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Abstract: Creep and the creep-fatigue interaction have shown to strongly influence the 

mechanical behaviour of ancient masonry and long-term heavy loads proved to cause a continuous 

damage. The problem of achieving a reliable lifetime estimate of historic masonry toward the 

effects of persistent loading has been dealt with by a probabilistic approach. The results of pseudo-

creep tests on ancient masonry of different ages and their interpretation through a probabilistic 

model are presented, aimed to the individuation of a random variable as a significant index of 

vulnerability, and to the solution of the classic problem of reliability in stochastic conditions. 

NOTATION 

r.v. random variable 

σf vertical peak stress  

σv vertical stress  

∗vσ  constant vertical stress level 

εvmax maximum vertical strain 

εhmax maximum horizontal strain 

vε , hε  vertical and horizontal strain-rate 

hε , vε  critical strain-rate levels 

σ  vertical stress value required to exceed vε  or hε  



p.d.f. probability density function  

c.d.f. cumulative distribution function 

E  critical value of ε   

)(Ef 
ε  p.d.f. of critical vε or hε  

)(EF 
ε  c.d.f. of the above p.d.f.  

)(Eεφ  failure rate function of the above p.d.f. 

)(Eεℑ  survive function of the above p.d.f. 

α1, ρ1 parameters of Weibull density (eq.2) 

t time 

R(t) reliability function 

)( vσR  probability not to exceed the strain-rate level ε  

)( vσ
σ

F  c.d.f. of σ  

)( vσ
σ

f  p.d.f. of the above p.d.f.  

)( vσφ
σ

 failure rate function of the above p.d.f. 

exp  e = 2.718281828 

)( v* σσF  experimental fragility curve 

b1, b2, α and ρ shape parameters  

u variable  
 

 

INTRODUCTION 

The main part of the European territory is characterized by the presence of historic masonry 

structures often characterized by non-homogeneous load-bearing sections that, during their service 

life, can be subjected to decay due to aggressive environmental attacks, aging and damage due to 



long term heavy loads. Together with other synergetic aspects, time dependent behaviour has 

proved to be involved in the collapse of historical buildings occurred during the last twenty years 

including the recent failures of the Meldert Bell-tower and the Maagdentoren Tower at Zichem 

(Belgium, 2006). The conservation of the pre-existing heritage gains an increasing relevance toward 

the safeguard of the memory and the complex relationship that the architectural culture has to carry 

out with its past, in view of a responsible and sustainable future. Among the risk factors menacing 

the safety of ancient structures, in addition to external factors like the lack of maintenance, the load 

increase due to building modifications, soil settlements, mechanical shocks due to earthquakes, 

fires, etc., an intrinsic feature of masonry (as of any rock-like materials) has to be highlighted. This 

feature, basically related to the self-weight and denominated time-dependent behaviour or creep, 

had not been recognized as a structurally crucial aspect, probably because it develops in the long 

run. Although it was well known in mining engineering and rock and soil mechanics [1], it had 

never been considered a risk factor in the safety assessment of ancient masonry buildings. The 

influence of time becomes evident for instance in compressive tests at vertical constant load. In 

particular, if a vertical constant load is applied to a masonry specimen, an increase in the vertical 

and horizontal deformation takes place, which is commonly subdivided into three phases (Fig. 1): 

the so-called primary, secondary and tertiary creep [2], respectively corresponding to the visco-

elastic branch at decreasing strain rate (decreasing slope of the diagram) and reversible strain; to the 

visco-plastic branch at a constant slope; to the final highly unstable branch, characterized by strain 

developing at increasing rate and ending with the specimen failure. The appearance of one or more 

of these phases and the strain rate of the secondary creep phase depends on the level of the applied 

constant stress. In view of the safeguard of historical buildings and of preventing their failure, the 

possibility of detecting secondary creep strain rate is mostly relevant. In fact, primary creep phase 

corresponds to a stable and safe behaviour and does not require any special care; on the contrary if 

the structures are already displaying tertiary creep, which is preliminary to failure, there may be any 

possibility left to carry out strengthening interventions in useful time. Therefore, detecting 



secondary creep strain rate may give information on the residual service life, as commented below 

(see Fig. 10 for example). Though the estimate cannot have an absolute value, it is certainly valid 

on a comparative basis; in fact, it may allow public institutions to classify buildings according to 

their risk level and to define a priority for the required intervention campaigns. 

As well known, these aspects of the problem suffer of uncertainty and may be dealt with through 

probabilistic approaches and or fuzzy sets theory.  

The literature offers a good panorama of structural safety assessment approached throughout 

Monte Carlo simulation, genetic algorithms, fuzzy theory and so on [3], [4], [5], [6], [7], [8], [9], 

but the proposed approaches are prevalently applied on RC structures or steel structures simulating 

deterioration processes and only seldom the modelling is based on experimental data obtained by 

monitoring action of real structures. The reasons for that are: monitoring is expensive and requires 

long time of observation; modelling of the concrete deterioration process has reached a good level 

of definition [10].  

Similar approaches are not applied to ancient masonry, since a lot of parameters are involved in 

its definition such that, at the moment, simulating its behaviour in a general form seems impossible. 

All the efforts are addressed to model the mechanical behaviour of masonry [11], [12], [13], 

[14], [15], [16] but the results seem to be affected by uncertainty.  

Since 1989 the authors are involved in a research program in which some experimental tests to 

investigate the masonry behaviour over time has been successfully developed [17], [18], [19]. 

Exploiting the medieval and the XVI century masonry coming from the ruins of the collapsed 

tower of Pavia and that coming from the XVI century crypt of the Cathedral of Monza, several 

experimental procedures have been adopted to understand the phenomenon, from creep to pseudo-

creep tests at different time intervals, and various rheological models have been applied to describe 

the creep evolution and creep-induced damage [20]. 

The results obtained have put in evidence the necessity to consider a few uncertainties involved 

in the collapse of massive buildings, therefore a probabilistic approach has been proposed.  



In the literature some examples are presented dealing with ancient masonry from a probabilistic 

point of view [21]. The choice of a probabilistic approach, in general not simple, is particularly 

complex in the case of masonry given the numerous uncertainties affecting it. In fact, a probabilistic 

approach depending on a lot of random variables (r.v.) is difficult to govern and, often, becomes 

unreliable. Therefore, the choice of a significant parameter able to consistently describe the time 

dependent deterioration process is a prior matter. The suitable choice of the r.v. describing the 

deterioration process can lead to model the process in a simple, but reliable, way.  

By experimental evidence, the strain evolution connected with a given stress history of a viscous 

material like a historic masonry can be described through vertical and horizontal strain rate 

connected with a well defined creep phase.  

Since the strain-rate is related to the residual life of the material, to model its evolution over 

stresses the fragility curves approach is proposed, greatly used in seismic vulnerability analysis. 

The method is simple and, if suitable data coming from monitoring of ancient buildings were 

available, it could be adopted for the safety evaluation of existing structures. 

Aim of the paper is to suggest an experimental procedure suitable to study in the laboratory 

creep behaviour, and in particular to catch critical secondary creep strain rate and to propose a 

probabilistic approach for the estimate of the residual life of the material. Further development will 

be the application of the approach to the interpretation of data coming from long term monitoring of 

historic buildings in view of their safeguard and failure prevention.  

EXPERIMENTAL ACTIVITY 

Previous research 

After the collapse of the Civic Tower of Pavia (XI to XVI century), during the investigation for 

searching the causes of the collapse, many prisms of different dimensions were obtained from the 

large blocks coming from the ruins of the tower [22] and constituting the medieval trunk of the 

structure (Figure 1). The prisms, subjected to mechanical tests, had mainly been obtained from the 



conglomerate forming the very thick internal part of the 2800 mm three-leaf walls (Figure 2); a few 

of them were coming from the fairly regular external leaves made of brick masonry of thickness 

varying between 150 and 490 mm; no specimens were sampled from the plain masonry constituting 

the XVI century belfry, not involved in the initiation of the collapse. [22], [17], [18]. Purpose of the 

testing activity has been initially the identification of the creep behaviour as a possible cause of the 

collapse of buildings, once understood that the portion of tower where the failure started was the 

base (highest value of the vertical stress and its concentration due to the presence of a door and the 

staircase), then the study of factors affecting creep (rate of loading, stress level,…) and the set up of 

the most suitable testing procedures to understand the phenomenon, finally the individuation of 

significant parameters (strain rate of secondary creep phase, …) that may be referred to as risk 

indicators in real structures. The prisms dimensions were initially 400x600x700 mm, i.e. the 

maximum compatible with the testing machine; subsequently they were progressively reduced to 

better exploit the available historic masonry, ending with prisms of 200x200x510 mm.  

In addition to monotonic and cyclic tests (Figure 3), six prisms of dimensions 300×300×510 mm 

were tested in compression in controlled conditions of 20°C and 50% RH, using hydraulic machines 

able to keep constant a maximum load of 1000 kN. The load was applied in subsequent steps, kept 

constant until either the creep strain reached a constant value or a steady state was attained. The first 

stress level was chosen between 40% and 50% of the static peak stress of the prisms, estimated by 

sonic tests [17]. The strain vs. time diagrams of the prisms tested are reported in Figures 4a, b. From 

the experimental data, the development of all the creep phases was evident, with secondary creep 

showing even at 41% of the estimated material peak stress and tertiary creep showing at about 70%; 

material dilation took place under severe compressive stress corresponding to high values of the 

horizontal strain due to slow crack propagation until failure [17]. 

Considering that long term tests require constant thermo-hygrometric conditions and especially 

designed testing apparatus, a more rapid and therefore more convenient testing procedure was 

subsequently preferred. The so called pseudo-creep tests were carried out applying the load by 



subsequent steps corresponding to a constant value (generally 0.25 or 0.3 MPa) kept constant for a 

specific time interval. Different durations of the time interval have been experimented from 300 to 

28800 seconds that allowed to indirectly observe the influence of the rate of loading. In fact, these 

tests characterized by a regular load history tend to simulate, by discrete load steps, monotonic tests 

where the load increases continuously at an equivalent constant rate and give the opportunity to 

satisfactorily catch the limit between primary and secondary creep phase [17]. As an example, table 1 

shows the results obtained on twelve prisms of dimensions 100 x 100 x 180 mm tested in 

compression by subsequent load steps corresponding to 0.3 MPa kept constant for different time 

intervals respectively of 300 sec, 900 sec, 3600 sec and 10800 sec. An initial step of 0.6 MPa was 

first applied. Before the application of any new load step, the sample was completely unloaded so 

the unloading Young modulus could be evaluated [23] (Figure 5). Looking at Table 1, it is 

interesting to notice that the average peak stress tends to decrease and the corresponding strain 

tends to increase at extending the time interval, indicating that the stress-strain behaviour is strongly 

time-dependent. The results of a test carried out at 10800 sec. are reported in Figure 5: at each load 

step primary creep occurred and, during the last load step, also secondary and tertiary creep took 

place. 

Subsequently, the XVI century plain masonry (Figure 2) never tested before, because not 

responsible of the collapse trigger, was also studied. In fact, its behaviour may provide a useful 

comparison for other structures of the same age and constructive technique, being a historical 

masonry not usually available for mechanical testing. 

Pseudo-creep tests 

Before carrying out pseudo-creep tests, the material was characterized by monotonic tests and 

non-destructive sonic tests (Figure 6). In Figure 6b the compressive peak stress have been plotted 

vs. the sonic velocity comparing the results obtained on the tower of Pavia with those previously 

obtained on the crypt of Monza [26]. A direct relationship can be clearly observed; the prisms 



obtained from the outer leaf of the medieval part of the tower of Pavia achieved the highest strength 

values, whereas the inner leaf the lowest ones, being the masonry of the belfry in between. In fact, 

this is coherent with the texture characteristics of the three materials (Figures 7 a-d). The outer leaf 

is the highest quality one, built to be the visible part of the structure; apparently its regular texture is 

in some way similar to that of the belfry, but probably the intrinsic characteristics of its mortar are 

higher; the inner leaf is constituted by rubble masonry. The values of the crypt of Monza, the 

texture of which shows an intermediate pattern between the last two, with the presence of bricks 

and stones, are overlapped to those of the inner leaf and those of the belfry. 

A total of 4 prisms coming from the conglomerate forming the very thick internal part of the 2800 

mm three-leaf medieval masonry (labeled Q, B, M and S) and 4 coming from the XVI century plain 

masonry (labeled Ec, W, K and In) of dimensions 200 x 200 x 350 mm were tested applying 

subsequent load steps of 0.3 MPa kept constant for intervals of 28800 sec. (Table 2) (Figure 8 ). On 

average, higher peak stresses (σf) and lower strains at failure (εvmax, εhmax) were registered on the 

XVI century plain masonry, which reached failure in a longer time than the prisms of the medieval 

masonry [14]. In Figure 8 the results of a test carried out on the masonry of the inner leaf and those 

of a test carried out on the masonry of the XVI century plain masonry are respectively shown. In 

particular, in the case of the XVI century masonry a more brittle behaviour can be observed, 

governed by the presence of the bricks that in this masonry are more regularly and abundantly 

present than the mortar. It is interesting to compare the trends of horizontal strain, which are 

differently influenced by the first crack, however showing a strong dilation in both cases. In the 

case of the medieval inner leaf, the observed behaviour is non-brittle, the diagram is markedly non-

linear and failure is gradually reached (Figure 9a). In the case of the XVI century masonry, the 

diagram becomes bilinear with a change in its slope at a stress value of 3 N/mm2 (Figure 9b). 

This behaviour is coherent with the crack pattern at failure: in the case of the inner leaf (Figure 

10a) the cracks do not cut the bricks and the stones, but mainly involve mortar and tend to 

propagate at the interface between mortar and resistant elements. In the case of the XVI century 



masonry (Figure 10b) cracks are clearly vertical and involve both bricks and the mortar. 

Considering the last load step for each specimen, the secondary creep rate before collapse has 

been calculated and then related to the duration of the last load step, which can be regarded as the 

residual life of the material. In Figure 11 these values have been plotted comparing the masonry of 

Monza [23], [14], [24] previously tested with those of the Tower of Pavia. An interesting inverse 

relationship can be found, which seems to apply to the different materials considered together, as 

well as to other brittle materials like concrete, subjected to creep and fatigue tests [25]. The 

observed strong correlation could be used as a reliable parameter to predict the residual life of a 

material element subjected to a given sustained stress.  

THE STRAIN-RATE BEHAVIOUR APPROACHED THROUGH A PROBABILISTIC 

MODEL 

By experimental evidence, the strain evolution connected with a given stress history of a viscous 

material like a historic masonry can be described through the vertical and horizontal strain-rate 

reached at a certain vertical stress level vσ . Therefore, in the preservation of historic buildings 

from major damage or even failure it would be very useful to indicate a critical value of the strain-

rate under which the residual life of the building is greater than the required service life.  

As reported in Figure 11, an inverse relationship between the secondary creep strain-rate and the 

residual life of the material. 

With the aim to investigate the residual life of material as a function of the strain-rate, the 

parameters vε  and hε  respectively defined as the vertical and horizontal strain-rate, are quantified 

by the slope of the linear branches of the strain versus time diagrams obtained in the experimental 

tests (Figure 8); their values are recorded at the constant applied stress level ∗
vσ ; here and in the 

follow the experimental stress values will be denoted with *.  

For each ∗
vσ  the high randomness connected with the changing of strain-rate, due to the high 



non-homogeneity of the masonry, allows for the treatment of vε  and hε as random variables (r.v.) 

with a certain distribution of values (Figure 12 a and b). Seen in this way, the deformation process 

can be interpreted as a stochastic process of the considered r.v.. The strain-rate also depends on the 

stress level ∗
vσ , corresponding to which the deformation is recorded. Therefore, for each stress level 

∗
vσ , the strain-rate (measured in sec/ε ) can be modelled with a probability density function (p.d.f.) 

)(Ef 
ε , which is dependent on ∗vσ  and on the strain rate. In order to model )(Ef 

ε  at every stress 

level ∗
vσ (Figure 13a and b), a family of theoretical distributions must be chosen. 

Choosing the suitable p.d.f. modelling a given phenomenon is a delicate and important matter; it 

must be found according to the physical aspects of the phenomenon itself, and to the characteristics 

of the distribution function in its “tail”, where often no experimental data can be collected. This 

latter aspect can be investigated analyzing the behaviour of the failure rate function )(Eεφ  at every 

stress level ∗
vσ  connected with the chosen distribution function:  

{ } vh
*
v or,  Pr)( εεεεσεεφ ε 

 ==∀>+≤<= EEdEEEdE  (1) 

The function (1) is able to describe the immediate occurrence rate of a given event. It can present 

three fundamental behaviours. A constant hazard-rate means: since that a system has functioned for 

some time without failing, there is no effect on the failure probability for the period ahead. A 

decreasing failure rate means that the failure probability for the period ahead is favourably affected 

by the system satisfactory functioning for a certain time. An increasing failure rate means that the 

system has already been in service for some time and has reduced its reliability, so that its 

probability of failure is increasing. In an actual material, a combination of these respective cases is 

possible. More details on this subject are given in [26] and [27].  

Considering the recorded experimental data, a conventional value of ε  may be assumed as a 

critical value indicating a safety limit. Consequently, for a given stress level ∗
vσ  the probability to 

record the critical strain-rate connected with the secondary creep safety limit increases if the strain-



rate increases. In other words, at a given stress level ∗
vσ , the probability that the secondary creep 

strain-rate falls in the interval { }EdEE  +≤< ε  increases as the strain-rate increases. This hypothesis, 

assumed as a satisfying (but not unique) physical interpretation of the decay process, associated 

with the information given by (1) on the hazard rate behaviour of various p.d.f. families, leads to 

model the behaviour of the strain-rate at the stress level ∗vσ  with a Weibull p.d.f. as follows: 

 [ ] ∗− ∀−= v1
1

111
11 )(exp)()( σρρρα αα

ε EEEf 
  (2) 

This family of distributions presents an hazard rate function (1) which increases if the value of E  

increases and tends to ∞ if ∞→E ; this fact seems to respect the physical interpretation of the 

strain-rate behaviour previously proposed. 

The strain-rate behaviour as a reliability problem 

It is furthermore interesting to evaluate the probability that the system will reach, or exceed a given 

strain-rate level hε  or vε  over a stress history. Considering a significant strain-rate level hε  or vε  

and the variable stress needed to exceed it, the strain-rate behaviour can be treated as a reliability 

problem, [27], [28].  

Reliability R(t) is related to the performance of a system over time, and is defined as the 

probability that the system does not fail by time t. This definition is extended here, denoting by 

)( vσR  the probability that a system will not exceed a given significant strain-rate level by stress 

vσ . The random variable that is used to quantify reliability is σ , which is simply the stress it takes 

to exceed damage hε  or vε . Thus, from this point of view, the reliability function is given by [29]: 

 )(1)Pr()( vvv σσσσ
σ

FR −=>=   (3) 

where )( vσ
σ

F  is the distribution function for σ .  

Computing )( vσ
σ

F for different damage levels hε  (or vε ) allows us to build the corresponding 



fragility curves describing the probability of exceeding a given strain-rate over stress [30] that is 

expressed as the area above the threshold hε  (or vε ) (Figure 14) and can be calculated by using the 

survive function:  

∗∀−=ℑ v)(1)( σεε EFE 
               (4) 

where )(EF 
ε  is the cumulative distribution function of the p.d.f. (2) at every ∗

vσ . The computation 

of )(Eεℑ at every ∗
vσ  is possible with the use of any kind of computer code for numerical 

integration. The areas computed over different strain rate thresholds provide the experimental 

fragility curves )( v* σσF . In other words, the probability to exceed a certain level hε  (or vε ) at 

different experimental stress values ∗
vσ can be plotted in graphical form here called experimental 

fragility curve: for each hε  (or vε ) chosen an experimental fragility curve can be built.  

Since the experimental fragility curves are composed by a discrete number of points (Figure 15) 

to describe their behaviour over σv a probabilistic modelling is needed. To make it we must assume 

that the density function )( vσ
σ

f  exists for the r.v. σ , the failure rate function )( vσφ
σ

is given by 

[29]: 

 
)(
)(

)(
v

v
v σ

σ
σφ σ

σ R
f

=  (5)  

To model the experimental fragility curves, a Weibull distribution has been chosen [21, 27, 31, 

33] that seems to provide a good interpretation of the physical phenomenon. In fact, experimental 

evidence indicates that the failure rate function )( vσφ
σ

 has a polynomial form and, consequently, 

must be [29, 31]: 

2
vv 1)( bbσσφ

σ
=  (6) 

where 01 >b  and +∞<< 21 b-  are constants. 

Since    
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σ
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v

0
vv )(exp)()(

σ

σσσ φσφσ duuf  

and assuming: ααρ=1b  and  α=+12b       (with α and ρ equal constants) we obtain: 



α
σ

σ
σρ

σ
φ )(

1
)( v

1
v

0 2

2
1

v
=

+
=

+

∫ b
b

duu
b

 (7) 

Therefore: ])(exp[)( vv
ασρσ −=R  (8) 

which is definitely the well known Weibull survive function [29], [32].  

As a consequence of this, for different strain-rate levels hε , the distribution )( vσ
σ

F  involved in 

(3), through (8), will be a Weibull distribution [29]; it allows for computing the theoretical fragility 

curves through which the “failures” with a higher or lower probability of occurrence at the given 

stress vσ  can be identified. The shape parameters involved in the distributions used have been 

estimated through a computer code using the least squares and the Rosenbrock’s optimization 

methods. 

INTERPRETATION OF THE PSEUDO-CREEP TESTS 

The described procedure has been applied here to the life-time estimate of ancient masonry, 

modelling the results obtained from the pseudo-creep tests mentioned above. Some results of this 

research were presented in [34], [35]; here new elaborations on masonry of different ages and 

different textures are introduced to support the previous results obtained and to investigate the 

potentiality of the model to model different kind of masonry. 

An important step is the identification of significant thresholds of critical strain. This choice can 

be made considering the slope of the strain vs. time diagram in the branch corresponding to the 

secondary creep phase during the last load step (Figure 6). The tangent to this branch represents the 

strain rate limit value corresponding to which the material reaches failure. Therefore, the strain rate 

chosen as safety threshold should certainly be lower than such value. In this case, the assumed 

critical strain rates are: 5
100.5v
−

×=ε  and 4
100.1v
−

×=ε ; the same values have been assumed also for 

hε .  

Here in the following the proposed probabilistic approach is used to investigate the probability of 



failure of the medieval inner leaf masonry and of the XVI century plain masonry of the Civic Tower 

of Pavia (Figure 2) due to its permanent load using experimental data. The procedure has been 

applied to evaluate the influence of the vertical and horizontal deformation on the collapse of the 

structure. 

The medieval inner leaf masonry 

Figure 15 shows the fragility curves describing the behaviour of the medieval inner leaf masonry. It 

appears that, in the case of 5
vh 105.0 −×== εε  , the same probability level corresponds to a higher 

stress value vσ  for the horizontal strain than for the vertical one. In other words, if the vertical 

strain is considered, the critical threshold 5.0×10−5 is reached at a relatively low stress value. In fact, 

at low strain level, the masonry behaviour keeps within the elastic limit, consequently the direct 

strain (parallel to the load direction) are prevailing. This phenomenon inverts if a higher threshold is 

considered ( 4
vh 100.1 −×== εε  ). 

In this case, at the same probability level, vertical strain corresponds to a higher value of vσ  than 

that shown by the horizontal strain; this means that in the case of horizontal strain the critical 

threshold 1.0×10−4 is reached at lower values than those shown by the vertical strain (Table 3). 

This depends on the mechanical damage developed during the test due to the load increase: in 

fact, the exit from the elastic range implies the preponderance of the horizontal (indirect) strain on 

the vertical ones which can be denominated dilation. In the case of the threshold 1.25×10−5, the 

horizontal and vertical fragility curves apparently are exactly the same (Figure 16). Really, given 

the low distribution of the experimental data, all situated close to the value 1, the modelling is not 

much indicative of the real material behaviour: it is rather a symptom of it and, in this case, the 

prediction has to be assumed with caution. 

The XVI century plain masonry 



Figures 17 and 18 show the fragility curves relative to the XVI century plain masonry for three 

critical thresholds: 5.0×10−5 and 1.0×10−4 (Figure 17); 1.25×10−5 (Figure 18). In Figure 17b, the 

fragility curve describing the probability of exceeding the vertical critical threshold vε  is modelled 

through a Weibull distribution, like in the case of the inner leaf. In this case the experimental data 

are more scattered around the theoretical curves. 

A difference has to be highlighted in the case of the horizontal strain. The experimental values 

show a bimodal behaviour (Figure 17a); therefore, in this case a mixture of two distributions had to 

be adopted for the modelling: 

21 )1()( wpwpF ⋅−+⋅=σσ  (9) 

where w1 and w2 are two Weibull distributions with different shape parameters, respectively 

modelling the behaviour before the threshold 2
v /2 mmN=σ  and after such threshold (Figure 17a). 

Parameter p represents the percentage value of experimental probability influencing the first 

distribution, whereas (1 – p) is its reciprocal. 

The discontinuity on the fragility curves corresponds to the neat change in the slope of the 

diagram relative to the horizontal strain (Figure 9b) associated to the brittle behaviour of the XVI 

century masonry. Such brittleness depends on the failure mechanism governed by the brick 

cracking, as already underlined by the analysis of the crack patterns (Figure 10b).  

In Figure 18 for the case of the threshold 1.25×10−5 the horizontal and vertical fragility curves 

are plotted. In Figure 18a the bi-modal behaviour is evident however, given the low distribution of 

the experimental data, both in Figure 18a and in Figure 18b the points of the experimental fragility 

curves are all situated close to the value 1 as in Figure 16. Therefore, also this time, the modelling is 

not much indicative of the real material behaviour: it is rather a symptom of it and, in this case, the 

prediction has to be assumed with caution. 

In Table 4 a dilatant behaviour of the XVI century plain masonry is highlighted by the stress 

values corresponding to the exceedance of all the three critical thresholds 1.25×10−5, 5.0×10−5 and 



1.0×10−4, always lower in the case of the horizontal strain than the vertical. For all the considered 

thresholds, the behaviour of the material can be considered external to the elastic range, since the 

indirect strains are always prevailing on the vertical ones. 

CONCLUSIONS 

The time-dependent behaviour, together with other factors acting in a synergetic way, proved to be 

responsible of the collapse of some monumental buildings happened during the last fifteen years. 

The problem has been faced through an experimental programme showing that laboratory pseudo-

creep tests provide useful results for a deeper knowledge of the primary, secondary and tertiary 

creep phases. The applied probabilistic model seems to appropriately interpret the experimental 

results, allows an estimate of the exceedance of the critical thresholds in vertical and horizontal 

strain rate that are related to the residual service life, and also captures the difference between 

masonry of different ages and characteristics. 

For the safety assessment of time-dependent historic masonry buildings, useful information aimed 

to the prevision of the residual life may be provided by in-situ long-term monitoring campaigns 

recording the evolution of the main crack opening and/or the variations of masonry wall thickness 

combined with complementary information on the states of stress and on the quality of masonry 

recorded through single and double flat-jack tests and sonic tests. The results obtained through the 

proposed probabilistic approach indicate an interesting research direction toward the interpretation 

of data collected through the monitoring of monumental buildings, to prevent total or partial failure. 

The precocious recognition in-situ of critical values of secondary creep strain rate related to the 

residual service life will allow to design strengthening interventions finalized both to directly repair 

damage and to remove the vulnerability sources. 
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FIGURE CAPTIONS 
 
Figure 1. Primary, secondary and tertiary creep phases at constant uniaxial compression stress. 

Figure 2. Civic Tower of Pavia: (a) before failure, (b) detail of the 2800 mm thick medieval 

masonry. 

Figure 3. Results of a cyclic test on a 400 x 600 x 700 mm masonry prism. 

Figure 4. Prisms of 300 x 300 x 510 mm from the inner leaf: results of creep tests. 

Figure 5. Pseudo-creep tests on a 100 x 100 x 180 mm prism of the inner leaf. 

Figure 6. Characterization of the specimens by (a) sonic tests and (b) monotonic tests: (---) 

inner leaf, (──) XVI century plain masonry.Figure 1. Pavia, outer leaf. 

 
Figure 7. Masonry specimens belonging to a)Pavia, outer leaf, b) Pavia, inner leaf, c) Pavia, 

belfry, d) Monza, Crypt. 

Figure 8. Pseudo-creep curves: (---) inner leaf, (──) XVI century plain masonry; letters 



indicate individual specimens quoted in tab. 2. 

Figure 9. Pseudo creep tests: (a) on prism In of the inner leaf, (b) on prism M, XVI century 

masonry. 

Figure 10. Crack pattern at the end of pseduo creep tests: (a) on prism In of the inner leaf, (b) on 

.prism M of the XVI century masonry. 

Figure 11. Secondary creep strain rate vs. duration of last load step. 

 
Figure 12. Interpolation of the vertical (a) and horizontal (b) strain-rate vs. applied stress. 

Figure 13. Vertical (a) and horizontal (b) secondary creep strain-rate vs. applied stress (* * *) 

modelled with a Weibull p.d.f )(Ef 
ε  (──). 

Figure 14. Exceedance probability to cross the thresholdε  

Figure 15. Inner leaf medieval masonry: experimental (▲ hε , vε  = 5.0 x 10−5, 

• hε , vε  = 1.0 x 10−4) and theoretical () fragility curves; a) horizontal strain-rate, b) vertical 

strain-rate. 

Figure 16. Inner leaf medieval masonry: experimental (•) and theoretical () fragility 

curves; a) horizontal strain-rate, b) vertical strain-rate. Critical strain-rate threshold: 1.25 x 10−5. 

Figure 17. XVI century plain masonry: experimental (▲ hε , vε  = 5.0 x 10−5, • hε , vε  = 1.0 x 10−4) 

and theoretical () fragility curves; a) horizontal strain-rate, b) vertical strain-rate. 

Figure 18. XVI century plain masonry: experimental (•) and theoretical () fragility curves; 

a) horizontal strain-rate, b) vertical strain-rate. Critical strain-rate threshold: 1.25 x 10−5. 



 

TABLE CAPTIONS 

. 
Table 1. Average results of pseudo creep tests on specimens of dimension 100x100x180 mm 

Table 2. Results of pseudo creep tests of the second series. 

Table 3. Medieval inner leaf: Probability to exceed hε  and vε  for different vσ  hε  and vε . 

Table 4. XVI century plain masonry: Probability to exceed hε  and vε  for different vσ  hε  and 

vε . 

 

 



TABLES 
 
Table 1.  
Average results of pseudo creep tests on specimens of dimension 100x100x180 mm. 

Time interval [sec] σf [MPa] εvmax (x 103) 

300 3.68 3.17 
900 2.73 4.20 

3600 2.47 4.12 
10800 2.68 5.87 

 
 
 
 



 
 
Table 2.  
Results of pseudo creep tests of the second series. 

specimen masonry σf [MPa] εv
max [µm/mm] εh

max [µm/mm] 
prism Q  

belfry 

 

6,07 9,52 -20,39 
prism B 4,36 5,98 -26,46 
prism M 5,27 4,67 -15,56 
prism S 4,13 7,19 -17,23 
average  4,96 6,84 -19,91 

prism Ec 

inner leaf 
 
 

3,59 8,43 -11,84 
prism W 2,75 4.00 -7,89 
prism K 1,56 3,99 -45,35 
prism In 2,47 4,78 -18,30 
average  2,59 5,30 -20,85 

 
 
 
 



 
 
 
 
 
Table 3.  
Medieval inner leaf: Probability to exceed hε  and vε  for different vσ  hε  and vε . 

 0000125.0
h
=ε  0000125.0

v
=ε  00005.0

h
=ε  00005.0

v
=ε  0001.0

h
=ε  0001.0

v
=ε  

Ex. pr. of vε  vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) 
10% 0.682 0.631 0.139 0.002 0.147 0.158 
63% 0.825 0.832 0.648 0.054 0.791 1.382 
90% 0.899 0.901 1.153 0.849 1.476 2.022 

 
 



Table 4.  
XVI century plain masonry: Probability to exceed hε  and vε  for different vσ  hε  and vε . 

 0000125.0h =ε  0000125.0
v
=ε  00005.0

h
=ε  00005.0

v
=ε  0001.0

h
=ε  0001.0

v
=ε  

Ex. pr. of vε  vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) vσ  (N/mm2) 
10% 0.005 0.150 0.150 0.700 0.897 1.100 
63% 0.350 0.875 1.375 1.833 2.267 2.781 
90% 1.320 1.650 2.450 2.652 2.675 3.924 
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Figure 1. Primary, secondary and tertiary creep phases at constant uniaxial compression stress. 
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b) 

Figure2. Civic Tower of Pavia: (a) before failure, (b) detail of the 2800 mm thick medieval 
masonry. 

colour version 
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Figure 2. Civic Tower of Pavia: (a) before failure, 

(b) detail of the 2800 mm thick medieval masonry. 
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Figure 3. Results of a cyclic test on a 400 x 600 x 700 
mm masonry prism.  
 

 

 

 

 



  
0 200 400 600 800 1000 1200

time [days]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4
   

   
   

   
ε h

 (x
10

3 )  
   

   
   

   
   

   
   

   
 ε

v 
(x

10
3 )

 primary creep

tertiary creep

secondary creep

dilation

 a) 

 
0 200 400 600 800 1000 1200

time [days]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ v
 [N

/m
m

2 ]

b) 
Figure 4. Prisms of 300 x 300 x 510 mm from 
the inner leaf: results of creep tests. 
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Figure 5. Pseudo-creep tests on a 100 x 100 x 180 mm prism of the inner leaf. 
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