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)e eco-driving profiles are algorithms able to use additional information in order to create recommendations or limitation over
the driver capabilities.)ey increase the autonomy of the vehicle but currently their usage is not related to the autonomy required
by the driver. For this reason, in this paper, the eco-driving challenge is translated into two-layer optimal controller designed for
pure electric vehicles.)is controller is oriented to ensure that the energy available is enough to complete a demanded trip, adding
speed limits to control the energy consumption rate.)emechanical and electrical models required are exposed and analyzed.)e
cost function is optimized to correspond to the needs of each trip according to driver behavior, vehicle, and traject information.
)e optimal controller proposed in this paper is a nonlinear model predictive controller (NMPC) associated with a nonlinear
unidimensional optimization. )e combination of both algorithms allows increasing around 50% the autonomy with a limitation
of the 30% of the speed and acceleration capabilities. Also, the algorithm is able to ensure a final autonomy with a 1.25% of error in
the presence of sensor and actuator noise.

1. Introduction

)e growing presence of electric vehicles in the market
caused an accelerated development of hardware and soft-
ware in order to build more attractive vehicles to customers.
Even when electric vehicles still have challenges to overcome
such as the charge time, autonomy, standardization of
charge process, charge stations, or recycling process, one of
those aspects highlighted by its effect over the autonomy is
the balance between ecological driving profile and perfor-
mance. At the moment, the driver is in charge to make the
balance between both according to the amount of autonomy
that is required [1]. However, there are some tools able to
improve the capabilities of the driver to estimate the au-
tonomy of the vehicle according to his current actions. )e
two most representatives are the driving alerting system and
the eco-driving profiles optimizer [2].

)e driving alerting system is an algorithm able to con-
siderate external variables for updating the estimated auton-
omy value. )is kind of algorithms requires the same set of

data and dynamic models as other Advanced Driver Assis-
tance Systems (ADAS) already implemented in themarket [3].
)e dynamicmodels required are the longitudinal vehicle data
and battery model. According to the external current data
about weather, road, traffic, and so forth, the acceleration
profile is estimated based on the historical data set of accel-
eration profiles in the same conditions.)e acceleration profile
is translated to a power demand and it is sent to the SoC (state
of charge) estimator. )e SoC estimator uses the power de-
mand profile and the battery dynamic model to determine if
there is enough energy to complete the travel or not.

External information required by the driving alerting
system is as follows:

(i) Terrain parameters.
(ii) Weather conditions.
(iii) Driving profile.
(iv) Traffic conditions.
(v) Speed limits.
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)ese parameters allow determining the capability of the
driver to follow the speed reference.

In [4–6], all information is obtained from different
sources such as Google Maps and Wunderground.com to
make a historical data based range estimation. )is is one of
the most simple algorithms proposed to evaluate the current
travel configuration to make a realistic autonomy estima-
tion. )e data based estimator proposed in [6] does not use
traffic behavior and it is not able to distinguish the mean
speed proposed by different users. In other words, it is not
able to use the historical data of the driver behavior. Even
when the algorithm has those limitations, it is able to reduce
the estimation error of the autonomy in function of weather/
road conditions. )is algorithm showed a reduction of the
autonomy estimated from 12% to 64% in some weather
conditions; this reduction could not be estimated by the
other contemporaneous algorithms. )is result depends on
the conditions of each travel. )e data based estimator
proposed in [5] is able to increase the number of variables
used in order to contemplate the drive profile and the traffic
conditions but due to the number of possible combinations
between them, there is a computational time limitation that
makes it impossible to continue reducing the autonomy
uncertainty.

As was mentioned before, the possibility to estimate the
range opens the possibility to quantify the efficiency of the
road and the driver actions. In consequence, the “eco-
driving profiles optimizers” appear. Such algorithm is ca-
pable to use the information analyzed by the driving alerting
system in order to find the optimal way to reduce the overall
energy consumption. It proposes driving limitations over
speed or acceleration commands to ensure that the trip will
be completed. )e driving mode where those limitations are
active is called the “eco mode.” )e internal combustion and
electric vehicles are sensitive to speed commands optimi-
zations but the electric vehicles show the highest potential
with a range improvement of 18% in front of the 7%
achieved by internal combustion vehicles with same speed
commands optimizations [7]. )at is due to the fact that the
proportions of losses caused by heat and friction in internal
combustion engines are not comparable with the electric
vehicle losses due to the same phenomenon. In other words,
the power chain is more efficient in electric vehicles than in
internal combustion vehicles; then the efficiency of electric
vehicles is more sensitive to losses due to external factors like
speed profile.

Due to this potential, in parallel to the autonomy esti-
mators, the speed profile optimizers appear. For example, in
[8], a macroscopic representation of the energetic behavior is
used to feed a fuzzy controller. )e objective of this con-
troller is to evaluate the external parameters of the travel and
the battery state of charge (SoC) to determine when it is
possible to extend the range. )e controller manipulates the
speed/acceleration limitations through the drive mode op-
tions: dynamic (sport), economic, or eco-dynamic (eco
mode). As a result, even when power chain losses and gear
losses are not considered, the “adaptive operation mode”
proposed by the fuzzy controller was able to increase the
range around a 10%.

Fuzzy controllers are sensitive to rules description. For
this reason, a controller that uses the nonlinear model of the
mechanical and electrical behavior of an electric vehicle can
improve the resolution of the control signal. For example, in
[9], an optimal control is formulated. )is paper takes five
models into account: the model of longitudinal dynamics of
the vehicle, the motor/inverter model based on efficiency
maps obtained by FEA (finite element analysis), the model of
auxiliary power consumption sources, the hydraulic brakes
model, and the battery model. )e dynamic programming
algorithm cost function proposed has three components: the
power of the battery, the time required by the travel, and the
smoothness of speed profile. Besides, there are two constant
values that have to be proposed by the user in order to
achieve a balance between the travel duration and the
smoothness of speed profile. )e algorithm was able to save
14.8% of the SoC in a trip of 19 km with a combination of
urban and highway speed profiles. )is algorithm is an
offline approach; then a higher quantity of SoC can be saved
if a closed-loop controller is proposed due to the fact that the
controller would be able to react to external disturbances in
real time. )en, compilation time has to be considered. )e
dynamic programming requires segmentation of the com-
plete problem in order to divide the optimal problem into
easy-to-solve subproblems. )e number of subproblems (n)
and the number of possible states (N) in each subproblem
will describe the complexity of the solution O(n, N). )en,
two options can be explored to deal with the dynamic
problem complexity. On one hand, the amount of sub-
problems (n) required to bring resolutions to the algorithm
can be optimized. For example, in [10], the quantity of
energy saved is compared to the number of traject seg-
mentations (n) to find the optimal value of segmentation
required. On the other hand, the number of possible states in
each subproblem (N) is reduced in order to keep acceptable
balance between complexity and resolution. )is analysis
can be extended to other kinds of optimal controllers; for
example, in [11], the same energy management problem is
boarded but a simplification of the batterymodel is proposed
to avoid the relationship between the internal resistance and
the open-circuit voltage with the state of charge. As a
consequence, the dynamics of the state of charge can be
ignored in each subproblem using average values of internal
resistance and open-circuit voltage. )is approximation
achieves reduction between 80% and 95% in the compilation
time without affecting more than 1% of the quantity of
energy spent along the trip when the algorithm is applied.

)e potential of the eco-driving made with offline
optimization like the one presented previously is reduced
by the inconvenience of an offline technique. )e open-
loop optimization does not take into account the distur-
bances that could appear along the traject such as traffic and
lights. For this reason, a closed-loop technique like the
technique presented in [10] is explored. In this paper, a
hybrid vehicle’s energy management is optimized along
two types of speed profiles: new European driving cycle
(NEDC) and urban dynamometer driving schedule
(UDDS). A bilevel MPC is proposed in order to reduce
computational time and to simplify the hybrid optimal
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problem. In the external loop, a Krylov subspace method is
introduced to optimize the velocity trajectory and to im-
prove computational efficiency at the same time. In the
internal loop, an explicit solution of the optimal torque as a
result of an energy split between both energy sources and
the gear shift schedule is proposed by Pontryagin’s mini-
mum principle and combination of numerical methods.
Even when the energetical results are not comparable
between this paper and the latest papers presented due to
the hybrid nature of the vehicle, this paper allows deter-
mining the feasibility of online techniques. Besides, the
comparison made in the paper between offline technique
and the online technique allows determining that the
closed-loop method proposed is able to save the same
quantity of energy as the open-loop technique but it is also
able to take the disturbances into account. For this reason,
only closed-loop techniques are able to bring those results
from simulations to real products in market.

)is paper presents an eco-driving optimizer with a
closed-loop architecture oriented to two-wheel electric ve-
hicles because the dimensions of those ones cause the
strictest balance between the battery size and vehicle per-
formance. In Section 2, the theoretical mechanical and
electrical models required for the controller synthesis are
introduced. In Section 3, the power demand profiles re-
quired to obtain a comparable test are mentioned and
explained. In Sections 4 and 5, the open-loop optimal
controller proposed and its extension to closed-loop tech-
nique are exposed. In Section 6, a sensibility test is presented
to ensure the behavior of the closed-loop controller pro-
posed and, also, an additional optimization is introduced to
ensure that the weights from cost function are well syn-
chronized according to the amount of autonomy required by
driver. In Section 7, the results obtained by the controller are
presented and finally, in Section 8, conclusions and future
work are presented.

2. Modeling

2.1. Mechanical Model. In [12], initial studies about the
mechanical requirements of the dynamic model such as the
number of states required to represent the energy con-
sumption are presented. )is section represents the con-
clusions of this initial study and the connection of
mechanical study with the electrical concepts. )is paper
considers an urban speed profile; for this reason, slippage
over a longitudinal axis can be omitted [13]. As a result of
this hypothesis, the angular speed of each wheel can be
omitted as a new state and the longitudinal movement will
not depend on the relationship of longitudinal speed and its
equivalent angular speed [14]. It will be the result of the
summation of forces along the x-axis; also, lateral dynamics
are omitted to focus on energetic requirements. In Figure 1,
the road considerations and the forces involved are reported.
Applying Newton’s second law for motion along the x-axis,
the longitudinal dynamic is described as follows:

M €x �
Tf

Rwf
+ Froll + Faerx

+ Fw sin θs( 􏼁sin(β), (1)

where Rwf, Froll, Faerx
, Fw,s, and β are the effective radius of

rear wheel, roll resistance, aerodynamic force associated
with x-axis, weight, slope angle, and bank angle.

2.1.1. Forces Involved in Energy Losses. According to [15],
the most relevant opposite forces to the longitudinal
movement in a vehicle are the following:

(i) Aerodynamic force.
(ii) Rolling resistance force.
(iii) Slope of the road.
(a) Aerodynamic force: it can be expressed as

Faereo �
− 1
2
ρCdAf Vwind ∗ cos αair( 􏼁( 􏼁

2
, (2)

where ρ, Cd, Af, _x, Vwind, and αair are the air density, drag
coefficient, front area, vehicle speed, wind speed, and the
angle between air and vehicle direction. In average condi-
tions, aerodynamic force can cause between 20% and 40% of
energy expenses in a motorcycle depending on the mo-
torcycle chassis, the speed of air, and the angle between
vehicle speed and airspeed [16]. )e aerodynamic force has
to be separated by its influence in x-axis and y-axis. )ose
magnitudes will depend on the angle between wind direction
and vehicle speed vector direction.

(b) Rolling resistance force: it can be expressed as

Froll � − μ0 + μ1 _x
2

􏼐 􏼑Fzcos θs( 􏼁, (3)

where μ0, μ1 are two friction coefficients of the road, Fz is the
normal force of the vehicle, and θs is the slope of the road.
)e friction coefficients of the road depend on the state of
the road. For example, a new asphalt is [0.01, 0.008] and the
frozen asphalt is [0.001, 0.00082]. )is variation of coeffi-
cient can cause an error of 15% of the autonomy estimation
[16]. )e motorcycle is a multibody platform; then there is a
load exchange between the front frame and rear frame
caused by acceleration and brakes profile. However, a peak
normal force is considered to calculate the rolling resistance
force due to the fact that the frequencies of the normal force
transference are faster than energetic dynamics.

(c) Slope of the road: when the road presents a slope by a
medium or long distance, the load exchange cannot
be ignored. In this case, the load exchange does not
have a dynamic but it creates a weight component in
x-axis and y-axis, which affects the forward and
lateral movement dynamic. )e equation that de-
scribes this effect is

Fw � mg, (4)

where m andg are the mass and gravity.

2.2. Motor Losses. )ere exist many kinds of motors and
each kind exhibits particular characteristics that make it
useful for a particular industrial usage. For the electric ve-
hicle industry, electric motors require attributes such as low
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maintenance cost, simple design, high efficiency, and re-
lievable control techniques with the minimum additional
electronic devices.

Between the synchronized motor and induction motors,
the synchronized motor is highlighted due to its lack of
speed variance faceto load changes and its high efficiency in
low and medium speeds. )ose characteristics caused the
most used electric motors in the transportation industry to
be the synchronized motors due to the fact that they can be
easily controlled in a profitable way. In a particular way, the
BLDC (Brushless Direct Current) motors are used due to the
fact that they improve the torque to weight ratio, reduce even
more the maintenance cost, and allow increasing even more
the efficiency values in comparison to brushed motors [17].

)e BLDC motor efficiency behavior can determine the
optimal operation point of the electric vehicle. In order to
propose an optimal point as an optimization objective, a
theoretical analysis of the steady-state efficiency is presented. In
a BLDC motor, the efficiency in steady state can be defined as

η �
Pout

Pi

�
TeWs

TeWs + Plcu + Plfe + Plmag
, (5)

where η is the efficiency and it is defined as the relationship
of the output power (Pout) over the input power (Pin) of the

system. )e output power is described by the mechanical
power obtained by the motor, in other words, the product
between the electromagnetical torque (Te) and the angular
speed of the motor (Ws). )e input power is described as the
output power plus the losses of the motor. In the motor, the
losses will be Plcu, Plfe, and Plmag. )ey are the Joule losses
(also called iron losses), the core losses, and the magnetic
losses in rotor magnets.

2.2.1. Magnetic Losses. )e magnetic losses caused by eddy
current loss in the permanent magnets of brushless ma-
chines are usually neglected [18]. Since the fundamental air
gap field usually rotates in synchronism with the rotor and
time harmonics in the current waveform in the winding
distribution are generally small, Plmag ≈ 0.

2.2.2. Joule Losses. )e Joule losses are the losses caused by
the resistivity of the cooper in winding. When a current
crosses a conductor material, the resistivity of the material is
opposed to this current movement. As a result, heat is
produced and part of the electrical power is dissipated.

)ey can be expressed as [19, 20]

Plcu �
ρcu/Kfill( 􏼁 L + Lew( 􏼁 KspπDo􏼐 􏼑

(π/4) D2
o − Di + BgπDo/Bj2pKfe􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − BgπDo/Bt􏼐 􏼑 Do − Di/2( 􏼁 − BgπDo/4BjpKfe􏼐 􏼑􏼐 􏼑

, (6)

where ρcu, Do, Di, Bg, Bt, Bj, Kfill, Kfe, p, L, Lew, Kw, and Ksp
are the copper resistivity (Ohm.m), the stator outer diameter
(m), the stator inner diameter (m), the air gap flux density
(T), the flux density in stator tooth (T), the flux density in
stator yoke (T), the slot filling factor, the lamination factor,
the number of pole pairs, the stator lamination length (m),
the length of end-winding (m), the fundamental winding
factor, and the fundamental current density (A/m), which
can be expressed in terms of load torque “Tl.”

Ksp �
Tl

BgD2
oL sin pαpm􏼐 􏼑

, (7)

where αpm is the half of mechanical magnet angle.

2.2.3. Core Losses. Core losses appear in a magnetic core due
to alternating magnetization as a consequence of the non-
perfect synchronization between electrical and magnetic
fields. )ey are the sum of the hysteresis losses (due to the

β

Faerx

Vx

Frollf

Fx(Tf) Fw

Fx(Tr)
Frollr

θS

Figure 1: Forces involved in longitudinal dynamics.
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difference between magnetization rate and demagnetization
rate) and the eddy current losses (due to Faraday’s law effect
over lamination motor structure caused by magnetic fields).
)e core losses are defined as [21]

Plfe � Pleddyoke + Plt
+ Pltt

, (8)

where Pleddyoke, Plt
, and Pltt

are the losses in rotor yoke due
to eddy current and losses in tooth body and tooth tip
caused by hysteresis and eddy current. )ey can be
expressed as

Pleddyoke � ny

f

p
􏼠 􏼡

1.5

R
2
ymeanAry

������
π2

iρFeμFe

􏽳

􏽘

inf

i�1

Bi�
i

√ , (9)

Plt
� Khf

α
B
β
t +

4
π

Ke

f2B2
t

αt

, (10)

Pltt
Khf

α
B
β
tt +

4
π

Ke

f2B2
tt

αtt
, (11)

where ny, f, p, Rymean, and Ary are the number of rotor
yokes, frequency, number of poles pairs, mean radius of the
rotor yoke, and the area of the rotor yoke face. ρFe, μFe, Bi,
Btott, and αtott are resistivity and themean permeability of the
rotor yokematerial, the magnitude of the ith harmonic of the
armature flux density wave, the peak value of flux density at
the tooth or the tooth tip, and the mean pole transition angle
in electrical radians. Finally Kh, α, β, and Ke are constants
obtained from the curve fitting of core loss data measured
with sinusoidal excitation.)is representation requires three
lookup tables, the magnetic flux density as a function of
stator current measured in the stator yoke, the rotor yoke,
and the air gap.

2.3. Inverter Losses. Losses caused by the semiconductors
inside the inverter appear on each current flux case:

(i) Conduction: when the current is going from drain
to source along the drain-source resistance

(ii) Blocking: when a minimum part of the conduction
current is able to cross along the blocking diode

(iii) Switching: when the gate starts to be excited or stops

Since the current that is able to cross the blocking diode
is minimum, this power loss is neglected.

)ose losses can be classified into two cases (Figure 2)
[22]. )e first one is when the current goes from power
source to motor (Id). In this case, the losses per semicon-
ductor are expressed as

Plosscondmosf
� RdsonId(t)

2
,

Plossswmosf
�
1
3

Wswmoson + Wswmosoff􏼐 􏼑fsw,

(12)

where Rdson, Id, Wswmoson, Wswmosoff, and fsw are the drain-
source on resistance, the drain current, the energies that are
dissipated along the rise and fall of time caused by internal
capacitances, and the switching frequency.

)e second case is when the current goes from motor to
power source (If ). In this case, the losses per semiconductor
are expressed as

Plossconddiode � UDo
If(t) + RD(t)If(t)

2
,

Plossswdiode
�
1
3

Wswdon􏼐 􏼑fsw.

(13)

)e conduction losses along the diode are described by
the power consumed by the voltage drop (UDo

) across the
diode during the saturation regime and diode resistance
(RD) due to the reverse current through the diode (If).

2.4. Battery Losses. A battery model with enough capability
to represent the state of charge (SoC) dynamic is shown in
Figure 3 [23].

VoC, Ro, C1, andR1 are the open-circuit voltage (a
function of SoC), the series resistance, and the RC com-
ponents that describe the frequency response. )e states of
this model are the RC voltage U1 and the SoC. )e input is
the current and the output is the output voltage UL. )e
mathematical equations that represent the circuit shown
previously are

C1
δU1

δt
+

U1

R1
� i,

SoC(t) �
1

FCC
􏽚

t

0
i(τ)δτ + SoC(0),

δSoC
δt

�
i

FCC
,

UL � VoC(SoC) + U1 + Roi.

(14)

In order to obtain realistic data, parameters obtained
from LIR18650 2600mAh lithium battery cell are used and
ideal serial/parallel relationship from [24] is used to obtain
the model parameters of a 45Ah 72v battery.

Finally, the lithium battery packmodel is shown in Figure 4.
Ns andNp are the numbers of series and parallels re-

quired to complete the pack.

Udd

M

ifid

Figure 2: Inverter circuit.
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)e losses in the battery will be caused by the power
dissipated by the resultant serial resistance and the voltage
on the resultant RC circuit.

Plossbat � RoI
2

+
Udd2

R1
. (15)

3. Power Demand Profiles

Power demand profiles are strongly related to drive cycles
considered. A drive cycle is a set of speed data, which tries to
represent a common speed profile for an average vehicle
under certain characteristics. It is currently used to compare
the pollution emission between different vehicles. We take
into account the fact that the power demand will be the
translation of the drive cycle (speeds values) to the amount of
energy required by the electric vehicle to follow that reference.
)is translation will depend on electrical characteristics of the
vehicle and the external forces acting over the vehicle (Section
2) because those elements will describe the energy losses and
the torque requirements on each step of time. In this paper,
for example, a 72v, 50Ah battery was selected to feed the
electronic devices; also, the motor has a nominal power of
3 kW. )ose electrical characteristics and the travel charac-
teristics of the road such as wind speed, wind direction, or
slope will determine the amount of power required for
tracking a speed profile described by a drive cycle. It is im-
portant to note that the different properties of the electric
vehicle such as the weight, the front area, or the power devices
capabilities will be required to do the translation between the
speed reference (drive cycle) and the power demand profile.

)ere are two kinds of drive cycles:

(i) )e modal cycles: they are composed by straight
accelerations and constant speed references. )e

most used modal cycles are the European standard
NEDC/WLTC and 10-15 mode Japanese cycle.

(ii) )e transient cycles are a better representation of
an average speed dynamic. )e most representa-
tive transient cycles are the FTP-75 and Artemis
cycle.

)ose drive cycles have a different version for describing
the behavior of a vehicle in different environments. For
example, Artemis cycle has four versions: Urban, Rural,
Motorway 150, and Motorway 130. Since the purpose of the
research is to represent an urban environment, four power
demand profiles were chosen:

(i) NREL class 3: small-sized vehicles with speed profile
between 0 and 70 kmh

(ii) NREL class 6: medium-sized vehicles with speed
profile between 0 and 80 kmh

(iii) WLTC class 1: small-sized vehicles with speed
profile between 0 and 70 kmh

(iv) WLTC class 2: medium-sized vehicles with speed
profile between 0 and 90 kmh

In all cases, the external conditions such as wind speed
and slope profile are the same to keep the results com-
parable. In the case of slope profile, realistic data obtained
from Google Maps in a traject from Paris to Brussels were
used.

4. Open-Loop Controller

)e first approach of an optimal controller is an open-loop
controller. )e controller assumes that the state x1 is
completely known and there is not any noise. )en, in this
case, the GPS signal is not required.

4.1. DynamicModel. )e EV is modeled as a particle along a
unidimensional axis. )e motion of the vehicle is the result
of the sum of forces applied on the body and only the
longitudinal forces were considered. )e model used to
describe the system’s dynamics is

_x1 � x2,

_x2 �
T/Rw( 􏼁 − Fl

m
,

_x3 �
T

Rw ∗Eff x2, T( 􏼁
􏼠 􏼡∗ x2,

(16)

Fl � Faereo + Froll + Fw, (17)

where states are x � d v e􏼂 􏼃; v(t) is the vehicle’s longi-
tudinal speed, d(t) is the travel distance, and e(t) is the
energy. )e input is u � T; T describes traction and braking
torque. Fl describes the uncontrolled inputs (looses).
Eff(x2, T)) represent the geometrical abstraction of the
motor efficiency lookup table measured.

Ns/Np ∗ Ro Np/Ns ∗ C1

Ns/Np ∗ R1

Ns ∗ VoC (SoC )

Figure 4: Equivalent circuit model of a lithium-ion pack battery.

i U1

C1

R1

Ro

UL

Figure 3: Equivalent circuit model of a lithium-ion battery.
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4.2. State andControl Constraints. )ere are two constraints
in the optimal control:

(i) )e physical constraints describe the maximum
quantity of force able to be made by the mechanical
structures:

Tmin ≤T≤Tmax. (18)

(ii) )e design constraints that describe the feasible
region of the model states. If the states are outside
this feasible region, the behavior cannot be replicated
by the vehicle in a real test. )ese are

0≤x1 ≤ x1f
, (19)

x2min
≤x2 ≤ x2max

, (20)

􏽚
tf

t0

Etotsegi

zt ≤TotEne. (21)

Constraint (19) limits the feasible region of x1 and also it
avoids an overdamped behavior. Constraint (20) is related to
physical restriction of electric motor described in (18). Fi-
nally, constraint (21) is a physical limitation of the quantity
of energy available in the battery.

4.3.BoundaryConditions. Boundary conditions describe the
main objective of the optimal problem. In this case, the main
objective is to come from position “A” (which is the initial
condition equal to zero) to position “B” which is represented
by x1f. Also, the initial value of the vehicle speed is zero and
the final value of x2 is fixed; that is,

x1 t0( 􏼁 � 0, x1 tf􏼐 􏼑 � x1f,

x2 t0( 􏼁 � 0, x2 tf􏼐 􏼑 � x2f.
(22)

4.4. Cost Function. )us, the complete optimal problem is
min J(x)

J(x) � β1∗ β2∗ ϕ1 x3 tf􏼐 􏼑􏼐 􏼑

+ 􏽚
tf

0
− β2∗ ϕ2 x2(t), T(t)( 􏼁 + x2(t) − x2ref􏼐 􏼑

2
dt,

s.t.

Tmin ≤T(t)≤Tmax,

0≤x1(t)≤x1f
,

x2min
≤x2(t)≤x2max

,

0≤x3 tf􏼐 􏼑≤TotEne,

_x � f(x, T, t).

(23)

)e cost function of the optimal problem described in
(23) uses three terms. )e first term (24) searches the op-
timization of the energy consumed by motor. )e second
term (25) is in charge to ensure that the rate of energy
consumed is adequate to complete the travel with the energy
available, and the last term is the speed tracking. )e last
term (26) is not modified because it represents driver control
capacity over the vehicle and it will not be modified in the
optimization level.

ϕ1 x3(1)( 􏼁 � x3(t), (24)

ϕ2 x2(t), T(t)( 􏼁 � Eff x2, T( 􏼁, (25)

x2(t) − x2ref􏼐 􏼑
2
. (26)

In (23), _x � f(x, u) is represented by (16).
Also, β1 and β2 are the weights required to increase or

reduce the impact of the efficiency over the cost function.
Specifically, β1 is used to normalize the energy state and
make it comparable with speed state, and β2 is the additional
weight of efficiency component to guide the cost function.
)is last term is obtained from the relationship between (8)
and (9). )ese figures allow calculating a quantity of energy
required per kilometer according to each β2 value to ensure
that the autonomy is the amount of distance required from
the beginning.)e quantity of energy required per kilometer
is called energy estimation coefficient.

5. Closed-Loop Controller

As sensors, actuators, and external disturbances cause error
over the open-loop controller reference tracking, and the
closed-loop controller is required to reduce their impact.

In this case, an NMPC (nonlinear model predictive
controller) is proposed.)is NMPC has a prediction horizon
Np � 10 and a control horizon Nc � 10 (equivalent to 10 s).
)ose values are chosen to keep a balance between the
compilation time and the time required to obtain a sig-
nificant information from trip requirements.

)emain objective of the cost function is to complete the
travel. For this reason, two kinds of feedback signals are
included: energy control feedback signal and energy esti-
mation feedback signal.

(i) )e energy estimation feedback signals are the data
required to verify energy estimation coefficient on
each iteration of the NMPC. )is information is
composed by the energy and distance state data from
the system with noise.

(ii) )e energy control feedback signals are the data
required by the NMPC to estimate the behavior of
the system along the prediction horizon. )ese data
are composed by three states of the system with
noise.

)e NMPC is a discrete controller. For this reason, it
needs a discrete system model:
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min J(x, u, k)

J(x) � β1∗ β2 ∗ϕ1 x3(N)( 􏼁

+ 􏽘
N

0
− β2 ∗ϕ2 x2(k), T(k)( 􏼁 + x2(k) − x2ref􏼐 􏼑

2
,

s.t.

Tmin ≤T(k)≤Tmax,

0≤x1(k)≤x1f
,

x2min
≤x2(k)≤x2max

,

0≤x3(k)≤TotEne,

xk+1 � f(x, T, k).

(27)

xk+1 � f(x, T, k) is a discrete version of the model repre-
sented by (16), and we have

ϕ1 x3(1)( 􏼁 � x3(k),

ϕ2 x2(k), T(k)( 􏼁 � Eff x2, T( 􏼁.
(28)

NMPC is described in Algorithm 1 also, in Figure 5, the
flux of data is represented. )e eco-driving controller is
composed of three main elements, the NMPC required to
balance the autonomy and the capability of the driver to
follow a speed reference and the two blocks required to find
the β2 value: the β2 optimization and energy estimation
coefficient block.

)e NMPC requires the offline data described in
Tables 1 and 2, the initial states, the speed reference, and
the road slope value to propose the optimal torque value.
)is value is added to the actuators noise (Na) and the
result is used by the longitudinal vehicle dynamic block to
update the states values. When the measurement data are
ready; the sensor noise (Ns) is added to the states values
and they are returned to NMPC and energy estimation
coefficient block. )e energy estimation coefficient block
takes into account the distance required by the driver
(Dreq) and the current state (x1) after a period of time
equivalent to the prediction horizon to determine the
energy estimation coefficient (ϵec

) required to complete
the trip. Finally the β2 optimization block uses this co-
efficient to optimize the β2 value and adjust the energy
rate consumption and the process is replicated until the
travel is completed. )e mechanical vehicle characteris-
tics are shown in Table 1. )e electrical vehicle charac-
teristics are shown in Table 2.

6. Sensitivity Analysis of Eco-Driving Balance

As described in algorithm (1) and equations (23), the cost
function requires a weight β2. )is parameter will determine
the preference of the eco-driving algorithm between the
most constrained speed profile and the least constrained
speed profile.

)is test will help to determine the range of parameter β2
to verify that the effect of the variation of this parameter is
the correct one. In other words, the behavior of the cost

function is logical with the variation made. Also, the test
aims to determine the characteristic of the nonlinear uni-
dimensional optimization required in block called “β2 op-
timization.” In order to represent the results, the variables
chosen are as follows:

(i) )e speed signal: the minimum, maximum, and
average values of the speed signal will determine the
limitation proposed by the optimal controller.

(ii) )e efficiency of the motor: since a geometrical
representation of the motor efficiency is included
inside the cost function, the augmentation of the
parameter β2 must increase the efficiency or at least
keep it constant in the highest efficiency values
speed/torque region.

(iii) )e energy signal: this is the variable required to
measure the results of the controller. Its reduction
will be defined by the β2 parameter.

(iv) )e autonomy expected: in order to represent the
final results of the controller, the cost of each ki-
lometer is used to estimate a final autonomy ob-
tained with each β2 value.

)e speed profiles presented in Section 3 are used to
compare the behavior of the variables efficiency, speed,
energy, and autonomy when the β2 value is variated. All
speed profiles have been divided into two versions, medium-
(shown first) and low-speed versions, in order to analyze the
results in each situation. In order to make all tests com-
parable, the objective is to cover a distance of 10 km. Also,
since in the cost function the β2 value can increase the weight
of the efficiency components without reducing the weight of
speed follow, the β2 value does not have a range between 0
and 1 necessarily.)e range evaluated in this test is from 0 to
5 in order to find where the results are stable and justify the
final β2 range.

)e average speed is shown in Figure 6. In this figure, the
average speed (y-axis) is evaluated on each speed profile, while
the β2 value is variated (x-axis) in order to verify the effect of
this coefficient variation. )ere are two figures about average
speed because all speed profiles are divided into their urban
traject components and rural traject components. )e β2
value augmentation causes a preference of the controller by
the optimal speed values in relationship with the amount of
torque made on each step. )is is the reason why the average
speed of all speed profiles comes to a value close to 7 (m/s) in
high rural profile components, with the high-speed values still
being present in the optimized speed profile, and this is why
even when the average speed decreases, it is higher than the
average speed in rural components where the number of stops
and low-speed values are present. In other words, the max-
imum values are reduced and minimum speed values are
augmented to keep the average speed value close to the
optimal value. Also, the feasible speed zone around the op-
timal value is reduced when the β2 value is augmented.

)e efficiency value obtained is shown in Figure 7. In this
figure, the separation between urban traject components and
rural traject components is used to illustrate in which sit-
uation the augmentation of β2 coefficient is efficient or if it is
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not. As can be seen, in high-speed values, β2 variation causes
a strong positive effect due to the fact that the high-speed
values have a stronger effect over total motor efficiency than
low-speed values. On the contrary, in the low-speed version
of the speed profiles (in the most of cases), the average speed

is as close to the optimal speed value that β2 variation does
not have a significant effect.

)e energy value required to cover a traject of
10 kilometers with each speed profile is shown in Figure 8.
Since the average efficiency has increased, the amount of
energy required decreased. )is analysis is important to
determine the energy estimation coefficient required to
optimize β2. After a period of time equal to the prediction
horizon, the energy estimation coefficient value is checked in
order to optimize it, if it had changed by external noise effect.
)en, the initial energy estimation coefficient is compared to
the energy estimation coefficient required to complete the
travel and a new β2 value oriented to reduce the difference
between both is found by optimization. From this analysis, it
can be highlighted that the β2 value presents a nonlinear
function without local optimal points. )is analysis aims to
choose a unidimensional optimization methodology and
then the algorithm required to solve the problem.

)e energy value and the final distance (10 kilometers)
allow predicting the autonomy under those conditions. It is
shown in Figure 9. )e efficiency in Figure 7 shows that the
biggest potential of the algorithm is in high-speed profiles
but the information of autonomy values obtained in low-
speed profiles will be used as a limitation due to traffic
regulation. In low-speed profiles, the highest autonomy
variation is obtained from 0 to 2.5. Also, the speed variation
proposed if the β2 value is superior to 2.5 cannot be followed

BEGIN
Choose the initial states of the vehicle system.
Introduce autonomy required (Dreq).
Gather information required for optimization from three sources: vehicle, rider and digital devices.
Calculate energy estimation coefficient required to complete the travel ηec

.
Find the β2 value required to complete the trip.
Choose the initial states of the system.
Solve optimal problem 25.
Apply first component of optimal reference for a period of time of Ts.
Have the travel ends?
(i) NO: )e time happed is multiple of 1000 seconds?
(a) SI: Use final states as new initial states and go to 5.
(b) NO: Use final states as new initial states and go to 7.

(ii) YES: END.

ALGORITHM 1: NMPC controller.

Table 1: Vehicle and environment characteristics.

Parameter Value
MVehicle 150 (kg)
MDriver 85 (kg)
Supf 0.94 (s2)

Rwr 0.58 (m)
Pair 0.96 (kg/m3)

Cair 0.40
g 9.81 (m/s2)

Table 2: Electrical characteristics.

Parameter Value
Motor and battery voltage 72 v
)e rated motor output power 3000w
)e rated motor torque 185.6Nm
)e rated motor speed 91.3 RPM
Maximum motor efficiency 96.4%
Battery capacity 45Ah
Battery cell LIR18650
Inverter MOSFET STP75NF75

Eco driving controller

Dreq εe_c
Vehicle

longitudinal
dynamicNMPCβ2

optimization
L

T
Na

Ns

Energy
estimation
coefficient
learning

algorithm

(x1, x3) (x1, x2, x3)

β2

θVx

Figure 5: Control diagram.

Journal of Advanced Transportation 9



in normal traffic conditions. For this reason, in electric
vehicles outside of an autonomous environment, the β2
range will be from 0 to 2.5.

In conclusion, the algorithm is able to obtain im-
provements of more than 50% of the autonomy of the ve-
hicle with limitations around 30% of maximum and
minimum speed values. Even when the speed profile pro-
posed by the controller cannot be used in all traffic situa-
tions, a β2 value from 0 to 2.5 is able to improve the
autonomy in a realistic situation. Also, the usability of this
algorithm can be extended to the study of behavior com-
posed by autonomous vehicles in order to reduce speed
profile limitations. )e energy per kilometer is a coefficient
able to represent the efficiency required by the driver in
order to complete travel; then it is used to find the balance
between eco-driving and free driving. Finally, due to the
nonlinear function that describes the energy per kilometer
does not have suboptimal points, a unidimensional algo-
rithm focusing on compilation time can be used.

7. Results

)e experiment represented in Figure 10 consists of recreating
an urban driving mission profile along a trip. )e driver is in
charge to propose the autonomy required and the energy per

kilometer is calculated. )e speed profile chosen is the NREL
Class 6 drive cycle developed by Smith Newton from NREL
Labs [25] because it was designed for light electric vehicles in
an urban environment. )e speed profile was repeated until
the objective distance is completed by the vehicle.

It is important to note that only the motor losses are
taken into account by the controller but the battery, driver,
and motor losses are used to represent the real behavior. )e
controller does not take into account the battery and driver
losses because those losses are proportional to the speed. In
consequence, their minimization would cause the critical
speed reduction of the vehicle.

)e disturbance is a uniformly distributed signal. It is
added to the torque signal proposed by the controller to
represent the actuator noise; in this context, it will determine
the error between the speed profile estimated and the speed
profile proposed by the driver due to firelights, changes of
direction, or other external causes. As a result of this
analysis, the errors between the autonomy estimated re-
quired by the driver and the autonomy estimated obtained
are compared. )e maximum value of the actuator noise is
10% of the maximum torque value. Also, uniformly dis-
tributed signal that is not correlated with the last one
represents the measurement noise. Its maximum value is 1%
of the maximum possible values of states.
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Figure 6: Average Speed versus β2 value.
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)e autonomy values demanded by the driver along the
test presented were from 17 km to 160 km even when the
vehicles with similar characteristics are designed for auton-
omies between 80 km and 100 km according to the user
manual. )e initial SoC was from 20% to 100%. )e con-
trollers were able to complete the travel with amaximum error
of distance of 1.25%; the autonomy required is always not
greater than 90% of the autonomy estimated with the greatest
value of β2 and without noise on the initial estimation.

Table 3 explores the optimization of speed profile in
three β2 regions: “MaxA,” “MaxNA,” and “Min.” “MaxA”
means the maximum β2 value admitted by the algorithm;
then β2 � 5. “MaxNA” means the maximum β2 value ad-
mitted by the algorithm after the sensitivity analysis. )is
value allows keeping some control by the driver over the
speed value; then β2 � 2. “Min” means the minimum β2
value admitted by the algorithm; then β2 � 0. In other words,
energetical optimization is not made. As can be seen, the
algorithm is able to increase the autonomy over a 60%
without taking away all control from the driver over the
speed profile. In a hypothetic situation where it is not im-
portant to keep some control over the vehicle because the
external obstacles are perfectly controlled (such as an en-
vironment of fully autonomous vehicles), the theoretical
autonomy optimization increases significantly.

In order to explore a specific case, a trip of 100 km with a
Class 2 urban speed profile is proposed. )e current SoC of
the vehicle is 80%; it means the vehicle is able to cover
around 60 km without any optimization and 141 km if the
vehicle totally ignores the speed profile proposed by the
driver and it goes at its optimal speed value (β2 � β2max

).
With β2 � 1.6250, the internal controller (NMPC) is

able to increase the autonomy of the vehicle around a
66%, keeping a correlation of 68% between the speed
profile proposed by the driver and the one proposed by
the controller (Figure 11). )e speed profile proposed by
the controller tends to avoid minimum and maximum
speed values of the speed profile proposed by the driver by
an acceleration limitation. As result, the mean value of
the vehicle and the torque required along the travel are
closer to the optimal values according to the electric
motor characterization. In real implementation, some
stops could be required by the driver. It would cause an
error in the estimation of energy required by kilometer;
this is why the external controller is required. In this
experiment, the external controller is limited to reduce
the noise added to simulate the measured error and the
unexpected variation between the speed profile described
by the driver and the speed profile contemplated on the
estimation.
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Figure 7: Efficiency value versus β2 value.
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Figure 8: Energy required versus β2 value.
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As can be seen in Figure 12, the disturbances caused
by mistaken measures or mistaken actuator signals cause
an error in the energy estimation. Since this algorithm
helps to determine the β2 coefficient required to complete

the travel, the estimated β2 tends to be higher or lower
than the required β2 coefficient due to the effect of dis-
turbances in the estimation. Consequently, a limitation
that is not required is imposed over the speed profile. For
this reason, the external controller checks the energy
required per kilometer in order to ensure that the esti-
mation is coherent with the last one (calculated in the last
sample time). As can be seen in Figure 13, in the case
where the energy per kilometer is significantly different in
comparison to the last one, the controller takes the
difference between both signals to correct the β2 value in
two steps:

(i) Recover the energy lost in the last mistaken esti-
mation with a stronger limitation

(ii) Recalculate the optimal β2 coefficient with the new
energy per kilometer measure to minimize the speed
limitation

Initial
estimationDreqINI, SoCo

Dest > Dreq

Run simulation
with noise

1000 seconds.

END

Infactibility error = 1

Dreq = Dreq – x1f
SoC = SoC - SoCu (x3f)

Infactibility error = 1

Dest

Dreq > 0

optimize
β2

β2 == β2 max εe_c (k) + ∂ > εe_c (k–1)

Figure 10: Test diagram.

Table 3: Distance error results.

Maximum β2⟶ β2maxA

SoC (%) Expected value (km) Used value (km) Distance
error (%)

100 177 160 0.78
50 88 75 1.25
20 35 31 0.64

Middle β2⟶ β2maxNA

100 126 126 0.33
50 63 63 0.64
20 25 25 0.49

Minimum β2⟶ β2min
100 75 75 0.28
50 38 38 0.14
20 16 16 1.02
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Figure 9: Autonomy expected versus β2 value.
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)e resultant β2 signal describes an overdamped be-
havior with a peak of 103.5% of the final value. )e sta-
bilization time is 4 iteration steps and it is important to
note that each iteration corresponds to 1000 seconds.
Finally, the vehicle was able to complete the travel with a
final SoC of 0.06% and a final autonomy error of 0.1% (100
meters). )e travel time simulated was 3.8 hours, and the
simulation time of both control loops does not exceed the
35% of the sample time on each case. )is β2 coefficient
active correction method ensures that the autonomy es-
timation is as close as possible to the one estimated initially
(Figure 14).

8. Conclusions and Future Work

In this paper, an online approach of eco-driving speed
profiles optimizer is presented; this optimizer is composed of
an NMPC and it proposes a dynamic speed limitation based
on the distance required by the driver. )is speed limitation
proposed by the controller is able to save twice the amount of
energy in comparison to closed-loop approaches present in
the state of the art thanks to the fact that even when the
dynamic system required by the NMPC is oriented to the fast
compilation, and it takes into account the motor efficiency
behavior. Besides, the dynamic system for estimations takes
into account the battery and inverter efficiency behavior as
well as thermal behavior. Also, it counts with a second
optimization loop to minimize the effect of external per-
turbations caused by traffic, mistaken measures, or mistaken
control signals over these energy-saving capabilities. )e
developed controller increases the autonomy from 15% to
around 50% (according to speed profile proposed by the
driver) by a limitation of speed and acceleration (keeping the
speed and acceleration values lower than 70% of the max-
imum values proposed by the driver); but the most im-
portant approach of this algorithm is the fact that, due to the
external optimization loop, it probed to use the speed op-
timization to ensure an autonomy error between the au-
tonomy estimated and the autonomy obtained lower than
1.25% without taking into consideration the initial SoC but
with the condition that the autonomy required is lower than
90% of the autonomy estimated with the maximum value of
β2 in the initial estimation.)is approach aims to ensure the
capability of the vehicle to finish travel even when facing
variable conditions. In order to ensure the usability of the
developed algorithm in realistic traffic situations, three
statements were explored. First, the weight related to the
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eco-driving behavior is limited according to the results of a
sensibility test but the range of β2 coefficient can be extended
to the study of behavior composed by autonomous vehicles.
Second, the freedom of the driver is never compromised;
then the optimized speed profile is not imposed and the
differences between the speed profile proposed by the driver
and the optimized speed profile are considered as noise to
the energy estimation coefficient algorithm. Finally, external
optimization is updated with a sample time comparable to
the prediction horizon to ensure that the balance coefficient
(β2) is optimal to complete the travel with the minimum
speed limitation even when mistaken measures and actuator
signals could be present. However, the algorithmwill require
an additional step of speed profile identification to ensure
the results present in this paper and even when some test is
proposed in this paper, an extended traffic conditions test
has to be performed to ensure that the internal and the
external optimization behaviors are coherent in all possible
situations.
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