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Abstract: This study aims to provide a thermodynamic comparison between supercritical CO2

cycles and ORC cycles utilizing flue gases as waste heat source. Moreover, the possibility of
using CO2 mixtures as working fluids in transcritical cycles to enhance the performance of the
thermodynamic cycle is explored. ORCs operating with pure working fluids show higher cyclic
thermal and total efficiencies compared to supercritical CO2 cycles; thus, they represent a better
option for high-temperature waste heat recovery provided that the thermal stability at a higher
temperature has been assessed. Based on the improved global thermodynamic performance and
good thermal stability of R134a, CO2-R134a is investigated as an illustrative, promising working
fluid mixture for transcritical power cycles. The results show that a total efficiency of 0.1476 is
obtained for the CO2-R134a mixture (0.3 mole fraction of R134a) at a maximum cycle pressure of
200 bars, which is 15.86% higher than the supercritical carbon dioxide cycle efficiency of 0.1274,
obtained at the comparatively high maximum pressure of 300 bars. Steam cycles, owing to their
larger number of required turbine stages and lower power output, did not prove to be a suitable
option in this application.

Keywords: transcritical cycles; waste heat recovery; fluid mixtures; carbon dioxide; Organic
Rankine Cycles

1. Introduction

The increase of conversion efficiency and promotion of energy recovery represent two effective
strategies for primary energy savings. In particular, energy recovery from waste industrial heat
represents an interesting option which is currently widely accepted and applied where possible [1].

According to its temperature level, waste heat can be used in a wide range of applications:
from heat sources for heat pumps in district heating systems [2] to its direct utilization for preheating
air or for steam generation and finally for power production by thermodynamic cycles [3–5].

According to [6], the waste heat recovery potential in industry in the EU accounts for about
920 TW h, with Germany, Italy, France and UK contributing about 50% of the overall potential.
Moreover, about 30% of the theoretical waste heat is available at temperatures higher than 270 ◦C.
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Basically, high-temperature waste heat sources are available in refineries (from the process of fluid
catalyst cracking, for example, at 700 to 800 ◦C), in cement plants (at temperatures from 300 to 500 ◦C)
and in steel and glass manufactory processes.

The dust content of the available flue gases is highly variable, depending on the industrial
process. For example, in flue gases from cement plants, the dust content may range from 30,000 to
90,000 mg Nm−3.

The cement industry is one of the largest contributors to carbon dioxide emissions and is very
energy-intensive: the production of one ton of cement requires an energy consumption of about 4–5
GJ, with an average emission value of 0.81 kgCO2 /kgcement [7,8]. Therefore, it is certainly appropriate,
necessary and useful to recover energy from flue gases of the cement industry for the production of
electricity, given the high available temperatures.

Heat recovery from dusty flue gases, which sometimes also contain sulphur compounds—and
are therefore potentially corrosive—is a challenging problem, but the correct materials and suitable
technologies are currently available [9,10].

A second important aspect of the problem is the use of advanced high-efficiency thermal power
thermodynamic engines. Usually, Rankine cycles with organic fluids are proposed, with good practical
results [11–14]. The steam cycle is another well-known accepted possibility for energy recovery.
In recent years, interest in trans-critical and supercritical thermodynamic cycles using carbon dioxide
as a working fluid has grown. In [15], for example, a summary of proposals in the literature of
carbon dioxide cycles for heat recovery from waste heat is presented. In [7], the authors report a
literature overview of power cycles that were proposed for heat recovery in cement plants. The energy
efficiencies of the thermodynamic cycles listed in the paper range between 11% and 30%, according to
the temperature of the considered heat source (270 to 400 ◦C), the thermodynamic cycle and working
fluid (organic fluids, steam or carbon dioxide).

With regard to carbon dioxide cycles, in [16], a good review of the main advantages and drawbacks
of the use of carbon dioxide as a working fluid is presented. Briefly, one advantage is that a very
high power density is produced due to the high pressure levels; furthermore, in the supercritical
configuration, reasonably high cycle efficiencies even at moderate maximum temperatures can be
achieved, but with the need of a large recuperator. However, a corrosive behavior at temperatures
greater than 500 ◦C is exhibited, requiring the use of nickel alloys. About 10 ten testing facilities are
operating today globally, and many studies investigating this process are underway.

On the other hand, as regards Rankine cycles operating with organic fluids, there are now at least
1500–2000 installed engines globally with a wide range of applications (geothermal, biomass, solar and
heat recovery) and powers (from a few tens of kW to units of a few tens of MW).

According to the analysis developed in [17], carbon dioxide cycles represent a potentially more
effective solution than ORC for heat source temperatures greater than 350 ◦C; this is particularly true if
cold water is available, making condensation possible.

In the following, we consider as a case study the heat recovery from flue gases available at 450 ◦C
(a typical maximum reference value for a cement plant) with a mass flow of 100 kg s−1.

Usually, in a cement plant, two different hot gas streams are available (see, for example [7,11]):
from kiln preheaters and from clinker coolers at different exhaust temperatures and with different
exhaust mass flows. Here, for simplicity, we assumed the recovery of heat only from the flue gas flow
at higher temperature.

Normally, an intermediate heat transfer fluid (diathermal oil or pressurised water) is interposed
between the flue gas and the working fluid used in the thermodynamic cycle. Here, to simplify the
scheme and the calculations, we considered a direct heat exchanger. On the other hand, some examples
of direct heat exchangers are present in industrial practice.

Assuming a simple recuperative supercritical carbon dioxide cycle (the simplest plant
configuration considered in literature) as a reference, we developed a performance comparison of
transcritical ORC cycles with cycles adopting binary mixtures of carbon dioxide as a working fluid.
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In addition to heat recovery, supercritical and transcritical carbon dioxide cycles have already
been considered for a great variety of applications; for example, for solar plants, for nuclear power
plants, for the exploitation of geothermal energy, and also for thermo-electric storage [18–21].

2. The Simple Recuperative Carbon Dioxide Cycle

In the thermodynamic exploitation of heat sources with a finite heat capacity, as in the case of hot
flue gases, both the thermodynamic cycle efficiency and the effective cooling of the heat source are of
paramount importance. This can be expressed, as is well known, by the total efficiency of a waste heat
recovery system:

η =
Ẇ

ṁH
(

HH1 − HH0

) =
Ẇ

ṁH
(

HH1 − HH2

) HH1 − HH2

HH1 − HH0

= ηthφ (1)

where ηth is the cycle’s thermodynamic efficiency, φ is the heat recovery factor, and the enthalpy HH0

represents the enthalpy corresponding to the minimum temperature TH0 at which the flue gas can be
cooled (see Table 1). In the following, to simplify the calculations and the general considerations, we
assumed a value of TH0 equal to the dew temperature of the flue gas.

Table 1. Design parameters assumed for the calculations.

Parameter Assumed Value

Pressure losses Neglected
Minimum internal temperature approach in the recuperator, MITAR (◦C) 20

Minimum internal temperature approach in the primary heat exchanger, MITAPHE (◦C) 50
Minimum internal temperature approach in the condenser, MITAC (◦C) 20

Turbine efficiency, ηT 0.85
Compressor/pump efficiency, ηP 0.8

Mechanical efficiency of the compressor/pump 0.98
Mechanical/electrical efficiency of the turbine 0.95

Cooling air temperature (inlet TC1 /outlet TC2 ) (◦C) 15/35
Temperature of the available flue gas, TH1 (◦C) 450

Mass flow of the hot flue gas, ṁH (kg s−1) 100

Composition of the flue gas (molar fractions) N2 0.58; O2 0.03
CO2 0.28; H2O 0.11

Dew temperature of the flue gas, TH0 (◦C) 51
Thermal power available in the flue gas, ṁH (HH1 − HH0 ) (MW) 44.06

Thus, for a fixed TH1 and a mass flow ṁH of flue gas, there is an optimal cycle maximum
temperature and an optimal maximum cycle pressure that optimize the total efficiency η.

In fact, high maximum cycle temperatures T3 and small expansion ratios rC = P2/P1 result in a
relatively high ηth, but a low φ. On the contrary, low values of T3 and high values of rC cause a low ηth
and a high φ. Therefore, an optimal compromise between the maximum cycle temperature and the
compression ratio must be identified.

In Table 1 the main design parameters assumed for all the following calculations are listed.
In Figure 1, we show the considered plant scheme, with the compressor conceptually changed to a
pump in all cycles with condensation. All the calculations are carried out with Aspen Plus R© V9. The
model used for all thermodynamic evaluations is the well known Peng–Robinson equation of state.
An equation of state is generally considered for the evaluation of the volumetric properties of the real
gases in thermodynamic and in fluid-dynamic calculations [22–24]

As an example, Figure 2 shows two carbon dioxide thermodynamic cycles at different T3 and
different rC values. Cycle (a) has a maximum temperature of 350 ◦C and a compression ratio rC = 3.5,
while cycle (b) has T3 = 400 ◦C and rC = 2. The efficiency ηth of cycle (b) is slightly greater than the
efficiency of cycle (a), but its lower φ (0.438 against about 0.6) appreciably detracts from the total
efficiency η (0.097 versus 0.129).
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In the following, we assumed a minimum pressure P1 equal to 100 bar for carbon dioxide cycles,
taking advantage of the cycle efficiency of the real gas effects in the compression phase [25].

Figure 3 presents the thermodynamic cycle efficiency and the total efficiency of simple recuperative
carbon dioxide cycles. The temperature TH1 of the flue gas was assumed to be equal to 450 ◦C (according
to Table 1).

Figure 1. The reference plant scheme generally assumed for the calculations. The pump and the
compressor are interchangeable depending on whether there is condensation. In some cases (according
to the working fluid), the recuperator may not be necessary.

Figure 2. Simple recuperative carbon dioxide cycles in the T–S thermodynamic plane.

As the optimal maximum cycle temperature T3 is equal to 350 ◦C, in the following, we assumed
for simplicity the same value for all the considered working fluids and for all the discussed cases.

In Figure 4 cycle (a) of Figure 2 is reported in a plane of temperature–transferred power. In this
plane, the relations between the thermodynamic cycle and the heat sources are shown. The maximum
pressure of this cycle (350 bar) is not feasible in practical applications, although these conditions
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correspond to the maximum value of η. In any case, the considerations of this case are also extended
to cycles with different compression ratios.

Figure 3. Thermodynamic cycle efficiency ηth and total efficiency η = ηthφ as a function of the
maximum cycle pressure for different maximum cycle temperatures T4. The results are for simple
recuperative supercritical carbon dioxide cycles.

The heat source is cooled from TH1 = 350 ◦C to TH2 = 217 ◦C (φ ≈ 0.6) and the remaining
potentially available thermal energy (from TH2 to TH0 ≈ 51 ◦C) is lost. The transferred heat in the
recuperator is about 2.5 times greater than the net power, and the air mass flow required at the radiator
is almost 10 times that of the carbon dioxide circulating in the engine. The high power required by the
ventilators could affect the system efficiency and the radiator—i.e., one of the major cycle components.
The assumed constraint of an MITAC equal to 20 ◦C results in a temperature T1 of 35 ◦C (corresponding
to a reduced temperature Tr of 1.01).

These results seem consistent with those obtained in [15], considering that the authors assumed
a maximum cycle pressure of 200 bar and a relatively high recuperator efficiency of 95% (five points
higher than the efficiency resulting from the present analysis).

Figure 4. The simple carbon dioxide thermodynamic cycle shown in Figure 2 and the heat sources in a
plane of temperature–dimensionless transferred power.

More advanced plant configurations (with a single split, a dual split and possibly with an
intercooler) were not considered here. They performances and a detailed description of the plant
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arrangements are described, for example, in [15,17,26]. In the following, we concentrate our attention
on the transcritical Rankine cycles using organic fluids.

3. Recuperative Cycles with Organic Working Fluids

Dealing with heat sources with finite heat capacity, the total efficiency in Equation (1) can be
optimized adopting an ideal “triangular” cycle. These conditions can be approximated by resorting to
working fluids with a critical temperature close to that of the maximum heat source [27,28]. On the
other hand, when the critical temperature of the working fluid is much lower than the maximum
temperature of the heat source, the ideal thermodynamic cycle approaches the transcritical conditions.

In addition to an adequate critical temperature, another important parameter to consider in the
selection of the working fluid is a relatively low molecular complexity to avoid superheating during
the adiabatic expansion. Nonetheless, excessively low molecular complexity is still not recommended
as it results in an adiabatic expansion in the two-phase region.

The molecular complexity of a working fluid can be quantified, for example, by the molecular
complexity parameter σ = Tc

R (dS/dT)Tr=0.7,dew [29] (p. 109). In general, working fluids with σ ≈ 0
show (for reasonable pressure expansion ratios and for a starting point corresponding to the saturated
vapor) an adiabatic expansion ending near the upper limit curve (the dew line).

As the molecular complexity is strictly correlated to the isentropic exponent (γ− 1) /γ,
working fluids with a small molecular complexity (a relatively large negative value of σ)
experience a substantial cooling during an adiabatic expansion (with a fixed pressure expansion
ratio [29]; see Section 2.5).

On the other hand, the molecular weight of the fluid directly affects the enthalpy variations:
the higher the molecular weight, the lower the number of the turbine stages, and for a fixed input
thermal power, the higher the mass low rate. Both if these results have positive effects on the
component design.

According to the previous considerations, the fluids listed in Table 2 were chosen. Carbon dioxide
is shown in the table as a reference. Water is extensively and successfully used in the traditional
Rankine cycles in plants with a high power size (of hundreds of MW).

Refrigerant R-134a (1,1,1,2-tetrafluoroethane, CH2FCF3) is a well known refrigerant and
together with propane represents a working fluid with a medium molecular complexity (σ ≈ −2).
Hydrogen sulphide has a critical temperature similar to that of R-134a and of propane, but it has a
smaller molecular complexity (σ ≈ −7); on the contrary, perfluorobutane represents a fluid with a
relatively high molecular complexity (σ ≈ 13). Ammonia and chloromethane have a similar critical
temperature and similar molecular complexity.

Methanol and dichloromethane represent two fluids with the same critical temperature but with
an appreciably different molecular complexity.

Table 2. Some thermodynamic data for the considered working fluids.

Fluid Critical Critical Molecular Parameter Isentropic
Temperature (◦C) Pressure (bar) Weight of Molecular Complexity (a) Exponent (b)

Carbon dioxide 31.06 73.83 44.01 - 0.2232
Perfluorobutane 113.2 23.23 238.0 13.37 0.04524
R134a 101.0 40.56 102.0 −2.346 0.09730
Propane (R-290) 96.68 42.48 42.48 −2.409 0.1129
Water 373.9 220.6 18.01 −10.38 0.2476
Hydrogen sulphide 100.4 89.63 34.08 −7.416 0.2432
Ammonia 132.5 112.8 17.03 −9.231 0.2338
Chloromethane (R-40) 143.1 66.80 66.8 −7.115 0.2018
Dichloromethane (R-30) 236.8 60.8 84.93 −4.793 0.1622
Methanol 239.3 80.84 32.04 −10.63 0.1889

(a) σ = Tc
R (dS/dT)Tr=0.7,dew, see [29] (p. 109). (b) (γ− 1) /γ with γ = CP/CV for ideal gas at 25 ◦C.
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Obviously, not all of the fluids listed in Table 2 can actually be proposed as working fluids.
For example, hydrogen sulphide is extremely toxic and flammable (see Table 3), while perfluorobutane
has a high GWP.

All of the fluids in Table 2 were primarily selected to elucidate the impact of the main properties
of the different fluids on the final thermodynamic performances of heat recovery Rankine cycles. Other
fluids can be considered for more detailed and more specific analyses aimed at selecting the optimum
working fluid.

Table 3. Some environmental and safety properties of the considered fluids.

Fluid Toxicity (a) Flammability (a) Instability/Reactivity (a) GWP (d) ODP

Carbon dioxide 2, SA (b) 0 0 1 0
Perfluorobutane 1 0 0 8600 0
R134a 1 0 1 1370 0
Propane (R-290) 2 4 0 ≈20 0
Water 0 0 0 0 0
Hydrogen sulphide 4 4 0 na na
Ammonia 3, COR (c) 1 0 1 0
Chloromethane (R-40) 2 4 0 13 0.02
Dichloromethane (R-30) 2 1 0 10
Methanol 1 3 0 3 na

(a) according to NFPA 704, Standard System for the Identification of the Hazards of Materials for
Emergency Response, https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-
and-standards/detail?code=704 . Toxicity 0–4, Flammability 0–4, Instability/Reactivity 0–4. For a concise
codes description, see https://en.wikipedia.org/wiki/NFPA_704 NFPA 704 Codes. (b) Asphyxiant gas.
(c) Corrosive. (d) over a 100 year period.

Another primary and decisive property that must be taken into account in the selection of the
correct working fluid is its thermochemical stability at the devised maximum working temperatures.

Assessing the long-term thermochemical stability of a compound is generally very difficult
to achieve, given the several variables involved and the different possible operating conditions:
the metallic surfaces and their surface/volume ratio, the presence of contaminants, the final acceptable
level of decomposition and the corrosion problems.

As an example, dichloro-methane (methylene chloride) in a quartz vessel starts to decompose at
450 ◦C and according to a sigmoid curve, after a reaction period of about 350 min, the decomposition
reaches a maximum value of about 34% [30]. In a stainless steel (AISI 430F) cylinder, an appreciable
decomposition starts at 350 ◦C [31]. Thus, in general, the presence of different materials and
contaminants (air, water, oil) has a strong catalytic effect on the decomposition of the working fluid.

However, as the thermochemical stability is strictly correlated to the chemical stability (at
least in an inert environment), we take carbon dioxide (a compound with a well established high
chemical stability) as a reference; in Figure 5, values of the ratio ∆HB = ∆ f H0/nB are reported as a
function of the number of chemical bonds in the molecule nB. As the standard enthalpy of formation,
∆ f H0 is proportional to the energy required/released during the formation of the molecule, while
the parameter ∆HB may be a rough indicator of the relative thermal stability of any working fluid.

Certainly, the thermochemical decomposition of a fluid occurs through many complex
reactions and—as in all chemical reactions—the activation energy plays an important role. Thus,
compounds that are apparently chemically unstable (with a positive ∆ f H0) can nevertheless show
an acceptable chemical and thermochemical stability. Even so, the parameter ∆HB can give an
approximate useful indication for the first classification of working fluids. In Figure 5, all flammable
compounds have a value of ∆HB close to zero.

https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704
https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704
https://en.wikipedia.org/wiki/NFPA_704
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Figure 5. Mean standard enthalpy of formation per bond as a function of the bond number in a
molecule for some different compounds. The values of ∆ f H0 are taken from [32] and from the data
bank of [33].

Titanium tetrachloride TiCl4 and sulfur hexafluoride SF6 are also reported in Figure 5.
Titanium tetrachloride is a compound that is considered as a possible working fluid in Rankine
cycles at high temperatures, as it is industrially produced according a well known process at
700 to 1000 ◦C [34–36]. Sulfur hexafluoride is considered to be thermally very stable at least up to
400 to 600 ◦C [37] (p. 30).

In the following, for all the Rankine cycles, we assumed a maximum temperature T3 of 350 ◦C,
which represents a good compromise between the thermal stability limit for organic compounds and a
reasonably good heat recovery factor.

Figure 6 reports the thermodynamic performances of the Rankine cycles operating with all the
working fluids considered here.

The considered steam cycle is a standard superheated cycle (at temperature T3), without feedwater
heaters but with a deaerating heater at 5 bar. In the case of steam, a maximum total efficiency η of about
0.15 is reached at the evaporation pressure of 20 bar, with a turbine expansion ratio rT = rT = P3/P1

of 146.
Refrigerant R134a and propane have approximately the same global performance, and

perfluoro-butane performs worse.

(a) (b)

Figure 6. Cycle thermodynamic efficiency and total efficiency as a function of the maximum cycle
pressure for all the considered working fluids: (a) cycle efficiency, (b) total efficiency.

The best performances in terms of total efficiency are obtained by dichloro-methane and methanol.
In Figure 7, two cycles with dichloro-methane and methanol are reported in the T–S thermodynamic
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plane, respectively. Thanks to the small molecular complexity, both fluids do not require a recuperator,
and the heat recovery factor is therefore very high. The two cycles show basically the same
thermodynamic performance, but the smaller σ parameter for methanol yields a final expansion
in the two-phase region (with a vapor quality of about 0.9).

Figure 7. Thermodynamic cycles with dichloro-methane and with methanol in the T-S
thermodynamic plane.

In Figure 8, cycles operating with dichloro-methane and perfluoro-butane in optimized conditions
are presented in the temperature–dimensionless transferred power plane. The high molecular
complexity of perfluoro-butane (σ ≈ 13) produces a reduced cooling of the vapor during the
expansion, requiring the use of a large recuperator (Q̇R/ẆT = 4.7). As a consequence, TH2 is relatively
high (285.34 ◦C) and φ is rather low (0.428). This result again supports the general thermodynamic
convenience of resorting to working fluids with a low molecular complexity to recover energy from
waste heat resources, unless the residual heat can be used for different purposes; for example, to
preheat combustion air.

(a) (b)

Figure 8. Two Rankine cycles with different working fluids in the plane of temperature–dimensionless
transferred power: (a) dichloro-methane, (b) perfluoro-butane.

In this application, considering its global performance, environmental properties in Table 3 and
predictably good thermal stability (see Figure 5), the refrigerant R134a seems to represent the best
compromise among all of the potential different working fluids considered here.

Therefore, in the following section, the thermodynamic performances of mixtures of R134a and
carbon dioxide will be investigated.
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4. Transcritical Cycles with Mixtures of Carbon Dioxide

It is possible to vary the critical point of the resulting mixture of two fluids in different proportions
and consequently alter its thermodynamic and thermophysical properties. Therefore, it is possible—at
least in principle—to find the correct working fluid for any application [25]. For example, it is
possible to produce condensation in hot environments or to control the pressure expansion ratio or the
minimum and maximum pressures [38–41]. In particular, mixtures of carbon dioxide as working fluids
in closed power cycles have already been considered by some authors in the past [42–45].

Figure 9a shows the pressure–temperature (P–T) envelopes for different mixtures of carbon
dioxide (component 1) and propane (component 2) evaluated by Aspen Plus R© V9. The critical locus is
calculated by a code based on the approach described in [46], where the Peng–Robinson equation of
state in its simpler and original formulation has been implemented [47] (pp. 208, 423). The experimental
points available in the data bank of Aspen Plus R© V9 are reported for comparison. The developed code
is capable of computing both stable and metastable critical points at given composition of any binary
mixture without any initial estimation.

In Figure 9b, we present the P–T envelopes and critical loci for mixtures of carbon dioxide and
the refrigerant R134a. With the composition of the mixture, the critical temperature and the critical
pressures change continuously from that of pure carbon dioxide (z1 = 1.0) to that of pure R134a
(z1 = 0.0). At z1 = 0.7, the critical temperature is about 60 ◦C and the critical pressure is 70 bar,
thus allowing condensation with a bubble temperature of 35 ◦C.

Figure 10a,b shows values of the thermodynamic cycle efficiency ηth and of the total efficiency
η = ηthφ as a function of the maximum cycle pressure, respectively, for mixtures of carbon dioxide
and R134a.

(a) (b)

Figure 9. Pressure–temperature (P–T) envelopes and critical loci for mixtures of carbon dioxide.
The symbols represent experimental points from different data sets in Aspen Plus R© V9. (a) Carbon
and propane. (b) Carbon dioxide and refrigerant R134a.

The mixture corresponding to z1 = 0.7, at P3 = 200 bar yields an η equal to 0.143—a value only
slightly lower than the optimum value for the pure R134a (0.15), but with a halved expansion ratio,
as shown in Figure 11. On the other hand, a carbon dioxide cycle with a maximum pressure of 200 bar
has a total efficiency of only 0.107.
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(a) (b)

Figure 10. Cycle thermodynamic efficiency (a) and total efficiency (b) for some mixtures of carbon
dioxide (component 1) and refrigerant R1234a (component 2). The compositions are expressed as molar
fractions of carbon dioxide.

(a) (b)

Figure 11. Thermodynamic cycles with (a) pure R134a; (b) a mixture of carbon dioxide (z1 = 0.7) and
R134a (z2 = 0.3).

Table 4 summarizes the supercritical cycles with pure carbon dioxide, pure R134a and a mixture
of carbon dioxide/R134a. The results for steam are also included for comparison.

The cycle with pure carbon dioxide at P3 = 250 bar has a total efficiency η of 0.1215; using pure
R134a, we obtain a higher value of η of about 23% (0.15) but with a volume flow ratio of about 11.5 (5.8
times greater than that of the carbon dioxide cycle). The size parameter SP for R134a is greater and this,
for the turbine design, represents a slight advantage. The isentropic turbine enthalpy drop, in both
cases, is not very high (probably one axial turbine stage could be adequate) and the corresponding
isentropic powers fo the turbines are about 10 MW in both cases.

The steam has a good performance (η = 0.15), but compared to R134a and pure carbon dioxide,
it results in a rather complex turbine: the expansion has to be divided into two groups (high-pressure
(HP) and low-pressure (LP)), with a total volume flow ratio (VFR) of about 68 and a rather low total
power of about 7 MW. For this power size, the assumed efficiencies of the steam turbomachinery (0.85
for the turbine and 0.8 for the pump, see Table 1) are probably too optimistic. Furthermore, the high
isentropic enthalpy drops require more stages (roughly 6–10 axial stages). These drawbacks negatively
impact the steam cycle in the considered case.

The selected mixture represents a good compromise between the simple cycle with carbon dioxide
and the cycle with pure R134a, with good thermodynamic efficiency, a rather small turbine enthalpy
drop and a reasonable volume flow ratio.

Moreover, the relatively low fraction of refrigerant in the mixture (30%) has the advantages of
increasing the total efficiency with respect to the pure carbon dioxide cycle, with lower operating
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pressures and, at the same time, with a limited quantity of refrigerant, which is an expensive fluid
with a relatively high GWP.

A direct comparison with other literature results is difficult as comprehensive thermodynamic
analyses of mixtures of carbon dioxide for the particular case here considered are not available.
Furthermore, different authors assume different parameters and different cycle configurations,
according to the specific application and to their particular sensitivity to the design parameters.
Nevertheless, in [15], extensive results for recuperative carbon dioxide cycles with different layouts
are presented, and for the more elaborate cycle configuration considered (an inter-cooled cycle with
a dual split and a dual expansion), at a maximum cycle temperature of 400 ◦C, a total efficiency η of
about 0.17–0.18 is reported. In [48], for example, with reference to a glass furnace, a total efficiency η

of about 20% for a recovery organic Rankine engine is reported, but the authors assume a minimum
cooling temperature for the flue gas equal to 180 ◦C.

Obviously, other fluids can be considered as dopants for carbon dioxide (for example,
hydrocarbons, some of the new available refrigerants or some of the new technical fluids that are
commercially available). In any case, the thermodynamic evaluations require the use of suitable
equations of state and, in general, the knowledge of the so-called binary interaction parameters.
In the case of the well known Peng–Robinson equation of state, for example, the binary interaction
parameters of a mixture ki,j are correlated to the intermolecular interactions between the different
molecule pairs of the different molecules composing the mixture. For a mixture of two components,
only one binary interaction parameter is necessary, typically identified by the symbol k1,2.

The correct value of k1,2 is usually calculated by a regression of the experimental VLE. Then,
the coefficient amix bmix of the equation of state for the specific mixture can be defined, for example,
by the well known classical van der Waals formulation [47,49] (p. 423):

amix = z2
1a1 + z1z2a1,2 + z2

2a2 (2)

bmix = z1b1 + z2b2 (3)

where ai and bi are the parameters for the pure components and

a1,2 =
√

a1a2 (1− k1,2) (4)

In Figure 12, for 19 different mixtures of carbon dioxide, the values of the parameter a1,2 =√
a2 (1− k1,2) are reported as a function of a2. The coefficient a2 is the specific coefficient relative to the

second compound of the mixture according the van der Waals equation of state (with a1, the constant
coefficient for carbon dioxide) [50]:

a2 =
27
64

τ2
c,2

Pc,2
(5)

τc,2 = kBTc,2 (6)

kB =
R

NA
(7)

where, NA is the Avogadro number, R = 8.3143 J mol−1 K−1 is the gas constant and Tc and Pc are the
critical temperature and the critical pressure, respectively.

The correlation in Figure 12 can be used for a first estimation of the binary coefficient parameter
k1,2 (the Peng–Robinson binary interaction parameter) for binary mixtures of carbon dioxide in case no
experimental VLE data are available, thus allowing preliminary calculations of the performances of
thermodynamic cycles. Nonetheless, experimental VLE values are obviously preferable.
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Table 4. Some results for carbon dioxide in Rankine and transcritical mixture cycles. The maximum temperature T3 was assumed to be equal to 350 ◦C for all the
listed cycles.

Working P3
(a) P1

(b)
η (c) ∆HS

(d)
V FR (e) SP (f ) ṁw f

(g) ṁC
(h)

Fluid (bar) (bar) (kJ kg−1) (m) (kg s−1) (kg s−1)

Supercritical Cycle
CO2 200 100 0.1075 74.63 1.687 0.06399 115.00 912.9
CO2 250 100 0.1215 96.06 1.970 0.05638 107.8 939.3
CO2 300 100 0.1274 112.7 2.221 0.05154 103.0 962.1

Transcritical Cycles
Steam 20 0.1375 0.1504 328.0 (j) 2.904 (j) 0.08152 (j) 9.491 853.6

569.3 (k) 23.42 (k) 0.3138 (k)

R134a 200 13.57 0.1501 112.7 11.48 0.08880 94.72 905.3
CO2 (0.7) / R134a (0.3) (i) 200 24.54 0.1476 108.6 6.344 0.07412 96.50 925.2

(a) Maximum cycle pressure. (b) Minimum cycle pressure. (c) Total efficiency. (d) Isentropic turbine enthalpy drop. (e) Isentropic turbine volume flow ratio (VFR =
V̇out,S

V̇in
) [51].

( f ) Size parameter (SP =

√
V̇out,S

∆H0.25
S

) [51]. (g) Working fluid mass flow rate. (h) Cooling air mass flow rate. (i) Molar composition. (j) High-pressure turbine. (k) Low-pressure turbine.
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Figure 12. Binary interaction for different binary mixtures of carbon dioxide. The symbols correspond
to the value of k1,2 for the Peng–Robinson equation of state, regressed on experimental data, as available
in the literature.

5. Conclusions

This study focused on the analysis of carbon dioxide mixture working fluids as an alternative to
organic fluids, steam and pure carbon dioxide for high-temperature heat recovery in power plants.
In order to explore this concept, a comparative analysis was carried out with transcritical Rankine
cycles with organic working fluids, a standard superheated steam cycle, supercritical carbon dioxide
cycle and transcritical cycles operating with carbon dioxide mixtures. Flue gases at a temperature of
450 ◦C and a mass flow of 100 kg s−1 were employed as the heat source for all thermodynamic cycles.

For Rankine cycles, a high critical temperature, low value of molecular complexity and high
molecular weight were the three important prerequisites considered in this study for the choice of the
working fluids. Therefore, eight working fluids including both lower and higher values of molecular
complexity were considered to evaluate the effect of variations in fluid properties on cycle expansion
ratios, heat transfer in recuperators, cycle thermal efficiency and total efficiency.

Salient points resulting from this study are summarized as follows:

• In simple recuperative carbon dioxide cycles, the total efficiency is improved by a comparatively
high expansion ratio and low maximum temperature. The opposite occurs in the case of cycle
thermodynamic efficiency. However, as a general rule, simple carbon dioxide cycles are ineffective
at recovering heat, unless a high fraction of the residual heat in the source could be used in other
ways (to preheat combustion air, for example).

• The results of Rankine cycles with pure organic working fluids show that the heat recovery
efficiencies are remarkably better than those of the simple supercritical carbon dioxide power
cycles. In relation to the considered specific application, working fluids with a low molecular
complexity are to be preferred.

• Based on its acceptable global thermodynamic performance and presumably good thermal
stability, R134a is investigated as an example of a dopant for the design of carbon dioxide
mixtures. Thus, the critical points and P–T envelopes of CO2-R134a mixtures were calculated at
different molar compositions, which helped us to determine the composition of the mixture at the
designed condensation temperature and pressure.

• A transcritical power cycle operating with CO2-R134a mixtures showed an appreciable increase in
cycle efficiencies as compared to simple supercritical carbon dioxide cycles at all maximum cycle
pressures. In the case of the CO2-R134a mixture corresponding to the 0.3 mole fraction of R134a,
a total efficiency of about 0.15 was obtained at a maximum cycle pressure of 200 bar, compared to
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the simple supercritical carbon dioxide cycle which presented a total efficiency of 0.12 at the same
maximum pressure.

• Moreover, in comparison with pure R134a Rankine cycles, the transcritical cycle with a CO2-R134a
mixture (0.3 mole fraction of R134a) yielded the same total efficiency but with almost half the
expansion ratio.

In summary, the transcritical cycle with the CO2-R134a mixture (0.3 mole fraction of R134a)
showed a good compromise between the simple R134a Rankine cycle and simple supercritical carbon
dioxide cycles due to its good thermodynamic efficiencies, lower maximum operating pressures, lower
expansion enthalpy drop and reasonable turbine volume flow ratios.

The standard enthalpy of formation per bond is proposed as a rough indicator of the thermal
stability of the considered working fluids with reference to pure carbon dioxide; furthermore, a
correlation to estimate the binary interaction parameters for carbon dioxide binary mixtures for which
experimental VLE data are not available is suggested. This allows the calculation of thermodynamic
properties, critical points and P–T envelopes of some new carbon dioxide mixtures and preliminary
calculations of the thermodynamic performance of cycles. In this way, is it possible to analyze a broad
spectrum of carbon dioxide mixtures to select the most promising components and—only after this
preliminary analysis—to carry out the necessary experimental liquid–vapor measurements.

As in all transcritical and supercritical power cycles, the efficiency of the recuperator plays an
important role, as the recovered heat is generally very high. For example, the ratio Q̇R/Ẇ is about 4.5
for simple supercritical carbon dioxide cycles at a maximum pressure of 250 bar and about 2.9 for the
mixture CO2 (0.7)-R134a (0.3).

The use of mixture of carbon dioxide in transcritical power cycles seems a promising solution to
obtain (i) reasonable global efficiencies at a reasonable maximum pressure and (ii) with a conceptually
simple plant configuration. On the other hand, points to investigate for a better design of the engine
are (i) the vapour–liquid equilibria at different temperatures and pressures and, given the important
role of the heat exchangers and of the turbomachines, (ii) the main transport properties (viscosity and
thermal conductivity) of the most promising mixtures—properties that, for mixtures, are not simple to
estimate properly for all of the relevant thermodynamic conditions.
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Abbreviations

The following abbreviations, symbols and subscripts are used in this manuscript:

CP Heat capacity at constant pressure (kJ kg−1 K−1)
CV Heat capacity at constant specific volume (kJ kg−1 K−1)
ṁH Mass flow rate of the flu gas (kg s−1)
MITAR Minimum Internal Temperature Approach in the recuperator (◦C)
MITAPHE Minimum Internal Temperature Approach in the primary heat exchanger (◦C)
MITAC Minimum Internal Temperature Approach in the radiator/condenser (◦C)
PC Condensation pressure (bar)
Pc Critical pressure (bar)
Q̇R Recovered thermal power in the recuperator (kW)
R Gas constant (kJ kg−1 K−1)
rC Compression ratio (P2/P1)
rT Expansion ratio (P3/P4)
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S Entropy (kJ kg−1 K−1)

SP Size parameter for a stage of axial turbine
(

V̇0.5
out,S/∆H0.25

S

)
T Temperature (◦C or K)
TH1 Maximum temperature of the heat source (thermal oil) (◦C or K)
Tc Critical temperature (◦C or K)
Tr Reduced temperature (= T/Tc)

TC1 Cooling air inlet temperature (◦C or K)
TC2 Cooling air outlet temperature (◦C or K)
V̇ Volumetric flow rate (m3 s−1)
VFR Isentropic flow ratio

(
= V̇out,S/V̇in = ρin/ρout

)
Ẇ Mechanical or electrical power (kW)
ẆS Isentropic power (kW)
z Molar fraction
γ Specific heat ratio (CP/CV)
∆HS Isentropic turbine work (kJ kg−1)
η Total efficiency (ηthφ)
ηT Turbine efficiency
ηth Thermodynamic efficiency
ηP Pump/compressor efficiency
φ Heat recovery factor (see Equation (1))

σ Parameter of molecular complexity
(
= Tc

R

[
dSsv
dT

]
Tr=0.7,dew

)
HP High pressure
LP Low pressure
out Outlet conditions
S Isentropic conditions
1, 2, 3 . . . Numbers identifying different points in the thermodynamic cycles
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