The classification of [5] is then achieved by uniquely associating a func-
tion Γ : Aff×Aff×Aff → C to each equivalence class of ordered MUBs,
where Aff is the set of affine lines in the phase-space. This approach
allows to determine the exact number of inequivalent translation co-
variant MUBs associated with the given Schrödinger representation;
moreover, it makes clear that not all these MUBs are on the same
footing, since some of them are ‘more symmetric’ than others. Indeed,
when one extends the covariance group to also include the symplectic
transformations, it turns out that only a restricted set of MUBs are still
covariant with respect to the enlarged symmetries. Moreover, while in
the odd prime-power dimensional case it is always possible to find an
equivalence class of MUBs that are covariant with respect to the whole
symplectic group, it is unclear whether an analogous fact still holds for
2r-dimensional systems.
These considerations motivate a deeper analysis of the symmetry

properties of covariant MUBs, which actually is the aim of the present
paper. Our investigation will proceed in steps, as we will progressively
focus on covariance with respect to larger subgroups of the whole group
of affine symplectic phase-space transformations. Contrary to [5], we
do not a priori fix any representation of the subgroup G at hand, but
we rather let such a representation directly arise from the symmetry
properties of the MUBs under consideration. More precisely, for us a
maximal set of MUBs is covariant with respect to G when the action
of G on the set of phase-space lines permutes the MUBs into equiva-
lent ones. However, we do not make any assumption on the unitary
operators yelding the equivalence.
Following [5], the basic symmetry we consider at the beginning of our

analysis is covariance with respect to the phase-space translations. We
will show that our approach allows more equivalence classes of trans-
lation covariant MUBs than the ones found in [5], reflecting the fact
that, if the Schrödinger representation is not a priori fixed, inequiva-
lent MUBs can be associated with different symplectic structures on the
phase-space. However, quite surprisingly the existence of inequivalent
translation covariant MUBs only relies on the possibility to permute
the phase-space lines labeling each basis. Indeed, we will prove in The-
orem 3 that all phase-space translation covariant MUBs are unitarily
equivalent as sets of unordered bases. This fact makes it clear that
the choice of the correspondence between lines and MUBs is at the
heart of any description of maximal MUBs by means of finite-phase
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space geometries, and in particular of the classifications made in [5]
and in the present paper. In particular, it shows that the different
degrees of symmetry of covariant MUBs are only an effect of their la-
belings. Covariant MUBs are thus pointed out as a very special subset
of the whole collection of maximal MUBs in a prime-power dimensional
Hilbert space. Indeed, unitary equivalence of unordered noncovariant
maximal MUBs does not hold in general [16].
A fundamental tool in our analysis is a characterization of the equiv-

alence classes of phase-space translation covariant MUBs that is alter-
native to the description by the functions Γ used in [5]. Indeed, we will
prove that such classes of maximal MUBs are in a bijective correspon-
dence with a special family of multipliers of the group of phase-space
translations, which we call Weyl multipliers. The additional covariance
properties of translation covariant MUBs are then directly related to
the invariance properties of their associated Weyl multipliers. Studying
the latter, we will be able to completely describe the classes of trans-
lation covariant MUBs that are also covariant with respect to specific
subgroups of the symplectic group.
In particular, it turns out that there exist MUBs that are covari-

ant with respect to the whole group of affine symplectic phase-space
transformations if and only if the Hilbert space of the system is odd
prime-power dimensional, and in this case their equivalence class is
actually unique. We thus recover the analogue for maximal MUBs of
a similar fact holding for covariant Wigner functions [17, 18]. Nev-
ertheless, restricting to smaller subgroups G properly containing the
phase-space translations, G-covariant MUBs still exist even in dimen-
sion 2r. A particularly important instance, when G is the analogue
of the Euclidean group of quantum homodyne tomography, is the ar-
gument of Section 8. The results there should be compared with the
similar ones contained in [5, 19], where however the construction of the
unitary operators yielding the full G-covariance was somehow unclear
(see Remark 7 in Section 7).
Now we briefly sketch the plan of the paper. Section 2 introduces the

2-dimensional affine space over a finite field, and defines the correspon-
dence between affine lines of the space and maximal MUBs. According
to the usual approach [3, 4, 5, 20], there and in the rest of the article
we will view MUBs as sets of 1-dimensional projections, which we call
quadrature systems in analogy with their counterparts in quantum ho-
modyne tomography. In Section 3, we describe how the affine group
acts on the set of all lines of the 2-dimensional finite affine space, and
we restrict our attention to quadrature systems that are covariant with
respect to such an action. Section 4 specializes to maximal MUBs
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that are covariant with respect to the group of the affine translations
and introduces their associated Schrödinger representations, or, more
precisely, the Weyl systems they generate. There we show that every
translation covariant quadrature system endows the affine space with
a canonical symplectic form, i.e., induces a phase-space structure on it.
Through Weyl systems, the correspondence between translation covari-
ant MUBs and Weyl multipliers is explained and studied in Sections
5 and 6. In Section 7 we enlarge the translation symmetry to include
also nontrivial subgroups of the symplectic group, and establish the
equivalence between the extended covariance properties of MUBs and
the corresponding invariances of their associated Weyl multipliers. In
Section 8 we concentrate on extended covariance with respect to max-
imal nonsplit toruses in the symplectic group, which are the analogues
of the oscillator group of quantum homodyne tomography. Finally, in
Section 9 we illustrate our results in the simplest possible example,
that is, the 2-dimensional qubit system, and show that this application
already contains all the special features of the even prime-power di-
mensional case. Two appendices are provided at the end of the paper:
Appendix A reviews the main facts on projective representations that
are needed in the paper; Appendix B provides an explicit construction
of a Weyl multiplier in even prime-power dimensions.
Notations. The cardinality of any finite set X is denoted by |X|.

In this paper, F will always be a finite field with characteristic p. We
denote by Tr : F → Zp the trace functional of F over the cyclic field
Zp (see [21, Section VI.5] for the definition of Tr). Moreover, F∗ is the
cyclic group of nonzero elements in F [21, Theorem V.5.3]. As usual,
C is the field of complex numbers, and T = {z ∈ C | |z| = 1} is the
group of complex phase factors.
By Hilbert space we always mean a finite dimensional complex Hilbert
space. If H is a Hilbert space, L(H) denotes the C∗-algebra of all
linear operators on H. 1 ∈ L(H) is the identity operator, and U(H) :=
{U ∈ L(H) | U∗U = 1} is the group of unitary operators on H.
The linear space L(H) becomes a Hilbert space when it is endowed
with the Hilbert-Schmidt inner product 〈A |B 〉HS = tr [AB∗] for all
A,B ∈ L(H).

2. Quadrature systems for finite affine spaces

In this section, we introduce the two main geometrical objects treated
in the paper: the 2-dimensional affine space over a finite field and the
set of all its affine lines. Furthermore, we establish a correspondence
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between affine lines and maximal sets of MUBs in full generality, and
preliminarily study the elementary properties of this correspondence.
Let V be a vector space over the finite field F with dimF V = 2. We

recall that a set Ω is a 2-dimensional affine space if it carries an action of
the additive abelian group V which is free and transitive. In particular,
Ω is a finite set with cardinality |Ω| = |V | = |F|2. The vector space V
is the translation group of Ω, and we write (Ω, V ) to stress the affine
structure of Ω. If x ∈ Ω and u ∈ V , we use the standard notation x+u

for the action of u on x. Similarly, for any x, y ∈ Ω, we denote by ux,y

the unique vector in V such that x+ ux,y = y.
Given a 2-dimensional affine space (Ω, V ), we let D be the set of

1-dimensional subspaces of V , i.e.,

D = {D ⊂ V | D is a F-linear subspace and dimFD = 1} ,

and we call each D ∈ D a direction of Ω. For any v ∈ V , we write Fv =
{αv | α ∈ F}. Note that, if v is nonzero, then Fv ∈ D; otherwise, Fv =
{0}. There is only a finite set of directions in D. Indeed,

⋃

D∈D D = V
and D1 ∩ D2 = {0} if D1 6= D2, which, toghether with the fact that
|D| = |F| for all D ∈ D, imply |D| = |F|+ 1.
An affine line (or simply line) in (Ω, V ) passing through x ∈ Ω

and parallel to the direction D ∈ D is the subset x + D = {x + d |
d ∈ D} ⊂ Ω. We write L(Ω) for the collection of all affine lines
in (Ω, V ), and we also use the alternative notation l,m etc. for the
elements of L(Ω). The set LD(Ω) = {x + D | x ∈ Ω} is the subset
of L(Ω) consisting of the lines parallel to the direction D. Note that
the collection of subsets of parallel lines {LD(Ω) | D ∈ D} forms a
partition of the whole set of lines L(Ω). On the other hand, for a
fixed direction D, the set of parallel lines LD(Ω) constitutes a partition
of Ω. For this reason and the equality |x + D| = |D| = |F| for all
x + D ∈ LD(Ω), we have |LD(Ω)| = |F|. It follows that L(Ω) also is
finite, with |L(Ω)| = |D||LD(Ω)| = |F|(|F|+ 1).
The group V translates lines in L(Ω) preserving their directions: if

l = x + D is a line and v ∈ V , we denote by l + v = x + v + D the
translate of l by the vector v. The action of V on the set of parallel
lines LD(Ω) is transitive, and D is the stabilizer subgroup of any line
l ∈ LD(Ω); hence, the action of V factors to a free and transitive action
of the quotient group V/D on LD(Ω). As a consequence, if D′ 6= D and
l ∈ LD(Ω), we have LD(Ω) = {l + d′ | d′ ∈ D′} by the isomorphism
D′ ≃ V/D.
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Remark 1. A concrete and standard realization of the affine space
(Ω, V ) is obtained by setting Ω = V = F2, that is, the set of 2-
component column arrays with entries in F. The F-linear vector space
structure of V is clear, and the action of a vector v = (α1, α2)

T ∈ V
on a point x = (γ1, γ2)

T ∈ Ω is by componentwise summation: x+v =
(γ1 + α1, γ2 + α2)

T . The directions of Ω are

D = {F(1, α)T | α ∈ F} ∪ {F(0, 1)}
and the corresponding sets of parallel lines are

LF(1,α)T (Ω) = {{(λ, β + λα)T | λ ∈ F} | β ∈ F}
LF(0,1)T (Ω) = {{(β, λ)T | λ ∈ F} | β ∈ F} .

Now we are ready to introduce maximal sets of MUBs and associate
them to our affine space (Ω, V ). A convenient way to do this is by means
of the projection operators on each vector of the bases, as clarified in
the next definition.

Definition 1. A quadrature system (sometimes simply quadratures)
for the affine space (Ω, V ) acting on the Hilbert space H is a map
Q : L(Ω) → L(H) such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω);
(ii) for all D ∈ D,

∑

l∈LD(Ω)

Q(l) = 1 ;

(iii) for all D1, D2 ∈ D with D1 6= D2,

tr [Q(l1)Q(l2)] =
1

|F| if l1 ∈ LD1
(Ω) and l2 ∈ LD2

(Ω) .

Note that conditions (i) and (ii) imply that the ranges of the projec-
tions Q(l1) and Q(l2) are orthogonal if the lines l1 and l2 are parallel
with l1 6= l2. Since there are |F| parallel lines for each direction, this
then requires that H is a |F|-dimensional Hilbert space. Picking a unit
vector φl ∈ Q(l)H for each line l ∈ L(Ω), we also see that the set
BD = {φl | l ∈ LD(Ω)} is an orthonormal basis of H for each D ∈ D,
and the collection of bases {BD | D ∈ D} is a set of dimH + 1 MUBs
by (iii). Thus, quadrature systems and maximal sets of MUBs are
equivalent notions.
It is much easier to work with quadrature systems rather than di-

rectly with MUBs. As an example, Wootters and Fields proved the
following very important property which will be used repeatedly in the
paper.

Proposition 1. The set {Q(l) | l ∈ L(Ω)} spans the linear space L(H).
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Proof. For the reader’s convenience, we report the proof of [22]. For
all l ∈ L(Ω), define the operator Y (l) = Q(l) − 1/|F|, and, for any
D ∈ D, the set YD = {Y (l) | l ∈ LD(Ω)}. By the mutual unbiasedness
condition, if D1, D2 ∈ D with D1 6= D2 and li ∈ LDi

(Ω), then

〈Y (l1) | Y (l2) 〉HS = tr [(Q(l1)− 1/|F|)(Q(l2)− 1/|F|] = 0 .

That is, the two sets YD1
and YD2

are orthogonal in L(H). More-
over, since the sets {1} ∪ YD and {Q(l) | l ∈ LD(Ω)} span the same
|F|-dimensional linear space, there must be at least |F| − 1 linearly in-
dependent operators in YD. Actually, as 〈1 | Y (l) 〉HS = tr [Y (l)] = 0,
there needs to be exactly |F| − 1 linearly independent operators in
YD. Thus, the operators {Y (l) | l ∈ L(Ω)} =

⋃

D∈D YD span a
(|F|+1)(|F|−1) = (|F|2−1)-dimensional space, that is, 1⊥. Hence, the
set {1, Y (l) | l ∈ L(Ω)} generates L(H), which implies the claim. �

There is a natural notion of equivalence between quadrature systems
(cf. [5, Section VI]).

Definition 2. Two quadrature systems Q1 and Q2 for the affine space
(Ω, V ) acting on the Hilbert spaces H1 and H2, respectively, are equiv-
alent if there exists a unitary map U : H1 → H2 such that Q2(l) =
UQ1(l)U

∗ for all l ∈ L(Ω). In this case, we write Q1 ∼ Q2 and say that
U intertwines Q1 with Q2.

In the rest of this paper, we will be more concerned with equivalence
classes of quadrature systems rather than with their explicit realiza-
tions on specific Hilbert spaces. In particular, our focus will be on the
equivalence classes that are invariant under the action of subgroups of
the affine group of (Ω, V ). The next section is devoted to the precise
statement of our problem.

3. The finite affine group and covariant quadrature

systems

We have already seen that by its very definition the affine space
(Ω, V ) carries an action of the translation group V . This action can
be naturally extended to the group GL(V ) of all the invertible F-linear
maps of V into itself by using the following standard procedure. First
of all, one needs to choose an origin point o ∈ Ω; once o is fixed, the
action is then

A · x = o+ Auo,x ∀x ∈ Ω, A ∈ GL(V ) .
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The actions of the two groups V and GL(V ) combine together to yield
the following action of the semidirect product GL(V )⋊ V on Ω

(1) (A,v) · x = o+ A(uo,x + v) ∀x ∈ Ω, (A,v) ∈ GL(V )⋊ V .

The group GL(V ) ⋊ V is the affine group of (Ω, V ). Contrary to the
case of the translation group, its action depends on the choice of the
origin o, that is, the unique point of Ω such that GL(V ) · o = {o}.
Remark 2. In the concrete realization of Remark 1, the group GL(V)
is the group of invertible 2×2-matrices with entries in F, which acts on
V = F2 by left multiplication. The same action by left multiplication
can be defined also on Ω = F2. It corresponds to choosing the origin
o = (0, 0)T . The overall action of the affine group GL(V) ⋊ V on Ω
given in (1) is thus
((

β11 β12

β21 β22

)

,

(

α1

α2

))

·
(

γ1
γ2

)

=

(

β11(γ1 + α1) + β12(γ2 + α2)
β21(γ1 + α1) + β22(γ2 + α2)

)

for all αi, βij , γi ∈ F with β11β22 − β12β21 6= 0.

Formula (1) can be lifted to an action of the affine group GL(V )⋊V
on the set of the affine lines of (Ω, V ). This is done by setting

(A,v)·(x+D) = (A,v)·x+AD ∀x+D ∈ L(Ω), (A,v) ∈ GL(V )⋊V.

The previous definition clearly carries over to quadratures: if Q is a
quadrature system for (Ω, V ) acting on H and g ∈ GL(V )⋊ V is any
affine transformation, then the map Qg : L(Ω) → L(H) with

Qg(l) = Q(g · l) ∀l ∈ L(Ω)

is again a quadrature system still acting on the same Hilbert space H
of Q. The relation Q1 ∼ Q2 obviously implies Q1 g ∼ Q2 g. The focus of
the paper will be the following special type of quadrature systems.

Definition 3. Let G ⊆ GL(V ) ⋊ V be any subgroup. A quadrature
system Q for the affine space (Ω, V ) is G-covariant if Q ∼ Qg for all
g ∈ G.

We denote by QG(Ω, V ) the set of all G-covariant quadrature sys-
tems for the affine space (Ω, V ). By transitivity, if Q ∈ QG(Ω, V ) and
Q′ ∼ Q, then also Q′ ∈ QG(Ω, V ). Clearly, QG2

(Ω, V ) ⊆ QG1
(Ω, V )

whenever G1 ⊆ G2. Moreover, if G = {(I, 0)} is the one-element sub-
group, then Q{(I,0)}(Ω, V ) is the set of all quadratures for the affine
space (Ω, V ). Our main task then will be the following:
For any subgroup G ⊆ GL(V )⋊ V , completely characterize the par-

tition of the set QG(Ω, V ) into equivalence classes of quadratures.
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If Q ∈ QG(Ω, V ) acts on the Hilbert space H and g ∈ G is any group
element, Definitions 2 and 3 imply the existence of a unitary operator
U(g) ∈ L(H) such that

(2) Q(g · l) = U(g)Q(l)U(g)∗ ∀l ∈ L(Ω) .

The choice of U(g) is unique up to a certain extent. Indeed,

Proposition 2. If U1(g) and U2(g) are two unitary operators which
satisfy (2), there exists a phase factor a(g) ∈ T such that U2(g) =
a(g)U1(g). Moreover, if a map U : G → U(H) is such that (2) holds
for all g ∈ G, then U is a projective representation of the group G in
the Hilbert space H of the quadrature system Q.

Proof. Suppose both U1(g) and U2(g) satisfy (2). Then

U2(g)
∗U1(g)Q(l) = U2(g)

∗
Q(g · l)U1(g) = Q(l)U2(g)

∗U1(g)

for all l ∈ L(Ω). Since the operators {Q(l) | l ∈ L(Ω)} span the whole
algebra L(H) by Proposition 1, we must have U2(g)

∗U1(g) = a(g)1 for
some complex number a(g) ∈ T, which yields the first claim. For the
second, given g1, g2 ∈ G, note that the unitary operators U1 = U(g1g2)
and U2 = U(g1)U(g2) both satisfy the relation Q((g1g2) · l) = UiQ(l)U

∗
i

for all l ∈ L(Ω). Hence U(g1g2) = m(g1, g2)U(g1)U(g2) for some phase
factor m(g1, g2) ∈ T, that is, U is a projective representation of G. �

We refer to Appendix A for a brief review on projective representa-
tions. Any projective representation U of G which satisfies (2) will be
called associated with the G-covariant quadrature system Q. By Propo-
sition 2, such a projective representation U is uniquely determined up
to multiplication by an arbitrary phase function: if a : G → T is any
map, then the projective representation U ′ = aU also works in (2), and
there is no a priori criterion for preferring U to U ′. It is thus reason-
able to try to remove this ambiguity and seek for a choice of U that
is canonical in some sense. In the case in which G coincides with the
translation group V , this problem will be addressed and solved in the
next section.

4. V -covariant quadratures and their associated Weyl

systems

Up to now, we assumed that (Ω, V ) is merely an affine space, and
no further structure was postulated on it. However, we will see in
Proposition 3 below that a phase-space structure naturally arises when
we restrict our analysis to maximal sets of MUBs that are covariant
with respect to the group G ≡ V of translations of Ω.
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Here we recall that the affine space (Ω, V ) is a 2-dimensional phase-
space if the vector space V is a symplectic space, that is, it is endowed
with a symplectic form. By symplectic form we mean a nonzero F-
bilinear map S : V × V → F such that the equality S (u,u) = 0 holds
for all u ∈ V . The polarization identity

S (u,v) + S (v,u) = S (u+ v,u+ v)− S (u,u)− S (v,v)

then implies that S is antisymmetric in characteristic p 6= 2 and sym-
metric when p = 2. Since V is 2-dimensional, S is automatically non-
degenerate, that is, S (w,v) = 0 for all w ∈ V only if v = 0. It follows
that there exists a symplectic basis {e1, e2} of V , i.e., a linear basis of V
over F such that S (e1, e2) = −S (e2, e1) = 1. Moreover, all symplectic
forms on V only differ by a scalar factor, that is, if S1 and S2 are two
such forms, there is λ ∈ F∗ for which S2 = λS1. In order to point out
the symplectic form S we are fixing on V , we denote by (V, S) and
(Ω, V, S) our symplectic spaces and phase-spaces, respectively.

Remark 3. Continuing with the explicit realization of the affine space
(Ω, V ) described in Remarks 1 and 2, any symplectic form S on V is
given by

S
(

(α1, α2)
T , (β1, β2)

T
)

= λ(α1β2 − α2β1) ∀(α1, α2)
T , (β1, β2)

T ∈ F2

for some choice of the scalar λ ∈ F∗.

We continue to assume that (Ω, V ) is an affine space, still without
fixing any phase-space structure on it. When G ≡ V is the trans-
lation group, the covariance condition (2) for a quadrature system
Q ∈ QV (Ω, V ) becomes

(3) Q(l+ v) = W (v)Q(l)W (v)∗ ∀l ∈ L(Ω),v ∈ V ,

where W : V → U(H) is a projective representation of the abelian
group V in H, uniquely determined by the quadratures Q up to multi-
plication by an arbitrary phase function.
The next fundamental result provides insight into the properties of

the representation W . In particular, it shows that, through W , the
introdution of the V -covariant quadrature sytem Q endows the vector
space V with a canonical symplectic form, unambiguously defined by
Q, as anticipated at the beginning of the section. The antisymmetric
bicharacter appearing in the following statement is defined in Appendix
A just before Proposition 19.

Proposition 3. Suppose the quadrature system Q ∈ QV (Ω, V ) acts on
the Hilbert space H. Then we have the following facts.
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(a) There exists a projective representation W of V associated with Q

such that for all D ∈ D its restriction W |D is an ordinary repre-
sentation of the additive abelian group D.

(b) There exists a unique symplectic form S on V such that, if W is
any projective representation of V associated with Q, the following
commutation relation holds for W

(4) W (u)W (v) = bS (u,v)W (v)W (u) ∀u,v ∈ V

where bS : V × V → T is the antisymmetric bicharacter of V given
by

(5) bS (u,v) = e
2πi
p

TrS(u,v) .

Proof. (a) LetW0 be any projective representation of V associated with
Q. For a fixed direction D ∈ D and line l ∈ LD(Ω), we have Q(l+d) =
Q(l) for all d ∈ D. The covariance relation (3) then implies that
the operators {W0(d) | d ∈ D} commute with the rank-1 projection
Q(l). Therefore, the restriction W0|D is a projective representation
of D which leaves the 1-dimensional subspace H0 = Q(l)H invariant.
By Proposition 17 in Appendix A, the representation W0|D has exact
multiplier, hence there exists a function aD : D → T such that aD W0|D
is an ordinary representation of D. In particular, this implies W0(0) =

aD(0)1, hence aD1
(0) = aD2

(0) ≡ c for all D1, D2 ∈ D. Setting a(v) =
aFv(v) for all v ∈ V \ {0} and a(0) = c, item (a) is then satisfied by
the projective representation W = aW0.
(b) If W is any projective representation of V , by Proposition 19

in Appendix A there exists a unique antisymmetric bicharacter b of V
such that the equality W (u)W (v) = b(u,v)W (v)W (u) holds for all
u,v ∈ V . Since b(u,v)p = b(pu,v) = b(0,v) = 1, the bicharacter b
takes its values in the set of p-roots of unity in C. Hence, there exists
a unique function s : V × V → Zp with b(u,v) = exp(2πi s(u,v)/p)
for all u,v ∈ V . Since b is antisymmetric, we have s(u,v) = −s(v,u).
Moreover, the bicharacter property of b and the uniqueness of s easily
imply that s is Zp-bilinear. In particular, fixing a linear basis {e1, e2}
of V over F, by [21, Theorem VI.5.2] for all i, j = 1, 2 there exists a
unique element σij ∈ F such that s(αei, ej) = Tr (ασij) for all α ∈ F.
Now, suppose W is associated with the V -covariant quadrature system
Q. Then, W is uniquely determined up to a phase function, and the
commutation relation (4) does not depend on such a function. Hence
by item (a) we can assume that the restrictions W |D are ordinary repre-
sentations ofD for all D ∈ D. If v ∈ V \{0} and α ∈ F, taking D = Fv
this implies that W (αv)W (v) = W (v)W (αv), hence b(αv,v) = 1, or,
equivalently, s(αv,v) = 0. As a consequence, s(αu,v) = s(u, αv) for
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all u,v ∈ V and α ∈ F, since

0 = s(α(u+ v),u+ v) = s(αu,u) + s(αu,v) + s(αv,u) + s(αv,v)

= s(αu,v)− s(u, αv)

by Zp-bilinearity and antisymmetry of s. Introducing the F-bilinear
map S : V × V → F defined by S(ei, ej) = σij , we thus see that
s(u,v) = TrS(u,v) for all u,v ∈ V . Indeed,

s
(

∑

i

αiei,
∑

j

βjej

)

=
∑

i,j

s(αiei, βjej) =
∑

i,j

s(αiβjei, ej)

=
∑

i,j

Tr (αiβjσij) = TrS
(

∑

i

αiei,
∑

j

βjej

)

for all αi, βj ∈ F. The map S is unique by uniqueness of the σij ’s and
its bilinearity. It remains to show that S is a symplectic form. Since
Tr (αS(v,v)) = s(αv,v) = 0 for all α ∈ F, [21, Theorem VI.5.2] yields
S(v,v) = 0. To show that S is nonzero, assume by contradiction that
S = 0. Then W is an ordinary representation of the abelian group
V . If v 6= 0 and l ∈ LFv(Ω), we know that the rank-1 projection Q(l)
commutes with W (v), hence W (v)Q(l) = kQ(l) for some phase k ∈ T.
It follows that for all u ∈ V

W (v)Q(l+ u) = W (v)W (u)Q(l)W (u)∗ = W (u)W (v)Q(l)W (u)∗

= kW (u)Q(l)W (u)∗ = kQ(l+ u) .

If D ∈ D is such that D 6= Fv, this implies

W (v) = W (v)
∑

d∈D

Q(l+ d) = k1 .

But this is a contradiction, because if m ∈ LD(Ω) the projections Q(m)
and Q(m+ v) = W (v)Q(m)W (v)∗ have orthogonal ranges. �

The symplectic form S uniquely determined by the V -covariant quad-
rature system Q as in equations (4) and (5) is the symplectic form in-
duced by Q on the affine space (Ω, V ). On the other hand, if (Ω, V )
is already a phase-space and its symplectic form S coincides with the
one induced by Q, we say that Q is a V -covariant quadrature system
for the phase-space (Ω, V, S). In both cases, we write Q ∈ QV (Ω, V, S)
to highlight the phase-space structure we are dealing with.
Note that, if Q ∼ Q′ and U is any unitary operator intertwining Q

with Q′, then the unitary operators W ′(v) = UW (v)U∗ form a projec-
tive representation W ′ of V which is associated with the V -covariant
quadratures Q′. Since W ′ has the same commutation relation of W , we
see that Q and Q′ induce the same symplectic form on (Ω, V ). However,
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the converse of this fact remarkably does not hold: indeed, we will see
in Section 6 that there are many inequivalent V -covariant quadratures
for any fixed phase-space (Ω, V, S).

Remark 4. In [5], when W is the particular representation defined
by [5, Equation (29)], a quadrature system for (Ω, V ) satisfying (3) is
called a quantum net. However, we stress that in the present approach
no a priori choice is made for W , but we rather let it arise from the
V -covariant quadrature system itself. Actually, fixing the representa-
tion W as in [5] is restrictive to some extent, as it does not take into
account the possibility that two V -covariant quadratures can induce
different symplectic forms on (Ω, V ). This affects the partition of the
set QV (Ω, V ) into equivalence classes, as it will become clear at the
end of Section 6.

By (4) and (5), the representation W is a particular instance of a
Weyl system [10, 23, 24, 25], first introduced by Schwinger [1] and
also known with a wide variety of names in the physics and signal
analysis literature: finite Heisenberg group [9], generalized Pauli group
[2, 7, 26, 27], nice error bases [3, 28, 29, 30], translation operators [5]
or displacement operators [6, 11, 31, 32], to cite only the most common
ones. It is the finite dimensional analogue of the Schrödinger represen-
tation of the real Heisenberg group [33].
In the present case, Proposition 3 motivates the following refinement

of the usual definition of Weyl systems.

Definition 4. Let (V, S) be a 2-dimensional F-linear symplectic space.
A Weyl system for (V, S) is a projective representation W of V such
that

(i) for any D ∈ D, the restriction W |D of W to D is an ordinary
representation of the additive abelian group D;

(ii) the following commutation relation holds:

(6) W (u)W (v) = bS (u,v)W (v)W (u) ∀u,v ∈ V

where bS : V ×V → T is the antisymmetric bicharacter of V given
by (5).

Note that, if W is any Weyl system, then W (0) = 1, and, for all
v ∈ V , W (v)∗ = W (−v).
By Proposition 3, we can always assume that the projective repre-

sentation W associated with a V -covariant quadrature system Q is a
Weyl system. We call it a Weyl system associated with Q. However,
even restricting to Weyl systems does not remove all the arbitrariness
in the choice of the projective representation of V associated with Q.
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Indeed, suppose W is a Weyl system satisfying (3), and for all D ∈ D
let χD be some character of D. Define W ′(u) = χFu(u)W (u) for all
u 6= 0 and W ′(0) = 1. Then W and W ′ are two different Weyl systems
that are both associated with Q.
In order to remove any ambiguity and to make the choice of W

canonical, we need to introduce the next definition.

Definition 5. Suppose W is a Weyl system associated with the V -
covariant quadrature system Q, and let o ∈ Ω be any point. Then W
is centered at o if W (d)Q(o+D) = Q(o+D) for all D ∈ D and d ∈ D.

The following is the uniqueness result we were looking for.

Proposition 4. If Q ∈ QV (Ω, V ) and o ∈ Ω is any point, there exists a
unique Weyl system Wo associated with Q and centered at o. If o′ ∈ Ω is
another point, then Wo′(v) = Wo(uo,o′)Wo(v)Wo(uo,o′)

∗ for all v ∈ V .

Proof. Existence: Suppose W is a Weyl system associated with Q. For
any D ∈ D, the restriction W |D is an ordinary representation ofD that
commutes with the 1-dimensional projection Q(o + D), and therefore
we have W (d)Q(o+D) = χD(d)Q(o+D) for some character χD of D.

Setting Wo(v) = χFv(v)W (v) for all v 6= 0 and Wo(0) = 1, the Weyl
system Wo is still associated with Q, and it is centered at o.
Uniqueness: If the Weyl systems W1 and W2 are both associated

with Q and centered at o, then W2 = aW1 for some phase function
a : V → T with a(0) = 1 by Proposition 2. Moreover,

a(v)Q(o+Fv) = a(v)W1(v)Q(o+Fv) = W2(v)Q(o+Fv) = Q(o+Fv)

for all v 6= 0. Hence, a = 1, and so W1 = W2.
If o′ 6= o, then setting W ′(v) = Wo(uo,o′)Wo(v)Wo(uo,o′)

∗ we have
W ′(v) = bS (uo,o′ ,v)Wo(v), therefore W

′ is another Weyl system asso-
ciated with Q. Since, for all D ∈ D and d ∈ D,

W ′(d)Q(o′ +D) = Wo(uo,o′)Wo(d)Wo(uo,o′)
∗Q(o+ uo,o′ +D)

= Wo(uo,o′)Wo(d)Q(o+D)Wo(uo,o′)
∗

= Wo(uo,o′)Q(o+D)Wo(uo,o′)
∗

= Q(o′ +D) ,

W ′ is centered at o′, hence W ′ = Wo′ by the uniqueness statement. �

The relation between quadratures and Weyl systems is very well
known, both in the case F = R [34, 35, 36, 37] and when F is a finite
field as in the present paper [5, 27, 38, 39, 40]. In the latter case, the use
of Weyl systems to construct quadrature systems essentially goes back
to [2]. In the next two sections, we will refine this construction and use
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it to determine all the equivalence classes of V -covariant quadrature
systems.

5. Equivalence of V -covariant quadrature systems: from

V -covariant quadratures to Weyl multipliers

For any choice of the symplectic form S on V , V -covariant quadra-
ture systems for the phase-space (Ω, V, S) actually exist and they are
grouped into a finite collection of equivalence classes. This is the main
content of the present and the next sections, and, as we will shortly
see, the claim is a consequence of a detailed analysis of the associated
Weyl systems and their multipliers. (A quick review on multipliers and
their main properties used in the paper can be found in Appendix A).
In this section, we will concentrate on the equivalence problem, while

the proof of the existence will be deferred to the next one. More pre-
cisely, here we will prove the following two main facts:

(a) Weyl systems associated with V -covariant quadrature systems are
irreducible;

(b) two V -covariant quadratures are equivalent if and only if their as-
sociated centered Weyl systems are such.

(Irreducibility and equivalence of Weyl systems is understood in the
usual sense of projective representations, see again Appendix A). Com-
bining these two facts, the problem of classifying all the equivalence
classes of V -covariant quadratures descends to the same but easier
task for irreducible Weyl systems. Indeed, Stone-von Neumann theo-
rem then applies, which states that two irreducible Weyl systems are
equivalent if and only if their multipliers are equal. So, we will end up
with a very simple characterization: two V -covariant quadrature sys-
tems are equivalent if and only if their associated centered Weyl systems
have the same multiplier. This turns the classification problem for V -
covariant quadratures into the analogous problem for a special class of
multipliers, that is, the class of the Weyl multipliers which we define
at the end of the section.
It will be shown in a moment that the relation between V -covariant

quadratures and associated Weyl systems is established by Fourier
transform along the directions of Ω. But before doing this, we need
the following precise analysis of the group V̂ of characters of V .

Proposition 5. For any symplectic form S on V , the map v 7→
bS (·,v) is a group isomorphism of V onto its character group V̂ . It
maps each subgroup D ∈ D onto its annihilator subgroup D⊥ := {χ ∈
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V̂ | χ|D = 1}, and thus establishes a group isomorphism of the quotient

group V/D with the character group D̂ of D.

Proof. The map v 7→ bS (·,v) clearly is a group homomorphism of V

into V̂ . Since |V | = |V̂ |, in order to prove that it is an isomorphism
it suffices to show its injectivity. If bS (·,v) = 1, then TrS (αw,v) =
Tr (αS (w,v)) = 0 for all w ∈ V and α ∈ F, which implies v = 0

by nondegeneracy of the symplectic form S (·, ·) and of the Zp-bilinear
map F× F ∋ (α, β) 7→ Tr (αβ) ∈ Zp [21, Theorem VI.5.2].
To prove the second claim, note that the character bS (·,d) ∈ D⊥ for

all d ∈ D. On the other hand, by the canonical isomorphism D̂ ≃
V̂ /D⊥ [21, Corollary I.9.3], we have |D̂| = |V̂ |/|D⊥|, and then, since

|D̂| = |D| = |F| and |V̂ | = |F|2, it follows that |D| = |D⊥|. Hence,
the map d 7→ bS (·,d) from D to D⊥ is onto. Finally, the isomorphism

statement is a consequence of the just proved identifications V ≃ V̂ ,
D ≃ D⊥ and the isomorphism D̂ ≃ V̂ /D⊥. �

With the identification D̂ = V/D, the orthogonality relations for
characters of D [21, Theorem XVIII.5.2] give the formula

(7)
∑

d∈D

bS (v− u,d) = |F|δu+D,v+D ∀u,v ∈ V .

Using it, we obtain a direct link between V -covariant quadratures and
associated Weyl systems.

Proposition 6. Suppose Q is a V -covariant quadrature system for the
phase-space (Ω, V, S) acting on the Hilbert space H, and let Wo be its
associated Weyl system centered at o. Then, for all u 6= 0,

Wo(u) =
∑

v+Fu∈V/Fu

bS (u,v)Q(o+ v + Fu)(8)

and, for all D ∈ D and v ∈ V ,

Q(o+ v +D) =
1

|F|
∑

d∈D

bS (v,d)Wo(d) .(9)
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Proof. Recalling that the quotient group V/Fu acts freely and transi-
tively on the set of parallel lines LFu(Ω), we have

Wo(u) = Wo(u)
∑

l∈LFu(Ω)

Q(l) = Wo(u)
∑

v+Fu∈V/Fu

Q(o+ v + Fu)

= Wo(u)
∑

v+Fu∈V/Fu

Wo(v)Q(o+ Fu)Wo(v)
∗

=
∑

v+Fu∈V/Fu

bS (u,v)Wo(v)Wo(u)Q(o+ Fu)Wo(v)
∗

=
∑

v+Fu∈V/Fu

bS (u,v)Wo(v)Q(o+ Fu)Wo(v)
∗

=
∑

v+Fu∈V/Fu

bS (u,v)Q(o+ v + Fu) .

Using the orthogonality relations (7), for all w ∈ V we then have
∑

d∈D

bS (w,d)Wo(d) =
∑

d∈D

bS (w,d)
∑

v+D∈V/D

bS (d,v)Q(o+ v +D)

=
∑

v+D∈V/D

∑

d∈D

bS (w − v,d)Q(o+ v +D)

= |F|Q(o+w +D) ,

which is (9). �

Corollary 1. Any Weyl system associated with a V -covariant quadra-
ture system is irreducible.

Proof. The operators {Q(o + v +D) | v ∈ V, D ∈ D} span the linear
space L(H) by Proposition 1, hence so do the operators {Wo(v) | v ∈
V } by (9). In particular, the subalgebra A of L(H) generated by the
latter operators coincides with L(H), hence Wo is irreducible. Since all
the Weyl systems associated with Q only differ by phase functions, the
same holds for any of them. �

Corollary 2. Suppose Q1,Q2 ∈ QV (Ω, V ), and let W1 and W2 be Weyl
systems associated with Q1 and Q2, respectively. Assume that Wi is cen-
tered at oi, possibly with o1 6= o2. Then a unitary operator U intertwines
Q1 with Q2 if and only if W2(v) = UW1(uo1,o2)W1(v)W1(uo1,o2)

∗U∗ for
all v ∈ V . In particular, Q1 ∼ Q2 if and only if their centered Weyl
systems W1 and W2 are equivalent.

Proof. By Proposition 4, the Weyl system W ′
1 associated with Q1 and

centered at o2 is W ′
1(v) = W1(uo1,o2)W1(v)W1(uo1,o2)

∗. Since W ′
1 and
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W2 are both centered at o2, by formulas (8) and (9) a unitary operator
U intertwines Q1 with Q2 if and only if W2(v) = UW ′

1(v)U
∗. The claim

then follows. �

Corollaries 1 and 2 turn the classification problem for V -covariant
quadrature systems into the analogous task for their associated irre-
ducible Weyl systems, as anticipated at the beginning of this section.
On the other hand, the classification of all the irreducible Weyl systems
is provided by the following variant of Stone-von Neumann theorem
(cf. [42, Theorem 1]).

Proposition 7. Suppose W is an irreducible Weyl system which acts
on the Hilbert space H. Then dimH = |F|, and the set {|F|−1/2W (v) |
v ∈ V } is an orthonormal basis of the linear space L(H) endowed with
the Hilbert-Schmidt inner product. If W ′ is another irreducible Weyl
system, then W and W ′ are equivalent if and only if they have the same
multiplier.

Proof. Suppose W is a Weyl system for the symplectic space (V, S).
For all u ∈ V , let Φ(u) : L(H) → L(H) be the linear map [Φ(u)](A) =
W (u)AW (u)∗. Then Φ(u) is a unitary operator on L(H) endowed with
the Hilbert-Schmidt inner product, and the map Φ : V → U(L(H)) is
an ordinary representation of V in L(H). Note that [Φ(u)](W (v)) =
bS (u,v)W (v), that is, Φ acts as the character bS (·,v) on the 1-
dimensional subspace spanned by the operator W (v). Since the char-
acters bS (·,v1) and bS (·,v2) are different if v1 6= v2, the set {W (v) |
v ∈ V } constitutes an orthogonal sequence in L(H) by a standard ar-
gument.
Let A be the linear subalgebra of L(H) generated by the operators

{W (v) | v ∈ V }. As W (v1)W (v2) = m(v1,v2)W (v1 + v2), where m
is the multiplier of W , the algebra A actually coincides with the linear
span of {W (v) | v ∈ V }. If W is irreducible, we have A = L(H) [41,
Corollary 1.17], hence the set {W (v) | v ∈ V } is an orthogonal basis
of L(H). In particular, dimL(H) = |V | = |F|2, which implies that
dimH = |F|. The normalization constant |F|−1/2 then comes from the
fact that 〈W (u) |W (u) 〉HS = tr [1] = |F|.
Finally, suppose W and W ′ are two irreducible Weyl systems acting
on the Hilbert spaces H and H′. If they are equivalent, then they
clearly have the same associated multiplier. Conversely, if the mul-
tipliers of W and W ′ coincide, the map Ψ : L(H) → L(H′) defined
by Ψ(W (u)) = W ′(u) for all u ∈ V is an isomorphism of C∗-algebras.
Hence there is a unitary operator U : H → H′ such that Ψ(A) = UAU∗
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for all A ∈ L(H) [43, Proposition 1.5], that is, W and W ′ are equiva-
lent. �

Corollaries 1, 2 and Proposition 7 suggest to characterize the equiv-
alence of V -covariant quadratures through the multipliers of their as-
sociated Weyl systems. Indeed, let us define the associated multiplier
of a V -covariant quadrature system Q to be the multiplier of the Weyl
system associated with Q and centered at an arbitrary point o ∈ Ω.
This definition is consistent, since by Corollary 2 such a multiplier is
unaffected by the choice of o, and only depends on the equivalence class
of Q. We then obtain the following characterization.

Proposition 8. Two V -covariant quadrature systems are equivalent if
and only if they have the same associated multiplier.

Proof. The proof is immediate by combining Corollaries 1, 2 and Propo-
sition 7 �

Therefore, the equivalence classes of V -covariant quadrature systems
are unambiguously labeled by the respective associated multipliers.
This suggests to single out the essential properties of such multipli-
ers in the next definition.

Definition 6. A Weyl multiplier for the symplectic space (V, S) is
any multiplier of the additive group V satisfying the following two
conditions:

(i) for any D ∈ D, m(d1,d2) = 1 for all d1,d2 ∈ D;

(ii) m(u,v)m(v,u) = bS (u,v) for all u,v ∈ V .

We will denote byM(V, S) the set of Weyl multipliers for (V, S). Ob-
serve that any m ∈ M(V, S) satisfies m(u, 0) = m(0,u) = m(u,−u) =
1 for all u ∈ V . However, a Weyl multiplier is not exact.
It is easily checked that the Weyl systems for the symplectic space

(V, S) are exactly the projective representations of V whose multipliers
are Weyl multipliers for (V, S). In particular, the multiplier assciated
with any quadrature system in the set QV (Ω, V, S) is a Weyl multiplier
in M(V, S). This fact motivates a deeper analysis of Weyl multipliers,
which will be the topic of the next section.

6. Existence of V -covariant quadrature systems: from

Weyl multipliers to V -covariant quadratures

By Proposition 8 two equivalence classes of V -covariant quadratures
are equivalent if and only if they have the same associated Weyl mul-
tiplier. Now, Theorem 1 below will prove that for any multiplier
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m ∈ M(V, S) there exists a quadrature system in QV (Ω, V, S) hav-
ing m as its associated multiplier. Therefore, the existence problem for
V -covariant quadratures actually turns into the corresponding problem
for Weyl multipliers. This explains the relevance of Weyl multipliers in
the description of V -covariant quadratures, and leads us to completely
characterize the set M(V, S) in the next proposition.

Proposition 9. The set M(V, S) is nonempty and finite, with cardi-
nality |M(V, S)| = |F||F|−1. Moreover, any two multipliers m1, m2 ∈
M(V, S) are equivalent, and, if a : V → T is a function intertwining
m1 with m2, then for any D ∈ D the restriction a|D is a character of
D.

Proof. Existence: Choose a symplectic basis {e1, e2} of V , and define
the following map m0 : V × V → T

m0(α1e1 + α2e2 , β1e1 + β2e2) = e
2πi
p

Tr (β1α2) .

It is easy to check that m0 is a multiplier of V which satisfies the
condition m0(u,v)m0(v,u) = bS (u,v) for all u,v ∈ V . Moreover,
for α1, α2, γ ∈ F, we have that m0(γ(α1e1 + α2e2) , α1e1 + α2e2) =
m0(α1e1 + α2e2 , γ(α1e1 + α2e2)). This means that, for any D ∈ D,
m0(d1,d2) = m0(d2,d1) for all d1,d2 ∈ D, hence there exists a func-

tion aD : D → T such that m0(d1,d2) = aD(d1)aD(d2)aD(d1 + d2) by

Proposition 18 in Appendix A. Note that aD(0) = m0(0, 0) = 1, hence,
setting a{0}(0) = 1, the map m : V × V → T with

m(u,v) = aFu(u)aFv(v)aF(u+v)(u+ v)m0(u,v)

is a Weyl multiplier for (V, S).
Uniqueness: If m1, m2 ∈ M(V, S), then the multiplier m1m2 satisfies

(m1m2)(u,v) = (m1m2)(v,u) for all u,v ∈ V , hence (m1m2)(u,v) =

a(u)a(v)a(u + v) for some function a : V → T by Proposition 18 in
Appendix A. That is, m1 and m2 are equivalent and intertwined by
a. For D ∈ D and d1,d2 ∈ D, we have m1(d1,d2) = m2(d1,d2) = 1,
hence a(d1 + d2) = a(d1)a(d2), i.e., a|D is a character of D.
Finiteness: Fix an element m ∈ M(V, S). Then, any other m′ ∈

M(V, S) is obtained from m by picking a phase function a : V → T
such that a|D ∈ D̂ for all D ∈ D, and letting

m′(u,v) = a(u)a(v)a(u+ v)m(u,v) ∀u,v ∈ V .

The set of functions F = {a : V → T | a|D ∈ D̂ ∀D ∈ D} has car-

dinality |F| = |D̂||D| = |F||F|+1. Moreover, two multipliers m′
1, m

′
2 ∈

M(V, S) coincide if and only if the phase functions a1 and a2, inter-
twining m with m′

1 and m′
2, respectively, as in the previous formula,
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only differ up to a character of V . That is, m′
1 = m′

2 if and only if there

exists a character χ ∈ V̂ such that a2(v) = χ(v)a1(v) for all v ∈ V .

Therefore, we have |M(V, S)| = |F|/|V̂ | = |F||F|−1. �

We now give an explicit example of a Weyl multiplier. It is the
finite field analogue of the well known multiplier m((q1, p1), (q2, p2)) =
ei(q1p2−q2p1)/2 of a Weyl system on R2 [44, Theorem 7.38].

Example 1. If F has characteristic p 6= 2, then m(u,v) = bS (2
−1v,u)

is a Weyl multiplier for (V, S). As we will see in the next section,
such a multiplier is special, since it is the unique element of M(V, S)
having the remarkable property of being invariant under the action
of the symplectic group of (V, S). In characteristic p = 2, however,
the explicit construction of a Weyl multiplier is more involved (see B),
and, contrary to the case p 6= 2, there exists no distinguished element
in M(V, S).

The following theorem is the main result in our characterization of V -
covariant quadrature systems. Indeed, we have established a correspon-
dence QV (Ω, V, S) 7→ M(V, S) which sends each quadrature system of
QV (Ω, V, S) into its associated multiplier in M(V, S). By Proposition
8, this correspondence factors to an injective mapping on the set of
equivalence classes of quadratures. The next theorem proves that such
a mapping is onto, and thus establishes the fundamental equivalence
between V -covariant quadrature systems and Weyl multipliers.

Theorem 1. Suppose (Ω, V, S) is a phase-space. For any element m ∈
M(V, S), there exists a unique equivalence class Qm

V (Ω, V, S) of V -
covariant quadrature systems for (Ω, V, S) whose associated multiplier
is m. If W is an irreducible Weyl system acting on H and having
multiplier m and o ∈ Ω is any point, the map Q : L(Ω) → L(H) given
by

(10) Q(o+ v +D) =
1

|F|
∑

d∈D

bS (v,d)W (d) ∀v ∈ V, D ∈ D

is a V -covariant quadrature system in Qm
V (Ω, V, S) and W is its asso-

ciated Weyl system centered at o.

Proof. The uniqueness of the equivalence classQm
V (Ω, V, S) follows from

Proposition 8.
By Proposition 16 in Appendix A, there exists an irreducible Weyl
system W for the symplectic space (V, S) whose multiplier is m. Hence
it is enough to show that for such a W formula (10) defines an element
Q ∈ QV (Ω, V ), and that W is the Weyl system associated with Q and
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centered at o.
It is easy to check that Q(o+v+D)∗ = Q(o+v+D). Moreover, since
W |D is an ordinary representation,

Q(o+ v1 +D)Q(o+ v2 +D) =

=
1

|F|2
∑

d1,d2∈D

bS (v1,d1) bS (v2,d2)W (d1 + d2)

=
1

|F|2
∑

d2∈D

bS (v2 − v1,d2)
∑

d′

1
∈D

bS (v1,d
′
1)W (d′

1)

= δv1+D,v2+DQ(o+ v1 +D) ,

in which we made the substitution d′
1 = d1 + d2 and we used the

orthogonality relations (7). Therefore, the operators {Q(o + v + D) |
v + D ∈ V/D} are orthogonal projections, and the ranges of Q(o +
v1 +D) and Q(o+ v2 +D) are orthogonal if v1 +D 6= v2 +D. Since
|V/D| = |F| = dimH by Proposition 7, each projection Q(o + v +D)
then must have rank 1, and

∑

v+D∈V/D Q(o+ v +D) = 1.

For any u ∈ V , by the commutation relation (6) we have

W (u)Q(o+ v +D)W (u)∗ =
1

|F|
∑

d∈D

bS (v,d) bS (u,d)W (d)

= Q(o+ v + u+D) ,

(11)

hence Q(l+ u) = W (u)Q(l)W (u)∗ for all l ∈ L(Ω) and u ∈ V .
In order to show that Q is a V -covariant quadrature system, we still
need to prove the mutual unbiasedness relation in Definition 1. If
D1 6= D2 and li ∈ LDi

(Ω), then, for all d ∈ D1,

tr [Q(l1)Q(l2)] = tr [Q(l1 − d)Q(l2)] = tr [W (d)∗Q(l1)W (d)Q(l2)]

= tr [Q(l1)W (d)Q(l2)W (d)∗]

= tr [Q(l1)Q(l2 + d)] .

On the other hand,

∑

d∈D1

tr [Q(l1)Q(l2 + d)] = tr



Q(l1)
∑

m∈LD2
(Ω)

Q(m)



 = tr [Q(l1)] = 1 .

Combining these two facts, we see that tr [Q(l1)Q(l2)] = 1/|F|, which
completes our proof that Q is a V -covariant quadrature system.
We now show that W is the Weyl system associated with Q and cen-
tered at o. We have already seen in (11) that W is a Weyl system
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associated with Q. Moreover, for all D ∈ D and d ∈ D,

W (d)Q(o+D) =
1

|F|
∑

d′∈D

W (d+ d′) = Q(o+D) ,

that is, W is centered at o. �

By the existence of Weyl multipliers proved in Proposition 9, Theo-
rem 1 thus implies that the set QV (Ω, V, S) is nonempty for any sym-
plectic form S on V , that is, V -covariant quadrature systems exist for
any phase-space (Ω, V, S). Moreover, it shows that the set QV (Ω, V ) is
partitioned into the disjoint union of the equivalence classes

QV (Ω, V ) =
⋃

S∈Sym(V )

⋃

m∈M(V,S)

Qm
V (Ω, V, S)

where Sym(V ) is the collection of all symplectic forms on V . Since
|Sym(V )| = |F∗| = |F|−1 and for all S ∈ Sym(V ) we have |M(V, S)| =
|F||F|−1 by Proposition 9, the previous union involves (|F| − 1)|F||F|−1

equivalence classes. In particular, for all S ∈ Sym(V ) there are at least
two distinct equivalence classes in QV (Ω, V, S), that is, inequivalent V -
covariant quadratures for the same phase-space (Ω, V, S) actually exist,
as we anticipated in Section 4.
The number (|F|−1)|F||F|−1 of equivalence classes in the setQV (Ω, V )

should be compared with the analogous number |F||F|−1 of inequivalent
quantum nets found in [5, Section VI], where, however, the authors did
not consider the possibility that the symplectic form S associated with
different V -covariant quadratures may vary within the set Sym(V ).
As an important consequence of the uniqueness statement for Weyl

multipliers contained in Proposition 9, the set QV (Ω, V, S) can be char-
acterized actually using a single quadrature system Q ∈ QV (Ω, V, S).
Indeed, by the next proposition one can pass from Q to any other
quadratures Q′ ∈ QV (Ω, V, S) simply by relabeling the lines of Q.

Proposition 10. Let Q1,Q2 ∈ QV (Ω, V, S), where each Qi acts on the
Hilbert space Hi. Then there exist a unitary operator U : H1 → H2

and, for all directions D ∈ D, a vector vD ∈ V such that

(12) Q2(l) = UQ1(l+ vD)U
∗ ∀l ∈ LD(Ω), D ∈ D .

Proof. Suppose o ∈ Ω is a fixed point. Let Wi be the Weyl system
associated with the V -covariant quadrature system Qi and centered at
o, and let mi be its Weyl multiplier. By Proposition 9, for all D ∈ D
there is a character χD ∈ D̂ such that

m2(u,v) = χFu(u)χFv(v)χF(u+v)(u+ v)m1(u,v) ∀u,v ∈ V \ {0} .
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Therefore, if we define the projective representation W ′
1 of V in H1,

with

W ′
1(u) = χFu(u)W1(u) ∀u ∈ V \ {0} and W ′(0) = 1 ,

the multiplier of W ′
1 is m2. By the identification D̂ = V/D, we have

χD = bS (·,vD) for some vector vD + D ∈ V/D. Let Q′
1 be the V -

covariant quadrature system with

Q′
1(x+D) = Q1(x+ vD +D) ∀x+D ∈ L(Ω) .

It is easy to check that W ′
1 is a Weyl system associated with Q′

1. More-
over, for all D ∈ D and d ∈ D,

W ′
1(d)Q

′
1(o+D) = bS (d,vD)W1(d)W1(vD)Q1(o+D)W1(vD)

∗

= W1(vD)W1(d)Q1(o+D)W1(vD)
∗ = W1(vD)Q1(o+D)W1(vD)

∗

= Q′
1(o+D) ,

hence W ′
1 is the Weyl system associated with Q′

1 and centered at o. By
Proposition 8, Q′

1 and Q2 are equivalent, hence (12) follows. �

Proposition 10 states that any two quadrature systems Q1 and Q2 ∈
QV (Ω, V, S) only differ by cyclic permutations of the parallel lines in
the sets LD(Ω), each permutation depending on the common direction
D of the lines. In particular, it implies that the ranges of all V -covariant
quadrature systems for the phase-space (Ω, V, S) are unitarily conju-
gated: that is, if Q1,Q2 ∈ QV (Ω, V, S), there exists a unitary operator
U such that ranQ2 = U(ranQ1)U

∗, where ranQ = {Q(l) | l ∈ L(Ω)} ⊂
L(H). Actually, we will see in Theorem 3 of the next section that the
conjugacy of the ranges is a general property of V -covariant quadra-
ture systems, and it is not only restricted to systems inducing the same
symplectic form on (Ω, V ).

7. The action of the symplectic group on V -covariant

quadratures

In this section, we enlarge our covariance group and study quadrature
systems that are covariant with respect to subgroups G ⊆ GL(V )⋊ V
properly containing the translation group V . By Proposition 2, this
will lead us to consider projective representations of the semidirect
product G0 ⋊ V , where G0 = G ∩ GL(V ), which are extensions of
Weyl systems on V . However, it will soon become clear that not all
covariance subgroups are allowed. Indeed, this is a consequence of the
next easy but very useful observation.
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Proposition 11. Let m ∈ M(V, S) and Q ∈ Qm
V (Ω, V, S). Moreover,

let W be the Weyl system associated with Q and centered at the unique
point o ∈ Ω such that GL(V ) · o = {o}. Given A ∈ GL(V ), define the
projective representation WA of V with

(13) WA(v) = W (Av) ∀v ∈ V .

Then WA is the Weyl system associated with the V -covariant quadra-
tures QA and centered at the point o. Furthermore, we have QA ∈
QmA

V (Ω, V, SA), where SA is the symplectic form SA(·, ·) = S(A·, A·)
and mA ∈ M(V, SA) is the multiplier mA(·, ·) = m(A·, A·).
Proof. By definitions,

WA(v)QA(l)WA(v)
∗ = W (Av)Q(A · l)W (Av)∗ = Q(A · l+ Av)

= QA(l+ v)

for all l ∈ L(Ω) and v ∈ V , and

WA(d)QA(o+D) = W (Ad)Q(o+ AD) = Q(o+ AD)

for all D ∈ D and d ∈ D since Ad ∈ AD. This proves the first claim.
For the second, we have

WA(u)WA(v) = e
2πi
p

TrS(Au,Av)WA(v)WA(u)

= m(Au, Av)WA(u+ v) ∀u,v ∈ V ,

that is, the quadrature system QA induces the symplectic form SA, and
mA is its associated Weyl multiplier. �

Since all symplectic forms only differ by a nonzero scalar, we have
SA = λ(A)S for some λ(A) ∈ F∗. To determine λ(A), write Aei =
α1ie1 + α2ie2 with respect to some symplectic basis {e1, e2} of (V, S).
Then

λ(A) = λ(A)S(e1, e2) = S(Ae1, Ae2) = α11α22 − α12α21 = det(A) ,

where det : GL(V ) → F∗ is the determinant map.
In Proposition 11, the two V -covariant quadrature systems Q and QA

can thus be equivalent only if detA = 1. Introducing the symplectic
group SL(V ) = {A ∈ GL(V ) | det(A) = 1}, the main consequence
is that the set QG0⋊V (Ω, V ) is empty whenever G0 * SL(V ). This
important fact was already noticed in [5, Section VI], where two V -
covariant quadrature systems Q and Q′ such that Q′ = QA for some
element A ∈ SL(V ) are called similar. However, in general similarity
does not imply equivalence of quadratures, and it may happen that the
set QG0⋊V (Ω, V ) is empty also when G0 ⊆ SL(V ). Indeed, we have the
following more precise statement.
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Proposition 12. Let G0 ⊆ SL(V ) be any subgroup. A quadrature
system Q ∈ QV (Ω, V ) is (G0⋊V )-covariant if and only if its associated
multiplier m satisfies the equality

(14) mA = m ∀A ∈ G0 .

In this case, let W be the Weyl system associated with Q and centered
at the point o ∈ Ω such that GL(V ) · o = {o}. Then, for any projective
representation U of G0 associated with Q, we have

(15) W (Av) = U(A)W (v)U(A)∗ ∀v ∈ V, A ∈ G0 .

Proof. If Q ∈ Qm
V (Ω, V, S) and A ∈ G0, then QA ∈ QmA

V (Ω, V, SA) =
QmA

V (Ω, V, S) by Proposition 11. Therefore, by Proposition 8 the quad-
rature systems Q and QA are equivalent for all A ∈ G0 if and only if
(14) holds. The second claim follows since the Weyl system associated
with QA and centered at o is the projective representation WA defined
in (13). Hence, if U(A) is a unitary operator intertwining Q with QA

as in (2), by Corollary 2 we have WA(v) = U(A)W (v)U(A)∗ for all
v ∈ V , which is (15). �

Equation (14) suggests to introduce and study the action of the
group SL(V ) on the set of the Weyl multipliers, which transforms any
multiplier m into mA for all A ∈ SL(V ). In particular, it justifies the
following definition.

Definition 7. If G0 ⊆ SL(V ) is a subgroup andm is a Weyl multiplier,
we say that m is G0-invariant if mA = m for all A ∈ G0.

Note that, for any symplectic form S, if m ∈ M(V, S), then also
mA ∈ M(V, S) for all A ∈ SL(V ). By Proposition 12, we are interested
in the set of fixed points of M(V, S) under the action of the group
SL(V ) or some subgroup G0 ⊂ SL(V ). However, the next proposition
shows that, when G0 is too large, it may happpen that it actually has
no fixed points in M(V, S).

Proposition 13. Let S be any symplectic form on V . There exists a
SL(V )-invariant multiplier minv ∈ M(V, S) if and only if p 6= 2. In
this case, minv is unique, and given by

minv(u,v) = bS
(

2−1v,u
)

∀u,v ∈ V .

Proof. Suppose m ∈ M(V, S) is SL(V )-invariant, and fix linearly inde-
pendent vectors u,v ∈ V . If α, β, γ ∈ F, we then have

m(u, γ(αu+ βv)) =

{

mA(γu, βv) if γβ 6= 0

1 if γβ = 0

= m(γu, βv) ,
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where A ∈ SL(V ) is given by

Au = γ−1u Av = γv + β−1γαu .

For β1, β2 ∈ F, we also have

m(u, (β1 + β2)v) = m(u, (β1 + β2)v)m(β1v, β2v)

= m(u+ β1v, β2v)m(u, β1v) = mB(u, β2v)m(u, β1v)

= m(u, β2v)m(u, β1v) ,

with B ∈ SL(V ) as follows

Bu = u+ β1v Bv = v .

Therefore, if u1,u2 ∈ Fu, v1,v2 ∈ Fv and δ ∈ F,

m(u, δ(u1 + v1 + u2 + v2)) = m(u, δ(v1 + v2))

= m(u, δv1)m(u, δv2) = m(u, δ(u1 + v1))m(u, δ(u2 + v2))

= m(δu, (u1 + v1))m(δu, (u2 + v2)) .

This relation with δ = 1 implies that m(u, ·) ∈ V̂ for all u. Hence there
is a unique vector T (u) ∈ V such that m(u,w) = bS (w, T (u)) for all
w ∈ V . On the other hand, the same relation with u2 + v2 = 0 yields
m(u, δw) = m(δu,w), hence the map T : V → V satisfies Tδ = δT for

all δ ∈ F. Analogously, also m(·,v) ∈ V̂ for all v, which implies that
T (u1+u2) = T (u1)+T (u2) for all u1,u2 ∈ V . Thus, T is F-linear. By
SL(V )-invariance of m it follows that A−1TA = T for all A ∈ SL(V ),
implying that T = αI for some α ∈ F [45, Theorem 4.8]. Finally,

bS (u, 2αv) = bS (v, αu)bS (u, αv) = m(u,v)m(v,u) = bS (u,v) ,

so that 2α = 1. Therefore, p must be odd and α = 2−1, so that
m(u,v) = bS (v, 2

−1u) = bS (2
−1v,u). �

The next theorem is the main result of the section.

Theorem 2. The set QSL(V )⋊V (Ω, V ) is nonempty if and only if p 6= 2.
In this case, for any symplectic form S ∈ Sym(V ), the set of quadra-
tures Qminv

V (Ω, V, S) ≡ QV (Ω, V, S) ∩ QSL(V )⋊V (Ω, V ) is the unique
(SL(V )⋊ V )-invariant equivalence class in QV (Ω, V, S)

Proof. Immediate from Theorem 1 and Propositions 12 and 13. �

When p 6= 2, the distinguished role played by the (SL(V ) ⋊ V )-
invariant equivalence class Qminv

V (Ω, V, S) inside QV (Ω, V, S) was al-
ready observed in [5, Section VI, after Equation (72)] in the special
case F = Zp. Moreover, the nonexistence of (SL(V ) ⋊ V )-covariant
quadrature systems when F = Z2 was also noticed in [5, Section VIII]
(see also Section 9 below).
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When p = 2, even if there do not exist (SL(V ) ⋊ V )-covariant
quadrature systems, one can still find properly contained subgroups
G0 ⊂ SL(V ) admitting G0-invariant Weyl multipliers, so that the set
QG0⋊V (Ω, V ) is nonempty. A particularly important class of these sub-
groups is the subject of the next section.

Remark 5. Theorem 2 has a counterpart for (SL(V ) ⋊ V )-covariant
Wigner functions (see [17, Theorem 7] for the definition of Wigner
functions that are covariant with respect to the group of the affine
symplectic phase-space transformations). Indeed, the Wigner function
analogue of the uniqueness statement in Theorem 2 was established by
Gross in the case F = Zp with p odd [17, Theorem 23]. Zhu recently
extended Gross’ uniqueness result to all finite fields with odd character-
istic, and he also proved that there do not exist (SL(V )⋊V )-covariant
Wigner functions in even characteristic [18, Theorem 3].

Remark 6. When there exists a quadrature system Q ∈ QG0⋊V (Ω, V )
for some subgroup G0 ⊆ SL(V ), any Weyl system W associated with Q

can be enlarged to a projective representation of the whole semidirect
product G0⋊V which is still associated with Q. Indeed, this is done by
defining the extension W̃ (A,v) = U(A)W (v) for all (A,v) ∈ G0 ⋊ V ,
where U is any projective representation of G0 associated with Q. In
particular, if G0 = SL(V ) and W is the Weyl system centered at the
point o ∈ Ω such that GL(V ) · o = {o}, then (15) implies that the
representation U is the Weil [12, 13, 14] or metaplectic [15] represen-
tation of the symplectic group SL(V ). In this case, the representation
W̃ of the full semidirect product SL(V ) ⋊ V is known with the name
of Clifford group in the physics literature [46, 47] (see also [48] and the
references therein; for an exhaustive mathematical description of the
Clifford group, we refer to [49, 50]). Proposition 13 then reflects the
well known difficulties which arise when one tries to define the Weil
representation in characteristic p = 2 [50, 51, 52].

Remark 7. In [5, Appendix B], for every irreducible Weyl system
W , in any characteristic p and for all symplectic maps A ∈ SL(V ),
the authors provide an explicit construction of a unitary operator UA

satisfying the relation

(16) UAW (v)U∗
A = a(A,v)W (Av) ∀v ∈ V ,

where a : SL(V ) × V → T is a nontrivial phase function. In order to
explain the origin of the operators {UA | A ∈ SL(V )} of (16), observe
that by Proposition 9 the multiplier mA of WA is equivalent to the
multiplier m of W , hence, if aA : V → T is any function intertwining
mA with m, the irreducible Weyl systems W and W ′

A = aAWA have the
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same multiplier. Setting a(A,v) = aA(v) for all v ∈ V , the existence
of the unitary operator UA satisfiyng (16) then follows from Stone-von
Neumann theorem (Proposition 7).
However, when W arises as a Weyl system associated with some quad-
rature system Q ∈ Qm

V (Ω, V, S), we remark that in general such an
operator UA does not intertwine the quadrature system Q with the
transformed one QA. Indeed, if W is centered at some point of Ω, the
Weyl system W ′

A, which is associated with QA, needs not be centered
at any point. Corollary 2 then does not apply to Q and QA. Thus, the
operator UA may not satisfy (2), hence in general it is unrelated to the
covariance properties of the quadrature system Q. In particular, when
p = 2 the existence of the UA’s constructed in [5] is not in contradiction
with Theorem 2 above.
Nevertheless, the unitary operator UA still yields the range conjugacy
relation ranQA = UA(ranQ)U

∗
A; that is, UA maps the maximal set of

MUBs corresponding to the quadrature systems Q onto the one corre-
sponding to QA, if MUBs are regarded as sets of unordered bases. The
reason of this fact is similar to the proof of Proposition 10. Indeed,
for all D ∈ D the restriction aA|D is a character of D by Proposi-

tion 9, hence aA|D = bS (·,vA,D) for some vA,D + D ∈ V/D. Let
Q′

A ∈ QV (Ω, V ) be the quadrature system

Q′
A(x+D) = QA(x+ vA,D +D) ∀x+D ∈ L(Ω) .

If the Weyl system W associated with Q is centered at the point
o ∈ Ω such that GL(V ) · o = {o}, then W ′

A is the Weyl system as-
sociated with Q′

A and still centered at o. Since UA intertwines W
with W ′

A, it also intertwines Q with Q′
A by Corollary 2. Therefore,

ranQA = ranQ′
A = UA(ranQ)U

∗
A.

It is worth stressing that, unlike the Weil representation, the map
A 7→ UA is not guaranteed to be a projective representation of SL(V ).
Actually, it is a projective representation if and only U∗

ABUAUB is a
complex scalar for all A,B ∈ SL(V ), which is equivalent to the condi-
tion

UAUBW (v)U∗
BU

∗
A = UABW (v)U∗

AB ∀v ∈ V, A,B ∈ SL(V )

by irreducibility of W . Inserting (16) into this equation, we find that
the function a must satisfy the cocycle identity

a(AB,v) = a(A,Bv)a(B,v) ∀v ∈ V, A,B ∈ SL(V ) .

We have seen that this happens in characteristic p 6= 2 by choosing
as W any Weyl system whose multiplier m is SL(V )-invariant and
letting UA ≡ U(A) be the metaplectic representation. This is still
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true when F = Z2 by making an appropriate choice of the opertators
{UA | A ∈ SL(V )} (see Section 9 below). However, when |F| = 2r

with r ≥ 2, the existence of a cocycle a : SL(V ) × V → T and a
projective representation A 7→ UA satisfying (16) is an open problem
to our knowledge. In fact, [50, Theorem 7] seems to give a strong
indication against this possibility.

We conclude this section with the following improvement of Propo-
sition 10.

Theorem 3. Let Q1 and Q2 be any two V -covariant quadrature sys-
tems, with Qi acting on the Hilbert space Hi. Then there exist a unitary
operator U : H1 → H2, a map A ∈ GL(V ) and, for all D ∈ D, a vector
uD ∈ V , such that

Q2(l) = UQ1(Al + uD)U
∗ ∀l ∈ LD(Ω), D ∈ D .

Proof. Let Si be the symplectic form induced by Qi on (Ω, V ). Pick
A ∈ GL(V ) such that S2 = det(A)S1, and let Q′

2 = (Q2)A−1. By
Proposition 11, we have Q′

2 ∈ QV (Ω, V, S1), hence there exist a unitary
U : H1 → H2 and vectors vD ∈ V such that

Q
′
2(l) = UQ1(l+ vD)U

∗ ∀l ∈ LD(Ω), D ∈ D
by Proposition 10. Going back to the quadrature system Q2 and sub-
stituting uD = vAD, we obtain the claim. �

The above result implies that the ranges of any two V -covariant
quadrature systems are unitarily conjugated, regardless of the symplec-
tic forms they induce on (Ω, V ) (cf. Remark 7, where the symplectic
form S was fixed). It should be stressed that this is a distinguished
property of V -covariant quadratures, which does not extend to the non-
covariant ones (see [16] for more details on quadrature systems whose
ranges are not unitarily conjugated).

8. Maximal nonsplit toruses and systems of rotated

quadratures

We now define the finite field analogues of the rotation group of the
Euclidean plane R2, which have been first introduced in the context
of MUBs by [53, 54] and further studied in [19, 48] (see also [55, 56]
for applications in signal analysis). As it will be proved below, there
exist quadrature systems in QV (Ω, V ) that are covariant with respect
to such groups in all characteristics p (even or odd).

Definition 8. An element A ∈ SL(V ) is nonsplit if AD 6= D for all
D ∈ D. A nonsplit torus is a cyclic subgroup of SL(V ) generated by a
nonsplit element.
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An element A ∈ SL(V ) is nonsplit if and only if its characteristic
polynomial

(17) pA(X) = det(A−XI) = X2 − tr(A)X + 1

has no solution in the field F (in the above expression, I is the identity
of V , and tr(A) is the trace of A).
In order to describe a nonsplit element A ∈ SL(V ) and the stucture

of the torus it generates, it is useful to fix a symplectic basis of V and
represent A as a unit determinant 2×2 matrix with entries in F. If z and
z are the two conjugate roots of pA in the quadratic extension F̃ of F,
and (α1, α2)

T and (α1, α2)
T are the two eigenvectors of A corresponding

to the eigenvalues z and z, we have

A = U

(

z 0
0 z

)

U−1 with U =

(

α1 α1

α2 α2

)

.

In particular, the nonsplit torus generated by A is the subgroup

TA =

{

U

(

zk 0
0 zk

)

U−1 | k ∈ Z

}

.

Note that the commutant of TA in SL(V ) is the subgroup

T ′
A =

{

U

(

z′ 0
0 z′

)

U−1 | z′ ∈ F̃ and z′z′ = 1

}

.

Since the set

(18) M = {z′ ∈ F̃ | z′z′ = 1}
is a cyclic subgroup of the multiplicative group F̃∗ = F̃ \ {0} [21,
Theorem IV.1.9], the group T ′

A is cyclic: it is the maximal nonsplit
torus containing TA (see [57, Section 16.2] for the definition of toruses
in general algebraic groups).
Maximal nonsplit toruses in SL(V ) are all the subgroups of the form

(19)

T =

{

1

α1α2 − α1α2

(

zk0α1α2 − zk0α1α2 zk0α1α1 − zk0α1α1

zk0α2α2 − zk0α2α2 zk0α2α1 − zk0α2α1

)

| k ∈ Z

}

where α1, α2 ∈ F̃ with α1α2 /∈ F and z0 is any generator of the cyclic
group M defined in (18). A concrete example of a maximal nonsplit
torus can be constructed in the following way: the symplectic matrix

(20) A =

(

z0 + z0 1
−1 0

)

has eigenvalues z0 and z0, hence TA = T ′
A, that is, TA is a maximal

nonsplit torus. This group TA corresponds to the choice α1 = z0 and
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α2 = −1 in (19), and it is the prototype of a maximal nonsplit torus,
as every other maximal nonsplit torus is in the conjugacy class of TA in
SL(V ) by [57, Corollary A of Section 21.3]. In other words, by suitably
choosing the symplecic basis of V , any maximal nonsplit torus can be
put in the form T = {Ak | k ∈ Z} with A given by (20).
We now evaluate the order of a maximal nonsplit torus T . As |T | =

|M |, this amounts to finding the order of M , that is, the kernel of the

homomorphism φ : F̃∗ → F∗ given by φ(z) = zz. In order to do it,
observe first of all that φ(F∗) = F2

∗, the group of the squares of F∗. If

p = 2, then F2
∗ = F∗. Thus, φ is surjective, hence |F̃∗|/|M | = |F∗|, that

is, |M | = |F̃∗|/|F| = |F| + 1. If p 6= 2, pick any element γ ∈ F∗ \ F2
∗,

and let j,−j ∈ F̃ be its square roots. We have φ(α + j) = α2 − γ for
all α ∈ F, hence |φ(F + j)| = |F2| = |F2

∗| + 1, which implies that F2
∗ is

a proper subgroup of φ(F̃∗). Since F2
∗ has index 2 in F∗, it follows that

φ is surjective also in this case, hence |M | = |F|+ 1 again.
Finally, we look at the action of a maximal nonsplit torus T on the

set of directions D. Since the intersection M ∩ F∗ = {1,−1}, we see
that T contains exactly two split elements in characteristic p 6= 2, that
is, I and −I, while if p = 2 it does not contain any nontrivial split
element. Therefore, the stabilizer subgroup for the action of T on D is
{I,−I} if p 6= 2, and it is trivial if p = 2. As |D| = |T |, this implies
that when p 6= 2 the torus T has two orbits in D with (|F| + 1)/2
elements in each orbit, while it acts freely and transitively on D when
p = 2.
We summarize the main points of the above discussion in the follow-

ing proposition (cf. [54] in the case p even, and [48, Theorems 7 and 8]
for p odd).

Proposition 14. There exist nonsplit toruses in SL(V ) for every char-
acteristic p. Each nonsplit torus T is contained in a uniquely deter-
mined maximal nonsplit torus, that is, its commutant T ′ in SL(V ).
A maximal nonsplit torus has order |F| + 1, and all maximal nonsplit
toruses are conjugated in SL(V ). If T is a maximal nonsplit torus, then
its action on the set of directions D

- is free and transitive if p = 2;
- has two orbits with (|F|+ 1)/2 elements in each orbit if p 6= 2.

If T ⊂ SL(V ) is a maximal nonsplit torus, the semidirect product
T ⋊ V is the finite analogue of the Euclidean group of the plane R2.
According to this analogy, we say that any Q ∈ QT⋊V (Ω, V ) is a sys-
tem of rotated quadratures. To provide a further explanation of this
terminology, let A be a generator of T , fix a direction DO on each orbit
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O of T in D, and pick a vector u ∈ V not belonging to any subspace
DO. Moreover, as usual denote by o the point of Ω fixed by GL(V ).
Then, every affine line l ∈ L(Ω) can be written as

l = Ak(l)(o+ α(l)u+DO(l)) ,

where the orbit O(l) is uniquely determined by l, while the couple
(α(l), k(l)) ∈ F × Z|F|+1 is unambiguously defined if p = 2, and it is
unique up to the substitution (α(l), k(l)) 7→ (−α(l), k(l) + (|F|+ 1)/2)
if p 6= 2. Therefore, we have

(21) Q(l) = U(A)k(l)W (α(l)u)Q(o+DO(l))W (α(l)u)∗U(A)k(l) ∗ ,

where U and W are any projective representation of T and any Weyl
system associated with Q, respectively (see Theorem 5 below for the
explicit form of U). The last formula shows that, when p = 2 [respec-
tively, when p 6= 2] every projection Q(l) can be obtained by unitary
conjugation of one fixed projection Q(l0) [resp., two fixed projections
Q(l1) and Q(l2)] by means of the representations U and W , and it thus
justifies the name of rotated quadratures for Q.
The next easy result is the key fact for proving the existence of

rotated quadratures in all field characteristics.

Proposition 15. If T is a maximal nonsplit torus, then, for all S ∈
Sym(V ), there exists a T -invariant multiplier m ∈ M(V, S).

Proof. If p 6= 2, it is enough to choose m = minv. Otherwise, if p = 2,
pick any m0 ∈ M(V, S), and let m =

∏

A∈T (m0)A. Then m is a
multiplier of V , which clearly satisfies item (i) of Definition 6. Since

(m0)A(u,v)(m0)A(v,u) = bS (u,v) = (−1)TrS(u,v) for every A ∈ T , we
have

m(u,v)m(v,u) = (−1)|T |TrS(u,v) = (−1)TrS(u,v) = bS (u,v)

because |T | = |F|+1 is odd. Therefore, also item (ii) of Definition 6 is
satisfied by m, hence m ∈ M(V, S). For all B ∈ T ,

mB =
∏

A∈T

(m0)AB =
∏

A∈T

(m0)A = m,

which shows that m is T -invariant. �

We remark that in general, contrary to the case of invariant mul-
tipliers, T -invariant multipliers are not unique when T is a maximal
nonsplit torus (see Section 9 below for an example).

Theorem 4. For any characteristic p and S ∈ Sym(V ), if T ⊂ SL(V )
is a nonsplit torus, then the set QT⋊V (Ω, V, S) is nonempty.
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Proof. Since QT1⋊V (Ω, V, S) ⊂ QT2⋊V (Ω, V, S) whenever T2 ⊂ T1, it is
not restrictive to assume that T is maximal. In this case, the claim
follows from Theorem 1 and Propositions 12 and 15. �

For any nonsplit torus T ⊂ SL(V ) and quadrature system Q ∈
QT⋊V (Ω, V ), we now explicitely exhibit the projective representation
U of T associated with Q. Such a representation is the finite analogue
of the oscillator representation of quantum homodyne tomography, and
its effect is to rotate Q in different directions according to the action
of T on the set D, as described in formula (21). We stress again that
no restriction is made on the characteristics p of the field.

Theorem 5. Let T be a nonsplit torus, and suppose Q ∈ QT⋊V (Ω, V ).
Let W be the Weyl system associated with Q and centered at the point
o ∈ Ω such that GL(V ) · o = {o}, and let m be its Weyl multiplier.
Then, the projective representation U of T associated with Q is given
by

(22) U(A) =
c(A)

|F|
∑

u∈V

m(u, (A− I)−1u)W (u) ∀A ∈ T \ {I} ,

where c(A) ∈ T is an arbitrary phase factor.

Proof. By Proposition 7, we can expand the operator U(A) with respect
to the basis {W (u) | u ∈ V }, that is,

U(A) =
∑

u∈V

λ(u)W (u)

for suitable coefficients λ(u) ∈ C. Equation (15) requires U(A)W (v) =
W (Av)U(A), which yields

∑

u∈V

λ(u)m(u,v)W (u+ v) =
∑

u∈V

λ(u)m(Av,u)W (Av + u) .

Comparing these two expansions, we have

λ(u− v)m(u− v,v) = λ(u− Av)m(Av,u− Av) .

Since A− I is invertible, we can make the substitutions x = u−v and
y = u − Av. As at least one of the λ(y) is nonzero, in this way we
obtain

λ(x)

λ(y)
=

m(x, (A− I)−1(x− y))

m(A(A− I)−1(x− y),y)
.
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By Proposition 12, the multiplier m is T -invariant, hence

λ(x)

λ(y)
=

m(x, (A− I)−1(x− y))

m((A− I)−1(x− y), A−1y)

=
m(x, (A− I)−1(x− y))m((A− I)−1x,−(A− I)−1y)

m((A− I)−1(x− y), A−1y)m((A− I)−1x,−(A− I)−1y)

=
m(A(A− I)−1x,−(A− I)−1y)m(x, (A− I)−1x)

m((A− I)−1x,−A−1(A− I)−1y)m(−(A− I)−1y, A−1y)

=
m(−A(A− I)−1x, (A− I)−1y)m(x, (A− I)−1x)

m(−A(A− I)−1x, (A− I)−1y)m(−(A− I)−1y, A−1y)

=
m(x, (A− I)−1x)

m(−(A− I)−1y, A−1y)

where in the first and fourth equalities we used T -invariance of m and
the fact that −I ∈ T , and in the third one we employed the multiplier
property of m. Then, being valid for all x,y ∈ V , this equation implies
that, for all u ∈ V ,

m(u, (A− I)−1u) = m(−(A− I)−1u, A−1u)

and

λ(u) = d(A)m(u, (A− I)−1u) ,

where d(A) ∈ C is a constant independent of u. From the unitarity
condition U(A)U(A)∗ = 1 it follows that

|F| = tr [U(A)U(A)∗]

= |d(A)|2
∑

u,v∈V

m(u, (A− I)−1u)m(v, (A− I)−1v)tr [W (u)W (v)∗]

= |d(A)|2|F|
∑

u∈V

|m(u, (A− I)−1u)|2

= |d(A)|2|F|3

hence d(A) = c(A)/|F|, where c(A) ∈ T is a phase factor. �

Since a nonsplit torus is a cyclic group, the phase function c : T → T
appearing in (22) can always be chosen in such a way as to make U an
ordinary representation [58, Proposition 2.1.1].
When p 6= 2 and Q ∈ Qminv

V (Ω, V, S), the previous theorem yields the
expression

U(A) =
c(A)

|F|
∑

u∈V

bS
(

2−1u, (A− I)−1u
)

W (u)
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for the restriction of the metaplectic representation U to the torus T .
This formula should be compared with the analogous result first stated
in [9, Propositon 4] for the particular case F = Zp with p ∈ 4Z − 1.
See also [47, Lemma 2] for the case F = Zp, and [6, Eqs. (45), (47),
(50), (52)], [32, item (1) in Proposition 4] for an arbitrary F. In the
latter case, an alternative construction is also provided in [59]. (Note:
references [6, 32, 47] allow to compute the expression of U(A) when
the generator A has the form (20)).
If p = 2, up to our knowledge the only analogues of (22) that can

be found in the literature are [53, Equation (13)] and the constructions
described in [5, Appendix B] and [19, Section 3.2.1] (cf. also the expres-
sion of a generic Clifford unitary given in [46, Theorem 6]). However,
we remark that all these references provide an operator UA satisfying
the weaker covariance condition (16) in place of (15), hence not sat-
isfying the covariance condition (2) in general (see the explanation in
Remark 7).

9. An example: the qubit case

In this section, we apply the theory developed in the previous part
to the simplest situation in which F = Z2. Even in this elementary
application, we will encounter all the special features of the case in
characteristic p = 2 that we described in the previous two sections.
The next characterization of QV (Ω, V ) in the case F = Z2 should be
compared with the similar one obtained by different means in [5, Sec-
tion VI].
We use the explicit realization of the affine space (Ω, V ) described

in Remark 1, that is, Ω = V = Z2
2. There exists a unique symplectic

form S on V , which is given by S (e1, e2) = S (e2, e1) = 1, where
{e1 = (1, 0)T , e2 = (0, 1)T} is the standard basis of Z2

2. The 3 directions
of Ω are the subspaces

D = {Fe1, Fe2, F(e1 + e2)} ,
and the corresponding sets of parallel lines in Ω are

LFe1(Ω) =
{{

(0, 0)T , (1, 0)T
}

,
{

(0, 1)T , (1, 1)T
}}

LFe2(Ω) =
{{

(0, 0)T , (0, 1)T
}

,
{

(1, 0)T , (1, 1)T
}}

LF(e1+e2)(Ω) =
{{

(0, 0)T , (1, 1)T
}

,
{

(0, 1)T , (1, 0)T
}}

.

The following projective representation W of V in the Hilbert space
H = C2 is a Weyl system for the symplectic space (V, S)

W (e1) = σ1 , W (e2) = σ2 , W (e1 + e2) = σ3 ,
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where σ1, σ2, σ3 are the three Pauli matrices, with

σ2
i = 1 , σiσj = −σjσi if i 6= j

σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 .

The multiplier of W is

m(e1, e2) = m(e1 + e2, e1) = m(e2, e1 + e2) = −i

m(e2, e1) = m(e1, e1 + e2) = m(e1 + e2, e2) = i

m(e1, e1) = m(e2, e2) = m(e1 + e2, e1 + e2) = 1 .

By Theorem 1, there exists an equivalence class Qm
V (Ω, V, S) of V -

covariant quadrature systems having associated multiplier m, and such
a class is unique. Choosing the origin o = (0, 0)T ∈ Ω, formula (10)
yields the following explicit expression of an element Q ∈ Qm

V (Ω, V, S)

Q({(0, 0)T , (1, 0)T}) = 1

2
(1+ σ1) Q({(0, 1)T , (1, 1)T}) = 1

2
(1− σ1)

Q({(0, 0)T , (0, 1)T}) = 1

2
(1+ σ2) Q({(1, 0)T , (1, 1)T}) = 1

2
(1− σ2)

Q({(0, 0)T , (1, 1)T}) = 1

2
(1+ σ3) Q({(1, 0)T , (0, 1)T}) = 1

2
(1− σ3)

(23)

The multiplier m and its complex conjugate m are the only two
elements in the set M(V, S). Therefore, the two equivalence classes
Qm

V (Ω, V, S) and Qm
V (Ω, V, S) are the only two classes in QV (Ω, V, S) ≡

QV (Ω, V ). A quadrature system Q′ ∈ Qm
V (Ω, V, S) can be obtained by

interchanging the Pauli matrices σ1 and σ2 in the definition (23) of Q.
The symplectic group SL(V ) is the semidirect product of an order

3 normal cyclic subgroup and an order 2 group. More precisely, let
R,F ∈ SL(V ) be defined by

Re1 = e1 + e2 , Re2 = e1 , Fe1 = e2 , Fe2 = e1 ,

and let T and H be the cyclic subgroups generated by R and F , re-
spectively. Then, |T | = 3, |H| = 2, T is normal in SL(V ) and SL(V )
is the semidirect product H ⋊ T , where the action of H on T is given
by FRF−1 = R−1. Moreover, T is the unique maximal nonsplit torus
in SL(V ).
It is easy to see that both multipliers m and m are T -invariant.

Therefore, Q,Q′ ∈ QT⋊V (Ω, V ). However, according to Theorem 2,
neither Q nor Q′ is (SL(V ) ⋊ V )-covariant. Indeed, one immediately
checks that actually QF = Q′, that is, the quadrature systems Q and
Q′ are similar in the terminology of [5].
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By Theorem 5, a projective representation U of T satisfying (2) is
given by

U(R) =
c(R)

2

∑

u∈V

m(u, Ru)W (u) =
c(R)

2
[1+ i(σ1 + σ2 + σ3)]

= c(R) ei
π
3
~n·~σ

where we used the fact that (R− I)−1 = R and denoted

~n =
1√
3
(1, 1, 1) ~σ = (σ1, σ2, σ3) .

In order to determine the phase factor c(R) which turns U into an or-
dinary representation, we impose the condition 1 = U(R3) = U(R)3 =
−c(R)31, which implies that c(R) must be any cubic root of −1.
We conclude this section observing that the representation U can be

extended to a projective representation of the whole group SL(V ) in
such a way that the covariance relation

U(A)W (v)U(A)∗ = a(A,v)W (Av) ∀v ∈ V, A ∈ SL(V )

is satisfied for some choice of the cocycle a : SL(V ) × V → T (see
Remark 7). Indeed, this is done by defining the unitary operator

U(F ) = ei
π
2
~m·~σ with ~m =

1√
2
(1,−1, 0) ,

which is such that

U(F )2 = −1 , U(F )U(R)U(F−1) = −U(FRF−1)

and

U(F )W (v)U(F )∗ = −W (Fv) ∀v ∈ V .

Note that, as expected, the operator U(F ) does not intertwine Q with
QF , since

U(F )Q({(0, 0)T , (1, 0)T})U(F )∗ = Q({(1, 0)T , (1, 1)T})
6= QF ({(0, 0)T , (1, 0)T})

U(F )Q({(0, 1)T , (1, 1)T})U(F )∗ = Q({(0, 0)T , (0, 1)T})
6= QF ({(0, 1)T , (1, 1)T})

U(F )Q({(0, 0)T , (1, 1)T})U(F )∗ = Q({(0, 1)T , (1, 0)T})
6= QF ({(0, 0)T , (1, 1)T}) .
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10. Conclusions

We have classified all the equivalence classes of unitarily conjugated
V -covariant MUBs for an affine space (Ω, V ) over a finite field F. We
have shown that such classes are in one-to-one correspondence with a
special family of multipliers of V , which we called Weyl multipliers.
By studying the invariance properties of Weyl multipliers with respect
to different subgroups G0 ⊆ GL(V ), we have been able to characterize
(G0 ⋊ V )-covariant MUBs for all possible choices of G0. In particular,
we have found that (SL(V )⋊V )-covariant MUBs exist if and only if the
field F has characteristic p 6= 2, and in this case their equivalence class
is unique. In characteristic p = 2, however, (G0⋊V )-covariance can be
still achieved if G0 is a maximal nonsplit torus in SL(V ), and we used
this fact to construct covariant MUBs that are the finite analogues of
the rotated quadrature observables in quantum homodyne tomography.
Our classification employed the alternative description of MUBs by

means of their associated families of spectral resolutions, which we
called quadrature systems in the paper. As a remarkable fact, it turned
out that the ranges of all V -covariant quadrature systems are unitarily
conjugated. This peculiarity singles out V -covariant MUBs as very
special objects in the whole set of maximal MUBs. Moreover, it also
shows that their different symmetry properties are a mere effect of the
choice of inequivalent labelings with phase-space lines. In other words,
they are exclusively the result of different orderings of the same sets of
bases.
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Appendix A. Projective representations

In this appendix, G is a finite group with additive composition law.
We recall that a (unitary) multiplier of G is a map m : G × G → T
such that

m(g1 + g2, g3)m(g1, g2) = m(g1, g2 + g3)m(g2, g3) ∀g1, g2, g3 ∈ G .

The set of multipliers of G forms a group under pointwise multiplication
and inverse. The multiplier m is exact if there exists a function a : G →
T such that m(g1, g2) = a(g1)a(g2)a(g1 + g2) for all g1, g2 ∈ G. Two
multipliers m1, m2 of G are equivalent if m1m2 is exact. When m1
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and m2 are equivalent, any function a : G → T such that m2(g1, g2) =

a(g1)a(g2)a(g1 + g2)m1(g1, g2) for all g1, g2 ∈ G is said to intertwine
the multiplier m1 with m2. In this case, the function a is uniquely
determined up to multiplication by a homomorphism χ : G → T; that
is, if also the function a′ : G → T intertwines m1 with m2, then a′(g) =
χ(g)a(g) for all g, where χ(g1 + g2) = χ(g1)χ(g2) for all g1, g2 ∈ G.
For a fixed a multiplier m of G, a (unitary) projective representation

of G in the Hilbert space H with multiplier m is a map R : G → U(H)
such that

R(g1 + g2) = m(g1, g2)R(g1)R(g2) ∀g1, g2 ∈ G .

Note that R(0) = m(0, 0)1, since R(0)2 = m(0, 0)R(0) and hence

R(0)(R(0) − m(0, 0)1) = 0. This easily implies the relation R(g)∗ =
m(g,−g)m(0, 0)R(−g) for all g ∈ G.
Actually, the projective representation R is an ordinary representa-

tion if m = 1. As a consequence, there exists a function a : G → T
such that the projective representation Ra = aR is an ordinary repre-
sentation if and only if m is exact.
Two projective representations R1 and R2 acting on the Hilbert

spaces H1 and H2, respectively, are equivalent if there exists a uni-
tary map U : H1 → H2 such that R2(g) = UR1(g)U

∗ for all g ∈ G. We
remark that equivalent projective representations must have the same
multiplier.
We say that the projective representation R is irreducible if it leaves

invariant no nontrivial subspace of H. Clearly, irreducibility is a prop-
erty of the whole equivalence class of R. The next result follows from
[44, Theorem 7.5]. For completeness, we report a shorter proof adapted
to the present simplified setting.

Proposition 16. Suppose m is a multiplier of G. Then there exists
an irreducible projective representation of G with multiplier m.

Proof. As in the proof of [44, Theorem 7.5], for g ∈ G we define the
following linear map R(g) : ℓ2(G) → ℓ2(G), where ℓ2(G) is the usual
Hilbert space of complex functions on G

[R(g)φ](x) = m(x, g)φ(x+ g) ∀φ ∈ ℓ2(G) .

It is immediately checked that R is a projective representation of G in
ℓ2(G) with multiplier m. Restricting it to some irreducible subspace of
ℓ2(G) we get the claim. �

The next easy sufficient condition for a projective representation to
have an exact multiplier turns out to be quite useful.



42 CARMELI, SCHULTZ, AND TOIGO

Proposition 17. Suppose R is a projective representation of G in the
Hilbert space H. If for some 1-dimensional subspace H0 ⊆ H one has
R(g)H0 = H0 for all g ∈ G, then the multiplier of R is exact.

Proof. If φ is a nonzero vector in H0, then for all g ∈ G there exists a
scalar a(g) ∈ T such that R(g)φ = a(g)φ. Therefore,

a(g1 + g2)φ = R(g1 + g2)φ = m(g1, g2)R(g1)R(g2)φ

= m(g1, g2)a(g1)a(g2)φ ,

that is, m(g1, g2) = a(g1)a(g2)a(g1 + g2). �

The following is [60, Lemma 7.2]. Again, we add a simpler proof for
the reader’s convenience.

Proposition 18. Suppose G is an abelian group, and let m be a mul-
tiplier of G. If m(g1, g2) = m(g2, g1) for all g1, g2 ∈ G, then m is
exact.

Proof. Let R be an irreducible projective representation of G with mul-
tiplier m. It exists by Proposition 16. Define a group law on the set
Gm := G× T by

(g1, z1)(g2, z2) = (g1 + g2, z1z2m(g1, g2))

Since m is symmetric, Gm is abelian. It is well known that R lifts to
an ordinary representation Rm of Gm as follows:

Rm(g, z) = z R(g) .

Clearly Rm is irreducible (because it has the same commutant as R)
hence it is 1-dimensional. So also R is 1-dimensional, and m is exact
by Proposition 17. �

We conclude this appendix with the following alternative version of
[60, Lemma 7.1]. Before its statement, we recall that a bicharacter of
an abelian group G is a map b : G × G → T such that b(g, ·) and
b(·, g) are characters (i.e., 1-dimensional homomorphisms) of G for all

g ∈ G. The bicharacter b is antisymmetric if b(g1, g2) = b(g2, g1) for all
g1, g2 ∈ G.

Proposition 19. Suppose G is abelian, and let R be a projective repre-
sentation of G. Then there exists a unique antisymmetric bicharacter
b of G such that

(24) R(g1)R(g2)R(g1)
∗ = b(g1, g2)R(g2) ∀g1, g2 ∈ G .
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Proof. Since R is a projective representation, (24) holds for b(g1, g2) =

m(g1,−g1)m(0, 0)m(g1, g2)m(g1 + g2,−g1), where m is the multiplier
of R. Clearly, b(g1, g2) ∈ T. Moreover, for fixed g ∈ G, the map
b(·, g) : G → T is a character, since

b(g1 + g2, g)R(g) = R(g1 + g2)R(g)R(g1 + g2)
∗

= R(g1)R(g2)R(g)R(g1)
∗R(g2)

∗ = b(g1, g)b(g2, g)R(g) .

Equation (24) also reads

R(g2)R(g1)R(g2)
∗ = b(g1, g2)R(g1) ∀g1, g2 ∈ G ,

hence by comparison b(g2, g1) = b(g1, g2). As a consequence, for all
g ∈ G also the map b(g, ·) : G → T is a character, and the bicharacter
b is antisymmetric. �

Appendix B. A Weyl multiplier in characteristic p = 2

The demonstration of the existence of Weyl multipliers provided in
the proof of Proposition 9 is nonconstructive. Indeed, although it is
easy to find an example of a Weyl multiplier in characteristic p 6= 2
(see Example 1), the same task is more involved when p = 2. In this
appendix, we are going to fill this gap and explicitely exhibit a Weyl
multiplier m for the symplectic space (V, S) when the characteristic of
the scalar field F is even. Moreover, given a maximal nonsplit torus
T ⊂ SL(V ), we will also make use of m to construct a T -invariant
multiplier in M(V, S).
The construction is based on the fact that, in characteristic p = 2,

for all α ∈ F∗ there exists a linear basis {εα1 , εα2 , . . . , εαn} of F over Z2

such that Tr (αεαi ε
α
j ) = δi,j for all i, j ∈ {1, 2, . . . , n}. Indeed, by [61,

Theorem 4] (see also [62, 63]), there exists a linear basis {ω1, ω2, . . . , ωn}
of F over Z2 such that Tr (ωiωj) = δi,j for all i, j ∈ {1, 2, . . . , n}. Since
p = 2, we have α = γ2 for some γ ∈ F∗. Defining εαi = γ−1ωi, we then
get a basis with the claimed property.
The square map z 7→ z2 is well defined from the field Z2 to the ring

Z4. It follows that also the map z 7→ iz
2

is well defined from Z2 to T.
As (z+t)2 = z2+2zt+t2, we have i(z+t)2 = iz

2

it
2

(−1)zt for all z, t ∈ Z2.
For all α ∈ F∗, we use this fact to define the function cα : F → T

with

cα

(

n
∑

i=1

ziε
α
i

)

=

n
∏

i=1

iz
2

i ∀z1, . . . , zn ∈ Z2 .

Clearly, cα(0) = 1, and, by the previous paragraph,

cα(γ + δ) = cα(γ)cα(δ)(−1)Tr (αγδ) ∀γ, δ ∈ F .



44 CARMELI, SCHULTZ, AND TOIGO

Now, choose a symplectic basis {e1, e2} of V , and by means of it
define the following multiplier m0 of V

m0(α1e1 + α2e2 , β1e1 + β2e2) = (−1)Tr (β1α2) .

It is clear that m0 satisfies item (i) of Definition 6. We are going to
find a multiplier m equivalent to m0 and fulfilling also condition (ii) of
Definition 6. To this aim, for all α ∈ F∗ we fix a vector vα = e1+αe2 ∈
V , and observe that, since D = {Fe1,Fe2}∪{Fvα | α ∈ F∗}, a function
a : V → T can be defined as follows

a(u) =

{

cα(γ) if u = γvα for some α ∈ F∗

1 if u ∈ Fe1 ∪ Fe2
.

We then claim that the multiplier m of V given by

m(u,v) = a(u)a(v)a(u+ v)m0(u,v) ∀u,v ∈ V

satisfies item (ii) of Definition 6. Indeed, if d1,d2 ∈ Fe1 or d1,d2 ∈
Fe2, then m(d1,d2) = 1 by definitions. If instead d1,d2 ∈ Fvα, with
di = γivα, then

m(d1,d2) = cα(γ1)cα(γ2)cα(γ1 + γ2)m0(γ1e1 + γ1αe2 , γ2e1 + γ2αe2)

= cα(γ1)cα(γ2)cα(γ1)cα(γ2)(−1)Tr (αγ1γ2)(−1)Tr (αγ1γ2) = 1 .

Therefore, m ∈ M(V, S).
Finally, if T ⊂ SL(V ) is a maximal nonsplit torus, by the proof of

Proposition 15 the multiplier m′ given by

m′(u,v) =
∏

A∈T

m(Au, Av) ∀u,v ∈ V

is T -invariant element in M(V, S).
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C. R. Acad. Sci. Paris Sér. I Math. 303(16) (1986) 773–778.

[10] V.S. Varadarajan, Variations on a theme of Schwinger and Weyl, Lett.
Math. Phys. 34(3) (1995) 319–326.

[11] A. Vourdas, Phase space methods for finite quantum systems, Rep. Math. Phys.
40 (1997) 367–371.

[12] A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964)
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