
Hierarchical routing control in discrete manufacturing plants via
model predictive path allocation and greedy path following

Lorenzo Fagiano, Marko Tanaskovic, Lenin Cucas Mallitasig, Andrea Cataldo and Riccardo Scattolini

Abstract— The problem of real-time control and optimization
of components’ routing in discrete manufacturing plants is
considered. This problem features a large number of discrete
control inputs and the presence of temporal-logic constraints.
A new approach is proposed, with a shift of perspective with
respect to previous contributions, from a Eulerian system model
that tracks the state of plant nodes, to a Lagrangian model that
tracks the state of each part being processed. The approach
features a hierarchical structure. At a higher level, a predictive
receding horizon strategy allocates a path across the plant
to each part in order to minimize a chosen cost criterion.
At a lower level, a path following logic computes the control
inputs in order to follow the assigned path, while satisfying
all constraints. The approach is tested here in simulations,
reporting extremely good performance as measured by closed-
loop cost function values and computational efficiency.

I. INTRODUCTION

Research in advanced manufacturing solutions is moti-
vated today by the strong global competition, together with
the combined trends of higher customization, more agile
supply, and higher sustainability [1], [2]. This domain spans
from industrial communications to collaborative robotics,
from human-machine interaction to routing and logistics,
leading to a large number of challenging problems [3], [4],
[5]. Among the latter, we focus on the real-time control
of components’ routing in discrete manufacturing plants.
Depending on the specific manufacturing process at hand,
this problem may entail several requirements. The discrete
parts must be routed via physical lines that present han-
dling constraints, for example in terms of limited movement
speed. Different lines may also merge, leading to possible
lockouts to be avoided. Moreover, the processing time at
each station may be uncertain, and the sequence of jobs
to be done on a part may be not fully known a priori,
since it can change depending on the outcome of each
job. Component unavailabilities or faults may also affect
the production lines. Finally, sustainability goals translate
to minimization of waste and of energy consumption. From
a control engineering perspective, the mathematical tran-
scription of this problem leads to a prohibitive large-scale
integer or mixed-integer optimal control program, involving a

L. Fagiano, L. Cucas and R. Scattolini are with the Dipartimento di
Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza
Leonardo da Vinci 32, 20133 Milano, Italy.

M. Tanaskovic is with Singidunum University, 32 Danijelova St., Bel-
grade, 160622 Serbia.

A. Cataldo is with the Institute of Industrial Technology and Automation,
National Research Council, Via Alfonso Corti 12, 20133 Milano, Italy.

Corresponding author: L. Fagiano, lorenzo.fagiano@polimi.it.
This research was funded by a grant from the Italian Ministry of Foreign

Affairs and International Cooperation (MAECI), project “Real-time control
and optimization for smart factories and advanced manufacturing”.

M. Tanaskovic was also supported by the Science Fund of the Republic
of Serbia under the project DECIDE.

dynamical system with discrete state variables, discrete input
commands, and discrete output measurements, and subject to
temporal logic constraints and external disturbance signals,
where the goal is to guarantee the required throughput with
minimal waste and energy cost. To tame such a complexity,
hierarchical approaches are adopted, involving rule-based
techniques [6], [7], [8], integer programming [9], multi-
agent architectures [10], short-term simulation and ordinal
optimization [11], heuristic search combined with Petri nets
[12], and model predictive control (MPC) [13], [14], [15],
[16]. In particular, in [15] a receding horizon approach has
been employed to control in real-time a de-manufacturing
plant composed of 35 nodes. In an analogy with fluid mod-
eling, this approach adopted a Eulerian description, where
the state vector includes the status of each node in the plant
(conceptually similar to a control volume in fluid dynamics).
The resulting policy provides the optimal solution to the
finite horizon routing problem at each time step, however
with rather high computational cost.
To overcome this problem, this paper contributes two nov-
elties: 1) a shift of perspective from a Eulerian to a La-
grangian description, where the system state includes the
status of each part that must be routed, instead of each node;
and 2) a hierarchical MPC structure, where the receding
horizon strategy allocates a path to each part (as well as
the part’s position on the path) and a lower-level logic
computes the control inputs to follow such a path. We tested
the new approach in simulation and report extremely good
performance as measured by closed-loop cost function values
and computational efficiency, also with very large prediction
horizon values. These features pave the way to a number
of subsequent research steps, which will culminate with the
experimental testing on the pilot plant considered in [15].

II. EULERIAN SYSTEM MODEL
AND PROBLEM DESCRIPTION

We consider a discrete manufacturing plant composed of
a finite number Nn ∈ N of nodes. At each discrete time
instant k, each node h = 1, . . . , Nn may be empty or it
may host one (and only one) part being processed. For a
reference, consider the diagram of Fig. 1 representing the
small-scale system that we use in this paper to test the
proposed approach, composed of 12 nodes. A more complex
diagram representing a laboratory testbed at the National
Research Council in Milano can be found in [15].
The boolean zh(k) ∈ {0, 1} indicates whether a part is

present at node h (i.e., zh(k) = 1) or not. We assume that
Nt out of Nn nodes are transportation modules, and the
remaining Nm = Nn − Nt are machines. In particular, let

11 1257

10346

12

8 9

𝑢1,10𝑢10,1

𝑢9,1

𝑢9,8

𝑢8,9

𝑢5,2

𝑢2,5

𝑢7,5

𝑢5,7

𝑢11,7

𝑢7,11

𝑢3,4𝑢4,6

𝑢2,3𝑢4,5𝑢6,7

𝑢6,12𝑢12,6

𝑢1,2

𝑢7,8

0

0

𝑢10,0
𝑢0,10

Fig. 1. Small-scale system considered as test case in this paper. Node 10 is
both the loading and unloading one (i.e., hl = hu = 10) and nodes 11,12
are machines (i.e., M = {11, 12}).

us denote the set of indexes of machine nodes as

M = {h : node h is a machine}.

Each node (be it a transportation module or a machine) is
able to either hold one part in place, or to move it to a fixed
number of specific, directly connected nodes according to
the plant topology (see, e.g., Fig. 1). Each machine must,
in addition, execute a specific job on each part it receives.
Without loss of generality we assume that a movement from
one node to a connected one lasts one time step (direct
movement), while the job carried out by a machine m lasts an
integer number Lm ≥ 1 of time steps. The boolean control
signal uh,j(k) ∈ {0, 1} dictates whether a part will move
from node h at time k to node j at time k + 1. Finally,
we also assume that two special nodes are present, the
loading node and the unloading one, with indexes hl and hu,
respectively. These nodes are the interface between the plant
under study and the outside, denoted with index 0, through
two control variables: u0,hl

can move to the loading node a
part from outside the plant, e.g. from a buffer containing the
incoming parts that must be processed, while a part can be
moved from the unloading node to the outside via the control
variable uhu,0, e.g. to a buffer of finished parts. We denote
with Nf (k) the total number of finished parts at time k. In
summary, the number Nu of boolean control signals to be
computed at each time step is equal to the number of valid
direct transitions among the nodes, plus the two loading and
unloading commands u0,hl

, uhu,0. We collect these inputs
into a column vector, denoted with U(k) ∈ {0, 1}Nu .

For each node h = 1, . . . , Nn, we define the following
sets.

Definition 1: (Outgoing and Incoming sets)

• The outgoing set Oh is the set containing the indexes of
all nodes that can be reached directly from h, including
possibly the outside, i.e. Oh = {j : ∃uh,j};

• The incoming set Ih is the set containing the indexes of
all nodes for which h is a direct destination, including
possibly the outside, i.e. Ih = {j : ∃uj,h}.

We thus have {0} ∈ Ohu and {0} ∈ Ihl
. Defining z =

[z1, . . . , zNn
]T (·T is the vector transpose operation) and

v(k) =

∑
j∈I1

uj,1(k)−
∑
j∈O1

u1,j(k)

...∑
j∈INn

uj,Nn(k)−
∑

j∈ONn

uNn,j(k)

we can introduce the following linear model describing the
plant’s behavior:

z(k + 1) = z(k) + v(k)
Nf (k + 1) = Nf (k) + uhu,0(k)

(1)

This model corresponds to a Eulerian description of the
system, where the nodes are taken as control volumes, the
system state corresponds to the number of parts in each of
these volumes, and the model essentially corresponds to a
series of mass conservation equations. To keep consistency
with the real system, the boolean control inputs must comply
with the following operational constraints at all time steps:∑

j∈Oh

uh,j(k) ≤ 1, h = 1, . . . , Nn (2a)∑
j∈Ih

uh,j(k) ≤ 1, h = 1, . . . , Nn (2b)∑
j∈Oh

uh,j(k) = 0, ∀h : zh(k) = 0 (2c)∑
j∈Ih

uj,h(k) = 0, ∀h : zh(k) = 1 ∧
∑
j∈Oh

uh,j(k) = 0 (2d)

Constraints (2a)-(2b) impose that a part shall move to at
most one destination from node h, and that only one part
shall reach node h at the next time step. Constraint (2c)
states that all control signals from an empty node shall be
zero, finally constraint (2d) imposes that no part can move
to node h if the latter is occupied and it will hold its current
part in the next step.
Moreover, temporal logic constraints on the control inputs
pertaining to machine nodes arise, due to the fact that once
a job is started it must be completed before the part can be
moved. Denoting with km the time when a new job is started
by machine m, such constraints take the form:∑
j∈Om

um,j(k) = 0, ∀k ≤ km + Lm,∀m ∈M : zm(k) = 1

(3)
The problem we address can be described as follows: derive
a control policy that computes, at each time instant k, all of
the control variables uh,j in order to satisfy the operational
constraints (2)-(3) and to minimize a suitably defined cost
criterion.
In [15], this problem has been addressed resorting to MPC,
after a suitable manipulation of the model and of the
constraints that leads to a mixed logical dynamic (MLD)
formulation and a large-scale mixed-integer linear program
to be solved at each time step. The approach has been tested
experimentally with good performance, however it leads to
rather high computational complexity: as an example, in the
test case of Fig. 1, 160 integer auxiliary variables need to be
introduced per each time step in the prediction horizon (e.g.,
with a 5-time-steps horizon about 800 integer variables are

used).
The approach introduced in this paper, presented next, aims
to overcome this issue by taking a different perspective on
the problem at hand.

III. LAGRANGIAN SYSTEM MODEL
AND PROPOSED APPROACH

To reduce the computational complexity while still retain-
ing an optimization-based predictive approach, we propose
here the hierarchical control structure presented in Fig. 2:
a low-level greedy path following strategy is in charge

Plant

Greedy path

following strategy

Predictive path

allocation

𝑋𝑁𝑝 𝑘
(𝑘)

𝑋𝑁𝑝 𝑘

∗ (𝑘)

𝑈∗(𝑘)

𝑎(𝑘)

Fig. 2. Hierarchical control approach proposed in this paper.

to compute feasible control inputs and to move forward
each part along its assigned path, and a high-level model
predictive path allocation module (re-)assigns the paths to
all parts in order to optimize a user-defined performance
metric. As suggested by the adopted terminology, in this new
approach we follow the parts’ trajectories instead of keeping
track of the status of each control volume, i.e. we adopt a
Lagrangian description of the plant instead of an Eulerian
one. Consistency/translation between the two descriptions is
provided by the fact that each path is a sequence of nodes,
thus the position of a part on a given path unequivocally
identifies the node where that part is located.

A. Lagrangian model state
Let us denote with i = 1, . . . , Np(k) an index that

identifies each one of the Np(k) ∈ N parts in the plant
at time k. The value of Np(k) ∈ N can change over time
as new parts enter the plant and/or finished ones exit. We
further denote with S = {1, 2, . . . , Ns} a set of integers,
each one corresponding unequivocally to a sequence (or
path). Such sequences are assumed to be precomputed and
stored. For each s ∈ S, the operator S(s) returns the actual
sequence corresponding to index s. Each sequence S(s) has
the following structure:

S(s) =

{[
h1
g1

]
, . . . ,

[
hp
gp

]
, . . . ,

[
hNs

gNs

]}
(4)

where Ns is the sequence length, p = 1, . . . , Ns is the
position along the sequence, and hp, gp are integers
corresponding to nodes in the plant. In particular, each value
of hp corresponds to a node that is either equal to hp+1 (i.e.
the part shall be held), or directly connected to hp+1 (i.e.,
the part shall be moved from node hp to hp+1), while each

value of gp is the index of a node chosen as goal for that
part of the sequence. Usually, such goal indexes correspond
to machines or to the outside (node 0).
We indicate with si(k) ∈ S the sequence that
part i is following at time k, with pi(k) ∈ N
the position of part i along such a sequence, and
with S(si(k))(1,pi(k)), S(si(k))(2,pi(k)) the first and
second entry, respectively, of the vector in position
pi(k) of sequence S(si(k)) (compare (4)). For
example, referring to Fig. 1, the sequence identified
by index s = 1 could correspond to S(1) ={[

10
12

]
,

[
1
12

]
,

[
2
12

]
,

[
3
12

]
,

[
4
12

]
,

[
6
12

]
,[

12
12

]
,

[
6
0

]
,

[
7
0

]
,

[
8
0

]
,

[
9
0

]
,

[
1
0

]
,

[
10
0

]}
,

and a part i with si(k) = 1 and pi(k) = 3 would be located
at node h = 2 at time k, i.e. S(si(k))(1,pi(k)) = 2 and have
as goal the machine node S(si(k))(2,pi(k)) = 12. Moreover,
we denote with ki the time step when part i appeared on
the plant, and with ti(k) the time elapsed since then:

ti(k) = k − ki. (5)

In our Lagrangian model the state of part i is given by:

xi(k) =

 si(k)
pi(k)
ti(k)

 . (6)

Finally, we denote with

ri(k) = card(S(si(k)))− pi(k) (7)

the number of remaining nodes that part i shall visit to
complete its current sequence. For later use, we also collect
all the state variables in vector

XNp(k)(k) = [x1(k)T , . . . ,xNp
(k)T]T ∈ N3Np , (8)

which represents the overall state of the Lagrangian plant
model. Note that such a state vector can change dimension in
time as it depends on the value of Np(k) (which we denote
with the subscript ·Np(k) in (8)). Albeit rather unusual in
dynamical models, this feature does not lead to any technical
problem as long as consistency with the Eulerian model
is ensured. In turn, this is obtained by always applying
feasible inputs to the plant, as achieved by our path following
algorithm, introduced next.

B. Greedy path following strategy and closed-loop La-
grangian model

The greedy path following strategy is a rule-based con-
troller that acts according to the following principles: a) if
possible, move each part forward in its current sequence;
b) if the next node in the sequence is blocked, wait; c) if
a potential conflict among parts is detected, the part with
smallest ri(k) value shall move, and the other ones shall
wait. To account for new parts that must be loaded to the
plant from the outside, we introduce the boolean a(k), which
is equal to 1 when such a new part is available to be moved
to the loading node.
Algorithm 1 Greedy path following strategy. At each time
step k:

1. Compute ri(k), i = 1, . . . , Np(k) according to (7);
2. Compute the one-step-ahead predicted states x̂i, i =

1, . . . , Np(k), by forward-propagation of all parts
along their current paths:

p̂i(k + 1) = pi(k) + 1
ti(k + 1) = ti(k) + 1

x̂i(k + 1) =

 si(k)
p̂i(k + 1)
ti(k + 1)

 (9)

3. For each node h = 1, . . . , Nn, compute the number
of potential conflicts nh(k + 1) as: nh(k + 1) =
Np(k)∑
i=1

c(x̂i(k + 1), h) − 1, where c(x̂i(k + 1), h) ={
1 if S(1, si(k))(p̂i(k+1)) = h
0 otherwise

}
;

4. If nh(k + 1) = 0 for all h, then go to step 5..
Else, for each node h : nh(k + 1) > 0 do conflict
resolution:
4.a. Compute the set containing the indexes of con-

flicting parts Ch(k) = {i : c(x̂i(k + 1), h) = 1};
4.b. Check if a part is being held at node h:

īh(k) = {i ∈ Ch(k) : S(ŝi(k + 1))(1,p̂i∗ (k+1))

= S(si(k))(1,pi(k)) = h}
4.c. Compute the set of parts that are most

advanced in their own path: Lh(k) ={
i : ri(k) = min

l∈Ch(k)
rl(k)

}
4.d. Compute the index i∗h(k) of the part with highest

priority:
If īh(k) 6= ∅ then i∗h(k) = īh(k)
Elseif card(Lh(k)) = 1 then i∗h(k) = Lh(k)
Else i∗h(k) = arg min

l∈Lh(k)
tl(k).

4.e. ∀i ∈ Ch(k) : i 6= i∗h(k), correct the corresponding
one-step-ahead predicted state as: p̂i(k + 1) =

pi(k), x̂i(k + 1) =

 si(k)
p̂i(k + 1)
ti(k + 1)

.

4.f. Go to 3.
5. Apply to the plant the following inputs, corresponding

to the computed part movements:

∀h, j : ∃uh,j ∧ h 6= 0
uh,j(k) = 1, if ∃i : S(si(k))(1,p̂i(k+1)) = j

∧ S(si(k))(1,pi(k)) = h
uh,j(k) = 0, else.

u0,hl
(k) = 1, if a(k) = 1 ∧

@i : S(si(k))(1,p̂i(k+1)) = hl
u0,hl

(k) = 0, else.

Step 4.d. of Algorithm 1 sets the priority as follows: a
part being held at a node has the highest priority, if no
part is held then the one that is most advanced in its own
sequence (i.e. minimal ri(k)) has the second-highest priority,
if more than one part has minimal ri(k) then the one that has
been in the plant for the longest time has the third-highest
priority. The feedback control policy defined by Algorithm 1

corresponds to a set of functions κNp , Np ∈ N. Each one of
these functions pertains to a specific number of parts Np and
its input arguments are the corresponding Lagrangian state
XNp(k) and signal a(k), while the output of all of them is
a vector of plant commands U ∈ {0, 1}Nu (see step 5. of
Algorithm 1):

U(k) = κNp(k)(XNp(k)(k), a(k)). (10)

Under mild assumptions on the employed sequences, one
can prove that such a control policy generates inputs that are
always feasible. However, input feasibility by itself does not
prevent the controlled system from running into a lockout,
and in general the greedy path following approach can give
suboptimal behavior with respect to the performance criteria
of interest. On the other hand, when combined with the
model (1), Algorithm 1 allows one to predict the system
behavior without having to explicitly enforce the challenging
constraints (2)-(3) and at extremely low computational cost.
We exploit such closed-loop predictions in a high-level MPC
strategy, described in the next Section.
Before proceeding further, we also introduce the closed loop
Lagrangian model of the system, provided by the following
algorithm.
Algorithm 2 Closed-loop Lagrangian plant model. At each
time step k:

1. Run Algorithm 1 with the current values of XNp(k)(k)
and a(k) as inputs, collect all the resulting values of
x̂i(k + 1) and uh,j(k), ∀(h, j) : ∃uh,j ;

2. Compute the Lagrangian state dimension Np(k+1) as
Np(k + 1) = Np(k) + u0,hl

− uhu,0;
3. If u0,hl

= 1, generate the state x̃(k + 1) of the new
part that will be loaded to the plant at time t+ 1;

4. For all i : S(si(k))(1,p̂i(k+1)) 6= hl, compute the state
xi(k + 1) = x̂i(k + 1).

5. Compute the Lagrangian state XNp(k+1)(k + 1) by
stacking all vectors xi(k+1) computed at step 4. and,
if available, vector x̃(k + 1) computed at step 3.. Set
k = k + 1 and go to 1..

The state initialization of a new part at step 3. can be
done by assigning a sequence s ∈ S and position p to it.
Since their state value is not updated at step 4., parts that
are unloaded from the plant naturally disappear from the
Lagrangian model.
Similarly to the control policy (10), the system model defined
by Algorithm 2 also corresponds to a set of functions,
f(N+

p ,Np)
: 3NNp → 3NN

+
p , each one pertaining to a specific

pair of part quantities, i.e. those at the current and at next
time steps, while the signal a(k) is an exogenous input:

XNp(k+1)(k + 1) = f(Np(k+1),Np(k))(XNp(k)(k), a(k)).
(11)

C. Model predictive path allocation
At each time step, the predictive control logic chooses

whether to keep each part on its current path si(k) and
at its current position pi(k), or to change one or both
of these elements in order to optimize the predicted plant
performance. The result is a dynamic, optimization-based
path allocation strategy that can exploit very large prediction
horizon values, thus guaranteeing the absence of lockouts,

and allows one to easily consider different performance
indexes and to generally improve the plant behavior with
respect to the one obtained by the greedy path following
policy alone.
At each time step k, let us consider the following sets
Xi(k), i = 1, . . . , Np(k):

if S(si(k))(1,pi(k)) /∈M :

Xi(k) =

(s, p) ∈ S × N :
S(s)(1,p) = S(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

 (12a)

else if S(si(k))(1,pi(k)) ∈M :

Xi(k) =

(s, p) ∈ S × N :
S(s)(1,p−j) = S(si(k))(1,pi(k)−j),
j = 0, . . . , k − kS(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

 (12b)

where kS(si(k))(1,pi(k)) is the time step when part i started
the job of machine m = S(si(k))(1,pi(k)) (compare (3)).
Namely, each set Xi(k) contains all the pairs (s, p) of se-
quence index and position index such that the corresponding
vector

[
S(s)(1,p)S(s)(2,p)

]T
corresponds to that of part i

at time k, also considering a possible ongoing job and its
remaining duration, if S(si(k))(1,pi(k)) is a machine node.
These sets are never empty by construction, since they
always include the current pair (si(k), pi(k)). At any time
k, exchanging these two components of the state xi(k) to
any other pair (s, p) ∈ Xi(k) implies that we are allocating
to part i another sequence and/or position among those that
are compatible with its current physical location and goal.
Our high-level predictive controller exploits precisely this
feature, as described in the following algorithm. We denote
with XNp(o|k)(o|k), x(o|k) the predictions of plant input
and Lagrangian states, respectively, computed at time k and
pertaining to time k + o.
Algorithm 3 Model Predictive Path Allocation.

1. At time k acquire the state variables xi(k), i =
1, . . . , Np(k) and compute the corresponding sets
Xi(k);

2. Solve the following finite horizon optimal control
problem (FHOCP):

min
(σi,πi), i=1,...,Np(k)

N∑
o=0

`Np(o|k)
(
XNp(o|k)(o|k)

)
(13a)

subject to

xi(0|k) = [σi, πi, ti(k)]
T
, i = 1, . . . , Np(k) (13b)

XNp(0|k)(0|k) =[
x1(0|k)T , . . . ,xNp(k)(0|k)T

]T (13c)

XNp(o+1|k)(o+ 1|k) =
f(Np(o+1|k),Np(o|k))(XNp(o|k)(k), a(o|k)),

o = 0, . . . , N − 1
(13d)

(σi, πi) ∈ Xi(k), i = 1, . . . , Np(k) (13e)

where N ∈ N is the prediction horizon, the sequence
a(o|k) ∈ {0, 1}, o = 0, . . . , N − 1 contains the

predictions of new parts that need to be worked (if
available), and the stage cost functions `Np

(
XNp

)
are chosen by the designer according to the plant
performance indicator of interest.

3. Let (σ∗i , π
∗
i), i = 1, . . . , Np(k) be the solution to (13).

Compute the new state vectors x∗i (k) as:

x∗i (k) =

 σ∗i
π∗i
ti(k)

 , i = 1, . . . , Np(k)

X∗Np(k)
(k) =

[
x∗1(k)T , . . . ,x∗Np(k)

(k)T
]T

and provide these values to Algorithm 1 to compute
the control inputs via (10):

U∗(k) = κNp(k)(X
∗
Np(k)

(k), a(k)).

4. Apply to the plant the control inputs U∗(k), set k =
k + 1, go to 1..

Note that the optimization variables (σi, πi), i =
1, . . . , Np(k) pertain only to the current time step, i.e.
the sequence index is not changed during the predictions.
This results in possible sub-optimality but increased
computational efficiency, similarly to what is done in move
blocking strategies in MPC, see e.g. [17]. On the other hand,
being a receding horizon strategy, Algorithm 3 is able to
change the sequence and position indexes si(k), pi(k) of
all states at each time step k, resulting in practice in good
closed-loop performance. Signal a(k), which is managed by
the greedy path following algorithm as described in Section
III-B, is considered as an external disturbance, of which a
prediction may be available (otherwise one can simply set
a(o|k) = 0 in (13d)).

IV. NUMERICAL RESULTS

We present the tests of the hierarchical approach on the
small-scale example of Fig. 1, with Nu = 22 boolean
control inputs. The two machine nodes 11, 12 have the same
processing time L11 = L12 = 3 time steps, and each part
must visit first machine 12, then machine 11 before leaving
the plant from node 10, which is also the loading node.
We assume that a(k) = 1 ∀k, i.e. a new part is loaded
to the plant whenever the loading node is free, and that
the predictive controller does not have this information. The
maximum throughput of the plant depends on the processing
time of machine 12 and on the fact that node 10 has to switch
between loading a new part or unloading a finished one, thus
adding two additional time steps. Its value is thus equal to
1/(L12 + 2) = 0.20 parts per time step. We set a prediction
horizon of N = 50 time steps, and we use as stage cost in
(13a) the following function:

`Np(o|k) =

Np(o|k)∑
i=1

ri(o|k) + β

Np(o|k)∑
i=1

nu∑
i=1

U(o|k) (14)

where β ≥ 0 is a weighting factor, ri(o|k) is computed
as in (7) considering the predicted Lagrangian states, and
U(o|k) = κNp(o|k)(X

∗
Np(o|k)(o|k), 0) is the vector of sim-

ulated actuation commands given to the plant. As regards
the sequence computation, since the considered example is
essentially a series manufacturing process, we adopt here

a single path, composed of redundant sub-sequences go-
ing several times through all possible loops across nodes
2, 3, 4, 5, 6, 7 (see Fig. 1) and of sub-sequences of identical
values for each node, in order to provide the predictive
controller with the option to make one part wait in place
by shifting it back with such sub-sequences. We ran all

0 100 200 300 400 500 600 700 800 900
Time step

-0.05

0

0.05

0.1

0.15

0.2

T
hr

ou
gh

pu
t (

pa
rt

s/
tim

e
st

ep
)

Fig. 3. Simulation example. Course of the plant throughput expressed as
number of finished parts per time step, with β = 5 (dashed line), β = 6
(solid), and β = 8 (dash-dotted).

0 100 200 300 400 500 600 700 800 900
Time step

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 n
. o

f
co

m
m

an
ds

 p
er

 ti
m

e
st

ep

Fig. 4. Simulation example. Course of the average number of input
commands per time step, with β = 5 (dashed line), β = 6 (solid), and
β = 8 (dash-dotted).

the simulations starting from one part in node 10. In this
example, the maximum throughput can be reached with
different strategies that lead to different values of energy
consumption: in fact, during each job it is possible to let the
waiting parts be held on the nodes, or to make them circulate
in the available loops within the plant. We illustrate that the
proposed strategy switches between these two behaviors as
the value of β decreases. This is clearly visible in Figs. 3-4:
with β = 5 the plant reaches the maximum throughput and
a number of commands per time step equal to 3.5, while
with β = 6 the same throughput is obtained with only 2.5
commands per time step, i.e. 30% less. In both cases, a
number of parts oscillating between 7 and 8 is present on
the plant at each time step, after the initial transient. If we
further increase β, the controller reaches a lockout with eight
parts on the plant, since it becomes more convenient to avoid
any actuation rather than to push the parts forward in their
paths. This is also shown in Figs. 3-4.

Finally, regarding the computational aspects, we solved the
problem (13) via extensive search over all possible valid
(σi, πi) pairs. On a Laptop with 8GB RAM and an Intel
Core i7 CPU at 2.6 GHz running Matlab, the resulting
computational time is 0.45 s per time step, without any
attempt to improve the solver efficiency (e.g. by parallelizing
the computations and/or adopting a non-brute-force approach
to solve the optimization problem).

REFERENCES

[1] European Commission, “Factory of the future,” Multi-Annual
Roadmap for the Contractual PPP Under Horizon 2020. Belgium:
Publications Office of the European Union, 2013.

[2] P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok,
S. Yu, and X. Xu, “Smart manufacturing systems for industry 4.0:
Conceptual framework, scenarios, and future perspectives,” Frontiers
of Mechanical Engineering, vol. 13, pp. 137–150, 2018.

[3] W. Na, Y. Lee, N. Dao, D. N. Vu, A. Masood, and S. Cho, “Directional
link scheduling for real-time data processing in smart manufacturing
system,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3661–
3671, Oct 2018.

[4] S. Ren, Y. Zhang, Y. Liu, T. Sakao, D. Huisingh, and C. M. Almeida,
“A comprehensive review of big data analytics throughout product
lifecycle to support sustainable smart manufacturing: A framework,
challenges and future research directions,” Journal of Cleaner Pro-
duction, vol. 210, pp. 1343 – 1365, 2019.

[5] H. Yan, Q. Hua, Y. Wang, W. Wei, and M. Imran, “Cloud robotics in
smart manufacturing environments: Challenges and countermeasures,”
Computers & Electrical Engineering, vol. 63, pp. 56 – 65, 2017.

[6] Y. P. GUPTA, M. C. GUPTA, and C. R. BECTOR, “A review of
scheduling rules in flexible manufacturing systems,” International
Journal of Computer Integrated Manufacturing, vol. 2, no. 6, pp. 356–
377, 1989.

[7] C. Saygin, F. Chen, and J. Singh, “Real-time manipulation of alterna-
tive routeings in flexible manufacturing systems: A simulation study,”
The International Journal of Advanced Manufacturing Technology,
vol. 18, pp. 755–763, 2001.

[8] R. Bucki, B. Chramcov, and P. Suchánek, “Heuristic algorithms for
manufacturing and replacement strategies of the production system,”
Journal of Universal Computer Science, vol. 21, no. 4, pp. 503–525,
apr 2015.

[9] S. K. Das and P. Nagendra, “Selection of routes in a flexible man-
ufacturing facility,” International Journal of Production Economics,
vol. 48, no. 3, pp. 237 – 247, 1997.

[10] K. Kouiss, H. Pierreval, and N. Mebarki, “Using multi-agent ar-
chitecture in fms for dynamic scheduling,” Journal of Intelligent
Manufacturing, vol. 8, pp. 41–47, 1997.

[11] C. Peng and F. Chen, “Real-time control and scheduling of flexible
manufacturing systems: An ordinal optimisation based approach,” The
International Journal of Advanced Manufacturing Technology, vol. 14,
pp. 775–786, 1998.

[12] A. R. Moro, H. Yu, and G. Kelleher, “Hybrid heuristic search for the
scheduling of flexible manufacturing systems using petri nets,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 2, pp. 240–245,
2002.

[13] F. D. Vargas-Villamil and D. E. Rivera, “Multilayer optimization and
scheduling using model predictive control: application to reentrant
semiconductor manufacturing lines,” Computers & Chemical Engi-
neering, vol. 24, no. 8, pp. 2009 – 2021, 2000.

[14] ——, “A model predictive control approach for real-time optimization
of reentrant manufacturing lines,” Computers in Industry, vol. 45,
no. 1, pp. 45 – 57, 2001.

[15] A. Cataldo and R. Scattolini, “Dynamic pallet routing in a manufactur-
ing transport line with model predictive control,” IEEE Transactions
on Control Systems Technology, vol. 24, no. 5, pp. 1812–1819, Sep.
2016.

[16] A. Cataldo, M. Morescalchi, and R. Scattolini, “Fault tolerant model
predictive control of a de-manufacturing plant,” The International
Journal of Advanced Manufacturing Technology, vol. 9, no. 12, pp.
4803–4812, 2019.

[17] R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, “Move blocking
strategies in receding horizon control,” Journal of Process Control,
vol. 17, no. 6, pp. 563 – 570, 2007.

