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S.1 DATA PREPROCESSING

For the environmental covariates, we considered precipitation of coldest quarter, annual precipitation,
annual mean temperature, mean temperature of the wettest quarter, and topographic predictors (i.e. slope)
at 100 m resolution. For the purpose of the analysis in this paper, we used the two main PCA axes for
summarizing the environmental covariates (see Fig. S1), which are related to 80% of the variation. These
two first axes are included as covariates with a quadratic term (using orthogonal polynomials). After
retaining the plots with at least 60% of non-missing entries, we obtained 1 139 plots. We used for analysis
111 most abundant species out of 136 dominant species, that were present at least at 2% of plots. The
remaining species were pooled into the ‘other’ category, using the build-in gjamTrim function in the
GJAM package. However, we discarded these rare species for further analysis.

S.2 SELECTION OF THE NUMBER OF LATENT FACTORS

We use the low-rank matrix A with rank r for the approximation of the residual covariance matrix. The
rank of matrix A determines the resolution with which JSDMs models the residual covariance. The higher
the rank, the closer we are to the full covariance matrix, while at the same time it means that we need
to estimate more parameters. In the GJAM model, we need to specify this parameter before fitting the
model. We have chosen r = 5 using the Deviance information criterion (DIC) implemented in the model
(Figure S2). This value is coherent with the values used in Chen et al. (2018); Taylor-Rodriguez et al.
(2017); Warton et al. (2015), where the low-rank matrices were able to well approximate the full-rank
residual covariance matrices. For the identifiability issue, the matrix A have to be full column rank
(Taylor-Rodriguez et al., 2017; Geweke and Singleton, 1980). So in our case, rank(A) = min{r, K},
where 7 is the number of factors and K is the number of repeated rows (number of clusters) in matrix
A, so r would be upper bounded by K. In our case, we have a prior guess on K and r satisfies the
inequality for the prior guess. However, as we do not know if the prior guess is correct, we need to inspect
the posterior distribution of the number of clusters. From the analysis of the posterior distribution on the
number of clusters, we can confirm that the number of factors is smaller than the posterior estimate K
(the smallest estimate is 18).

S.3 DISTRIBUTION OF SPECIES TRAIT RATIO FOR DIFFERENT TRAITS

We computed distribution of species trait ratio for different traits (Landolt nutrient indicator, Landolt light
indicator, height (in the logarithmic scale), specific leaf area (SLA), leaf dry matter content (LDMC), leaf
carbon concentration (LCC), leaf nitrogen concentration (LNC)) for all models (DP, DP., PY.) (Figure
S3).

S.4 TECHNICAL BACKGROUND ON DIRICHLET AND PITMAN-YOR PROCESSES

S.4.1 Dirichlet process

The main purpose of this section is to give a brief description of the Dirichlet process (DP) and the
Pitman—Yor process (PY) and clarify the differences between them. For a complete introduction, we refer
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to classical literature in Bayesian nonparametrics such as Hjort et al. (2010); Ghosal and Van der Vaart
(2017). The distributions of both processes are often used as Bayesian nonparametric priors. The Dirichlet
process could be defined through a constructive representation proposed by Sethuraman (1994), so-called
stick-breaking construction. Start by fixing parameter o > 0 and a probability measure /. Then consider
two independent families of random variables:

, iid

Vi S Beta(l,a) and i H, k=1,2,... (S1)

Define the random weights as:

p1 = W1,
k—1
(S2)
p=Ve [[a-Vp), k=23,
j=1
If
o
G:=> pdy, (S3)
k=1

then G ~ DP(a, H), i.e G is a Dirichlet process with parameters «, H. The construction of p = {p;} can
be understood metaphorically as follows. Starting with a stick of length 1, we break it at V, assigning p;
to be the length of stick we just broke off. Now recursively break the other portion to obtain p2, p3 and so
forth. Notice that >~ | p, = 1 a.s.

In the stick-breaking representation (S3) of the Dirichlet process, the concentration parameter tunes the
distribution on the random weights. When parameter « is small, the Beta-distributed variables V; tend
to be closer to 1 than to 0, implying that the random weights rapidly decrease (in expectation). And the
opposite, when « is large, the random weights decrease slowly in expectation. Therefore, realisations of
G will be more concentrated in a few clusters when « is small, and the number of clusters increases with
a.

The Dirichlet process is an infinite dimensional process and there are two main approaches for sampling
from this distribution. One could sample from the Dirichlet process using marginal sample or sample
from the approximation of the Dirichlet process with finite-dimensional representation. In the first case,
so-called marginal methods exhibit slow mixing and are not considered for Gibbs sampling in the GJAM
model. Approximation of the Dirichlet process based on truncating the stick-breaking representation
explored by Ishwaran and James (2001) is a common choice, where the truncation number N has
to be defined based on the desired approximation error. Another possibility is the finite-dimensional
representation by Dirichlet multinomial process, which approximates the Dirichlet process in the limit
(Muliere and Secchi, 2003), and could be used as well as finite dimensional prior for some finite N (Miiller
et al., 2015). In the DP model, the latter representation is used, which allows tractable computation with
Gibbs sampling. The sampling scheme for the DP is described in Section S.6.

S.4.2 Pitman-Yor process

The Pitman—Yor process is a generalization of the Dirichlet process and is also a special case of a larger
class of priors known as Gibbs-type priors, which were introduced in the seminal works of Pitman (2003)
and Gnedin and Pitman (2006) (see De Blasi et al., 2015, for a review).
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The Pitman—Yor process was introduced by Pitman and Yor (1997). Similarly to the Dirichlet process,
the Pitman—Yor could be defined using stick-breaking construction. Fix scalar parameters o > 0 and
o € (0, 1) and a probability measure H. Then consider two independent families of random variables:

Vi ~Beta(l —o,a+ko) and i H, k=12,... (S4)
Define random weights as:
k—1
p=V, p=V]]0@-V)) (S5)
j=1
If -
G=) dy, (S6)
k=1

then G ~ PY(«, 0, H), i.e G is the Pitman—Yor process with concentration parameter «, discount (or
diversity) parameter o and base measure H. Notice that when o = 0 it holds: PY («,0, H) = DP(a, H).

The difference in terms of the stick-breaking representation is in the sampling of the Beta distributed
variables V), defining the stick-breaking weights, they now depend on two parameters. These variables
are no more identically distributed, and when £ increases, the second parameter increases, leading to a
decrease in the mean value of Vj. Parameter V}, decreases (in mean) when k grows, meaning that the
weights pi will decrease (in mean), slower than in the Dirichlet process. That implies that the Pitman—Yor
process has a greater number of distinct clusters. Indeed, when the data of sample size .S is modelled with
the Dirichlet process, then the number of distinct clusters K'g has logarithmic growth with S, while for
the Pitman—Yor process K g grows as a power law with S (specifically, S7).

Similarly to the Dirichlet process, there exist two main approaches for sampling the Pitman—Yor process,
marginal and conditional. However, the flexibility of this process comes with some cost. Sampling of the
Pitman—Yor process based on truncation is computationally expensive, especially for large values of o.
Lijoi et al. (2020) define the finite-dimensional Pitman—Yor multinomial process which approximates
the Pitman—Yor process and allows tractable computation. Pitman—Yor multinomial process is a finite
parameter prior and we use this prior for our model PY..

S.5 SPECIFICATION OF THE HYPERPARAMETERS FOR THE PRIOR
DISTRIBUTION

For all the models (DP, DP., PY,.) we used N terms in the finite-dimensional representations of the prior
processes equal to the number of species S. This is a natural choice because N defines an upper bound
of the possible number of clusters, which is the number of species in our definition. However, in order to
further reduce the dimension in the case of large number of species .S, N is bounded by 150 for DP and
DP,, so the finite dimension representations well approximate the infinite process. For the PY. model,
the value of N could be chosen by computational tractability. Then, on each step of Gibbs sampling, we
sample the n = N (i.e, in our case n = .S) times from the given process to obtain the rows in matrix A.
S.5.1 Dirichlet process model (DP.)

For each value of parameter o and number of terms in the Dirichlet multinomial process /N, we can
use formula (4) with n = S to compute expected number of clusters E[Kg](c, N). As V,S are fixed for
all our models and « is a random variable with distribution Ga(v, v2), E[Kg](«, N) would be a function
of (v1,12): E[Kg] = f(v1,12). We search such pair (v1, v2) that f(v1,12) = K*. For identifiability, we

Frontiers 3



Supplementary Material

fix the variance of Gamma distribution at 20, so we can solve the equation for the mean value of this
distribution (1 /v2) and then recover vy, 5 from the variance relation v; = 20y§. As there is no closed-
form solution, we used a simulation-based approach for approximating function f. This is done by Monte
Carlo as follows:

ai % Ga(v,1n), i=1,....m (S7)
1 m

E[fs] = — > E[Ks)(a). (S8)
=1

For each pair of (v, 12) we compute the prior expected number of clusters E[Kg] as: (1) sampling m
times the value of «; from Ga(vy, 1), (2) computing E[Kg](«;), (3) E[Kg]| is the average over m values
of E[Kg](c;). We solve numerically the approximation equation E[Kg] = f*(v1, v2) along with constraint
v = QOU% and obtain the pair (v, 12).

S.5.2 Pitman-Yor process model ( PY,)

For the Pitman—Yor multinomial prior parameters («, o) are fixed. For this process, the prior number of
clusters is given in Theorem 3 of Lijoi et al. (2020) and it is equal to:

n

L N! 1 Da/o+1)
Pl = k) = (N —k)lo(a+ 1), 1 ; N T(ajo 1 1) bkni (59)

for any £ < min{N,n}, N is the number of terms in finite-representation, n is the number of samples,
71 1 1s the Stirling number of the second kind and C,, ;. is the following generalized factorial coefficient
(see Charalambides, 2005):

k
Cre = %Z(—l)i@ (=io)n (S10)

i=0
Using Equation (S9) for n = S for the distribution of Kg, we can compute the expectation E[Kg] and
variance V[Kg]. Specifying E[Kg] = K* and defining some value for the variance V' [Kg], we can find
some pair («, o) by numerically solving the system of equations. However, in our implementation, we
firstly define desired value o, and find suitable « solving numerically the equation for E[Kg|(a) = K*.

S.5.3 Hyperparameters for the priors
The hyperparameters used in the model fitting are reported in Table S1.

S.5.4 Prior distribution of the number of clusters

The prior distribution of the number of clusters in the DP model could be calibrated by varying N
while keeping parameter « fixed (and equal to the number of species as done by Taylor-Rodriguez
et al. (2017)). Another way to calibrate the DP model could be done by selecting a suitable parameter
«. While this approach is not accessible in the DP model, we provide here this prior distribution on
the number of clusters for comparison. The difference between these two approaches is that they imply
two different prior distributions for the number of clusters. Indeed, the prior distribution induced by the
Dirichlet process in the DP model for parameters in our case study, chosen by suitably fixing N (DPM;
in Figure S4) is extremely peaked compared to the one induced by the Dirichlet process in the DP model
when we instead suitably fix o (DPM3 in Figure S4). An additional hierarchical level for parameter o
leads to a higher variance of the prior distribution on the number of clusters in DP; model (see Figure S4).

4
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S.6 GIBBS SAMPLING

In this section, we first describe the Gibbs sampling scheme for the original GJAM model, and then
provide the description for our modified version of the Gibbs sampler. For identifiability reasons, we
need to reparametrize 3*: we work instead with the correlation matrix R = D 12yxp-1/ 2 where
¥* = AAT+02Igand A ineq (1), and D is the diagonal matrix containing diag(X*). Reparametrization
of ¥* leads to the reparametrization of latent variable (see details in Taylor-Rodriguez et al., 2017). Here
yi = (Yi1, - - ., ¥is) vector of species observations at plot ¢ and I'(y;;) is (—o0, 0] if y;; = 0 and (0, co) if
yij = 1.

The matrix A is represented as A = Q(k)V, where V = (v})é\le, v; ~ H,V is N x r matrix whose
rows are all potential atoms (H is the base distribution for the Bayesian nonparametric prior). k is the
vector of cluster labels k = (k1,...,kg), (1 <k < N)and a; = vg,. Q(k) is the S x N matrix, such that
Q(k) = (ex,,---,erg) and ey, is the N-dimensional vector with 1 in the position %; and 0’s elsewhere.
An outline of the pseudo-code for Gibbs sampling algorithm in the original GJAM model is provided in
Algorithm 1.

In the above scheme, we modified the sampling from the posterior distribution [p | k], where k is the
vector of cluster labels. In the original model (DP), the Dirichlet multinomial process is used as a finite
approximation of the Dirichlet process with concentration parameter « and base measure N (0, D). Then
the posterior distribution of the weights is defined by stick-breaking representation.

S.6.1 Dirichlet process with gamma prior on o (DP.)

In our DP. model, we have employed the same representation of the Dirichlet multinomial process
as in the original DP model. We added the hyperprior distribution for @ parameter. The hyperprior
distribution is defined as Ga(v,v2) and hyperparameters v1, v are defined in section S.5.1. In the case
of the Dirichlet multinomial process, there is no conjugacy for the Gamma distribution, so we used the
Metropolis-Hastings step with adaptation for the Gibbs sampling. The conditional density 7 is

I(a)  a/N-1 pa/N—layl_le_,,Qa. (S11)

O[|pO(Wpl ---Pn

For the sample from this distribution, we need a Metropolis—Hasting step in our Gibbs sampler. We
implemented a Random Walk Metropolis—Hasting, with a truncated normal as proposal since our target
distribution, has support on R™.

S.6.2 Pitman-Yor model process (PY,)

For the PY. model, we have used the Pitman—Yor multinomial process introduced by Lijoi et al.
(2020) as the finite dimensional approximation for the Pitman—Yor process. In Theorem 4, authors define
posterior distribution for the Pitman-Yor multinomial process as a linear combination of the Dirichlet
and ratio-stable distributions. We have followed the proposed sampling scheme for posterior distribution,
which is described in details in the paper. Following the notations in Lijoi et al. (2020):

We denote samples from the Pitman—Yor multinomial process as Z1,..Z, | pn i PN, PN ~
PY M (o,a, N, H), where n is the number of samples, N is the number of terms in the Pitman—Yor
multinomial process, H is the base measure. (in our case n = N = §). Then, Z (N) = (Z1, .., Zn) have
k distinct values k < N (Z7,..Z}) , (Zg41,- -, Zy) point masses in py. The posterior distribution is
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Algorithm 1: Gibbs sampling GJAM (Taylor-Rodriguez et al., 2017)

Input: Training data {x;, y; }i=1...n
Hyperparameters truncation number N
Initialization of parameters B, Z, w, p, k, A
fort < T do
sample 2z} ~ trNg(B*x; + Aw;, 021s;T(y;))
samplevj foryj=1,...,N:
if j ¢ k then

| sample v; ~ N;(0, Dy)

end
else
denote S; ={l=1,...,5,stk; = j}
sample vj ~ Ny (i, Xy;) where 3, = (%WTW + Dy and
Mo = EijtaLg Zlesj(z(l) - XB)
end
sample w; ~ N, (EWAL( , — Bx;)), where Xy = (U%QAtA + Ir>

sample ke ~ [T, 325 piy ki) where iy o py exp { 120 — X8 — W 2}

sample p:

sample v; ~ Beta(a/N + Y1y Iy, (N = j)a/N + ZSS:j—i—l 5211 Iy=s). where
j=1,...,N—=1and 320 | I,—j =n;

k-1 N-1
p1zvl,pk—vknz1( )pN—l Zglpj
nS+v +1, e llzi— Bmz szH +G%>

sample o2 ~ IG (
sample D, ~IW (D, | 2+7r+ N — 1, VtV + 4diag{1/m,...,1/n.})
sample B* ~ Nsp((z* —-WANHTX(XTX)™ ! o2(XTX) 1 Ig)
Compute the variables on the correlation scale:

zi=D12z:, B=D"'?2B*and R= D '/?(AA" + ¢21)D~'/?

end

defined by k and latent variables (¥ = (¢1,...,(;):

k N
(N) p(k) _ . AV N
pn | 29V 0 = ;(wj + Wk175)0 2% + Wit ~Zk:1T]6Zj’
J= j=k+

(wi, ... wg | ZM) R <~ Dir(ng — b0, ... g — lyo, o+ [(F)]0).
(ri,..ory—1 | ZWN 0By ~ RS(0, 00+ [(F) |0, 1/N, ... 1/N),
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Algorithm 2: Metropolis—Hastings algorithm for o in DP,

Initialization of parameters a0

for t < T do
propose: a° ~ trN(a, 07), where o3 = (2.38)?var(a?, . .. ,at=1)
p(a® | al) = min{1, %}
sample u ~ Uniform(u;0, 1)
if © < p then
)
end
else
‘ al « ot=1)
end
end

where (%) = (¢1,... . 0p), ;e d{l,...,n5}, 10R)| = ¢ + ... + ¢}, and it follows the distribution:

o

Pr(ty =1i,...,1; | 8™) < T(a/o + 1]

Then sampling ¢}, is simplified by introducing latent variable 1, such that:

Pr(ty =1y,... .1 | ZM) v o<H< ) il (S12)
J V j
N —v,.afo—1
V| ZW) e v HZ(N) Co, 1, (S13)
j=11;=1

The pseudo-code for Gibbs sampling algorithm used in the PY. model is provided in Algorithm 3.

Algorithm 3: Algorithm for sampling p in PY,

Hyperparameters truncation number N
Initialization of parameters €, p, v, k
for t < T do

Vo~ f(v) 1

£~ T2 (%) Cojy

W ~ Dir(n; — ly0,...,np — o, o + M(k)|0)
R ~RS(c,a+ |[(®)|o,1/N,... 1/N)

p= (w1 + Wg41r1, -, WE T WE1Tk, We4+1Tk+15 - - - ,wk+17“N)
end

Remark

Frontiers 7
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1. For sampling V' | k we used the ratio of uniforms algorithm for the density f(v). We have used the
rust package (Northrop, 2019), which use the generalized ratio-of-uniforms algorithm, based on the
work of Wakefield et al. (1991).

2. For sampling ratio stable distribution we have used the approach proposed in Remark 1 in Lijoi et al.
(2020). For sampling the tempered-stable distribution we used the function rlaptrans from Ridout
(2009).

S.7 CLUSTER ESTIMATE

Bayesian nonparametric models described in this paper induce clustering on the rows of matrix A. In
Bayesian modeling we obtain the posterior distribution of random partition on rows of A. The challenging
question is how to summarize this posterior distribution and obtain cluster estimate. We follow the
Bayesian method based on decision and information theoretic approaches proposed in Wade et al. (2018)
and Rastelli and Friel (2018). These approaches are based on specifying the loss function L(c, ¢), which
measures the loss of estimating true clustering ¢ with ¢. Optimal cluster estimate is then defined through
the minimization of this expected posterior loss, given the data Y.,

¢ =argminE[L(c,¢) | Y1.,] = arg minZL(C, e)ple | Yin), (S14)
; .

¢ c

where p(c | Y1.,) is posterior distribution of partition c. For defining the loss function, we need to specify
the distance on the partition space. The two distances are generally used: the Binder and Variation
of Information. In both articles, the authors, propose to use VI distance for defining the posterior
clustering. One of the properties of the Binder loss, that was shown in their works, is that the Binder
loss overestimates the number of clusters. For this reason, in this paper we discuss the results obtained
with VI distance. Two approaches differ in the algorithm used for finding optimal solution for (S14).
We have used the approach for estimation of the optimal clustering from Rastelli and Friel (2018), for
computational efficiency.

It is important to mention that, for finding solution in (S14), we need to explore all possible partitions c.
Partitions c that we obtain through MCMC sampling could not contain the optimal c that minimizes (S14).
For exploring the partition spaces beside the obtained MCMC samples the ‘greedy search’ algorithm is
employed. Exploring the whole partition space is computationally too expensive, so the algorithm uses
the approximations scheme. In addition, the algorithm should be run several times with different starting
points.

In our analysis, for each model, we used three restarts with different starting points: every point in
a separate cluster, random partition with sixteen clusters, and PFG partition. From all restarts for each
model, we have chosen the optimal cluster with the smallest value of the posterior expected loss.

S.8 SUPPLEMENTARY MATERIALS FOR RESULTS SECTION
S.8.1 Prediction

We evaluated model fit at the species level. Table S2 provides the predictive performances measured by
calculating the area under the receiver operating characteristic curve (AUC) on both training (AUC;j,) and
testing datasets ((AUCqyy)).
S.8.2 Comparison clustering results with random partition

To complete the comparison between the clusters, estimated by our models and PFGs, we compared
the cluster estimated by our models with the two different random partitions. First random partition is
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randomly assign species to 16 groups (RU). Second partition assigns the species randomly to the 16
groups, where the size of the groups is the same as in PFGs (RW). Clusters estimated by DP, DP., PY,
are slightly closer in terms of adjusted Rand indices (ARI) to PFGs, than to random partition.

S.8.3 Sensitivity to prior specification

In this section we provide the parameters for DP. and PY. models, that were used for studying the
sensitivity for the prior calibration (see Table S.10).

Moreover, we can consider the posterior distribution of the o parameter in the DP, model. The expected
number of clusters of the prior distribution is set to 8 and 56 correspondingly (Fig. S6). We can see that
when the posterior distribution is close when the prior expected number of clusters is set to 8 and 16.
While for the large prior number of clusters (56), the posterior distribution of « is concentrated at higher
values.

S.9 RESIDUAL CORRELATION MATRICES

In Figures S7-S9 we provide residual correlation matrices for models DP, DP., PY..

S.10 CONVERGENCE ASSESSMENT

For each model, we ran two MCMC chains of 80000 iterations, with 30000 burn-in iterations.
Convergence was assessed through the calculating Gelman—Rubin diagnostics or visual inspection of the
traceplots. We provide here the effective sample size (Figure S10) and potential scale reduction (Figure
S11) for regression coefficients and coefficients of the covariance matrix. In Figure S11 we provide only
coefficients with the value of potential scale reduction factor less than 1.1, the convergence of a few
coefficients with the values higher than 1.1 was confirmed through visual inspection of their traceplots.
Potential scale reduction is less than 1.1 and the effective sample size is relatively high, so we can confirm
satisfactory convergence. Convergence for regression coefficients is better than for coefficients of the
residual covariance matrix (lower potential scale reduction factor and larger effective sample size).

REFERENCES

Chen D, Xue Y, Gomes C. End-to-end learning for the deep multivariate probit model
(Stockholmsmissan, Stockholm Sweden: PMLR) (2018), Proceedings of Machine Learning Research,
vol. 80, 932-941.

Taylor-Rodriguez D, Kaufeld K, Schliep EM, Clark JS, Gelfand AE. Joint species distribution modeling:
dimension reduction using Dirichlet processes. Bayesian Analysis 12 (2017) 939-967.

Warton DI, Blanchet FG, O’Hara RB, Ovaskainen O, Taskinen S, Walker SC, et al. So many variables:
joint modeling in community ecology. Trends in Ecology & Evolution 30 (2015) 766-779.

Geweke JF, Singleton KJ. Interpreting the likelihood ratio statistic in factor models when sample size is
small. Journal of the American Statistical Association 75 (1980) 133-137.

Hjort NL, Holmes C, Miiller P, Walker SG. Bayesian nonparametrics (Cambridge University Press)
(2010).

Ghosal S, Van der Vaart A. Fundamentals of nonparametric Bayesian inference (Cambridge University
Press) (2017).

Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 4 (1994) 639—-650.

Ishwaran H, James L. Gibbs sampling methods for stick-breaking priors. Journal of the American
Statistical Association 96 (2001) 161-173.

Muliere P, Secchi P. Weak convergence of a Dirichlet-multinomial process. Georgian Mathematical
Journal 10 (2003) 319-324.

Frontiers 9


https://projecteuclid.org/euclid.ba/1478073617
https://projecteuclid.org/euclid.ba/1478073617
https://www.sciencedirect.com/science/article/abs/pii/S0169534715002402
https://www.sciencedirect.com/science/article/abs/pii/S0169534715002402
https://www.cambridge.org/core/books/fundamentals-of-nonparametric-bayesian-inference/C96325101025D308C9F31F4470DEA2E8
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A4n216.pdf
http://people.ee.duke.edu/~lcarin/Yuting3.3.06.pdf
http://emis.impa.br/EMIS/journals/GMJ/vol10/v10n2-10.pdf

Supplementary Material

Miiller P, Quintana FA, Jara A, Hanson T. Bayesian nonparametric data analysis (Springer) (2015).

Pitman J. Poisson-Kingman partitions. Statistics and science: a Festschrift for Terry Speed, 134. IMS
Lecture Notes Monogr. Ser 40 (2003).

Gnedin A, Pitman J. Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical
Sciences 138 (2006) 5674-5685.

De Blasi P, Favaro S, Lijoi A, Mena RH, Priinster I, Ruggiero M. Are Gibbs-type priors the most natural
generalization of the Dirichlet process? Pattern Analysis and Machine Intelligence, IEEE Transactions
on 37 (2015) 212-229.

Pitman J, Yor M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator.
The Annals of Probability 25 (1997) 855-900.

Lijoi A, Priinster I, Rigon T. The Pitman—Yor multinomial process for mixture modeling. Biometrika,
forthcoming (2020).

Charalambides CA. Combinatorial methods in discrete distributions, vol. 600 (John Wiley & Sons)
(2005).

Northrop PJ. rust: Ratio-of-Uniforms Simulation with Transformation (2019). R package version 1.3.8.

Wakefield J, Gelfand A, Smith A. Efficient generation of random variates via the ratio-of-uniforms
method. Statistics and Computing 1 (1991) 129-133.

Ridout MS. Generating random numbers from a distribution specified by its Laplace transform. Statistics
and Computing 19 (2009) 439.

Wade S, Ghahramani Z, et al. Bayesian cluster analysis: Point estimation and credible balls (with
discussion). Bayesian Analysis 13 (2018) 559-626.

Rastelli R, Friel N. Optimal Bayesian estimators for latent variable cluster models. Statistics and
Computing 28 (2018) 1169-1186.

10


https://projecteuclid.org/euclid.lnms/1215091133
https://www.carloalberto.org/wp-content/uploads/2018/11/no.306.pdf
https://www.carloalberto.org/wp-content/uploads/2018/11/no.306.pdf
https://www.wiley.com/en-us/Combinatorial+Methods+in+Discrete+Distributions-p-9780471680277
https://link.springer.com/article/10.1007%2FBF01889987
https://link.springer.com/article/10.1007%2FBF01889987
https://link.springer.com/article/10.1007/s11222-008-9103-x
https://projecteuclid.org/euclid.ba/1508378464
https://projecteuclid.org/euclid.ba/1508378464
https://link.springer.com/article/10.1007/s11222-017-9786-y

Supplementary Material

LIST OF FIGURES

Biplot representation of Principle Component Analysis (PCA) performed on the
environmental variables: precipitation of coldest quarter (bio_8), annual precipitation
(bio_12), annual mean temperature (bio_I), mean temperature of the wettest quarter

(bio_19) and topographic predictors (i.e. slope) (slope) at 100 m resolution. 12
S2  Deviance information criterion (DIC) values for different values r, r = {5, 10, 15,20}

for all models DP, DP., PY. 13
S3  Distribution of species trait ratio for different traits and for all clustering methods. The

reference curve is the distribution of species trait ratio of PFGs. (DP, DP., PY,) 14
S4  Prior distribution of the number of clusters K g for DP model with parameters N = 16

and a = S (DPM;), and DP with parameter N = S and o« = 6.23 (DPM>) and for DP,

model specified such that £[Kg] = 16, n = S for all the distributions. 15
S5 Pairwise adjusted Rand indices (ARI) between the the clusters estimated by the models

(DP, DP., PY,), PFGs and two random partitions of species RU and RW. 16
S6  Prior (violet) and posterior (green) distribution of the parameter « for the model DP. and

different prior specification of the number of clusters. Prior expected number of clusters

E[Ks] = K, where K take values in {8, 16,56}. 17
S7  Residual correlation matrix for DP model. 18
S8  Residual correlation matrix for DP. model. 19
S9  Residual correlation matrix for PY. model. 20
S10 Effective sample size for the coefficients of covariance matrix X (left) and regression

coefficients (elements of B matrix) (right) for all models (DP, DP., PY.). 21
S11 Potential scale reduction factor for coefficient of covariance matrix 3 (left) and

regression coefficients (right) for all models (DP, DP,, PY,)). 22

Frontiers 11



FIGURES

0.8-

0.6-
contrib
- 20.50
%o 0.4- I 20.25
\3 20.00
£ 19.75
Qo0.2- 19.50
B 19.25

Figure S1. Biplot representation of Principle Component Analysis (PCA) performed on the
environmental variables: precipitation of coldest quarter (bio_8), annual precipitation (bio_12), annual
mean temperature (bio_I), mean temperature of the wettest quarter (bio_19) and topographic predictors
(i.e. slope) (slope) at 100 m resolution.
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Figure S2. Deviance information criterion (DIC) values for different values r, r = {5, 10, 15, 20} for all
models DP, DP.., PY.
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Figure S4. Prior distribution of the number of clusters Kg for DP model with parameters N = 16 and
a = S (DPM)), and DP with parameter N = S and o = 6.23 (DPM>) and for DP. model specified such
that F[Kg] = 16, n = S for all the distributions.
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Figure S5. Pairwise adjusted Rand indices (ARI) between the the clusters estimated by the models (DP,
DP., PY.), PFGs and two random partitions of species RU and RW.
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Figure S6. Prior (violet) and posterior (green) distribution of the parameter a for the model DP. and
different prior specification of the number of clusters. Prior expected number of clusters E[Kg] = K,

where K take values in {8, 16, 56}.
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Figure S7. Residual correlation matrix for DP model.
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Figure S9. Residual correlation matrix for PY. model.
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Figure S10. Effective sample size for the coefficients of covariance matrix 3 (left) and regression
coefficients (elements of B matrix) (right) for all models (DP, DP., PY,).
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Figure S11. Potential scale reduction factor for coefficient of covariance matrix 3 (left) and regression
coefficients (right) for all models (DP, DP., PY,)).
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TABLES

Table S1. Hyperparameters used for model fitting in models DP, DP., PY (Section S.5).

Parameters | DP | DP. | PY,
mean | 112 | 6.23 | 0.47
« 1 - 1.93 -
) - 0.31 -
o 0 0 0.5
E[Ks] 562 | 16 16
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TABLES

Table S2. Prediction performance and model fit for all the models. AUC,y corresponds to the model out-of-sample prediction. AUC;, is prediction on the

train data.

Parameter | DP DP. | PY,
AUC ¢ 0.745 | 0.747 | 0.746
AUGC;, 0.756 | 0.758 | 0.755
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TABLES

Table S3. Parameters for DP. and PY. models, where expected number of clusters is defined as E[K g] take values in {8, 56} (Section S.8.3).

Models DP. PY.
mean | 2.7 | 109.5 | 0.64 | 7.7

a | v 0.34 | 600 - -

Vo 0.13 | 5.4 - -
o 0 0 0.25 | 0.8
E[Kg] |8 56 8 56
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