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Abstract

We present an adaptive moving mesh method for unstructured meshes which is a three-
dimensional extension of the previous works of Ceniceros et al.

Ceniceros2001
[9], Tang et al.

Tang2003
[38]

and Chen et al.
Chen2008
[10]. The iterative solution of a variable diffusion Laplacian model on

the reference domain is used to adapt the mesh to moving sharp solution fronts while
imposing slip conditions for the displacements on curved boundary surfaces. To this
aim, we present an approach to project the nodes on a given curved geometry, as well as
an a-posteriori limiter for the nodal displacements developed to guarantee the validity
of the adapted mesh also over non-convex curved boundaries with singularities.

We validate the method on analytical test cases, and we show its application to
two and three-dimensional unsteady compressible flows by coupling it to a second order
conservative Arbitrary Lagrangian-Eulerian flow solver.

Keywords: Constant-connectiity mesh adaptation, Unstructured meshes, Unsteady
compressible flows, Conservative formulations

1. Introduction
sec:Intro

Mesh adaptation is a powerful tool to improve the representation of complex fields for
a given computational expense. In computational fluid dynamics in particular, adapta-
tion has become nowadays a customary tool

Park2016
[35]. Adapting the mesh also has a relative

computational overhead, which motivates the quest for efficient and robust methods.
Techniques improving the discrete representation of the fields of interest by inserting

and removing mesh entities (so called h-adaptation) have proven to be quite mature
Park2016
[35].

However, solution transfer between meshes with different topologies may be non-trivial
and may have a non-negligible computational cost, especially if conservation constraints
need to be satisfied

FarrellMaddison2011,Alauzet2016,hermes2018highorder,KucharikShashkov2008,Re2017
[19, 2, 24, 31, 36].

By constrast, mesh nodes relocation with constant element connectivity (so called
r-adaptation), offers the possibility of a minimally intrusive coupling with existing com-
putational mechanics solvers, as no modification of the data structures is required. As
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h-adaptation methods, they also provide considerable improvement in the quality of
the solutions obtained, especially in unsteady simulations of traveling waves, like shock
waves and water waves, where uniform refinement would be way too costly. More-
over, with r-adaptation methods devising conservative projections is much simpler. In
fact, the preservation of the one–to–one mapping from the old to the new mesh entities
allows the easy construction of a conservative remapping

Kucharik2003efficient
[32], or the use of Arbitrary-

Lagrangian-Eulerian (ALE) formulations compliant with the Geometric Conservation
Law (GCL)

Trulio1961,ThomasLombard1979
[46, 41].

Unfortunately, the preservation of the initial mesh topology undeniably imposes se-
vere restrictions on nodal displacements in order to avoid mesh folding with tangled (i.e.
inverted) elements, especially when the boundary exhibits singular points. Moreover,
the accuracy attainable for complex solutions is limited by the initial density of mesh
nodes, and less finely-tunable than in metric-based h-adaptation

AlauzetFrey2003
[1].

Anyway, the advantages brought by the effortless coupling with external flow solvers
and the conservative solution remapping can counterbalance the mesh quality limitation
as long as the r-adaptation technique is computationally efficient. Simply put, the error
reduction brought by adapting the mesh must offset the computational overhead. A
measure of this efficiency can be evaluated by comparing with the cost of a simulation
run on a uniformly refined mesh, providing the same resolution of the flow field. Hybrid
adaptive approaches combining well timed re-meshing and adaptive deformation at every
time step, which are perhaps the ones computationally most appealing, still require the
r-adaptation step to perform well.

Extensive reviews of r-adaptation can be found in
Knupp1993,Budd2009
[30, 8]. We focus here on methods

based on the numerical solution of an elliptic partial differential equation for the posi-
tion of the mesh nodes, often referred to as the mesh PDE. This equation is typically
formulated to find a mapping ξ : Ωx → Ωξ from the physical domain to a reference (com-
putational) one. This mapping needs to be injective and surjective in order to guarantee
that the produced mesh neither folds nor breaks the domain. Historically the Winslow
or homogeneous Thompson-Thames-Mastin generator

TTM1977,Thompson1977boundary
[43, 44] ∆xξ = 0 has been the

basis for structured boundary-fitted grid generation (see for example the review in
Thompson1985
[42])

and it has been extended to also adapt the mesh in the domain either by adding source
terms to the equation, or through a variable-diffusion approach

Winslow1981
[51]. A more general

formulation of the last method has been given in
Dvinsky1991
[15] by means of harmonic maps and

extended in
Brackbill1993
[6].

These equations describe the mapping ξ = ξ(x) and need to be inverted for the
physical coordinates x = x(ξ), leading to a nonlinear system of PDEs which is iteratively
solved. In order to ease the cost of the iterative solution of the inverted equations, an
alternative mesh generator was proposed in

Ceniceros2001
[9] based on a variable-diffusion Laplace

equations directly formulated in the physical domain for the mapping x : Ωξ → Ωx.
This generator is not based on a theoretical derivation, but on the observation that the
variable-diffusion Laplacian in the reference domain is sufficient to adapt the mesh in
the desired regions while the equations, which are still nonlinear, can easily be solved
through a relaxation procedure. The efficiency of the method was shown in application
to two-dimensional Boussinesq convection on structured grids, and the method was later
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applied in
Tang2003
[38] to hyperbolic conservation laws and extended in

Chen2008
[10] to multicomponent

flows on two-dimensional unstructured grids. More recently, the same method was
applied to the two-dimensional shallow water equations both in Cartesian and spherical
coordinates

arpaia:hal-01102124,arpaia:hal-01372496,Arpaia2020
[3, 4, 5].

Robustness to mesh folding in r-adaptation is a delicate matter, similarly critical in
the context of mesh deformation related to moving boundaries, curved mesh generation
and smoothing (see for example

JohnsonTezduyar1994,Dwight2009,Toulorge2013,Fortunato2016,Turner2018
[29, 16, 45, 20, 47]). Obtaining non-singular meshes

requires two main conditions to be met. The first is that the continuous map, appro-
priately modified to account for all boundary conditions, should verify the appropriate
conditions as e.g. the non-negativity of the determinant of the deformation Jacobian.
Until quite recently, sufficient conditions were known only in the framework of harmonic
maps

Dvinsky1991,Liao1992
[15, 34]. Recent work by

Huang2018
[26], has allowed to prove similar properties for other

types of mesh PDEs, as e.g. some of those proposed by Huang
Huang2001
[25] or Huang and Rus-

sel
Huang2011
[27], by resorting to energy arguments borrowed from the theory of gradient flows.

The second important aspect is that the discretization used to approximate the mesh
PDE should have the appropriate “property preserving” character, so that the fully
discrete moving mesh method is also guaranteed to provide non-singular meshes. This
is in itself a subject of investigation. It is in general well known that discrete moving
mesh methods can lead to mesh tangling even with properly chosen mesh PDEs

Dvinsky1991
[15],

and the impact of the truncation error is stressed for example in
Knupp1993
[30]. In the setting of

gradient flow maps, geometrical discretizations have been shown in
Huang2018
[26] to answer the

discrete positive Jacobian requirement. However, even in the last reference, the issue of
accounting for complex curved boundaries is overlooked, even though mesh movement
along a given surface does not appear to be necessarily a natural boundary condition of
the PDEs considered.

In this work we proceed differently. We want to be able to handle domains with
boundaries as general as possible in three space dimensions. and propose a relaxation
technique embedding a geometrical limiter allowing to achieve this objective. We focus
on the simple reference-domain variable-diffusion Laplacian approach originally pro-
posed in

Ceniceros2001
[9], however the ideas proposed in this paper can be extended to other mesh

PDEs. To the best of the authors’ knowledge, very few applications of r-adaptation to
three–dimensional meshes are available to date, see for example

Li2002
[33] as well as some

simple applications in
Huang2018
[26]. The original approach in

Ceniceros2001
[9] does not offer theoretical guar-

antees against folding, although it has been successfully used in many applications with
non-convex boundaries. R-adaptation in three dimensions exhibits even stronger limi-
tations than in two dimensions, as sufficiency results for unfolded continuum maps are
typically based on requirement of smoothness and convexity of the boundary. These are
easily violated especially in application to external flows, where the boundary is not con-
vex and several singularities (like corners and ridges) are present. We have experienced
that tangling is a major concern in the three-dimensional extension of these techniques.
Smoothing or untangling methods for unstructured meshes already developed in the
literature require nontrivial procedures

Hansen2004,Toulorge2013
[23, 45].

Our contribution is thus related to a mesh displacement method allowing to guar-
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antee that nodes move and always remain on a given parametrizaion of curved domain
boundaries, and for an a-posteriori limiter for the nodal displacement which, when em-
bedded in the mesh relaxation iterations, allows to prevent the occurrence of tangled
elements, thus enforcing the validity of the discrete mapping while avoiding smoothing
procedures. The resulting moving mesh library Fmg has been developed on top of the
open source platform Mmg

Dapogny2014,mmgplatform
[11, 12] to exploit, among other things, its built-in cubic Bézier

patch representation of complex manifolds.
The paper is organized as follows. We recall the continuous mesh partial differential

equations in section §2, while a thorough discussion of their numerical solution is given
in section §3, including a-posteriori limiting and projections to obtain a valid mesh
satisfying all the boundary conditions, and the application to unsteady simulations.
We discuss the validation of the method proposed considering the adaptation w.r.t.
analytical functions in two and three space dimensions in section §4, and application
to two and three dimensional unsteady compressible flows are discussed in section §5
Finally, conclusions are presented in section

sec:Conclusions
6.

2. Variable-diffusion Laplacian r-adaptation in the reference domain
sec:NumModel

We focus here on Laplacian-based r-adaptation, which is the mesh PDE currently
implemented in the Fmg library. However, the ideas proposed in this paper can be
immediately extended to other mesh PDEs. We recall here the continuous mesh problem,
and in particular we discuss the boundary conditions, as well as the definition of the
monitor functions used for adaptation.

Following
Chen2008
[10], we look for a mapping x : Ωξ → Ωx from the reference domain Ωξ

(the original mesh) to the computational domain Ωx (the adapted mesh). Within the
reference domain, the computational coordinates satisfy the variable-diffusion Laplace
equation

∇ξ · (ω(x)∇ξx) = 0 in Ωξ (1) eq:rLap

The above problem is in general a system of coupled non-linear PDEs, which needs to be
complemented by appropriate boundary conditions. Nonlinearity is introduced by the
monitor function ω(x) which depends on en external field evaluated in the computational
domain. In this work, we have used a classical scalar definition for this quantity, which
allows to decouple the equations for the three spatial coordinates.

In particular, given a quantity of interest f(x), the scalar monitor function used in
the examples discussed later is evaluated as

ω(x) =
√

1 + α||∇ξf(x)||2γα + β||Hξ(f)(x)||2γβ + τ ||f ||2γτ (2) eq:monitorFunction

where ∇ξ and Hξ denote the gradient and Hessian computed on the reference domain
Ωξ. Norm ||f ||γ is defined as

||f ||γ = min

(
1,

||f ||
γmax(||f ||)

)
. (3)
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This normalization, already used in
Chen2008
[10], allows to introduce some saturation near the

norm maximum according to the value of γ. This idea behind this normalization is to
spread a little bit the peak values of the function f around the peak locations, in order
to filter out small inhomogeinities in the numerical approximation of the sharp fronts
of f . The above definition gives the user some control on the behaviour of the spatial
mapping via the parameter pairs (α, γα), (β, γβ), (τ, γτ ).

2.1. Boundary conditions

Despite the decoupling of equation (
eq:rLap
1) into separate scalar equations, even for a

scalar monitor function a strong coupling of the coordinate equations may arise through
the boundary conditions, especially in domains including general shapes. In particular,
we will split the boundary on two parts as ∂Ωξ = ΓDξ ∪ ΓSξ . A full set of Dirichlet

conditions are imposed on ΓDξ
x = ξ on ΓDξ (4)

Along the slip boundary ΓSξ the coordinate positions are constrained to move along
a given parameterized domain. For manifold surfaces, we assume to have a known
parameterization, for example in the form γS(x) = 0. This provides one constraint
relating the d spatial coordinates. Thus, d− 1 additional conditions are required, which
are here taken as the null normal stress conditions parallel to the local tangent space
spanned by {τ̂Sj }j=1,d−1. This gives the boundary conditions:

γS(x) = 0

n̂S · (ω(x)∇x) · τ̂Sj = 0 ∀j = 1, d− 1
on ΓSξ (5) eq:manifold-bc

Singularities arising at the intersections of two or more (in 3D) parameterized manifolds
require an ad-hoc treatment. The approach used here is discussed in the following
section.

3. Discrete equations, a-posteriori limiting, slip on curved boundaries
sec:NumModel1

We discuss here the implementation choices made in the Fmg library, namely the dis-
cretization of the mesh PDEs, as well as their iterative solution. Both the a-posteriori
limiting of the displacement and the implementation of the slip boundary conditions are
strongly tied to the relaxation iterations, and for this reason all the steps are discussed
in this section. More specifically, to relieve the complexity of satisfying the bound-
ary conditions (

eq:manifold-bc
5), we formulate the discrete approximation by means of an iterative

multiple-corrections procedure embedding the following three elements:

1. A finite element approximation of the variational form of (
eq:rLap
1) with natural (Neu-

mann) boundary conditions;

2. An a-posteriori limiter for the nodal displacement enforcing local mesh valididy;

3. A boundary correction in the local normal direction to enforce the first of (
eq:manifold-bc
5) by

projecting on the appropriate manifold parametrization.
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The intertwining of the a-posteriori limiter of the displacement, of the update of the lo-
cal boundary normals, and of the projection on the parameterized manifold is essential
for the proposed approach to provide valid adapted meshes both in the volume and on
the boundaries.

Concerning the representation of these, the Fmg library we developed makes use of
the point-normal curved triangles parameterization proposed in

vlachos2001curved
[49], which is based

on cubic Bézier patches with quadratically varying normals. For this we leverage the
implementation provided by the open source platform Mmg

Dapogny2014,mmgplatform
[11, 12]. However note that

the form of the manifold parametrization is not a necessary ingredient of our method.
Other high order approximations can be used.

3.1. Finite element approximation: Dirichlet and natural boundary conditions
sec:weak

The discrete equations are built starting from a linear finite element approxima-
tion of the problem embedding both strong Dirichlet and natural (Neumann) boundary
conditions, which corresponds to the simple variational form∫

Ωξ

ω(x)∇ξv ·∇ξx dΩξ = 0, ∀v ∈ H1(Ωξ) . (6) eq:var-rlap

Note that this statement satisfies the tangent conditions in (
eq:manifold-bc
5) but neither the remaining

one in the system (the belonging to the surface), nor any Dirichlet conditions eventually
assigned. Dirichlet conditions are strongly imposed on the solution space. Note also that
ω being a scalar quantity, the above equations provide uncoupled nonlinear variational
statements for each component of x.

The projection of (
eq:var-rlap
6) on the linear finite element space leads to the nonlinear alge-

braic system
K(x)xν = 0, ν = 1, . . . , d (7) eq:fem1

having introduced the array of unknown node positions xν = [xνi ] for each space com-
ponent ν, with d the number of space dimensions, and where the stiffness matrix has
the standard entries

Kij(x) =

∫
Ωξ

ω(x)∇ξφi ·∇ξφj dΩξ (8) eq:stiffLap

with {φi}i≥1 the linear base functions spanning the solution space. Please note that (
eq:fem1
7)

is a set of decoupled systems, one for each spatial direction, as shown by the fact that
Kij are scalar entries. Note also due to the consistency of the finite element space with
Dirichlet conditions, Dirichlet nodes are not included in the above sum.

In practice, by defining the displacement δ = x− ξ, the system is not written as in
(
eq:fem1
7), but as

K(x)δν = −K(x)ξν (9) eq:fem2

which is better suited for the iterative corrections described in the following sections.

6



3.2. Scalar correction iterationssec:Jacobi

We introduce an iterative procedure which, while avoiding mesh tangling in 2D
and 3D, and accounting for the directional coupling inherent to (

eq:manifold-bc
5), retains the scalar

structure of the decoupled variational form. Note however that the corrections proposed
can be easily adapted to other iterative solution methods (as well as mesh PDEs).

The basic iteration used in our method starts from a standard diagonal Jacobi re-
laxation to handle the nonlinearity of (

eq:fem2
9)

K
[k]
ii δ

[k+1]
i = −

∑
j∈Bi
j 6=i

K
[k]
ij δ

[k]
j −

∑
j∈Bi

K
[k]
ij ξj (10)

where Bi denotes the ball of node i and vector δ
[k]
i = [δνi ]

[k]
ν=1,...,d is now the vector made

of the space components of the displacement of node i at iteration k (the same notation
will be used for vectors xi and ξi). Again, we stress that the above iteration is in fact

a set of d relations for the components of the displacement. The matrix entries K
[k]
ij

depend on monitor function ω at iteration k (cf. equation (
eq:stiffLap
8)), which in turn depends

on the scalar field f evaluated at the actual positions x
[k]
i , according to equation (

eq:monitorFunction
2). In

our current implementation, the re-evaluation is performed by linearly interpolating the

scalar field f at the current nodal positions x
[k]
i through a standard search algorithm

based on barycentric coordinates.

In our implementation we added and removed the term K
[k]
ii δ

[k]
i , to obtain the fol-

lowing iterations

δ
[k+1]
i = δ

[k]
i −

1

K
[k]
ii

∑
j∈Bi

K
[k]
ij x

[k]
j (11)

which are initialized with δ
[0]
i = 0.

The last step is the computation of the new nodal positions as follows

x
[k+1]
i = x

[k]
i + ∆̃x

[k+1]

i

(
δ

[k+1]
i , {x[k+1]

i }j<i, {x[k]
i }j≥i

)
(12)

where ∆̃xi
[k+1]

are limited increments obtained by a-posteriori correcting δ
[k+1]
i to ac-

count for both mesh validity and boundary conditions (both Dirichlet and slip wall).
In both cases, these corrections are local, albeit not only dependent on node i, and
non-linear w.r.t. x. The nonlinearity is readily handled in the iterations by using the
last nodal positions available.

3.3. A-posteriori corrections for mesh validity enforcement
sec:relax

The Laplacian model in the reference domain does not guarantee that the Jacobian
of the mapping is strictly positive everywhere, thus leading to the occurrence of tangled
(invalid) mesh elements. In two space dimensions, our experience has shown that in
most cases carefully tuning the monitor function ω(x) allows to solve this issue. This is
not the case in three dimensions, where tangling occurs much more often.
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To cope with this, we have devised an a-posteriori limiter to the nodal displacements
which is activated whenever the displacement of a node causes the occurrence of an
element whose volume is below a given threshold. This condition is of course implicit,
in the sense that it couples the positions of all the mesh nodes. However, it can be
easily embedded in an iterative setting. In particular, in our implementation we relax

and update each nodal position x
[k+1]
i , one after the other. As illustrated on figure

fig:relax
1

(for simplicity in 2D), each displacement δ
[k+1]
i is limited according to the validity of

the configuration in the current ball B[k,k+1]
i obtained using new values {x[k+1]}j<i, for

nodes updated before i, and old positions {x[k]
j }j>i for nodes not updated yet. This

relax-update step has a Gauss-Seidel flavour, as the position of each node is updated
based on the values of the previously-treated coordinates. In practice, the displacement
of node i is iteratively limited by a factor µsmax

i as follows

d0
i = δ

[k+1]
i + ξi − x

[k]
i

ds+1
i =

{
µid

s
i if min

K∈B[k,k+1]
i

|ΩK | < ε

dsi otherwise
∀s ∈ [0, . . . , smax − 1]

∆̃x
[k+1]

i = dsmax
i

(13) eq:limiter

The limiter is thus the result of local sub-iterations, which are stopped when a
volume greater than ε is guaranteed for every element in the ball. This check allows
to enforce the validity of every intermediate mesh configuration, effectively preventing
the occurrence of invalid elements at a reasonable computational cost with respect to
smoothing or untangling procedures for unstructured meshes

Hansen2004,Toulorge2013
[23, 45].

It must be remarked that for interior nodes in general one iteration of the above
procedure is enough, while more iterations are required when applying the limiter within
the projection step enforcing the boundary conditions (cf. next section). For simplicity
here the same value µi = 0.5 has been adopted for all the nodes.

x
[k]
i

x
[k]
i + d0

i

fig:relaxStart

(a) Invalid displacement.

x
[k]
i

x
[k]
i + d1

i

fig:relaxCorrect

(b) Relaxed displacement.

x
[k+1]
i

fig:relaxOk

(c) Updated configuration.

Figure 1: Two-dimensional illustration of the nodal displacement limiting.
fig:relaxStart
1a: Proposed displacement for

node i right after the Jacobi iteration k+ 1, that would produce inverted elements (in red).
fig:relaxCorrect
1b: Relaxed

displacement producing valid elements (in green).
fig:relaxOk
1c: Updated configuration.fig:relax

3.4. A-posteriori corrections on Dirichlet and slip boundariessec:slip
The decoupling of the spatial coordinates obtained by initially accounting for natural

boundary conditions only is particularly convenient in terms of computational cost and
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simplicity of implementation. It allows to store and assembly only a single smaller
stiffness matrix to be used for every space coordinate, instead of a matrix of 3 × 3
blocks. However, the resulting nodal displacements need to be corrected to account
for conditions on Dirichlet and slip boundaries. This is achieved by the projection
step discussed in this section, which is easily embedded in the scalar iterations. The
description is given for slip wall boundaries, of which Dirichlet nodes are a particular
case.

In the Fmg library boundary geometries are handled by means of curved point-normal
triangles

Vlachos2001
[50], i.e. piecewise cubic Bézier patches for the boundary position and quadratic

for the boundary normal vector, relying on the implementation provided in Mmg
Dapogny2014,mmgplatform
[11, 12].

In this setting an implicit surface representation of the slip boundary reading in the
continuous case

γS(x) = 0 on ΓSξ (14) eq:surface

is approximated by the explicit piecewise parametric representation

χτ [xj , n̂j ] : Σ→ ΓSξ , Σ = [0, 1]× [0, 1], ΓSξ ⊂ R3

x = χτ [xj , n̂j ](w), w ∈ Σ
(15) eq:model_geo

which is defined for each triangle τ in the triangulation of the slip boundary, from the
positions and unit normals {xi, n̂i}i∈τ of the nodes of the triangle. Similarly, the Bézier
patches also allow to evaluate surface normals as

ητ [xj , n̂j ] : Σ→ ΓSξ , Σ = [0, 1]× [0, 1], ΓSξ ⊂ R3

n̂ = ητ [xj , n̂j ](w), w ∈ Σ
(16) eq:model_normal

For some applications, as for example external aerodynamics, handling curved ge-
ometries is a necessity. As a consequence, the geometric approximation becomes an
integral part of the numerical method. In particular, in three dimensions even the sim-
plest combination of boundary surfaces easily leads to intersection curves. Since sharp
edges (ridges) in the initial geometry need to be preserved as well as corners, nodes can-
not cross a ridge, but they are only allowed to move tangentially to it, and displacement
of a corner node cannot happen. Slip boundary conditions need thus to be specialized to
the chosen geometry approximation and to distinguish among regular curved surfaces,
ridges, and corners.

In the following, the boundary treatment is detailed for the supported geometri-
cal features: manifold surfaces, ridges (i.e. intersections of two manifold surfaces) and
corners (intersections of two or more ridges). Note that different geometrical representa-
tions involving other local or global manifold parametrizations can be easily embedded
in the algorithm.

Manifold surfaces. The procedure adopted here to handle slip conditions along manifolds
for a node i consists in iteratively projecting the point position on the surface, updating
the Bézier patches, and limiting at the same time the displacement to ensure mesh
validity. Tangling can tipically occur on surface triangles if too large displacements are

9



(a) Ball B[k,k+1]
i : trace on in-

cremented manifold χ[k,k+1]
τ .

(b) Ball B[k,k+1]
i : projection on

the local tangent plane

(c) Ball B[k,k+1]
i and displace-

ment projected on the tangent
(d) Updated Ball B[k,k+1]

i pro-
jected on the tangent plane

(e) Updated Ball B[k,k+1]
i :

trace on manifold χ[k,k+1]
τ

Figure 2: Illustration of the slip boundary projection procedure.fig:mesh-proj

allowed, but also the adjacent volume elements can tangle when a point is projected on
a concave boundary. For this reason the mesh validity check is always performed on
volume elements.

In the first step, we work based on the partially updated ball B[k,k+1]
i , which allows

to build a local updated geometrical model. As before, this model is evaluated using the
new updates for nodes already processed, and value from the previous iteration for the

remaining ones. This provides the incrementally updated geometry model χ
[k,k+1]
τ =

χτ [{x[k+1]
j , n̂

[k+1]
j }j<i, {x[k]

j , n̂
[k]
j }j≥i] (cf. (

eq:model_geo
15)). In particular, as shown on figures

fig:mesh-proj
2-(a)

and
fig:mesh-proj
2-(e), this allows to identify the trace of B[k,k+1]

i on the updated manifold, and its
projection on the local tangent plane.

The second step consists of four coupled ingredients:

1. projection of the displacement provided by the Jacobi iteration onto the local
tangent plane, leading to an approximate tangent displacement (δδδk+1

i )τ ; and pre-
liminary nodal position (xxxk+1

i )τ , as shown on figure
fig:mesh-proj
2-(c);

2. identification of the element containing the new node position, based on baricentric
coordinates interpolation, as shown on figures

fig:mesh-proj
2-(c) and

fig:mesh-proj
2-(d);

3. Bézier interpolation χ
[k,k+1]
τ (w) on the geometrical model, as shown on figure

fig:mesh-proj
2-(e);

4. limiting of the displacement based on the minimum element volume, as discussed
in section

sec:relax
3.3.
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The iterations providing the final displacement, and hence position, are similar to (
eq:limiter
13):

d0
i = χ[k,k+1]

τ

(
w(x

[k+1]
i )τ

)
− x

[k]
i

ds+1
i =

χ
[k,k+1]
τ

(
w(x

[k]
i + µid

s
i )
)
− x

[k]
i if min

K∈B[k,k+1]
i

|ΩK | < ε

dsi otherwise
,

∀s ∈ [0, . . . , smax − 1]

∆̃x
[k+1]

i = dsmax
i

(17) eq:relaxSlip

We stress again that since the piecewise patches depend on both node positions and
unit normals, the position update is always accompanied by the re-evaluation of the

unit normal vectors through the analogously defined model η
[k,k+1]
τ (cf. (

eq:model_normal
16)). This is

omitted from (
eq:relaxSlip
17) to keep a lighter notation.

Ridges. The displacement check and projection on boundary ridges is handled exactly
in the same way as for manifold surfaces. The main difference is that now the parametric
space is replaced with a curve parametrisation which is one-dimensional Σ ⊂ R. Thus
all operations previously performed on the tangent plane are performed by projection
on the tangent line, and normal vectors of both the manifold surfaces joining at the
ridge are stored and updated in the geometrical model.

Corners. These are the only allowed Dirichlet nodes, thus corners verify exactly the
boundary condition, and are not included in the discrete variational form

sec:weak
3.1. In this

specific case, displacement is not allowed as they are already on the exact geometry, and
the condition imposed is

x
[k+1]
i = ξi . (18)

3.5. Unsteady mesh adaptation through restarted iterations
eq:r:adaptDyn

Following
Tang2005,Chen2008
[39, 10], dynamic mesh adaptation during the time evolution of a fluid

flow simulation is performed by repeating the steady adaptation procedure described in
the previous section at each time step, without the explicit formulation of a differential
equation in time for mesh motion. This simplifies the coupling with existing flow solvers.

In this case of fixed boundary domains, the reference mesh ξ is constant in time,
while the computational mesh x(t(n+1)) is the r–adaptation of the (fixed) reference mesh.
Thus, the displacement at each time step n+ 1 is initialized with the value achieved at
the last Jacobi iteration K achieved in the previous time step n

δ
[0](n+1)
i = δ

[K](n)
i (19)

so that successive Jacobi iterations during time evolution are effectively accumulated on
the nodes position

x
[k](n)
i = δ

[k](n)
i + ξi, k = 1, . . . ,K, n = 0, 1, 2, . . . (20)

11



4. Validation via adaptation on analytical functions
sec:AnalyticalRes

We consider here a series of analytical tests allowing to measure the effectiveness
of the method. As shown in section

sec:NumModel
2, we recall here that the mesh adaptation model

can be governed by the number of iterations nit plus the three parameter pairs (α, γα),
(β, γβ), (τ, γτ ), representing the intensity and the normalization constant of the solution
gradient, the solution Hessian, and the solution itself in the definition of the monitor
function. In this work, we have not seen specific benefits in mixing all three parameter
pairs, so we will explicitly report only the values for the used pairs, while values not
shown are assumed to be zero. As in

Chen2008
[10], the Laplacian model is not solved until

convergence but iterations are stopped until a number of iterations nit that will be
reported for each case.

In section
sec:cubeAn
4.1 adaptation is performed on a a steady Gaussian-like function, in order

to test the convergence order on the interpolation error. In section
sec:shockAn
4.2 adaptation is

performed on an unsteady analytical moving front passing over a sphere, in order to
assess the capability of the model to preserve the validity of the mesh over intersecting
curved boundaries throughout the time simulation.

4.1. Steady adaptation in a square and a cube
sec:cubeAn

We consider the approximation of the function

ρ = eθψ
2
, ψ = ‖xxx‖2 −R2 (21)

with θ = 40, R = 0.75. We consider both a two and three dimensional variant of the
problem, the first defined on a square domain [−2, 2] × [−2, 2], the second on the cube
[−2, 2]× [−2, 2]× [−2, 2]. This solution is plotted in figures

fig:solutionCube1
4a and

fig:solutionCube2
4b. In both cases we

consider a series of simplicial meshes with a uniform mesh size distribution, and different
average edge size h, whose details are shown in tables

tab:MeshData2DConv
1 and

tab:MeshData3DConv
2. The above function is

chosen in order to test capability of the models to adapt on a circle represented by
a smooth solution field, before their application to solutions with sharp/discontinuous
features. The mesh PDE parameters are set to (τ, γτ ) = (5000, 1.0) in 2D, and to
(α, γα) = (500, 0.1) in 3D. Also note that the a-posteriori limiter for the displacement is
only applied in 3D, which is the case in which tangling is more often occurring.

On these meshes, we measure the L2−error convergence of the P1 interpolation Πρ

||e||L2 =

(∫
Ω
|ρ−Πρ|2 dΩ

) 1
2

(22)

We plot the observed trends in figures
fig:ErrorTrend2DConv
3a and

fig:ErrorTrend3DConv
3b. It can be seen that in two dimensions

it is easier to preserve, quite independently from the number of iterations nit performed,
the second order convergence rate of the P1 interpolation, with an error reduction for
a given number of nodes shown in table

tab:Error2DConv
3, but a high number of iterations on a coarse

mesh can actually increase the error.
In three dimensions, while the error on the adapted meshes is considerably lower

(table
tab:Error3DConv
4), the number of Jacobi iterations has to be increased to preserve the second

12



h 0.0125 0.025 0.05 0.075 0.1 0.15

Nb. of nodes 135550 34310 8560 3993 2213 1015
Nb. of elements 271098 68618 17118 7984 4424 2028

Table 1: Mesh data for the 2D square convergence analysis.tab:MeshData2DConv

h 0.0375 0.05 0.075 0.1 0.15

Nb. of nodes 319830 140264 44521 20604 6727
Nb. of elements 1844811 802080 237458 106130 32308

Table 2: Mesh data for the 3D cube convergence analysis.tab:MeshData3DConv

order rate. Some adapted meshes obtained from the h = 0.1 and h = 0.05 initial
meshes are visualized in figures

fig:cubesCut
4 to help understand these two phenomena. Taking

as example the three-dimensional case, as the initial mesh is refined from h = 0.1 to
h = 0.05 in figure

fig:cubesCut
4, it can be appreciated that the displacement produced by the

same number of iterations and the same adaptation parameters is smaller. This has
two consequences. The first consequence is that a high number of iterations on coarse
meshes can excessively stretch the mesh elements (as shown in figure

fig:cubesCut010100
4g) in an orthogonal

pattern, due to the uncoupling of the Laplacian model in the coordinate directions,
possibly increasing the approximation error on the adapted mesh (as seen in table

tab:Error2DConv
3 for

the 2D case for the coarsest meshes). The second consequence is that more iterations
are needed on fine meshes to preserve the second order rate, as shown in figure

fig:ErrorTrend3DConv
3b. In

three dimensions, the a-posteriori limiter also contributes to this effect by constraining
the allowed displacement of each node inside its ball at each iteration.

These effects can be appreciated by observing the trend for the tetrahedron quality

Q =

(∑6
j=1 l

2
j

)3/2

α|ΩK |
(23)

where lj is the length of each edge of the element, |ΩK | its volume, and α the normal-
ization factor to get Q = 1 on a regular tetrahedron with unit edges. Since r-adaptation
inevitably introduces some anisotropy which is not taken into account in our quality
measure, we expect the quality to be somewhat degraded in the adapted regions. Any-
way, a too high percentage of bad quality elements, when sharp solution fronts are quite
localized in the domain, can be a sign that the mesh is stretched also in smooth solution
regions, possibly worsening the error reduction performances. In figure

fig:quality
5 we plot the

evolution of the histograms of the elements quality with the number of iterations for the
h = 0.1 and h = 0.05 meshes. The excessive stretch observed in figure

fig:cubesCut010100
4g corresponds to

a significantly degradation of the elements quality for the h = 0.1 mesh, expecially when
increasing the number of iterations, with more than 24% of elements having Q < 0.2 for
150 iterations, much higher than for the h = 0.05 (less than 10%).

13
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fig:ErrorTrend2DConv

(a) Interpolation error trend for the 2D square test case.
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fig:ErrorTrend3DConv

(b) Interpolation error trend for the 3D cube test case.

Figure 3: Interpolation error convergence with mesh adaptation for the square and cube analytical test
cases.fig:convergence
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fig:solutionCube1

(a) Analytical solution, initial h = 0.1 mesh.

fig:solutionCube2

(b) Analytical solution, initial h = 0.02 mesh.

(c) Adapted mesh h = 0.1, nit = 10. (d) Adapted mesh h = 0.05, nit = 10.

(e) Adapted mesh h = 0.1, nit = 30. (f) Adapted mesh h = 0.05, nit = 30.

fig:cubesCut010100

(g) Adapted mesh h = 0.1, nit = 100. (h) Adapted mesh h = 0.05, nit = 100.

Figure 4: Analytical solution (top row) and volumic cuts in the adapted meshes (second to last row) for
the cube test case, for different number of iterations, on the h = 0.1 and h = 0.05 initial meshes.fig:cubesCut
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h E [0] E [10] r[10] E [150] r[150]

0.15 1.525974e-01 5.693340e-02 62.6905 % 1.194055e-01 21.751 %
0.1 7.379553e-02 3.313339e-02 55.1011 % 4.372964e-02 40.742 %

0.075 4.288518e-02 2.097308e-02 51.0948 % 1.991813e-02 53.555 %
0.05 1.958636e-02 1.243068e-02 36.5340 % 1.090836e-02 44.306 %
0.025 4.974168e-03 3.788809e-03 23.8303 % 3.614722e-03 27.330 %
0.0125 1.258864e-03 1.142442e-03 9.2482 % 9.152757e-04 27.294 %

Table 3: Interpolation errors E [k] = ||e[k]||L2 for the 2D square convergence analysis, for 10 and 150
iterations, and reduction r[k] = (1− E [k]/E [0]) with respect to the nonadapted case.tab:Error2DConv

h E [0] E [10] r[10] E [150] r[150]

0.15 3.023667e-01 1.693936e-01 43.9774 % 1.450969e-01 52.013 %
0.1 1.533983e-01 9.494413e-02 38.1061 % 5.919961e-02 61.408 %

0.075 1.036390e-01 7.284977e-02 29.7082 % 2.832881e-02 72.666 %
0.05 4.687948e-02 4.084946e-02 12.8628 % 1.424675e-02 69.610 %

0.0375 2.671484e-02 2.499870e-02 6.4239 % 9.579343e-03 64.142 %

Table 4: Interpolation errors E [k] = ||e[k]||L2 for the 3D cube convergence analysis, for 10 and 150
iterations, and reduction r[k] = (1− E [k]/E [0]) with respect to the nonadapted case.tab:Error3DConv

4.2. Moving front passing over a spherical boundary
sec:shockAn

The algorithm was tested by adapting over a moving front defined as

ρ (X(x, t)) =


1 if X(x, t) < 0

0.5 cos (sπX(x, t) + 1) if X(x, t) ∈ [0, δ]

0 if X(x, t) > δ

(24)

with
X(x, t) = s(x− x0 + vt) (25)

and scaling s = 20, initial position x0 = 0.7, speed v = 0.2, front thickness δ = 0.005.
Unsteady mesh adaptation is performed on this analytical solution every ∆t = 0.25.

The setup is shown in figures
fig:FrontInputVol
6a and

fig:FrontInputCut
6b. The domain is a quarter cylinder of radius

1.5 along the x-axis with x ∈ [−1.5, 1.5], surrounding a quarter sphere centered at the
origin with radius 0.5. This case is designed to test as many geometrical sources of mesh
tangling as possible before the application to fluid flow simulations, as it contains at the
same time curved surfaces, ridges (the intersection of the sphere with each symmetry
planes) and corners (the intersections of the sphere with both the symmetry planes),
and a sharp solution moving over the geometry. Adaptation is performed with (α, γα) =
(40, 0.1), with 30 Jacobi iterations, on an uniform mesh with edge size h = 0.05. The
number of nodes and elements is reported in table

tab:MeshDataFlow
5, as this is the same base mesh that

will be used for the shock-sphere interaction simulations in the next section.
The obtained meshes are shown in figure

fig:MovingFront
6 showing in particularly that the method

is able to preserve a valid mesh both when the front is passing over the surface of
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Figure 5: Evolution of mesh elements quality Q with the number of iterations nit for the 3D cube test,
for the h = 0.1 and h = 0.05 meshes.fig:quality

the sphere (figures
fig:FrontTopVol
6e,

fig:FrontTopCut
6f) and most importantly when it hits and leaves the sphere

(figures
fig:FrontHitVol
6c,

fig:FrontHitCut
6d and

fig:FrontLeaveVol
6g,

fig:FrontLeaveCut
6h respectively). Without the a-posteriori limiter, that effectively

blocks excessive deformation near the corners and in the first layer of elements above
the curved surface, it was impossible to complete the simulation without the occurrence
of tangled elements.

Remarks on mesh folding and the purpose of the a-posteriori limiter. As discussed in
section

sec:Intro
1, there is no analytical proof for the validity of the meshes produced by our

model neither in the continuum nor in the discrete setting. Examples of folded meshes
have indeed already been reported in the literature for several other methods

Dvinsky1991,Knupp1993
[15, 30].

Mesh folding has not been reported for the variable-diffusion Laplacian in the reference
domain in two dimensions

Ceniceros2001,Tang2003,Chen2008
[9, 38, 10], but in

Ceniceros2001
[9] the authors themselves remark that there

is no theoretical reason against its occurrence. In three dimensions, we have found that it
is quite frequent to produce folded elements for too strong adaptation parameters or on
concave boundaries when the limiter presented in the previous section is not applied. An
example of the first situation is given in figure

fig:TanglingCube
7a, where an inverted element is produced

just outside of the most refined region. An example of tangling on a concave boundary is
given in figure

fig:TanglingSphere
7b, where two points on the surface are blocked and cannot move without

folding the adjacent elements (the volume limiter is not applied, but displacement on the
surface is limited on the surface ball in order to allow the projection on Bézier patches),
and one element near the lower circle is folded.

In the numerical simulations presented in the next section, all of which have concave
boundaries, tangling was observed whenever a shock wave hit or developed on the front of
the object, without limiter. Since this happened in the first istants of the simulations, we
have found that the straightforward three-dimensional extension of the original variable-
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fig:FrontInputVol

(a) Solution on input mesh boundary.

fig:FrontInputCut

(b) Solution on input mesh volumic cut.

fig:FrontHitVol

(c) Output mesh boundary at t = 1.0.

fig:FrontHitCut

(d) Output mesh volumic cut at t = 1.0.

fig:FrontTopVol

(e) Output mesh boundary at t = 3.5.

fig:FrontTopCut

(f) Output mesh volumic cut at t = 3.5.

fig:FrontLeaveVol

(g) Output mesh boundary at t = 6.0.

fig:FrontLeaveCut

(h) Output mesh volumic cut at t = 6.0.

Figure 6: Moving front test case, meshes from t = 0.0 to t = 6.0.fig:MovingFront
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fig:TanglingCube

(a) Cube h = 0.1 fifth iteration without limi-
teri with (τ, γτ ) = (10000, 0.1). One inverted
element (cyan).

fig:TanglingSphere

(b) Moving front test case without limiter at t =
6.5. Two blocked points (distorted balls on the
surface of the sphere) and one inverted element
near the lower circle (cyan).

Figure 7: Examples of folded meshes with no limiter applied.fig:Tangling

diffusion Laplacian method in the reference domain
Ceniceros2001
[9] would simply be unpractical on

those cases without an additional limiting or correction step to avoid mesh folding.

5. Adaptation for unsteady compressible flows
sec:FlowRes

We consider the simulation of unsteady inviscid compressible flows in a time depen-
dent frame of reference. In particular, we couple the Fmg library we developed to the
Flowmesh solver

Guardone2011,Isola2015,Re2017
[21, 28, 36], based on a node-centered second order, total variation-

diminishing finite volume scheme for the Euler equations, written in an Arbitrary-
Lagrangian-Eulerian (ALE) form

Donea2004
[13]

d

dt

∫
Ω(t)

u dΩ +

∮
∂Ω(t)

n̂ · (F(u)− vu) dΓ = 0 (26) eq:solvALE

where u is the array of the conservative solution, F(u) its flux, ρ denotes the mass
density, ρU the momentum, and ρet the total energy density. The moving domain
velocity is represented by the vector field v

u =

 ρ
ρU
ρet

T

, F(u) =

 ρU
ρU⊗U + P I
ρetU + PU

T

(27)

The pressure P is computed using the ideal gas equation of state for ideal gases

P = (γ − 1)

(
ρet − 1

2
ρ|U|2

)
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Base mesh Refined mesh
# nodes # elements # nodes # elements

Step 2D 5474 10946 21639 43276
Step 3D 47445 277655 555026 3217351

Shock-sphere 35379 209142 488963 2872845

Table 5: Number of nodes and elements for the simplicial meshes employed for the unsteady compressible
flow cases.tab:MeshDataFlow

Within the code, a local conservative solution transfer procedure at each time step is
guaranteed by the ALE formulation.

Unsteady mesh adaptation is performed according to the scheme shown in section
eq:r:adaptDyn
3.5.

At each time step, the flow solution is predicted on the previous computational mesh,
then the computational mesh is adapted, and finally the flow solution is recomputed
on the adapted mesh. To this end, Flowmesh makes use of a conservative ALE-remap
exactly matching the volumes swept by cell faces during mesh displacements and nodal
volumes, and automatically fulfilling a Discrete Geometric Conservation Law (DGCL)
GuillardFarhat2000,Farhat2001,Etienne2009
[22, 18, 53]. The code also includes the support of topological mesh modifications like
edge split, edge collapse, barycentric node insertion, and Delauney node insertion, not
used in this work.

To apply mesh adaptation at each time step, a low order computation of the solution
at the next time step on the current mesh is used to provide a monitor function to the
mesh PDEs.

5.1. Case 1: two-dimensional forward facing step

As a preliminary validation, we reproduce the results shown for the same method
without a posteriori relaxation in

Chen2008
[10] for the two-dimensional forward facing step

Emery1968,Leer1979,WoodwardColella1984
[17,

48, 52]. Our initial mesh is a Delauney triangulation made of 10946 elements, 5474
nodes, with an average edge length h = 0.0025. Note that this unstructured mesh has
a higher edge size with respect to the one proposed in

WoodwardColella1984
[52], which had an edge size

h = 0.00125. The initial condition is a uniform Mach 3 flow towards the right of the
domain.

All simulations are run on 4 cores of a Intel Xeon E5-2690 (2.6 GHz), mesh adaptation
is serial. We perform mesh adaptation on the base h = 0.0025 mesh, and compare results
with those obtained without adaptation on the refined h = 0.00125 mesh. Adaptation is
performed on mass density, with (α, γα) = (40, 0.1) and (β, γβ) = (10, 0.5). Mesh data
are shown in table

tab:MeshDataFlow
5, while contour lines for mass density are shown in figures

fig:contour_t100
8 and

fig:contour_t200
9.

Contour lines range and spacing for each time instant is the same as in
WoodwardColella1984
[52]. Shock

waves are resolved better on the coarse adapted mesh than on the refined nonadapted
mesh, while resolution on rarefaction fans and contact discontinuities is comparable.
Computational times are shown in table

tab:MeshTimeFlow
6. While mesh adaptation produces a significant

overhead if compared to the base nonadapted case, this overhead is negligible if compared
to the refined nonadapted calculation.
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Base (nonadapted) Base (adapted) Refined (nonadapted)

Step 2D 31m 32s 44m 43s 2h 52m 21s
Step 3D 1h 39m 55s 2h 21m 28s 45h 37m 18s

Shock-sphere 40m 12s 1h 32m 48s 12h 5m 12s

Table 6: Computational times comparison. The overhead due to solution prediction and adaptation is
important, but negligible if compared with an uniform refinement strategy.tab:MeshTimeFlow

(a) Nonadapted h = 0.0025 mesh at t = 0.5. (b) Nonadapted h = 0.0025 mesh at t = 1.0.

(c) Nonadapted h = 0.00125 mesh at t = 0.5. (d) Nonadapted h = 0.00125 mesh at t = 1.0.

(e) Adapted h = 0.0025 mesh at t = 0.5. (f) Adapted h = 0.0025 mesh at t = 1.0.

(g) Adapted h = 0.0025 mesh at t = 0.5. (h) Adapted h = 0.0025 mesh at t = 1.0.

Figure 8: Two-dimensional forward facing step mass density contour lines and adapted meshes at t = 0.5
and t = 1.0.fig:contour_t100
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(a) Nonadapted h = 0.0025 mesh at t = 1.5. (b) Nonadapted h = 0.0025 mesh at t = 2.0.

(c) Nonadapted h = 0.00125 mesh at t = 1.5. (d) Nonadapted h = 0.00125 mesh at t = 2.0.

(e) Adapted h = 0.0025 mesh at t = 1.5. (f) Adapted h = 0.0025 mesh at t = 2.0.

(g) Adapted h = 0.0025 mesh at t = 1.5. (h) Adapted h = 0.0025 mesh at t = 2.0.

Figure 9: Two-dimensional forward facing step mass density contour lines and adapted meshes at t = 1.5
and t = 2.0.fig:contour_t200
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5.2. Case 2: three-dimensional forward facing step

fig:gridinitstep

(a) Forward facing step test case.

fig:gridinitsphere

(b) Shock-sphere test case.

(c) Step, volumic cut and mass density at t = 0.7. (d) Sphere, volumic cut and mass density at t = 90.

(e) Step, volumic cut at t = 70. (f) Sphere, volumic cut at t = 90.

Figure 10: Initial meshes, adapted meshes and solution for the three-dimensional forward facing step
and shock-sphere interaction cases.fig:3dcases

We propose a three-dimensional extension of the classical supersonic forward facing
step. The impulsive start of a Mach 3 flow in a 3 length units long and 1 length unit
wide/high wind tunnel, with a 0.2 length unit wide/high step located at 0.6 length units
from the inlet (see figure

fig:gridinitstep
10a). Adaptation is performed on the mass density (figures

fig:mass_step70
??

and
fig:mesh_step70
??), with (α, γα) = (40, 0.02) on a base mesh with an overall edge size h = 0.04

(slightly refined on the step front plane, h = 0.02). Results are compared with those
obtained without adaptation on a refined mesh with uniform edge size h = 0.015. The
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number of elements and nodes in the meshes are shown in table
tab:MeshDataFlow
5. Contour lines for

mass density on the same diagonal cut plane are shown in figures
fig:contourstep1
11 and

fig:contourstep2
12, for 50

equispaced lines between the values 0.715867 and 6.03154. To obtain a comparable
resolution on shocks between the coarse adapted and the refined nonadapted meshes,
we had to produce a refined mesh that is more than ten times bigger (in terms of nodes
and elements) than the coarse one. Note that the diagonal cut is possibly the most
demanding plane on which results can be compared, as the Laplacian model is uncoupled
in multiple space directions, thus it tends to provide better results on cartesian planes,
as shown in section

sec:cubeAn
4.1. Computational times are shown in table

tab:MeshTimeFlow
6. The benefits in

terms of computational times in three dimensions are greater than in two dimensions.
Anyway, while in two dimension we observed that mesh tangling was a rare occurrence
with our Laplacian model, in three dimensions it was impossible to continue the time
simulation without the a-posteriori limiter after the first few time steps, due to the
strong deformation that quickly led to tangled elements at the step front and around its
corners, but also at the shock reflection lines.

5.3. Case 3: shock–sphere interaction

In order to test the capabilities of the method to handle simultaneously shock waves
and curved boundary, we choose to simulate the interaction of a traveling shock wave
on a sphere. Some configurations for the diffraction of shock waves over cylindrical
and spherical obstacles have been studied experimentally for example in

Bryson1961,Tanno2003
[7, 40]. An

early application of unstructured mesh adaptation to two-dimensional shock-cylinder
simulations can be found in

Drikakis1997
[14], while structured grid adaptation on axisymmetric

shock-sphere simulations can be found in
Sun2005
[37].

The simulation is limited to a quarter of a cylindrical domain (as for the analyti-
cally moving shock of the previous section, see figure

fig:gridinitsphere
10b). We choose a planar shock

moving at Ms = 1.5. Adaptation is performed on the mass density (figures
fig:mass_sphere90
?? and

fig:mesh_sphere90
??),

with (α, γα) = (40, 0.1). Again, the aim is to compare the results obtained with mesh
adaptation on a base mesh with edge size h = 0.05 with those obtained on a uniformly
refined mesh with edge size h = 0.02. Mesh data are shown in table

tab:MeshDataFlow
5. Contour lines

for the mass density solution on a radial plane are shown in figures
fig:contoursphere1
14 and

fig:contourstep2
12, for 50

equispaced lines between the values 1.36081 and 4.00883. Resolution on shock waves
with mesh adaptation is comparable with those obtained on a uniform mesh about ten
times bigger in terms on number of nodes and elements. Computational times are shown
in table

tab:MeshTimeFlow
6.

In this case too it was impossible to complete the simulation over valid meshes
without the action of the a-posteriori limiter near the corners and the curved surface.

6. Conclusions
sec:Conclusions

The proposed algorithm for dynamic r-adaptation extends to three dimensions the
method first proposed in

Ceniceros2001,Chen2008,Arpaia2020
[9, 10, 5] for two-dimensional flows. An iterative solver based

on diagonal Jacobi iterations for the discretized mesh PDEs with natural boundary con-
ditions allows a cheap, uncoupled solution in each space direction. A novel a-posteriori
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(a) Nonadapted h = 0.04 mesh at t = 0.5. (b) Nonadapted h = 0.04 mesh at t = 1.0.

(c) Adapted h = 0.04 mesh at t = 0.5. (d) Adapted h = 0.04 mesh at t = 1.0.

(e) Nonadapted h = 0.015 mesh at t = 0.5. (f) Nonadapted h = 0.015 mesh at t = 1.0.

(g) Adapted h = 0.04 mesh at t = 0.5. (h) Adapted h = 0.04 mesh at t = 1.0.

Figure 11: Three-dimensional forward facing step mass density contour lines and adapted meshes at
t = 0.5 and t = 1.0.fig:contourstep1
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(a) Nonadapted h = 0.04 mesh at t = 1.5. (b) Nonadapted h = 0.04 mesh at t = 2.0.

(c) Adapted h = 0.04 mesh at t = 1.5. (d) Adapted h = 0.04 mesh at t = 2.0.

(e) Nonadapted h = 0.015 mesh at t = 1.5. (f) Nonadapted h = 0.015 mesh at t = 2.0.

(g) Adapted h = 0.04 mesh at t = 1.5. (h) Adapted h = 0.04 mesh at t = 2.0.

Figure 12: Three-dimensional forward facing step mass density contour lines and adapted meshes at
t = 1.5 and t = 2.0.fig:contourstep2
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(a) Nonadapted h = 0.05 mesh at t = 0.5. (b) Nonadapted h = 0.05 mesh at t = 1.0.

(c) Adapted h = 0.05 mesh at t = 0.5. (d) Adapted h = 0.05 mesh at t = 1.0.

(e) Nonadapted h = 0.02 mesh at t = 0.5. (f) Nonadapted h = 0.02 mesh at t = 1.0.

(g) Adapted h = 0.05 mesh at t = 0.5. (h) Adapted h = 0.05 mesh at t = 1.0.

Figure 13: Shock-sphere interaction mass density contour lines and adapted meshes at t = 0.5 and
t = 1.0.fig:contoursphere1
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(a) Nonadapted h = 0.05 mesh at t = 1.5. (b) Nonadapted h = 0.05 mesh at t = 2.0.

(c) Adapted h = 0.05 mesh at t = 1.5. (d) Adapted h = 0.05 mesh at t = 2.0.

(e) Nonadapted h = 0.02 mesh at t = 1.5. (f) Nonadapted h = 0.02 mesh at t = 2.0.

(g) Adapted h = 0.05 mesh at t = 1.5. (h) Adapted h = 0.05 mesh at t = 2.0.

Figure 14: Shock-sphere interaction mass density contour lines and adapted meshes at t = 1.5 and
t = 2.0.fig:contoursphere1
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relaxation scheme allows to prevent mesh tangling through the construction of a se-
quence of valid meshes also over curved boundary surfaces and corners, which is the
main concern of r-adaptation methods in multiple dimensions, and it is interleaved with
a projection step on the curved boundary parametric model. The iterative correction
scheme allows to obtain valid meshes both in the volume and on the curved bound-
aries, and does not depend either on the specific choice of the mesh PDE model or the
boundary geometry representation.

The reference domain formulation for mesh movement produces sufficiently adapted
meshes in as few as ten Jacobi iterations per time step during an unsteady flow sim-
ulation. While the a-posteriori relaxation algorithm is akin to a forward substitution
algorithm, and thus formally dependent from the node ordering, this doesn’t appear
to spoil the adaptation pattern in any of our tests. We show the successful genera-
tion of valid adapted mesh on three-dimensional cases with moving shock waves. While
the computational time overhead with respect to the original unadapted mesh is non-
negligeable, it is more than acceptable when compared to the simulation times needed
to achieve the same accuracy on discontinuous flow features on uniformely refined mesh.
The attractiveness of the method rests in fact in its applicability on moving shocks,
where an off-line mesh refinement approach would require to refine the mesh in most of
the computational domain, and its easy coupling with ALE solvers, enabling solution
conservation on the adapted meshes.

Limitations of the method are the same of the original two-dimensional formulation,
namely the Laplacian models excessively pulls nodes towards non-convex boundaries and
the displacement uncoupling in the multiple space directions can create sensible adapta-
tion patterns for excessively strong adaptation parameters. In this extreme situations,
the effect of the a-posteriori relaxation scheme allows nonetheless to recover a valid mesh
by blocking mesh displacement in critical zones, allowing to continue the mesh move-
ment at successive time steps as the flow features evolve away from the blocked mesh
elements.

Future research lines include the parallelization of the current method, for which no
specific problems are envisaged, and the study of r-adaptation as a tool to complement
h-adaptation in time-dependent simulations to somewhat reduce the overhead of the
adaptation strategy.
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law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids,
Journal of Computational Physics 174 (2001), no. 2, 669 – 694.

FarrellMaddison2011 [19] P.E. Farrell and J.R. Maddison, Conservative interpolation between volume meshes by local galerkin
projection, Computer Methods in Applied Mechanics and Engineering 200 (2011), no. 1, 89 – 100.

Fortunato2016 [20] Meire Fortunato and Per-Olof Persson, High-order unstructured curved mesh generation using the
winslow equations, J. Comput. Phys. 307 (2016), no. C, 1–14.

30



Guardone2011 [21] A. Guardone, D. Isola, and G. Quaranta, Arbitrary lagrangian eulerian formulation for two-
dimensional flows using dynamic meshes with edge swapping, Journal of Computational Physics
230 (2011), no. 20, 7706 – 7722.
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