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Abstract

In the framework of cardiac electrophysiology for the human heart, we apply multipatch NURBS-based Isogeometric
nalysis for the space discretization of the Monodomain model. Isogeometric Analysis (IGA) is a technique for the solution of
artial Differential Equations (PDEs) that facilitates encapsulating the exact representation of the computational geometry by
sing basis functions with high-order continuity. IGA features very small numerical dissipation and dispersion when compared
o other methods for the solution of PDEs. The use of multiple patches allows to overcome the conventional limitations of single
atch IGA, thanks to the gained flexibility in the design of the computational domain, especially when its representation is
uite involved as in bioengineering applications. We propose two algorithms for the preprocessing of CAD models of complex
urface and volumetric NURBS geometries with cavities, such as atria and ventricles: our purpose is to obtain geometrically
nd parametrically conforming NURBS multipatch models starting from CAD models. We employ those algorithms for the
onstruction of an IGA realistic representation of a human heart. We apply IGA for the discretization of the Monodomain
quation, which describes the evolution of the cardiac action potential in space and time at the tissue level. This PDE is
oupled with suitable microscopic models to define the behavior at cellular scale: the Courtemanche–Ramirez–Nattel model
or the atrial simulation, and the Luo–Rudy model for the ventricular one. Numerical simulations on realistic human atria and
entricle geometries are carried out, obtaining accurate and smooth excitation fronts by combining IGA with the multipatch
pproach for the geometrical representation of the computational domains, either surfaces for the atria or solids for the ventricles.
c 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Isogeometric Analysis; Multipatch NURBS; Cardiac electrophysiology; NURBS; Mesh generation

1. Introduction

The heart is a muscular organ whose contraction pumps blood into the circulatory system, delivering oxygen and
utrients and allowing all the cells to perform their physiological activities [1–3]. The mechanical contraction of
he heart is triggered by the electrical excitation of the cardiac tissue, starting from the right atrium at the sinoatrial
ode (SAN) and propagating to the left atrium and to the ventricles [4,5]. Since cardiovascular diseases are a very
ommon cause of death worldwide, understanding heart function in both physiological and pathological conditions
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is crucial. In computational medicine, mathematical modeling and numerical simulations are used to provide a
quantitative representation of the heart function, thus giving a very valuable contribution in this field [6–8].

Indeed, the electrical activation of the heart can be accurately described with mathematical models expressed
n terms of partial differential equations (PDEs). A very common model for cardiac electrophysiology is the

onodomain equation [6,9–11], which describes the evolution in time and space of the transmembrane potential in a
ontinuous domain. This PDE needs to be coupled with an ionic model describing the transmembrane ionic currents
hat determine the electrical activation of cardiac cells. Among the different ionic models proposed in literature
12–15], we consider the Luo–Rudy (LR) model [16] for the ventricles and the Courtemanche–Ramirez–Nattel
CRN) [17] model for the atria.

The complexity of electrophysiological models poses a significant challenge for their mathematical analysis and
umerical approximation [7,18–20]. A fine space resolution is indeed required to capture the sharp propagating
xcitation fronts and suitable methods are needed to control numerical dissipation and dispersion. The use of the
inite Element Method (FEM) in the space discretization of either the Bidomain model [21,22] or the Monodomain
quation requires highly refined meshes to capture the propagating front without introducing spurious oscillations.
his entails a very large number of degrees of freedom (DOFs) and consequently a large computational cost [23].

In this paper, numerical simulations of the cardiac electrophysiology of the human heart are performed by
eans of multipatch Isogeometric Analysis (IGA) in the framework of the Galerkin method [24–29]. IGA is a
ethodology for the space discretization of PDEs that in many circumstances yields an exact representation of the

omputational geometry. Thanks to the high-order continuity of NURBS basis functions [30], it allows to solve PDEs
ccurately and efficiently, without necessarily requiring fine meshes while featuring limited numerical dispersion
nd dissipation [27,31–33]. These aspects make IGA better suited than FEM for wave propagation problems and
DEs featuring solutions with coherent structures, as is the case of cardiac electrophysiology models.

IGA has been applied so far to cardiac electrophysiology in [10,34,35] using the single patch approach,
.e. describing the computational domain by means of a single NURBS-parametrized geometry, i.e the so called
atch. In particular, in [10,35], the results obtained by using high-order NURBS basis are compared with those
oming from the C0-continuous basis functions typical of FEM. These works highlight the superior accuracy
er degree-of-freedom of high-order continuous NURBS in IGA, that also enables a better control of numerical
ispersion errors, a drawback that potentially affects instead FEM solutions of the monodomain equation. However,
he accuracy of the solution obtained by IGA is affected by a parametrization of the domain featuring significant
istortions [27,36,37]. If we consider geometries with multiple cavities or complex topologies, such as those in
realistic representation of the heart, it is crucial to represent the domain by means of multiple patches. This

pproach is known as multipatch technique [27,38] and it allows reproducing a complex geometry by means of
ultiple patches with mesh elements with much better quality than in the single patch case, besides allowing for
ore flexibility in the definition of the computational domain.
Although CAD software can natively handle NURBS-parametrized geometries, CAD models may not allow

he strong imposition of continuity of the solution across the interface of adjacent patches, at least in a seamless
anner. Indeed, to impose this specific condition, IGA requires such patches to be conforming, both geometrically

nd parametrically. For this reason, we propose two algorithms to convert a multipatch surface representation of
he computational domain into an IGA suitable one, which allows the strong imposition of continuity. The first
lgorithm addresses patch non-conformity issues in a surface geometry, while the second one addresses the issue
f constructing a volumetric parametrization starting from a description of the domain boundary. These algorithms
re applied to the Zygote Solid 3D heart model [39], resulting in an IGA reconstruction of a realistic human heart.
n this way we obtain a domain description ready for the application of multipatch IGA to the space discretization
f differential problems, including but not limited to the electrophysiology model considered in this paper.

The paper is structured as follows. In Section 2, we provide a brief description of the electrophysiology of
he human heart. In Section 3 we present NURBS-based IGA and the multipatch. In Section 4 we describe

preprocessing pipeline to convert complex CAD models with cavities into suitable multipatch computational
odels, and apply it to obtain a realistic representation of both atria and ventricles. In Section 5 we introduce

he Monodomain equation along with the mathematical method used for its numerical discretization. In Section 6

e discuss the numerical results. Finally, in Section 7 we draw some conclusions.
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Fig. 1. Example of ventricular action potential with its phases: 0 (depolarization or upstroke), 1 (peak or notch), 2 (plateau), 3 (repolarization
or recovery), 4 (resting). Intracellular calcium concentration Ca2+ plays a major role in heart contraction [40].

2. Cardiac electrophysiology

The human heart is a hollow muscular organ that pumps blood through the circulatory system, providing the body
with oxygen and nutrients and assists with the removal of the metabolic wastes produced by cellular reactions [1–3].
The main driver of blood flow through the different chambers of the heart and through the circulatory system is the
active contraction of the heart muscle. Such contraction is initiated by an electrical excitation of cardiac cells [6,41],
which are able to activate themselves independently of nervous stimuli, unlike skeletal muscle cells.

At the microscopic scale, the electrical activation is due to an action potential (AP), which evolves in time
according to the following phases (as depicted in Fig. 1) [6,42]:

• Phase 0: myocytes, i.e. cardiac cells, undergo a rapid depolarization due to the opening of the fast Na+

channels. The difference of potential across the cellular membrane (referred to as transmembrane potential) is
quickly (in about 2 ms) going from its resting value (about −84 mV) to slightly positive values thanks to the
INa membrane current.

• Phase 1: inactivation of the fast Na+ channels. The transient net outward current causing the small downward
deflection of the action potential is due to K+ and Cl− ions carried by the Ito1 and Ito2 currents, respectively.

• Phase 2: plateau created by a balance between the inward movement of Ca2+, the ICa current through L-type
calcium channels, and the outward movement of potassium ions K+, contributing to the IKs current through
the slow delayed rectifier potassium channels.

• Phase 3: rapid repolarization phase of the action potential, when the L-type Ca2+ channels close while the K+

channels are still open. This ensures a net outward current, corresponding to negative change in membrane
potential, thus allowing more types of K+ channels to open.

• Phase 4: resting phase. K+ channels close and the transmembrane potential remains at the resting value until
it is stimulated again by an external electrical activity.

We conclude that AP propagation is made possible by several ion channels opening and closing and resulting in
ionic currents through the cellular membrane. Such currents cause variations in the concentration of calcium ions
in the intracellular space, that in turn initiate the contraction of the myocytes [3], so that the electrical activation
drives the mechanical one.

AP propagates from one cell to its neighbors through gap junctions, i.e. intercellular low-resistance ionic
channels. This allows the stimulus to travel through the whole tissue from one cell to another. Cardiomyocytes
are arranged in sheets of fibers. The gap junctions are located for the most part, although not exclusively, in the
longitudinal direction of the fibers, resulting in a preferential propagation of the electric signal along the fibers [6].

Focusing on the macroscopic scale, as shown in Fig. 2, the electric signal originates at the sinoatrial node

(SAN), a portion of tissue located at the junction between the superior vena cava and the right atrium. The SAN

3
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Fig. 2. Heart conduction system. 1. SAN. 2. AV node. 3. Bundle of His. 4. Left bundle branch. 5. Left posterior fascicle. 6. Left anterior
fascicle. 7. Left ventricle 8. Ventricular septum. 9. Right ventricle. 10. Right bundle branch.
Source: Taken from [43].

is made of self-exciting cells and serves as the natural pacemaker of the heart. The AP propagates from the SAN
through the right atrium and to the left atrium through a few preferential conduction sites (Bachmann’s bundle first,
then the anterior and posterior septum and the coronary sinus musculature) [4]. The activation front reaches the
atrioventricular (AV) node, located at the junction between the interventricular septum and the interatrial septum.
The cells composing this node have a slow conduction velocity, that causes a delay between the atrial and ventricular
activation. The AV node conducts the electric signal through the atrioventricular septum and it activates the fibers
of the bundle of His and of the Purkinje network, composed of cells specialized for the conduction. These fibers
transmit then the action potential to the ventricular walls.

3. Multipatch IGA

IGA [24–28,44–46] is a framework for the spatial approximation of PDEs based on the isogeometric paradigm:
that is using as basis functions the same functions that are used for the parametrization of the computational domain.
The choice of such functions is driven by the design of the geometry.

Let Ω ⊂ Rd be an open, bounded computational domain, defined as the union of Np disjoint subdomains
Ωk, k = 1, . . . ,Np, referred to as patches. More formally:

Ω =

Np⋃
Ωk with Ωi ∩ Ωj = ∅ i ̸= j.
k=1
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Each patch Ωk is the image of a parametric domain Ω̂ ⊂ Rd̂, with d̂ ≤ d (typically Ω̂ = [0, 1]̂d) through a mapping
n the form

ϕk(ξ ) =

nk∑
i=1

R̂k
i (ξ )Bk

i i = 1, . . . , nk, k = 1, . . . ,Np, (1)

here R̂k
i (ξ ) are suitable basis functions defined in the parametric domain and Bk

i ∈ Rd are points in the physical
pace known as control points.

In NURBS-based IGA, functions R̂k
i are d̂-dimensional NURBS basis functions. They are tensor-product

iecewise rational functions, whose definition involves the partition of each dimension of the parametric domain
n sub-intervals, referred to as knot spans. The extremes of knot spans are known as knots, and the images of
not spans through the mapping Eq. (1) are referred to as elements. For more details on the definition of NURBS
unctions and their use for the parametrization of domains, we refer to [30,47].

The choice of NURBS functions allows an easy integration with CAD software used in the design of the
omputational domain, since it usually handles NURBS geometries natively. Moreover, NURBS functions allow
everal refinement procedures that enrich the functional space used for the parametrization while preserving the exact
eometry. Finally, NURBS feature useful approximation properties that make them suitable for the discretization
f PDE problems [27,36,37,45], in particular with respect to numerical dissipation [47] and dispersion [31,48].
pecifically, controlling numerical dispersion is an important feature of NURBS-based IGA when approximating
lectrophysiological problems [10,35].

For the space approximation of PDEs, the Galerkin method is employed using in each patch Ωk as basis functions
he push-forward through ϕk of the basis used in the domain parametrization:

Rk
i (x) = R̂k

i (ϕk(x)) .

ollowing [45,49], we assume that adjacent patches are conforming. This means that, if Γkl = ∂Ωk ∩ ∂Ωl ̸= ∅ is
he interface of patches Ωk and Ωl for some k ̸= l, then:

• Γkl is either a single point or the image of an entire edge of the parametric domain, or else the image of an
entire face (for volumetric patches, i.e. for d̂ = 3) of the parametric domain for both patches;

• if a basis function Rk
i in Ωk has support on Γkl, then there exists a basis function Rl

j in Ωl that coincides with
Rk

i at the interface: Rk
i |Γkl = Rl

j |Γkl .

hese assumptions imply that adjacent patches are geometrically and parametrically coincident at their interface.
e define the function spaces

V k
h = span{Rk

i , i = 1, . . . , nk} k = 1, . . . ,Np ,

Vh = { f ∈ C0(Ω ) : f |Ωk ∈ V k
h ∀k = 1, . . . ,Np} .

Under the previous assumptions, it is possible to define a basis over the space Vh. For each basis function Rk
i define

n index G(i, k) ∈ N such that

G(i, k) = G(j, l) if supp(Rk
i ∩ Γkl) ̸= ∅, supp(Rl

j ∩ Γkl) ̸= ∅, Rk
i |Γkl = Rl

j |Γkl ,

G(i, k) ̸= G(j, l) otherwise,

nd let

I = {G(i, k), i = 1, . . . , nk, k = 1, . . . ,Np},

e the set of all indices G(i, k). In this way, we assign the same index to two corresponding basis functions at the
nterface between two patches. Then, a basis for Vh is given by the functions

Rl(x) =

{
Rk

i (x) if x ∈ Ωk and l = G(i, k)
0 otherwise

l ∈ I .

he space Vh is used as trial and test space for the approximation of the differential models for electrophysiology

hat we will introduce in Section 5.2. The method achieves optimal order of convergence with respect to the mesh

5
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size parameter h, maximum diameter of all elements of all patches [36,45]. More details on the approximation
properties of the spaces V k

h and Vh can be found in [36,37,45].
Following this approach, solutions on adjacent patches are coupled by prescribing the continuity of the solution

across the interface, which can be achieved provided the adjacent patches match completely both geometrically
and parametrically [27]. This requires adjacent patches to have the same knot vectors along their interfaces and
to have coincident control points. The strong imposition of continuity across patch interfaces can be obtained also
if the two patches are geometrically coincident at the interface, and the interface parametrization of one patch is
obtained via h-refinement from that of the other [27]. A discontinuous Galerkin technique for the coupling of non-
conforming adjacent patches is discussed in [50], while the possibility of imposing higher order continuity across
patch interfaces is investigated in [29,38,51]. Moreover, in [52–55] techniques for the management of trimmed
geometries and geometries obtained via boolean operations are presented.

The accuracy of the solution is hindered by the distortion of the geometrical map ϕ [36], quantified in terms
of the determinant of its gradient J = det(∇ϕ). Because of the tensor product structure of the parametric space,
representing multiple connected domains with a single patch causes large deformations in the geometrical map.
Indeed, each patch can be seen as a continuous deformation of the parametric space (i.e. a cube). Therefore, the
single patch representation of complex domains, for example domains with multiple cavities such as those involved
in cardiac modeling, requires significant mesh deformations. In such cases, multiple patches allow to construct
regular parametrizations, resulting in a gain in accuracy [27].

A detailed description of the methods and properties of NURBS-based IGA can be found in [26,27].

4. Generating multipatch NURBS geometries for heart modeling

In order to solve PDEs on NURBS multipatch geometries in the standard continuous Galerkin framework, the
patches need to be conforming. More in general, the parametrizations of adjacent patches must be such that the basis
functions used by one are a subset of those used by the other, so that the spaces spanned by those basis functions
are contained one within the other. This can be achieved, for example, by applying the h-refinement procedure to
one of the two patches, starting from a conforming parametrization. Moreover, if the computational domain is a
volume, the NURBS parametrization should cover the whole volume, and not only its boundary surface. For these
reasons, geometries coming from CAD modeling may not be ready to be used in numerical simulations directly.

Therefore, we propose two algorithms for the preprocessing of NURBS geometries. The first algorithm addresses
non-conformity issues in a NURBS multipatch surface geometry. The second algorithm deals with the problem of
constructing a NURBS volume starting from a surface representation of its boundary. In both cases, we will assume
the original multipatch geometries to be continuous at the geometric level, i.e. to be composed by a set of G0 surface
patches. The two algorithms provide a continuous parametrization for the same geometry.

The manipulation of NURBS geometries is performed by means of the MATLAB/Octave NURBS package
[56,57]. Pseudocode for the procedures described in this section can be found in the Appendix.

Both for atria and ventricles, the source geometry is a 3D model of the heart of a healthy, 21 year-old, 50th
percentile U.S. male, created by the Zygote Media Group [39], reconstructed from magnetic resonance images. The
original geometry is shown in Fig. 3.

4.1. Preprocessing of a realistic human atrial geometry

We consider a realistic human atrial geometry modeled as a NURBS multipatch surface. All patches are
geometrically watertight at their interfaces. However some pairs of adjacent patches do not have the same
parametrization at the interface, which is required to impose strong continuity of the solution. We face these
issues in the mesh generation, producing a geometry composed of conforming patches. We distinguish two types
of non-conformities:

• patch-level non-conformities: two adjacent patches only share a part of one side (Fig. 4(a));
• knot-level non-conformities: two adjacent patches share an entire side, but the interface is differently

parametrized on the two patches (due to different knot vectors in the corresponding parametric directions;
Fig. 6(a)).
6
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Fig. 3. Zygote heart model [39]. Black lines are the boundaries of the patches in the original geometry. Notice in particular that patches
re not conforming, as evident from the figure on the right.

Fig. 4. Solution of a patch-level non-conformity; patch boundaries are shown in red. (a): initially, one side of the rightmost patch is shared
with both the other patches; (b): a C0 knot is inserted in the rightmost patch in correspondence of the boundary between the other patches,
nd then such a patch is split into two patches at that position. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

e assume that no patch is adjacent to itself along a portion of its boundary, so that non-conformities only occur
etween two distinct patches.

The following sections describe the algorithms to address non-conformities of the two types. Such algorithms
anipulate the patches’ knot vectors and control points in order to eliminate all non-conformities and convert the

eometry into a conforming multipatch NURBS surface.

.1.1. Detection of patch-level non-conformities
For a NURBS surface patch, assuming Ω̂ = (0, 1)2, we refer to the four points corresponding to the parametric

oordinates (0, 0), (0, 1), (1, 0) and (1, 1) as vertices, and to the four NURBS curves corresponding to the parametric
equations ξ = 0, ξ = 1, η = 0 and η = 1 as sides. For our purposes, the non-conformity between two patches
can be checked by counting the vertices that are shared by two patches, as described in Algorithm 1. We remark
that this approach does not cover all the possible cases of non-conforming patches that may occur. It is however
sufficient to deal with the Zygote model. For more details, see Appendix A.1.

To check if one vertex lies on one side of a patch (Algorithm 1, lines 7 and 9), the NURBS curve that parametrizes
that side must be inverted. This requires the solution of a non-linear equation with Newton’s method [30] and can

be computationally demanding.

7
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Fig. 5. A group of patches before (a) and after (b) the removal of knot-level non-conformities. After the removal of non-conformities, all
the patches have the same knot vector along the radial direction.

4.1.2. Solution of patch-level non-conformities
Once a patch-level non-conformity is detected, it can be removed by inserting a knot with multiplicity p + 1,

where p is the polynomial degree of the patch, in correspondence of the hanging node, thus splitting one of the
two patches into two smaller patches. This operation, shown in Fig. 4 and described in Algorithm 3, does not
introduce any geometrical change in the geometry. To solve all patch-level non-conformities, we detect all pairs of
non-conforming adjacent patches. Then, we solve non-conformities by the procedure described above and update
the list of non-conforming pairs since the modification might have introduced further issues, repeating until all
non-conformities have been solved. This procedure is described in Algorithm 4.

4.1.3. Solution of knot-level non-conformities
A knot-level non-conformity between two adjacent patches can be detected by comparing the knot vectors at the

interface of the two patches. If the parametrizations of the interface on the two patches have the same orientation,
then the patches are conforming if they have the same knot vectors. If the parametrizations have opposite orientation,
then the patches are conforming if their knot vectors have the same size N and, by defining {ξ 1

i }
N
i=1 and {ξ 2

i }
N
i=1 as

the knots of the two patches respectively, it holds that ξ 1
i = 1 − ξ 2

N−i+1.
Knot-level non-conformities are removed simultaneously for a group of patches on which knot-level conformity

ust be enforced (see for example Fig. 5). This requires significantly less steps than removing non-conformities
or two patches at a time and repeating. Let us assume to start from patch interfaces with matching orientations,
o that conformity is achieved by imposing the same knot vector along the interface on all patches. A first naı̈ve
pproach is to take the union of the interface knot vectors of all patches in the group, denoted by Ξ̄ , and insert in
ach patch the knots from Ξ̄ that it does not already have. This procedure, shown in Fig. 6(b), does not introduce
ny geometrical change in the patches. However, in case there are two very close but distinct knots in two different
atches, this results in extremely thin elements. In general, taking the union of knot vectors can lead to unevenly
paced knots, which is undesirable. For this reason, if two knots in Ξ̄ are too close according to a prescribed
olerance, they are “merged” into their midpoint (Fig. 6(c)), that is their midpoint is inserted and the two knots
re removed using the algorithm described in Appendix A.3. To decide whether two knots should be merged, their
istance d in the physical space is checked against a threshold dth = εthh: if d < dth, the knots are removed and
heir midpoint is inserted, otherwise they are kept as they are. In general, operations involving the removal of a
not introduce geometrical changes in the geometry, and whether such changes are acceptable or not should be
anually assessed to properly tune the dth parameter. A large value of dth leads to more evenly spaced elements,

t the price of more significant geometrical modifications. All these steps are reported in Algorithm 5. The case
f adjacent patches where the parametrizations of the interface are oriented in a different way can be treated in a
imilar fashion. For further details, we refer to Appendix A.2 and Algorithm 5.

Additionally, it is sometimes desirable to obtain a mesh with evenly spaced elements. Indeed, the whole knot

ector of the patch can be potentially replaced by a uniform knot vector of the same length by means of knot

8
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c
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Fig. 6. Steps for the solution of a knot-level non-conformity between two patches. Patch boundaries are shown in red. (a): initial non-
onforming patches; (b): the knot vectors are joined, introducing very stretched elements; (c): close knots are replaced by their midpoint,
mproving the element shape; (d): optionally, the knot vectors are forced to be uniform. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

Fig. 7. The meshes for the two atria, at a coarse refinement level. Patch boundaries are shown in red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

removal and insertion (Fig. 6(d)). As in the previous step, these operations can alter the geometry of the domain.
However, while the removal of thin elements introduces small modifications which are generally acceptable, the
redistribution of knots to obtain evenly spaced elements might introduce more significant geometrical changes. This
should be checked manually, and this step should be skipped if the geometry is changed in an unacceptable way.

This operation is repeated on all non-conforming patches, until all knot-level non-conformities are solved.

4.1.4. Application to the human atrial geometries
We implement the above described algorithm in MATLAB relying on the NURBS package [56] for what

concerns the treatment of the geometries. The resulting meshes after preprocessing are shown in Fig. 7. Our right
atrium is comprised of 172 patches for a total of 162’234 elements, while our left atrium is comprised of 145
patches for a total of 121’671 elements. All the patches are parametrized by NURBS functions of degree 3.
9
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Fig. 8. Reconstruction of the left ventricle patch. (a): half-lines and intersection points; green dots are the half-line origin points, blue lines
are the half-lines, red and magenta dots are the intersection points between the half-lines and the endocardium and epicardium respectively;
the green surface is the source geometry, sectioned for visualization. (b): fitted NURBS surface patches for endocardium and epicardium,
alongside the points on which they were fitted; (c): NURBS volume patch for the left ventricle, obtained by linear interpolation of the
endocardial and epicardial surface patches. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Moreover, for both atria, the internal and external surfaces were available, while the simulation was per-
formed only on the external surface. The internal surfaces were manually eliminated using the CAD software
SolidWorks [58].

4.2. Preprocessing of realistic human left and right ventricle geometries

We also preprocess a geometry representing human left and right ventricles. The source geometry is represented
only in terms of its boundary (this is referred to as boundary representation, or B-rep), described by a set of non-
conforming NURBS surface patches. Given the non-negligible thickness of the ventricles, we aim at representing
them by one or more NURBS solid volume patches, obtained by filling the volume between the epicardial and
endocardial surfaces.

The problem of moving from a surface representation of the boundary of a volume to a trivariate parametrization
for that same volume is not trivial, and several automatic approaches have been proposed [46,59–63].

Our procedure is based on reconstructing in a semi-automatic way the source geometry, up to a small
approximation error, with a parametrization independent of the original one. It is possible to impose patch conformity
constraints to the resulting parametrization. In particular, we can impose a one-to-one correspondence of patches
between the epicardium and the endocardium, that allows to construct in a trivial way the volume patches, and
conformity between adjacent patches.

The method is outlined as follows. First, a structured grid of points lying on the surface of interest is obtained
by a raycasting method. Then, NURBS surfaces are least-squares fitted on the grid of points. This is done both on
the epicardium and on the endocardium. Finally, the epicardial and endocardial patches are connected to obtain the
volume patches. The steps are shown for the left ventricle patch in Fig. 8.

This procedure still requires to choose manually the subdivision in patches of the geometry, and careful manual
tuning for the placement of origin points and directions for raycasting, for the number of points to be used for fitting
and for the knot vectors of the fitted surfaces. On the other hand, the grid of points could be provided by other
sources, such as experimental measures, so that this approach can be used to construct analysis-suitable geometries
in more general settings.

The following sections detail the individual steps of the above-mentioned procedure.

4.2.1. Computation of fitted points
The points at which surfaces are fitted are computed by a raycasting procedure: each of the needed points

is obtained by intersecting a half-line, typically starting from the approximate centerline of the chamber being

reconstructed and pointing in radial direction, with the source geometry.

10
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The intersection of a half-line with a NURBS surface patch requires the solution of the non-linear system of
quations:

n∑
i=1

Ni,p(ξ )P i = o + ηr ξ ∈ [0, 1], η > 0 , (2)

here o and r are respectively the origin and direction of the half-line. Efficient iterative methods for the solution
f Eq. (2) have been proposed [64,65], but the problem can become expensive, especially as the number of grid
oints and amount of patches increase.

A set of points is obtained for each patch we want to construct. For each patch, the origin points and directions
f the half-lines are manually constructed so that the resulting intersection points form a grid without intersecting
dges. To do so it is possible to exploit symmetries in the geometry to be reconstructed (for example, the approximate
ylindrical symmetry of the left ventricle in our case). To enforce conformity between adjacent patches, the grids
f intersection points used to fit those patches must share an interface of coincident points. This can be obtained
y using the same half-line origins and directions for those points when computing the two grids.

Fig. 8(a) shows as an example the half-lines and intersection points that are obtained for the left ventricle
ndocardium.

.2.2. Fitting of NURBS surfaces
The algorithm for the least-squares fit of a NURBS surface to a grid of points is taken from [30]. However, such

n algorithm chooses knot vectors according to an optimality criterion based on the points to be fitted that aims at
btaining the least distorted parametrization. This would result in different fits at the interface for adjacent patches,
hat would end up being neither parametrically nor geometrically conforming.

For this reason, we choose to use uniform knot vectors for all patches, even if this is not optimal in the sense
f [30], since the obtained result is sufficiently good in terms of distortion.

An example of a surface fitted on the points obtained from raycasting is shown in Fig. 8(b).

.2.3. Construction of NURBS volumes
Once NURBS surfaces for the epicardium and endocardium are obtained, they can be connected with a volume

see Fig. 8(c)), with a straightforward generalization of the ruled surface construction algorithm described in [30],
esulting in a linear interpolation between the two surfaces to be connected.

Since the surface patches are constructed to be geometrically and parametrically conforming, also the volume
atches will be. The resulting geometry can be used as a computational domain for numerical simulations.

.2.4. Application to the ventricles’ geometry
The ventricles’ geometry is reconstructed by five patches: left ventricle, right ventricle, septum and two junctions

hat connect the other three (see Fig. 9). This kind of subdivision allows us to have conforming patches while
aintaining a small distortion of the elements.
In both ventricles, the half-line origin points are placed approximately along the centerline, and half-line

irections are chosen radially. This allows to obtain a regular parametrization of both the endocardium and the
picardium, especially for the left ventricle, whose cross section is approximately circular. Due to the more complex
hape of the right ventricle, its parametrization is slightly more irregular, in the sense that it leads to unevenly spaced
lements, and it is more sensitive to the choice of half-line origins and directions. The polynomial degree used to
arametrize the patches is equal to 2.

. Mathematical models for cardiac electrophysiology

In this section we introduce the Monodomain equation and the ionic models, and we discuss their numerical
iscretization both in space and time.

.1. Monodomain equation and ionic model

The evolution in space and time of the transmembrane potential in the cardiac tissue is described by means of
3
he Monodomain model [6]. Let Ω ⊂ R be the computational domain, u(x, t) the transmembrane potential at the

11
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w

Fig. 9. Left and right ventricle geometry, at a coarse refinement level. Patch boundaries are shown in red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

space coordinate x ∈ Ω and at time t ∈ (0, T ), Cm the total membrane capacitance and χ the membrane surface
to volume ratio. The Monodomain equation coupled with a generic ionic model reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χCm
∂u
∂t

− ∇ · (D∇u)+ χ Iion(u,w, c) = Iapp in Ω × (0, T ) ,

∂w

∂t
= F(u,w) in Ω × (0, T ) ,

∂c
∂t

= G(u,w, c) in Ω × (0, T ) ,

D∇u · n = 0 on ∂Ω × (0, T ) ,
u = u0 in Ω × {0} ,

w = w0 in Ω × {0} ,

c = c0 in Ω × {0} ,

(3)

here n is the outward directed unit vector normal to ∂Ω , Cm = 0.001 mF/cm2, χ = 1000 cm−1. u0, w0, c0 and Iapp

are the given initial conditions and the applied current respectively. System (3) defines the propagation in space and
time of the transmembrane potential u(x, t) at the tissue level along with the ionic behavior, at the cellular level, by
12
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means of w and c [6]. We refer to w as gating variables, which represent fractions of open ionic channels, and to
c as intracellular ionic concentrations. Iion, F and G strictly depend on the selected ionic model. Iion, i.e. the ionic
current, models the multiscale effects from the cellular level up to the tissue one. F and G are suitably defined
vector-valued functions. A variety of ionic models have been proposed in literature [12,13,15–17]. We consider
here the LR model for the ventricles [16] and the CRN for the atria [17]. Both models reproduce the evolution
of the intracellular calcium concentration, which is a crucial ionic species that triggers the mechanical activation
of the cardiac tissue [3]. A comprehensive list of the existing ionic models can be found in [6]. The problem is
closed with homogeneous Neumann boundary conditions for the transmembrane potential, to keep into account the
assumption of having an electrically isolated domain, and initial conditions for both transmembrane potential and
ionic model variables.

D expresses the conductivity of the tissue and can be used to represent its electric anisotropy, accounting for
the presence of cardiac fibers. Assuming axisymmetric conductivity and denoting by al(x) the local direction of the
fibers, the tensor can be computed as

D(x) = σt(x)I + (σl(x) − σt(x))al(x)al(x)T ,

where σl = 0.012 042 S cm−1 and σt = 0.001 761 S cm−1 are the conductivities in the fiber direction and in the
direction orthogonal to fibers, respectively.

The Monodomain equation is a simplified version of the Bidomain model [6,34], derived under the assumption
that the intracellular and extracellular conductivities of the Bidomain model have equal anisotropy ratio. This model
is widely used in literature [6,66–68]. The advantage of the Monodomain equation resides in its reduced complexity
in comparison with the Bidomain model, which is expressed as either a parabolic–elliptic or parabolic–parabolic
system of two PDEs. As a consequence, the Monodomain equation is much less demanding from the computational
viewpoint than the Bidomain model. Moreover, the system to be solved for the Monodomain equation is significantly
better conditioned than the one of the Bidomain model. The results obtained from the Monodomain equation are
accurate both in physiological conditions and pathological cases. Indeed, this equation is employed to perform
whole heart electromechanical simulations in patient-specific cases [69]. It is also effectively used to study different
cardiac diseases, such as potentially lethal arrhythmias in patients with ischemic cardiomyopathy [66,70,71]. The
complexity of the Bidomain model might be required for the heart-torso coupling [72], where the extracellular
potential could be used to compute electrocardiograms (ECGs). In our framework, as already pointed out, we are
interested in the electrophysiological behavior of the heart. For all these reasons, we used the Monodomain equation
in our numerical simulations. Deeper analysis and comparisons of the two different models are carried out for
example in [6,9,20].

5.2. Space discretization

The weak formulation of the Monodomain equation, see e.g. [11], is here discretized in space using multipatch
IGA. We look for an approximation uh of u ∈ V = H 1(Ω ) in Eq. (3) in the finite dimensional space Vh ⊂ V , so
that

uh(x, t) =

Nh∑
j=1

Uj(t)Rj(x) ,

where Uj(t), j = 1, . . . ,Nh are suitable time-dependent control variables and Rj(x), j = 1, . . . ,Nh are NURBS-based
basis functions, as illustrated in Section 3. Then we approximate the first equation of Eq. (3) by:

χCm

Nh∑
j=1

∂Uj

∂t

(
Rj, Ri

)
+

Nh∑
j=1

Uj a(Rj, Ri) + χ(Iion(uh,w, c), Ri) =
(
Iapp, Ri

)
∀i = 1, . . . ,Nh , (4)

where (·, ·) denotes the L2 scalar product and

a : V × V → R , a(ϕ,ψ) =

∫
Ω

D∇ϕ · ∇ψ dΩ .

Eq. (4) can be rewritten as a system of ODEs:

χCm M
d

U(t) + K U(t) + χ I ion(U(t),w(t), c(t)) = I app(t) , (5)

dt

13
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where U(t) denotes the vector of entries Uj, M is the mass matrix of entries Mij = (Rj, Ri), K is the stiffness
matrix of entries Kij = a(Rj, Ri) and I ion(U(t),w(t), c(t)) is a vector of entries (I ion)i = (Iion(uh(t),w(t), c(t)), Ri).

For the computation of the gating variables w and ionic concentrations c we use Gaussian integration [10,23,73].
e aim at computing

(I ion(t))i = (Iion(uh(t),w(t), c(t)), Ri) =

∫
Ω

Iion(uh(t),w(t), c(t))Ri dΩ .

We employ a Gaussian quadrature rule of order p+1, where p is the polynomial degree of the basis functions, to
pproximate the integral above. We denote by Ne the number of elements in Ω . {Kj}

Ne
j=1 are the elements, {xj

m}
s
m=1

re the Gaussian quadrature points on the j th element, with associated weights {ωm}
s
m=1, with s being the number

f quadrature points per element. Using the introduced notation we get:

(I ion(t))i =

∫
Ω

Iion(uh(t), c(t),w(t))Ri dΩ =

Ne∑
j=1

∫
Kj

Iion(uh(t),w(t), c(t))Ri dΩ ≈

≈

Ne∑
j=1

s∑
m=1

Iion(uh(xj
m, t),w(xj

m, t), c(xj
m, t))Ri(xj

m)ωm. (6)

herefore, for the purpose of computing the ionic current term in the discrete weak formulation Eq. (5), it is
ufficient to compute the values of w and c at the Gauss points. This can be done by solving at each quadrature
oint the following ODE problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

w(xj
m, t) = F(uh(xj

m, t),w(xj
m, t)) t ∈ (0, T ) ,

d
dt

c(xj
m, t) = G(uh(xj

m, t),w(xj
m, t), c(xj

m, t)) t ∈ (0, T ) ,

w(xj
m, 0) = w0(xj

m) ,

c(xj
m, 0) = c0(xj

m) .

he solution of the ionic model reduces to the solution of a set of independent ODEs, one for each quadrature node
f the mesh.

Alternative approaches to the discretization of the ionic model are based on applying a Galerkin method to the
onic model equations as well, and are known as nodal interpolation methods [10,23,74,75]. With respect to such

ethods, Gaussian integration saves computational resources by avoiding the interpolation of the ionic variables,
t the price of a higher memory storage due to the need to save ionic variables at each quadrature node.

IGA has been applied to the discretization of the Monodomain or Bidomain model in [10,34,35], highlighting
he good properties of the method in terms of accuracy of the action potential propagation [10] and numerical
ispersion [35]. However, the use of a single patch in those cases limits the applicability of the method to complex,
ealistic geometries. Such limit can be overcome by using multiple patches.

.3. Time discretization

For the discretization of time derivatives, both for the Monodomain and ionic model equations, we use Backward
ifferentiation Formulas (BDF) of order 2, suitable for the solution of stiff differential equations [75]. We treat the

onic current I ion, i.e. the only non linear term in the Monodomain equation, using a semi-implicit scheme. We
lso use suitable second order extrapolations (denoted in the following with the subscript ext). Denoting with the
uperscript k+1 the solution variables at the (k+1)th timestep, the resulting, fully discrete problem is the following:
t each timestep,

1. Solve ∀m = 1, . . . , s and ∀j = 1, . . . ,Ne:

α
w

j,k+1
h,m − w

j,k+1
BDF,m

∆t
= F(uj,k+1

m,ext,w
j,k+1
ext ) ,

α
cj,k+1

m − cj,k+1
BDF,m

= G(uj,k+1
m,ext,w

j,k+1
ext , cj,k+1

ext ) ,

∆t

14
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in which uj,k+1
m,ext denotes the evaluation of the extrapolated numerical solution for the transmembrane potential

at the quadrature point xj
m;

2. compute the ionic current as in (6):

I k+1
ion =

Ne∑
j=1

s∑
m=1

Iion(uj,k+1
m,ext,w

j,k+1
h,m , cj,k+1

h,m )Ri(xj
m)ωm ;

3. solve the fully discrete Monodomain equation:

χCm Mα
Uk+1

− Uk+1
BDF

∆t
+ K Uk+1

= I app − χ I ion .

We remark that, in the above equations, the quantities with subscripts BDF and ‘ext’ are linear combinations of the
solution at previous timesteps, representing the known terms in the discrete time derivative and the extrapolation
from previous timesteps respectively. Therefore, these quantities are known when computing the solution at timestep
k + 1.

Although we do not expect the time discretization to be of order 2, due to the splitting of ionic and monodomain
equations, the use of BDF of order 2 increases the accuracy in time. This allows to obtain accurate results with a
larger timestep than the one required by lower order time discretization schemes, such as implicit Euler, without
additional computational costs [76].

6. Numerical results

We report the numerical results of our electrophysiological simulations on both atria and ventricles.
All the numerical simulations require the reconstruction of fibers. This can be achieved by interpolating diffusion

tensor imaging (DTI) data on the computational mesh [6,67]. However, in case DTI data are not available or too
noisy, it is necessary to reconstruct the fiber orientations through suitable rule-based algorithms [77–79]. For each
geometry, we discuss the used algorithm for the development of suitable fiber fields.

We have developed our code in the framework of the C++ IGA library Isoglib. We use the HPC infrastructure
made available at MOX, Department of Mathematics, Politecnico di Milano.

6.1. Atria

6.1.1. Fiber generation
The fiber field on the atria is reconstructed following a rule-based method [10,35,76]. We solve the following

Laplace–Beltrami problem:{
−∆Ωϕ = f in Ω ,

∇Ωϕ · n = 0 on ∂Ω ,
(7)

here ∇Ω and ∆Ω indicate the surface gradient operator and the Laplace–Beltrami operator respectively, whereas
f is a scalar field satisfying the following compatibility condition:∫

Ω

f dΩ = 0 .

iven the homogeneous Neumann boundary condition, the solution ϕ to Eq. (7) is defined up to a constant.
herefore, we add the constraint

∫
Ω ϕ dΩ = 0, which is imposed with a Lagrange multiplier from the numerical

iewpoint. Starting from ϕ, we can compute the direction of the fibers as the normalized gradient of the solution:

f 0 =
∇Ωϕ

|∇Ωϕ|
.

hanks to the homogeneous Neumann conditions, the resulting field is tangential to the boundary of the atria
corresponding to the cutting sections of the incoming and outgoing vessels and valves). This is consistent both
15
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Fig. 10. The computed fiber field for the atria; the color is the solution of the Laplace–Beltrami problem Eq. (7). Function ϕ achieves
its maximum and minimum in x1 and x2 respectively. These two points correspond to the values ϕ = 2.3 · 10−2 and ϕ = −2.4 · 10−2

espectively.

ith histological observations [80,81] and with other, more sophisticated rule-based methods [76]. The function f
s defined as follows:

f (x) =

⎧⎪⎨⎪⎩
1 if |x − x1| < δ ,

−1 if |x − x2| < δ ,

0 otherwise ,

here the two points x1 and x2 are defined on each of the atria following [35]: on the left atrium, one point is
ocated between the left pulmonary veins, the other is between the right pulmonary veins. On the right atrium, one
oint is located on the auricle, the other is on the top part, opposite to the tricuspid valve. The resulting fiber field
s shown in Fig. 10.

.1.2. Electrophysiology
Atria electrophysiology is simulated using the Monodomain equation coupled with the CRN ionic model. The

imulation ran for 1 s, with a timestep ∆t = 10 µs. The mesh for the atria is comprised of 283’905 elements
162’234 for the right atrium, 121’671 for the left), corresponding to a mesh size of about h = 0.0005 m. For the

atrial simulation, we use two cluster nodes endowed with 20 cores each (Intel Xeon ES-2640 CPUs) and 128 GB
of available RAM.

The linear system deriving from the discretization of the Monodomain equation is solved using the GMRES
method preconditioned with the ILUT factorization [82,83], with a tolerance of 10−6 on the normalized residual.

The right atrium is stimulated in correspondence of the SAN by an applied current of 100 mA for 1 ms. This is
meant to mimic its pacemaker role. The stimulation of the left atrium, on the other hand, is triggered according to
the electric pattern of the right atrium, to simulate the muscular bundles that connect electrically the two atria
(Bachmann’s bundle, anterior and posterior septum, coronary sinus musculature [4]). Following [35], for each
bundle, we check when the transmembrane potential reaches a suitable threshold (u > 0 mV) at the junction between
the bundle and the right atrium. When it happens, we apply a stimulus to the corresponding point on the left atrium.
As for the left and right ventricles, stimuli, both on the right and on the left atrium, are applied as external currents
of 100 mA with a duration of 1 ms. The locations of bundles and stimulation points are shown in Fig. 11.

In Fig. 12 we report the evolution of the transmembrane potential and intracellular calcium concentration. From
Fig. 13(a) we can observe how the front propagates preferentially in the direction of the fibers, in accordance with

the model. The wave front is captured smoothly and is not hindered by patch interfaces or collisions (Fig. 13(b)).
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Fig. 11. Stimulation point corresponding to the SAN on the right atrium and position of the muscular bundles connecting the two atria:
achmann’s bundle (BB), anterior septum (AS), posterior septum (PS), coronary sinus musculature (CSM).

In Fig. 14 the evolution of the transmembrane potential at three points on the atria is reported. It can be seen
ow the action potential behaves in the same way at all the points, up to a time shift due to different activation
imes, reproducing correctly the atrial hump before the plateau phase.

.2. Left and right ventricles

.2.1. Fiber generation
The fibers on the left and right ventricles are generated according to the rule-based algorithm by Bayer et al. [77],

nd are reported in Fig. 15(a). The algorithm is based on solving four Laplace problems on the ventricular geometry,
ith different boundary conditions, whose solutions are depicted in Fig. 15(b).

.2.2. Electrophysiology
Electrophysiological simulations on the left and right ventricles are modeled by the Monodomain equation

oupled with the LR ionic model. The simulation ran for 800 ms, with a timestep ∆t = 10 µs. The mesh representing
eft and right ventricles is composed of 801’216 elements, corresponding to a mesh size of about h = 0.0014 m.

e use 48 cores on a single cluster node, endowed with Intel Xeon Platinum 8160 processors and a total amount
f 1792 GB of available RAM.

The linear system resulting from the discretization is solved by the GMRES method and ILUT preconditioner
82,83], with a tolerance of 10−6.

For the application of the stimuli, we qualitatively replicate the effect of the Purkinje network by applying a
urrent at three points of the left ventricle endocardium and in one point of the right ventricle endocardium, as
hown in Fig. 16. Each stimulus consists of an applied current of 100 mA for 1 ms.

In Fig. 17 we report the space evolution of transmembrane potential and calcium concentration on the left
nd right ventricles for different timesteps of the numerical simulation. In Fig. 18 we depict the evolution in
ime of the same two electrophysiological variables in two different points of the mesh. We can appreciate the
etailed representation of all the action potential phases, including both the upstroke and the downstroke just after
epolarization. Moreover, the calcium behavior in time follows the LR ventricular physiological dynamics, which
s significantly different from the atrial ones, detected by the CRN ionic model.

.3. Comparison with the single patch case

Given the complexity of the realistic geometries that we consider in this paper, it is not feasible to reconstruct
hem using a single NURBS patch, at least without considerable modeling efforts. Therefore, we cannot provide a

igorous and detailed comparison between the single patch and the multipatch approaches for this specific scenario.
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Fig. 12. Transmembrane potential (left) and intracellular calcium concentration (right) on the atria, computed using Monodomain equation
coupled with the CRN ionic model.

In Fig. 19 we depict the mesh of a single patch idealized model of two ventricles (taken from [42]). We observe
that the elements are necessarily heavily distorted, especially all over the interventricular septum. This distortion
dramatically reduces the accuracy of the solution. In particular, it causes significant unphysical under- and overshoots
in the transmembrane potential [42]. These oscillations do not appear in the multipatch case, although our geometries
are realistic and much more complicated to model.

In general, a single patch approach allows to obtain a higher order of global continuity of the basis functions.
Conversely, the multipatch approach described in this work achieves only C0 global continuity, since we only
impose C0 continuity at patch interfaces. The downside is that accuracy per degree-of-freedom may be reduced
and numerical dispersion may increase [10,35], even if in our computational study we did not observe appreciable

effects.
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Fig. 13. (a): close-up of the electrophysiological simulation in the left atrium, near the location of Bachmann’s bundle; the color is the
transmembrane potential, whereas white lines are the fibers; (b): close-up of the electrophysiological simulation in the left atrium, highlighting
the collision between different fronts. We can also appreciate the smoothness of the transmembrane potential wave propagation.

6.4. Simulating the full heart

Computational models for the electrophysiology of the whole heart can be found in [69,76,84,85]. We show
here the results obtained by combining the simulation of the atria with the one of the ventricles. For the sake of
simplicity, we do not consider the outflow tracts, nor the papillary muscles in the geometrical reconstruction of the
ventricles, as done in Section 6.2. Indeed, these cardiac structures account for minor effects on electrophysiological
simulations without rhythm disorders.

The simulations on the atria and the ventricles are run separately, by properly timing the stimuli to replicate the
delay between the activation of the atria and of the ventricles (due to the effect of the atrioventricular node and of

the Purkinje network, which are not modeled explicitly). This is achieved by applying the stimuli on the ventricles
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Fig. 14. Evolution of both transmembrane potential and intracellular calcium concentration at three points on the atria, according to the
Monodomain and CRN models. The three points, shown in (a), were chosen sufficiently far from the SAN and from the interatrial bundles
on the left atrium, to minimize the effect of the applied currents.

Fig. 15. (a): computed fiber field for the left and right ventricles; (b): solutions of the Laplace problems involved in the definition of the
fiber field.

approximately 200 ms after applying them on the atria. The results of the two simulations are then combined during
post-processing. This is consistent with the fact that atria and ventricles are electrically isolated [6], and that the
20
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Fig. 16. Stimulation points on the left and right ventricles.

Fig. 17. Transmembrane potential (left) and intracellular calcium concentration (right) on the left and right ventricles, computed using

Monodomain equation coupled with the LR ionic model.
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Fig. 18. Evolution of both transmembrane potential and intracellular calcium concentration at two points on the left and right ventricles,
according to the Monodomain and LR models. The two points, shown in (a), were chosen sufficiently far from the stimulation points, to
minimize the effect of the applied currents.

Fig. 19. A single patch idealized model for the two ventricles, at a coarse refinement level. The elements near the interventricular septum
re heavily distorted.
ource: Taken from [42].

ctivation is propagated from atria to ventricles through the cardiac conduction system, specifically through the
trioventricular node and the Purkinje network.

Results are reported in Fig. 20, where we display the evolution of both the transmembrane potential and the
alcium concentration over a realistic four chambers representation of the human heart, considering one full cardiac
ycle. Gating and ionic variables are described using a different ionic model according to the specific chamber at
and, which leads to a time development of all electrophysiological variables specialized on the different parts of
he heart, as shown in both Figs. 14 and 18.

. Conclusions

In this work, we apply multipatch IGA to the spatial approximation of the Monodomain model on realistic
omputational models of human atria and ventricles. We propose different techniques for the preprocessing of CAD
22
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Fig. 20. Transmembrane potential (left) and calcium concentration (right) for the whole heart, obtained by combining the atrial and ventricular
simulations during post-processing. The color scale for the calcium concentration is logarithmic, in order to accommodate the different orders
of magnitude predicted by the CRN and the LR ionic models. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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geometries that we employ to construct multipatch parametrizations of realistic cardiac geometries. These techniques
result in IGA conforming multipatch surface and volumetric representations of the computational domain, that can
then be used for the discretization of differential problems modeling cardiac physiology. Then, we perform numerical
simulations of cardiac electrophysiology both with atria and ventricles, using the Courtemanche–Ramirez–Nattel and
the Luo–Rudy ionic models respectively to reproduce the physiological electrical behavior both at a macroscopic
scale and at the level of single cardiomyocytes. In both cases we use suitable rule-based algorithms to reconstruct
the cardiac muscular fibers. By inspecting our numerical results, we find that the high mesh quality and regularity
that can be obtained by the multipatch IGA technique, together with the high-order continuity featured by NURBS
basis functions, result in smooth excitation fronts and an accurate solution of the electrophysiology problem, thus
improving the control of numerical dispersion enabled by IGA (which was formerly highlighted in [10,35] for the
single patch case). For this reason multipatch IGA on complex domains proves to be more suitable than FEM for
wave propagation problems involving multiple time and space scales.
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Appendix. Algorithms for geometry preprocessing

We report the pseudocode for the algorithms introduced in Section 4.

.1. Patch-level non-conformities

The following algorithm detects patch-level non-conformities, if any, between two patches. This is done by
ounting the vertices that two patches share and the vertices that one patch may have on the sides of the other
atch. We remark that this approach is not fully general. In particular, the case of a single patch that has two sides
n contact is not covered, and we assume that such situation does not occur in the CAD model. Moreover, we do
ot deal with the case of two patches sharing two adjacent vertices and only a portion of the side connecting them,
lthough that situation can be treated similarly by suitably splitting the patches. That case does not occur in the
ygote model. Therefore, we assume that if two patches share two adjacent vertices they are either conforming or
ot adjacent, and require no modifications.

Algorithm 1: Detection of adjacent patches that are not conforming at the patch level
1: procedure detectPatchLevelNonConf(p1, p2)

Input p1, p2 - the two patches

Output result - one of VALID, NON CONFORMING

2: extract vertices of both patches

3: if the patches have two common, adjacent vertices then

4: result = VALID
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1

5: else if the patches have one common vertex then

6: P = common vertex

7: if p2 has a vertex on one side of p1 then

8: result = NON CONFORMING

9: else if p1 has a vertex on one side of p2 then

0: result = NON CONFORMING

11: else

12: result = NOT ADJACENT

13: end if

14: else

15: if p1 has a vertex on one side of p2 and

16: p2 has a vertex on one side of p1 then

17: result = NON CONFORMING

18: else if p2 has two vertices on one side of p1 then

19: result = NON CONFORMING

20: else if p1 has two vertices on one side of p2 then

21: result = NON CONFORMING

22: else

23: result = VALID

24: end if

25: end if

26: end procedure

Since we aim at manipulating sets of patches to enforce their conformity, it is useful to retrieve the set of
non-conforming patches among them. Algorithm 2 performs that by taking as input two sets of patches p1 and p2,
and returning all pairs of patches, one from p1 and one from p2, that are non-conforming at the patch level.

Algorithm 2: List all non-conforming pairs of patches in a set
1: procedure listPatchLevelNonConf(p1, p2)

Input p1, p2 - two sets of patches

Output pairs - a set of pairs [i,j] such that p1[i] and p2[j]

are patch-level non-conforming

2: n1 = length(p1)

3: n2 = length(p2)

4: pairs = [ ]

5: for i = 1, ..., n1 do

6: for j = 1, ..., n2 do

7: if detectPatchLevelNonConf(p1[i],p2[j]) == NON CONFORMING then

8: insert [i,j] into pairs

9: end if

10: end for

11: end for

12: end procedure

To solve a non-conformity between two patches, we need to split one of the two patches in correspondence of
hanging nodes. For simplicity, the following algorithm deals only with the case of the two patches sharing a vertex
and patch1 having a vertex on the side of patch2. The symmetric case and the cases of non-conformity without
shared vertices detected by Algorithm 1 are handled in the same way. In the pseudocode that follows, we denote by
p.knots[i] the knot vector of patch p along the ith parametric direction (with i either 1 or 2). Assume to have a
procedure splitPatch(patch,direction) that returns the patches obtained by splitting patch in correspondence
of the already existing knots with multiplicity p + 1, if any, along the parametric direction direction.

Algorithm 3: Solve a patch-level non-conformity between two patches
1: procedure solvePatchLevelNonConf(patch1, patch2)

Input patch1, patch2 - the two patches
25
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Output patches - set of resulting patches

Require patch1 and patch2 have a common vertex

Require patch1 has a vertex on one side of patch2 (the symmetric

case is the same; other cases are similar)

2: p = polynomial degree of patch2

3: direction2 = parametric direction of the interface in patch2

4: A = common vertex to patch1 and patch2

5: B = hanging vertex

6:

7: xi = coordinate of B on the side of patch2

8: insert xi into patch2.knots[direction2] with multiplicity p+1

9:

10: [patch2a, patch2b] = splitPatch(patch2,direction2)

11: patches = [patch1, patch2a, patch2b]

12: end procedure

Finally, the following algorithm deals with the solution of all non-conformities between patches in a set, by
iteratively solving non-conformities between pairs of patches using Algorithm 3. For efficiency, at each step we
check only the modified patches for new non-conformities (Algorithm 4, lines 8–14). It is possible that the algorithm
cannot solve all non-conformities. For example, if there is a loop of patches in which a single non-conformity is
present, the algorithm is not able to eliminate such non-conformity in a finite number of steps. The same holds true
if such configuration is generated during the execution of the algorithm. For this reason, we force the algorithm to
stop after a prescribed maximum number of iterations nIterMax. In that case, manual modifications are needed to
eliminate the non-conformity issues. This situation does not occur with the Zygote heart model.

Algorithm 4: Detect and solve patch-level non-conformities
1: procedure PatchLevelNonConformities(P)

Input P - the set of patches

Output modifies P solving patch-level non-conformities

2: NC = listPatchLevelNonConf(P, P)

3: nIter = 0

4: while nIter < nIterMax and length(NC) > 0 do

5: Pnew = solvePatchLevelNonConf(P[NC[1][1]],P[NC[1][2]])

6: remove patches P[NC[1][1]] and P[NC[1][2]] from P

7: insert patches Pnew into P

8:

9: remove all pairs containing either NC[1][1] or NC[1][2]

from NC
10:

11: NCnew1 = listPatchLevelNonConf(P, Pnew)

12: NCnew2 = listPatchLevelNonConf(Pnew,Pnew)

13:

14: append NCnew1 to NC

15: append NCnew2 to NC

16:

17: nIter = nIter + 1

18: end while

19:

20: if nIter < nIterMax then

21: algorithm is successful

22: else

23: algorithm has failed, manual intervention needed

24: end if

25: end procedure
26
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A.2. Knot-level non-conformities

The following procedure eliminates knot-level non-conformities within a group of patches that should be
onforming, as shown in Fig. 5 and discussed in Section 4.1.3. The algorithm also deals with possible different
rientation of patch interfaces, by tracking the relative orientation of patches in the variable orientationFlag. In

order to check whether or not two patches have the same orientation along their interface, it is enough to check the
parametric coordinates of the vertices they share (e.g. if the vertices of coordinates (0, 0) and (1, 0) of one patch
coincide with those of coordinates (0, 1) and (1, 1) respectively on the other patch, they have the same interface
orientation; if the correspondence is inverted, the parametrizations of the interface on the two patches have opposite
orientation).

Assume to have a routine reverse(vector) that returns the given vector in reverse order. The procedure
nrbkntset is defined in Appendix A.3.

Algorithm 5: Removal of a knot-level non-conformity in a group of patches
1: procedure solveKnotLevelNonConf(patches,sides,epsilon,h)

Input patches - the set of patches containing knot-level non-

conformities, ordered so that adjacent patches are adjacent in the set

Input sides - for each patch the parametric side corresponding to

the interface
Input epsilon - the threshold parameter for joining knots

Input h - the desired element size

Output modifies patches solving non-conformities

2: n = length(patches)

3: Xi = patches[1].knots[sides[1] ▷ union of all knot vectors

4: orientationFlag = 1

5:

6: for i = 2, ..., n do

7: if patches i and i-1 have different interface orientation then

8: orientationFlag = 1 - orientationFlag

9: end if

10:

11: if orientationFlag == 1 then

12: Xi = union of Xi and patches[i].knots[sides[i]]

13: else

14: Xi = union of Xi and (1 - patches[i].knots[sides[i]])

15: end if

16: end for

17:

18: if patches 1 and n are adjacent then ▷ first and last patch, in case of a loop

19: if patches 1 and n have different interface orientation then

20: orientationFlag = 1 - orientationFlag

21: end if

22:

23: if orientationFlag == 1 then

24: Xi = union of Xi and patches[1].knots[sides[1]]

25: else

26: Xi = union of Xi and (1 - patches[1].knots[sides[1]])

27: end if

28: end if

29:

30: for each knot span [xi1,xi2] in Xi do

31: if |xi1 - xi2| < epsilon * h then

32: xiNew = 0.5 * (xi1 + xi2)

33: remove xi1 and xi2 from Xi
34: insert xiNew into Xi
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35: end if

36: end for

37:

38: Eta = reverse(1 - Xi)

39: orientationFlag = 1

40: for i = 1, 2, ..., n do

41: if patches i and i-1 have different interface orientation then

42: orientationFlag = 1 - orientationFlag

43: end if

4:

5: if orientationFlag == 1 then

6: patches[i] = nrbkntset(patches[i],sides[i],Xi)

47: else

8: patches[i] = nrbkntset(patches[i],sides[i],Eta)

49: end if

0: end for

1: end procedure

.3. Utility routines for knot vector manipulation

It may be necessary to remove a knot from a patch, for instance if that knot gives rise to excessively thin elements
hat would hinder the quality of the numerical solution. In general, the removal of a knot cannot be carried out
ithout altering the geometry of the patch [30]. However, in case there are multiple knots that are relatively close,

he geometrical changes are small and can be acceptable.
Assume to have defined the following routines:

• hRefineMatrix(knots1, knots2, p), to construct the h-refinement matrix T , that maps control points
before knot insertion onto control points after the insertion of one or more knots [26];

• pseudoInverse(A), to compute the least-squares inverse of a matrix.

Then, the removal of a knot can be carried out using the following algorithm:

Algorithm 6: Removal of a knot from a NURBS surface patch
1: procedure nrbkntrem(patch, side, i)

Input patch - the NURBS patch

Input side (1 or 2) - the parametric direction to remove the knot

from
Input i - the index of the knot to be removed

Output modifies patch removing the knot

2: p = polynomial degree of patch

3: newKnots = patch.knots[side]

4: remove ith element from newKnots

5: T = hRefineMatrix ( newKnots, patch.knots[side], p )

6:

7: patch.knots[side] = newKnots

8: patch.ctrlPoints = pseudoInverse(T) * patch.ctrlPoints

9: end procedure

The following algorithm can be applied to simultaneously insert and remove multiple knots from a NURBS
surface patch.

Algorithm 7: Multiple knot insertion and removal for a NURBS surface patch
1: procedure nrbkntset(patch, side, newKnots)
Input patch - the patch to be modified
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Input side (1 or 2) - the parametric side to be modified

Input newKnots - the desired knot vector

Output modifies patch imposing the desired knot vector

2: for each knot xi in newKnots not in patch.knots[side] do

3: insert xi into patch.knots[side]

4: end for

5:

6: for each knot xi in patch.knots[side] not in newKnots do

7: patch = nrbkntrem(patch, side, xi)

8: end for

9: end procedure
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