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Abstract Purpose Both safety and accuracy are of vital importance for surgi-
cal operation procedures. An efficient way to avoid the singularity of the surgical
robot concerning safety issues is to maximize its manipulability in robot-assisted
surgery. The goal of this work was to validate a dynamic neural network optimiza-
tion method for manipulability optimization control of a 7-DoF robot in a surgical
operation. Methods Three different paths, a circle, a sinusoid, and a spiral were
chosen to simulate typical surgical tasks. The dynamic neural network-based ma-
nipulability optimization control was implemented on a 7-DoF robot manipulator.
During the surgical operation procedures, the manipulability of the robot manip-
ulator and the accuracy of the surgical operation are recorded for performance
validation. Results By comparison, the dynamic neural network-based manipu-
lability optimization control achieved optimized manipulability but with a loss of
the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5
mm error of non-optimized method). Conclusions The method validated in this
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work achieved optimized manipulability with a loss of error. Future works should
be introduced to improve the accuracy of the surgical operation.

Keywords Trajectory tracking · manipulability · accuracy · redundant robot ·
robot-assisted surgery

1 Introduction

Safety and accuracy represent two key issues in computer-assisted surgery. In the
past decades, several studies have been conducted in computer-assisted surgeries
to utilize surgical robots performing surgical tasks, driven by the advantages pro-
vided by these techniques. For instance, it can achieve higher accuracy in tracking
previously planned trajectories [1] without consideration of surgeon fatigue. More-
over, robot-assisted surgery often leads to several benefits, also to the patient.
For instance, these are fewer complications as surgical site infections, less pain
and blood loss, lower risk of the need for blood transfusion, quicker and easier
recovery, smaller and less noticeable scars [2, 3]. For the above-mentioned bene-
fits robotic tools assisted surgery is already practiced in general surgery [4] and
for several procedures, including for instance mitral valve repair/replacement [5],
tumor tissue excision [6, 7], cystectomy [8] and also cosmetic surgery [9].

Especially, redundant robot manipulators attracted many research interests in
the past decades, due to their higher number DoFs in the joint space can be utilized
to achieve additional tasks simultaneously. Thanks to the redundancy provided
by the robot kinematic structure, various research works have been introduced
to fascinate the robotic application in surgical robots, including providing the
flexibility of workspace [10, 11], maintaining the Remote Center of Motion [12]
and achieving human-like arm pose [13, 14].

Furthermore, it has been proven that their higher number DoFs in the joint
space than in the workspace can also be utilized to guarantee or increase flex-
ibility for complicated tasks by optimizing its manipulability [15]. An excellent
movement ability and the possibility to reach difficult points using the surgical
tip can be achieved with the optimization strategy [16, 17]. However, both safe
operation environment and a high degree of accuracy must be guaranteed even in
unexpected conditions, for example, undesired human-robot interactions [18]. For
this reason, in addition to the common risks associated with surgical operations,
some engineering issues must be addressed. One of the most relevant problems
regards kinematic singularity configurations. In these states, the Jacobian matrix
loses its rank, the structure loses mobility, and it is impossible to have arbitrary
motor laws at the end-effector [19]. Moreover, getting close to singularity points,
small velocities in the operational space may lead to high velocities in the joint
space [20]. Hence, it will affect the end-effector moves in specific directions, joint
velocities, and accelerations. Also, the large joint velocities may be needed to per-
form even small displacements or velocities of the end-effector. This behavior of the
manipulator is undesirable; it can damage the robot itself, and the sudden joint re-
configurations are extremely dangerous in a surgical environment [21]. Therefore,
maximizing the manipulator’s performance ability is an efficient way to solve the
singularity problems. There are numerous performance ability indexes of robots
based on their kinematic properties [22, 23, 24]. Most of the indexes were inspired
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by the manipulability [25]. Manipulability, the most popular of these indexes, will
be considered as a major performance index in this paper. The manipulability is
the overall manipulator performance of linear/angular velocities at each joint and
the end-effector given a certain conguration [26], and it’s defined as follow:

µ =
√

det (J ∗ JT ) (1)

In conclusion, the research on manipulability optimization methods plays a
crucial role in safety issues in robotic-assisted surgical tasks. Hence, this paper
presents an experimental validation of the manipulability optimization control of
a 7-DoF Serial robot for robot-assisted surgery to verify its efficiency in terms of
the manipulability and the accuracy of the surgical tip.

In this paper, optimization methods that have already been carried out in
the literature will be considered, highlighting their pros and cons. Afterward, the
methods are applied to a 7-DoFs serial robot performing different trajectories and
undergo some possible surgical tasks. In addition, the results are compared and
analyzed in order to understand the actual effectiveness of the methods when
generalized to different shapes and dimensions trajectories in the surgical field.

The main contributions are summarized as follows:

– In order to effectively avoid the singularity of the surgical robot, dynamic neural
network optimization for manipulability optimization control of a 7-DoF robot
in surgical operation is considered to the robot-assisted surgery.

– Three experimental paths, including a circle, a sinusoid and a spiral are imple-
mented to achieve the optimization control.

– Some simulation and experiments are carried out to evaluate the accuracy and
safety of the proposed method.

2 State of the art

Several studies on maximizing redundant robots’ manipulability have been investi-
gated in the literature. A correct formulation of both the problem and the function
to be optimized is needed.

The first quantitative manipulability measure at the joint velocity level for re-
dundant manipulators was given by T. Yoshikawa. Thus, the singularity of redun-
dant manipulators can be determined by the method of pseudoinverse formulation
combined with the manipulability measure. Carlos Garriz proposed a Kalman fil-
ter method to optimize the manipulability in a six DOFs manipulator [27]. It is
easy to implement, and the states of calculation are based only on previous states.
Nevertheless, this method may converge to local solutions [28].

Recently, the optimization method can converge to a global solution, which
seems to be the most effective one [29]. It reformulates the redundancy resolution
problem with optimal manipulability considered into a constrained quadratic pro-
gramming problem. However, the solution to the formulated optimization problem
cannot be obtained directly. A Neural Network (NN) was an information pro-
cessing paradigm composed of many highly interconnected processing elements
(neurons) working in unison to solve specific problems with adaptive learning and
operating in real-time [30][31]. The use of DNN for the resolution of redundancy
is widely documented in the literature, and different techniques were performed.
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Some of them were in controlling a 6-DoFs robot (PUMA 560) upon a circular
trajectory and obtaining in their simulation a (40%) increase on average on the
manipulability value concerning the other methods. Though this method is active,
and the work has some limitations considered in this paper. Firstly, the computer
simulations had been performed only via self-motion and on a general circular
trajectory. Moreover, the method had been applied just on a 6-DoFs manipulator
(PUMA 560). The aim of the project presented in this report is indeed to apply
the MATLAB code to a 7-DoFs robotic arm (KUKA), adding one additional DoF.
Furthermore, the effectiveness of this method was evaluated in different shaped
and sized trajectories, simulating a possible use in surgical tasks. It is pivotal to
test the algorithm in an environment that is as similar as possible to the one in
which the robot is going to work and to choose proper path shapes to mimic possi-
ble realistic tasks. However, the complexity of a surgical scenario and the number
of different variables and constraints make it hard to satisfy these requirements.
In this work, we chose three different surgical tasks, that are two kind of incision
and a suture pattern. Then we provided a simplified model of them with the fol-
lowing shapes: a circle, a sinusoid, and a spiral. All these operations are currently
performed manually by the surgeon and never by a single-arm autonomous robot.
Even though the chosen tasks are quite easy to perform by hand, introducing
a redundant surgical robot could significantly increase stability and precision. It
leads to a more controlled movement, ensuring a quicker recovery for the patient,
less pain, and smaller post-operative scars. It follows a detailed description of the
trajectories chosen for the validation of the DNN method.

– Circle. A circle-shaped cutting is quite common, and it can be related to sev-
eral kinds of surgery, e.g., circular incisions in aesthetic and plastic surgery
such as mastectomy or cutting for tumor excision (e.g., craniotomy, mastec-
tomy, kidney tumor removal) [32], [33], [11]. In this report, a regular circular
pattern, the simplest model for these kinds of cut, with a 2 cm radius (size
consistent with the average areola dimension and a possible tumor mass) was
presented. The real shape can change a lot from patient to patient. For instance,
for mastectomy and breast reconstruction, the surgeon can choose several in-
cisions of different shapes, most of which based on a circular geometry (as
periareolar or elliptical incisions) [33]. Additionally, the tumor excision, which
can interest both hard or soft tissues, masses of different sizes and shape may
involve a round incision to remove cancer. The presence of robotic assistance
may allow the surgeon to perform these tasks with enhanced dexterity, sta-
bility, and precision, reducing the presence of scars and leading the patient to
a faster recovery. For example, it has been shown that semi-autonomous elec-
trosurgery for tumor resection performed by a robotic arm is more accurate
and stable than the human hand. It can also avoid complications due to long
operations and visualization.

– Sinusoid. A prime example of a sinusoidal trajectory used in the surgical
environment is the coronal incision, which is typically sinusoidal (Fig. 2) or
sawtooth-shaped. As the name suggests, this incision is done along the coronal
plane of the human body, running the head of the patient from one ear to the
other along the cranial circumference. In this report, a 25 cm long sinusoid has
been chosen in order to be sensible for the head dimension. It has undergone
many modifications during the years in order to optimize the aesthetic appear-
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Fig. 1: a) periareolar incision trace for breast surgery; b) round incision for kidney
tumor removal.

Fig. 2: Sinusoidal shaped coronal incision trace. The shape and the dimensions
of the incision are usually chosen in order to hide as much as possible the post-
operative scars.

ance of the scar. It provides excellent exposure to the cranial vault and the
upper part of the facia bone structure allowing neurosurgical access, craniofa-
cial osteotomies, repair of facial fractures, calvarial bone grafting, and cosmetic
procedures [34], [35]. Some disadvantages of this kind of incision, as the pres-
ence of big scars, the long operation time, the risk of infections and hemorrhage,
the palsy of the facial nerve [36], may be reduced thanks to the usage of robotic
assistance. Thus, no application of robotic tools for the execution of this task
is present in literature yet.

– Spiral. This is one of the typical suture patterns [37]. In some studies, it is
pointed out how the automatization of the suturing task may reduce both the
time and difficulty of completing a suture and free the surgeon from repeti-
tive subtasks. Moreover, preplanning the autonomous motion would allow the
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Fig. 3: Simple continuous suture simulation, pointing out the typical spiral pattern.

robot to minimize any tissue trauma that might occur during suturing. In this
report, a 5 cm length spiral with a 2 centimeters diameter will be used. The
characteristic dimensions of the suture can obviously vary a lot, depending
on the type of injury. However, for this kind of task, we must consider a big
simplification: a single robotic arm cannot continuously perform this task, but
the end-effector must periodically release and re-grab the needle, in the way to
insert and pull it properly.

3 Materials and Methods

We first begin choosing a set of different shape trajectories with proper dimensions
in order to simulate some examples of surgical tasks. The chosen paths were a
circle, a sinusoid and a spiral, for the reasons described in the state of art chapter.

The measure chosen for these shapes, according to real surgery scenarios, are
enumerated in Table 1. The use of different paths with different dimensions aims
to be further proof of the method’s validity.

3.1 Code Implementation

The forward kinematics for a redundant manipulator provides a nonlinear mapping
from the joint space to the Cartesian space. Thus, it is difficult to solve directly
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Table 1: Main dimensions of the chosen trajectory patterns. R = Radius; A =
Amplitude; L = Length.

Pattern Dimensions
Circle R = 2cm

Sinusoid A = 1cm;L = 25cm
Spiral R = 1cm;L = 5cm

the redundancy problem at the angle level [38][39]. Due to these reasons, we im-
plemented our code, firstly converting the problem into a problem at the velocity
level, applying the pseudoinverse formulation for obtaining the general solution at
the joint velocity level, that is, the desired velocity of the manipulator’s joints at
each step.

The code implemented in this work defines the whole trajectory and divides it
in an arbitrary number of steps N (we have chosen N = 1000 for our simulations).
Starting from an arbitrary joint configuration, the desired Cartesian position is
then defined. V, which is cartesian velocity, is computed (2). Moreover, the Jaco-
bian matrix, that is a function of the joint configuration q updated in (3). Through
both the pseudoinverse of the Jacobian matrix and the cartesian velocity, it is easy
to compute the joint velocity (4) and derive then the desired joint position qdes
(5). It is possible then to define the next robot’s Cartesian position for each step
using the forward kinematics on the obtained joint configuration qdes. Performing
a ”for cycle” over these passages, it is possible to obtain the whole trajectory.

We calculated the manipulability value and the error as the difference between
the desired pose and the actual one for each joint configuration.

v =
dr

dt
(2)

Jr(q) =
δfr(q)

δq
(3)

q̇ = pinv (Jr(q)) ∗ ṙ (4)

q−des = q + q̇ ∗ t (5)

Fig. 4: Graphical representation of the obtained trajectory performed by the
robotic arm. From the left: circular trajectory, sinusoidal trajectory, spiral tra-
jectory.
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Table 2: List of parameters and operators used in the set of differential equations
(6), (7), (8), (9), explained with their meaning.

VARIABLE MEANING
ε Positive scaling factor

ω = θ̇ Joint V elocity
Hi ∂J/∂θi
PΩ Projection Operator

ϕ ϕ ∈ Rm2, is an stimation of vec(J(JT )
(−1))

σ, λ State V ariables
c0, c1, c2, c3 Positive constants
OPERATOR MEANING

♦ J♦(H1, H2, ..., Hk) = [


vecT (HT

1 )
vecT (HT

2 )
...

vecT (HT
k )

 ] (Im
⊗
JT )

⊗
Kronecker Product

3.2 Application of the Optimization Control

Thereafter, we modified the process introducing the optimizing part, keeping as a
reference to the method developed in [40]. Since this work focuses on the validation
of the manipulability optimization proposed , it won’t describe how their Neural
Network is derived.

First, the above-mentioned NN has been implemented, represented by the fol-
lowing set of differential equations:

εω̇ =− ω + PΩ [c3 (J � {H1, H2, . . . , Hk})ϕ

− c0JT (Jω − vd) + (1− c2)ω − JTλ]
(6)

εϕ̇ =− c3 (J � {H1, H2, . . . , Hk})T ω +
(
Im ⊗ JJT

)
σ

+ c1
((
Im ⊗ JJT

) [(
Im ⊗ JJT

)
ϕ− vec (Im)

]) (7)

ελ̇ = Jω − vd (8)

εσ̇ = vec (Im)−
(
Im ⊗ JJT

)
ϕ (9)

Given a certain Cartesian velocity vd, it solves the redundancy problem and
outputs the correspondent joint acceleration such that the maximum value of
manipulability is reached. From the obtained joint acceleration, we derive the
desired joint position, and the robot poses then. The described set of differential
equations controls the variation of three-time dependent parameters and of the
joint space acceleration. It resolves the redundancy problem relying on several
tuning parameters. Further, the optimization is obtained by tuning the parameters
such that the maximum value of µ is reached, and an acceptable error is developed.
The parameters and the operators used in the previous set of differential equations
are explained in the following table (Table 2).

The original code in [32] was developed for a 6-DoFs (PUMA 560 manipulator),
while the KUKA manipulator considered in this paper holds 7-DoFs. Therefore,
some modifications have been performed with respect to the original algorithm,
in order to consider the added DoF. The kinematic model of 7 DoFs LightWeight
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Table 3: D-H parameters of the KUKA robot. θ is the angle between link axes
(variable for revolute joint); d is the displacement between link axes (variable for
prismatic joint); a is the displacement between joint axes (common normal); α is
the twist angle between joint axes.

Link θ d a α
1 θ1 0.31 0 1.5708
2 θ2 02 0 −1.5708
3 θ3 0.4 0 −1.5708
4 θ4 0 0 1.5708
5 θ5 0.39 0 1.5708
6 θ6 0 0 −1.5708
7 θ7 0.078 0 0

robotic arm (LWR4+, KUKA, GERMANY) considered in this paper is defined
using Denavit-Hartenberg (D-H) notation, and the corresponding D-H parameters
are listed in Table 3.

The position accuracy of surgery robots is a critical requirement for patient
safety since it affects the surgical operation directly [41]. In order to assess the
validity of the method and the manipulability improvement effectiveness, it is
required that the desired cartesian trajectory is accurately followed by the robot,
with small and comparable errors for both the methods. The trajectory tracking
error can affect both the surgery result and the manipulability value. The obtained
error values are described in the next section, Results.

Because the manipulability index is determined only by the kinematic place-
ment, there is no difference to validate it with a real robot or with simulation. To
ease the analysis, we performed the validation using simulation. All the simula-
tions for validation of the method described in this report have been performed
on MATLAB. In order to evaluate the results (presented in the next section), we
created both standard line plots and boxplots for the manipulability value. For
each of the three different trajectory paths, the simulation was performed four
times (using four different starting configurations in order to make the method as
general as possible).

4 Results and Discussions

The value of manipulability is the main parameter measure in order to verify
the effectiveness of the described method. Although the range of increments in
manipulability cannot be constant, it strongly depends on the task and the starting
position. It holds that for every trajectory path and each starting configuration
considered in this project, an increase in manipulability can be measured, with
an improvement step by step. In the following plots, the comparison between
the manipulability values is reported for the three different tasks that the robot
performed in Fig. 5.

The following picture shown in Fig. 6 represents the manipulability comparison
between the four different starting positions that we randomly chose to make
a general validation of the method. We can assert that an improvement of the
manipulability is always attained. However, the effect of improvement is highly
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Fig. 5: Plots that represent the manipulability values comparison, with the op-
timization method (blue) and without it (red). In order they are referred to the
circular, sinusoidal and spiral path, all for the same starting configuration.

relevant to the starting configuration of the robot, and the manipulability improved
slightly. The reported plots refer to the spiral trajectory taken as an example.

In order to visually compare the median values of the manipulability over
the whole 1000 steps, we decided to represent the boxplots corresponding to the
diagrams already shown. Some examples concerning the spiral trajectory are shown
in Fig. 7.

As shown in this section, the presented method proved effective in all the
performed simulations, increasing the overall manipulability with respect to the
pseudoinverse method. Nevertheless, the manipulability increase depends on the
shape of the trajectory and the number of steps used to segment the path. The
obtained results that have been shown before are entirely collected in Table 4 with
their numerical values.
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Fig. 6: Manipulability comparison between the four spiral trajectories performed,
starting from four different configurations. In each case an increment in the ma-
nipulability value is obtained, improving step by step.
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Fig. 7: Boxplots that gives a visual representation of the manipulability median
value and the interval of values assumed on the overall trajectory. The reported
plots concern the spiral trajectory starting from two different configurations.

The important result obtained in this project was to make the robot perform
the three different trajectories, as mentioned previously accurately. In order to ver-
ify that we plotted the desired cartesian trajectory and the real cartesian trajectory
in the three directions (x, y, z), displayed in Fig. 8, the global error measured in
meters as the difference between the desired and the real trajectory shown in Fig.
9. Further, we made the same evaluation for the trajectories to which the manip-
ulability optimization has been applied. We noticed that the error magnitude is
larger than the non-optimized trajectories, especially in the very initial steps. Due
to the optimization method adopted in this project, oscillations of some millime-
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Table 4: Manipulability values expressed as an arithmetic average over all the
steps in which the trajectory is segmented. The not optimized value, the optimized
value, the average increase, and the percentage increase are represented for each
trajectory shape and for each starting position considered in this project.

CIRCULAR TRAJECTORY
q home 1 q home 2 q home 3 q home 4

NOT OPTIMIZED
MANIPULABILITY AVERAGE

0, 0406 0, 0282 0, 0246 0, 0356

OPTIMIZED
MANIPULABILITY AVERAGE

0, 0448 0, 0287 0, 0264 0, 0466

AVERAGE MANIPULABILITY
INCREASE

0, 0042 0, 0005 0, 0018 0, 0110

AV ERAGE INCREASE % 10, 3% 1, 8% 7, 3% 30, 9%
SINUSOIDAL TRAJECTORY

q home 1 q home 2 q home 3 q home 4
NOT OPTIMIZED

MANIPULABILITY AVERAGE
0, 0447 0, 0281 0, 0222 0, 0233

OPTIMIZED
MANIPULABILITY AVERAGE

0, 0512 0, 0303 0, 0249 0, 0363

AVERAGE MANIPULABILITY
INCREASE

0, 0065 0, 0022 0, 0027 0, 0130

AV ERAGE INCREASE % 14, 5% 7, 8% 12, 2% 55, 8%
SPIRAL TRAJECTORY

q home 1 q home 2 q home 3 q home 4
NOT OPTIMIZED

MANIPULABILITY AVERAGE
0, 0393 0, 0280 0, 0253 0, 0342

OPTIMIZED
MANIPULABILITY AVERAGE

0, 0429 0, 0282 0, 0262 0, 0465

AVERAGE MANIPULABILITY
INCREASE

0, 0036 0, 0003 0, 0010 0, 0123

AV ERAGE INCREASE % 9, 2% 1, 1% 3, 9% 36, 0%

ters occur in the very initial steps and eliminates step after step. It is possible to
appreciate this behavior in Fig. 8.

Finally, to validate the effect the optimized method has with the improvement
in manipulability, we evaluated the global error. The example plot is shown in
Fig. 10, relative to the spiral trajectory, demonstrates the comparability between
the errors. The errors of the optimized method are in a higher order of magnitude
(around 1 mm) than the unoptimized method (around 0.5 mm).The numerical
values of the errors obtained with and without optimization method are compared
in Table 5.

5 Conclusion and Future Work

This paper validates a manipulability optimization control of a redundant serial
robot for performing surgical tasks. The manipulability can be optimized while its
performance is highly dependent on the shape of the trajectory and the starting
position. Furthermore, the error of this optimization method is magnified with
increasing manipulability. In this research, the method above was applied to three
different surgical tasks, and it was, in general, sufficient for each randomly chosen
starting configuration. However, the starting configuration and the shape of the
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Fig. 8: Comparison between the desired trajectory (red) and the real trajectory
(blue) for the sinusoidal path, taken as example. We can notice that the difference
between the two trajectory is in the order of tenths of a millimeter. This order of
magnitude is similar for all the paths and for all the starting configurations.

Table 5: representation of the root mean square error values for each trajectory
shape and for each starting position. All the values are expressed in meters∗10−4.

The values are computed as:RMS =
√∑

(ε)2

N .

CIRCULAR TRAJECTORY
ROOT MEAN SQUARE

ERROR
q home 1 q home 2 q home 3 q home 4

Optimization method 3.992 3.876 2.433 1.967
Pseudo inverse 1.148 1.189 1.162 1.161

SINUSOIDAL TRAJECTORY
ROOT MEAN SQUARE

ERROR
q home 1 q home 2 q home 3 q home 4

Optimization method 5.657 5.074 3.072 3.398
Pseudo inverse 2.588 2.062 1.980 3.760

SOLENOIDAL TRAJECTORY
ROOT MEAN SQUARE

ERROR
q home 1 q home 2 q home 3 q home 4

Optimization method 5.964 4.934 4.389 3.778
Pseudo inverse 3.891 3.818 4.151 3.590

trajectory impact the performance of manipulability. Optimizing the starting con-
figuration and the shape of the trajectory will be part of the future work. While
performing the simulations, we realized that the manipulator does not care about
possible geometrical constraints of a real surgical scenario, for example, the pres-
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Fig. 9: Comparison between the desired trajectory (red) and the real trajectory
(blue) for the sinusoidal path is taken as an example. We can notice that the
difference between the two trajectories is in the order of tenths of a millimeter. This
order of magnitude is similar for all the paths and for all the starting configurations.

Fig. 10: Error comparison between the same sinusoidal Cartesian trajectory with-
out optimization (red) and with optimization (blue).

ence of the patient or other possible obstacles. Hence, the developed method cannot
be applied alone for the execution of surgical tasks. As future work, we suggest
implementing an algorithm that combines the manipulability optimization with
the real path planning constraints to obtain a manipulator capable of executing
the task safely, avoiding any possible obstacle and maximizing the manipulability
value at the same time.
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