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Machine learning for RNA 
sequencing‑based intrinsic 
subtyping of breast cancer
Silvia Cascianelli1*, Ivan Molineris2, Claudio Isella2, Marco Masseroli1,4 & Enzo Medico2,3,4

Stratification of breast cancer (BC) into molecular subtypes by multigene expression assays is 
of demonstrated clinical utility. In principle, global RNA-sequencing (RNA-seq) should enable 
reconstructing existing transcriptional classifications of BC samples. Yet, it is not clear whether 
adaptation to RNA-seq of classifiers originally developed using PCR or microarrays, or reconstruction 
through machine learning (ML) is preferable. Hence, we focused on robustness and portability of 
PAM50, a nearest-centroid classifier developed on microarray data to identify five BC “intrinsic 
subtypes”. We found that standard PAM50 is profoundly affected by the composition of the sample 
cohort used for reference construction, and we propose a strategy, named AWCA, to mitigate this 
issue, improving classification robustness, with over 90% of concordance, and prognostic ability; we 
also show that AWCA-based PAM50 can even be applied as single-sample method. Furthermore, we 
explored five supervised learners to build robust, single-sample intrinsic subtype callers via RNA-
seq. From our ML-based survey, regularized multiclass logistic regression (mLR) displayed the best 
performance, further increased by ad-hoc gene selection on the global transcriptome. On external test 
sets, mLR classifications reached 90% concordance with PAM50-based calls, without need of reference 
sample; mLR proven robustness and prognostic ability make it an equally valuable single-sample 
method to strengthen BC subtyping.

Breast cancer (BC) is the most common cancer in women worldwide, and in about 80% of cases is invasive, i.e. 
it breaks through the walls of the glands or ducts where it originated and grows into surrounding breast tissue. 
Although it is generally referred to as a single disease, BC is heterogeneous in terms of histological composition, 
molecular features, risk factors, response to treatment, aggressiveness and clinical outcomes1–5. The advent of 
technological platforms for global gene expression profiling has shown more clearly that BC classification and 
prognosis is not only determined by the commonly used clinical-pathological variables, but also by intrinsic 
molecular characteristics, which can be probed using molecular methods and genomic profile investigation. The 
acquired knowledge has improved BC patient management, providing more accurate prognostic stratification.

Based on gene expression quantification, various tests have been introduced in BC clinical practice over the 
last 10 years to provide molecular stratification and estimate the risk of relapse after surgery, as to avoid adju-
vant treatment in low-risk cases6–8. However, currently adopted prognostic tests consider a limited number of 
classifying genes; consequently, the effort to measure gene expression in a tumour sample does not exploit the 
wider information potentially available through Next-Generation Sequencing (NGS)-based global profiling of 
RNA expression (RNA-seq). Indeed, some recent works performed BC classification on RNA-seq data9–11, but 
they mostly considered only known marker genes and applied methods developed for previous technologies, 
like microarrays or PCR, without substantial modifications or adaptations. Conversely, Paquet et al.12 developed 
the Absolute Intrinsic Molecular Subtyping (AIMS), a bioinformatics approach to allow a reproducible single-
sample classification of BC profiles, while, Raj-Kumar et al.13 proposed a Principal Component Analysis-based 
approach to improve consistency of subtyping, facing the issue of the non-complete coherence between IHC 
(immunohistochemistry) and gene expression defined estrogen receptor status; finally, Chen et al.14 implemented 
a deep-learning approach, called DeepType, to learn and cluster a BC gene expression data representation inte-
grating supervised knowledge about subtypes.
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Hence, huge dimensionality of exploitable data at reasonable and progressively lower costs, higher accuracy 
of the expression values, and the chance of multiple surveys on the same data are all crucial reasons of interest 
for the development of RNA-seq based BC stratification methods for clinical outcome prediction. Combining 
on a single RNA-seq profile more classifiers, based on different relevant gene signatures and algorithms, could 
strengthen the results; whereas, existing prognostic tests, examining distinct genes on different platforms, show 
limited concordance in identifying subgroups and good prognosis patients8. To explore in detail the potential 
of RNA-seq in reconstructing a BC classification system originally developed with a different technology, we 
considered the so-called “intrinsic molecular subtypes” (Luminal A, Luminal B, Normal-like, Her2-Enriched and 
Basal), which have become part of the common knowledge on the disease and are recognized as prognosti-
cally and therapeutically relevant7. Even if these groups firstly emerged by unsupervised hierarchical clustering 
on global microarray gene expression profiles1, BC classification into intrinsic subtypes is primarily achieved 
by measuring the expression of a set of only 50 genes, the so-called “PAM50 panel”15. PAM50 classification is 
obtained by comparing, for a given BC sample, relative expression of these 50 genes versus a reference sample, 
and by assigning the subtype based on the highest correlation with the five subtype centroids. Distances from all 
these centroids can be also used to compute a “Risk of Recurrence” (ROR) score, a prognostic indicator whose 
low value indicates unlikely relapse after surgery and the possibility to avoid post-operative chemotherapy15. The 
PAM50 assay has been extensively investigated by microarrays and quantitative PCR, and even converted into 
a Food and Drug Administration (FDA) approved predictive test called Prosigna, working on the Nanostring 
nCounter platform16. The prognostic value of the PAM50 method and its derivatives has been confirmed by 
independent studies17–19. Lately, also RNA-seq profiles have been used for PAM50 classification, mainly based 
on the algorithm15 developed by Parker et al.9–11, 13. However, applying a microarray-based classifier to RNA-seq 
data may provide suboptimal results.

Therefore, here we analyzed the possible limits of the standard PAM50 algorithm when applied to RNA-
seq profiles, and explored alternative robust strategies to assign intrinsic subtypes to BC samples, also based 
on supervised learners and feature selection methods starting from global RNA-seq expression data (Fig. 1). 
Indeed, intrinsic subtypes summarize BC biological and molecular features, which are known to involve many 
more genes than the PAM50 set20.

Figure 1.   Overview. Main steps of our parallel workflows.
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Results
Assembly of breast cancer RNA‑seq datasets.  For the purpose of this work we used RNA-seq profiles 
from four datasets, for a total of 4,731 breast cancer samples (see "Methods" section for details). Notably, data 
preprocessing was not homogeneous: TCGA​ and PanCA expression profiles were subject to RSEM21 summa-
rization and upper quartile normalization, while for both GEO datasets only FPKM22 expression values were 
available. From Principal Component Analysis (PCA), performed independently for RSEM and FPKM data, we 
noticed that subtype distributions were not overlapping on the two cases (Supplementary Material Figure S9). 
Furthermore, even if some approaches have been proposed to remove specific bias and compare different gene 
expression data types21–23, we did not experience good results in transforming and merging the used RSEM and 
FPKM datasets (see Supplementary Material Appendix); in our opinion, limited compatibility of RSEM may lie 
in its peculiar probabilistic approach to handle read mapping uncertainty21. Thus, we conservatively performed 
all analyses separately on RSEM and FPKM profiles, as to evaluate the suitability and reliability of the studied 
approaches on differently summarized/normalized RNA-seq data.

PAM50 classification.  Evaluation of the standard PAM50 method and arisen issues.  For all datasets, results 
of the PAM50 classification performed by the original authors according to the standard method15 are publicly 
available. However, it should be noted that a key step in PAM50 classification could give rise to inconsistency: be-
fore calculating distances from subtype centroids, gene expression values for each sample must be transformed 
into Log2ratios against a reference sample, to be defined for each dataset. Typically, to avoid representation 
bias, such reference is constructed within the dataset by calculating for each gene the median across a subset 
of samples with a fixed proportion (60/40) of Estrogen Receptor-positive (ER+) and -negative (ER−) cases, as 
done for the original PAM50 training15. Therefore, calculating the reference from different subsets having the 
same ER+/ER− composition could yield discordant classification for some samples. To verify this hypothesis, we 
constructed ten alternative references for the TCGA​ dataset, from ten randomly chosen subsets of 400 samples 
matching the 60/40 ratio of ER+/ER− cases. Each reference was then used to compute Log2ratio values for all 
TCGA​ dataset samples, resulting in ten Log2ratio data matrices. As a technical control, one additional Log2ratio 
matrix was generated against a reference constructed from a subset of 262 samples of the TCGA​ dataset that were 
originally employed for the same task by Ciriello et al.9, and that had a 50/50 ratio of ER+/ER− cases. Then, ten 
other references and Log2ratio matrices were computed using random subsets having same dimensionality (262 
samples) and ER+/ER− proportion (50/50) of the technical control subset. Eventually, PAM50 classification was 
applied to each Log2ratio matrix using the centroids disclosed by Parker et al.15, to assess the concordances of 
our classifications with the subtype calls published by Ciriello et al.9.

Concordance of each of the ten random 60/40 ER+/ER− subset reconstructions with the published classifica-
tion was suboptimal (mean: 85.52% st.dev.: +/−0.83%). Conversely, the ten classifications using references built 
with subsets having the same dimensionality and ER+/ER− proportion of the technical control subset were much 
more concordant with the published classification (mean: 95.45% st.dev.: +/−1.66%). Eventually, the recon-
struction based on the technical control subset of samples employed by Ciriello et al.9 was almost completely 
concordant (99.27%). The minimal discordance can be attributed to the fact that 52 samples of the original set 
were not included within the available 817 sample TCGA​ dataset under study; therefore, our technical control 
was not completely identical to the reference of Ciriello et al.9. These results confirmed that the choice of the 
samples used to build the reference significantly affects subsequent subtyping, as much as the adopted reference 
is different from the one used for the disclosed PAM50 classification. Discordant classifications typically involved 
samples having comparable correlations with more than one subtype (Supplementary Material Figure S6); the 
non-separability among subtypes also emerged from PCA analysis (Supplementary Material Figure S9), regard-
less of data preprocessing. Hence, changes observed in PAM50 classification reflect, to some extent, an internal 
degree of ambiguity in subtypes; it is plausible that for some samples the boundary between subtypes may be 
labile due to the possible coexistence of mixed traits.

Double averaging for robust reference construction.  Having proved that the reference building step affects 
PAM50 subtyping, we explored an alternative strategy for robust construction of the reference, to improve con-
sistency and reproducibility of PAM50-based subtyping. This iterative strategy starts with a preliminary stand-
ard PAM50 classification, and then for each gene computes the average expression within each subtype, taking 
all the samples of the dataset classified as belonging to that subtype class. The so-obtained within-class mean 
values are then further averaged for each gene, to obtain a final reference expression value named “average of 
within-class averages” (AWCA​), which is independent of the numerosity of samples in each subtype. An AWCA​ 
can be built without the need of matching exactly a given proportion of cases; double averaging, indeed, equates 
all class contributions avoiding reference estimation to be corrupted by imbalance distribution of subtypes.

For the TCGA​ dataset, we employed the ten PAM50 classifications obtained from the random 60/40 subsets 
described above to construct ten new AWCA​ references. In this case, due to the limited number of Normal-like 
samples in the TCGA​ dataset (only 25 samples) and their resulting lack within several of the previously computed 
random subsets, we decided to exclude the within-Normal-like class averaging calculation from the reference 
computation. We obtained effectively 10 subtyping instances significantly more concordant with the already 
published calls (91.17% +/−0.87%). Notably, discordances with Ciriello et al.9 were shared across all, or most 
of, AWCA​-based subtyping instances and globally involved only 80 samples, i.e., less than 10% of all samples 
(Supplementary Material Figure S7). Most importantly, the AWCA​-based subtyping was highly concordant 
across the 10 instances (99.13% +/−0.43%; Supplementary Material Figure S8) and more stable than the cor-
responding standard PAM50 one (95.41% +/−1.04%), clearly demonstrating that the AWCA-based PAM50 
classification is much less dependent on the subset of samples used to build the initial reference. Furthermore, 
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this occurs even when the size of the sample subset selected for reference construction is progressively reduced. 
Indeed, to further investigate the robustness of AWCA​-based PAM50 classifications, we built other random 60/40 
subsets, varying their overall size from 400 to 25 samples with progressive halving; for each subset size we took 
ten random subsets, and from the corresponding standard median-based PAM50 classifications we built ten 
new AWCA​ references. For any of the assessed subset sizes, performing PAM50 classifications with the newly 
generated AWCA​ references yielded an improvement of approximately 5% of the concordance with the already 
published calls, with much lower dispersion compared with the results of the corresponding median-based 
classifications (Supplementary Material Figure S4). Even more importantly, AWCA​-based PAM50 classifications 
are much more stable and concordant among them, proving the higher reliability and robustness of the AWCA​
-based approach itself (see Supplementary Material Section S2). Even considering only subset sizes less critical 
for standard PAM50 classifications (from 400 to 100 samples), as reported in Fig. 2, AWCA​-based PAM50 clas-
sifications show both higher agreement with published calls and better pairwise concordance distribution, with 
standard deviations always below 1% (98.5% +/−0.93%); conversely, agreements of the corresponding standard 
PAM50 classifications are lower and dispersions almost double at each subset size halving (94.6% +/−2.2%).

Such results drove us towards a wider analysis to assess the suitability and possibly the gain of using an inner 
AWCA​ reference to reproduce PAM50 classification. We used entirely the wide TCGA​ dataset together with the 
published subtype calls of Ciriello et al.9 to calculate the inner AWCA​ reference. Furthermore, since Normal-like 
cases are undersized within the TCGA​ dataset, we built also an AWCA​ reference excluding the Normal-like class. 
Then, we computed corresponding Log2ratio matrices, used for two additional AWCA-PAM50 classifications. As 
expected, they brought non-complete concordance with Ciriello et al.9 calls (Supplementary Material Figure S5), 
but were significantly accurate (91%, 93%, respectively), although they considered neither the exactly used refer-
ence, nor the medians of a subset with a fixed ER+/ER− proportion. In view of the emerged results, we assessed 
if the use of an inner AWCA​ reference could generally guarantee more than 90% of concordance with respect to 
already available subtype calls. To this end, we used the GSE96058 dataset to investigate if this peculiarity could 
be also found on an independent dataset of differently normalized mRNA-seq profiles. According to the pub-
lished subtype calls, we computed the AWCA​ reference within GSE96058; the subsequent PAM50 classification 
was again highly concordant (95%) with the published one (see Supplementary Material Section S4). Obtained 
results confirmed that, in absence of the exactly used reference, inner AWCA​ is a good reference to reproduce 
subtyping, and to identify stable calls from ambiguous ones.

However, to improve the adoption of a PAM50-based intrinsic subtyping on RNA-seq samples and assure 
future reproducibility it would be crucial to standardize the approach by defining well-known robust references. 
In this perspective, we investigated the portability of the already computed AWCA​ references for the subtyping 
of independent datasets. Since different summarization/normalization strategies, namely RSEM and FPKM, 
may yield non-comparable results, we took advantage of the AWCA​ reference built using the RSEM values of 
the TCGA​ dataset for the subtyping of the RSEM PanCA dataset, and the AWCA​ reference obtained from the 
FPKM values of the GSE96058 dataset for the subtyping of the FPKM GSE81538 profiles. Taking the published 
subtype calls as targets, the concordance was beyond 96% both in the PanCA dataset using the best TCGA​ AWCA​
, and in the GSE81538 dataset using the best GSE96058 AWCA​ (Supplementary Material Figure S15). Notably, 
when instead an internal AWCA​ was used for subtyping, the concordance with published calls reached almost 
95% for both the PanCA and GSE81538 datasets. Furthermore, internal and external AWCA-based classifica-
tions appeared highly concordant, with approximately 95% of agreement. These results show that it is possible 
to use an external reference to center RNA-seq data for robust, single-sample PAM50 classification. However, 
when RSEM-based AWCA​ was applied to FPKM data, and vice versa, the concordances dropped to 80–87% (see 
Supplementary Material Appendix). This highlighted to what extent RNA-seq data processing affects data, and 

Figure 2.   Subtyping of TCGA​ dataset varying the sample subset size of interest for multiple runs of standard 
PAM50 and AWCA-based PAM50: concordances with Ciriello et al.9 subtype calls (left); pairwise concordance 
distributions (right).
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indicated that differently normalized profiles should not be merged in a single experimental dataset. Moreover, 
in some cases, a low number of Normal-like samples may justify excluding this class from the AWCA​ calculation, 
as experienced for the TCGA​ dataset (Supplementary Material Figure S15).

These results confirmed the limits of the standard PAM50 subtyping approach, due to its strict dependence on 
the reference values and building procedure. Yet, they also opened the perspective of constructing and validating 
general AWCA references to standardize PAM50-based subtyping, facing the reproducibility and ambiguity issues 
in subtype calling (Supplementary Material Table S3). At https​://githu​b.com/DEIB-GECO/BC_Intri​nsic_subty​
ping we make publicly available the R codes to perform single-sample PAM50 classifications using precomputed 
AWCA references (for RSEM or FPKM RNA-seq data), and to build AWCA references on any expression data, 
even from other platforms, as we successfully experienced with microarray data from Affymetrix (see Sup-
plementary Material Appendix). Notably, to obtain valuable AWCA references for single-sample classification 
of independent expression profiles, we suggest to select a wide dataset subjected to the same normalization of 
the data of interest, and to compute AWCA references from a subset size of at least 50–100 samples. Hormonal 
and HER2 status distributions should be also carefully evaluated to check whether they are representative of the 
typical BC heterogeneity, as we did for TCGA​ and GSE96058 datasets using ER/PR/HER2 proportions found in 
the literature as benchmark24.

Risk of recurrence and prognostic assessment.  Here, we report a comparative analysis of the Risk of Recurrence 
(ROR) scores computed for the TCGA​ dataset downstream of the AWCA-based PAM50 classification and of 
the PAM50 technical replica, which strictly emulates the Ciriello et al.9 PAM50 classification by means of the 
technical control reference. ROR scores were obtained accordingly to the predictive ROR-C model presented by 
Parker et al.15, and they were tested against 10-year overall survival annotations, to compare the ability of the two 
PAM50-based approaches in correctly predicting cases with good or poor long-term prognosis. Additionally, we 
evaluated also another PAM50-based assay, i.e., the Food and Drug Administration approved Prosigna clinical 
test, which was developed on NanoString expression profiles to provide both the BC subtype and the estimated 
ROR of a patient. Yet, it requires the proprietary NanoString platform to process each expression profile under 
exam with an in-vitro reference, included in the Prosigna kit. Hence, in applying in-silico the Prosigna subtyping 
approach the reference choice issue becomes even harder to face than for the PAM50 subtyping. Furthermore, 
we did not find public datasets annotated with BC subtypes from the Prosigna test, which prevents a deeper 
comparative analysis beyond what we discuss. Nonetheless, we performed all the required Prosigna normali-
zation steps, including reference normalization, making use of our precomputed AWCA reference. Then, we 
implemented the specific Prosigna subtyping procedure and also calculated the ROR scores according to the 
Prosigna specific ROR model. Eventually, not only the obtained subtype calls were compared with the standard 
and AWCA-based PAM50 ones (Supplementary Material Figure S11), but also the computed ROR scores. Such 
comparisons denote a slightly more pessimistic prediction trend for Prosigna, also when tested against effec-
tive survival data (Fig. 3). Conversely, ROR scores from standard and AWCA-based PAM50 appeared highly 
correlated to each other; furthermore, AWCA-based ones improved the prognostic ability (reaching the most 
statistically significant p value) in discriminating good and poor prognosis cases emerged from 10-year overall 
survival analysis. For further details, please refer to Supplementary Material Section S3.

Machine learning‑based intrinsic subtyping.  Machine learning (ML) supervised approaches were 
separately applied to the wide TCGA​ and GSE96058 datasets, well representative of BC heterogeneity, to provide 
valuable classifiers while handling independently RSEM and FPKM mRNA-seq data (further details on Sup-
plementary Materials Appendix). A 220-sample training set was extracted randomly from the TCGA​ dataset, 
respecting the same 60/40 ER+/ER− proportion of the PAM50 training set. All the remaining 597 cases were 
instead included in the TCGA​ test set. Both sets were used to train or test the classifiers under study using the 
Ciriello et  al.9 subtype calls as target labels. Considering the number of samples in Her2-Enriched (65) and 
Normal-like (25) classes, we built the training set including 50 samples for each Luminal A, Luminal B, Basal 
and Her2-Enriched class, plus 20 Normal-like samples, as to ensure a good balance of BC subtypes in the learn-
ing phase, while keeping out a reasonable number of samples for testing. Normal-like class should incorporate 
only samples from grossly uninvolved tissue and is not widely recognized as prognostically relevant6 nor used 
in ROR models15, 16; thus, adding 20 of 25 samples in the training set was not aimed at recognizing this class, but 
rather at trying to strengthen the ability of the trained classifiers to distinguish other BC intrinsic subtypes from 
it. Moreover, comparing our classifiers based on whether and which and how many samples were classified as 
Normal-like, allowed us to better assess their subtyping capabilities after proper training. The GSE96058 dataset 
was split in a training set of 1,639 samples and a test set with the 1,634 remaining samples. The training set in this 
case respected the same subtype proportion of the entire dataset (Supplementary Material Figure S13), consider-
ing its large size and realistic balance.

Survey and selection of the most suitable machine learning algorithm.  The following multiclass classifiers were 
assessed: (1) Decision Forest; (2) Decision Jungle; (3) Logistic Regression (LR); (4) Feed-Forward Neural Network 
(FFNN); (5) Support Vector Machines (SVMs). All the mentioned learners were trained in Azure Machine Learn-
ing Studio with known <sample, subtype> pairs coming from the training set and had as feature space the entire 
set of 19,737 genes profiled for the TCGA​ dataset. Indeed, estimating their performances with this huge and 
noisy feature space offered useful insights about the suitability of each learner in achieving the subtyping task, 
provided that too strong incidences of overfitting and curse of dimensionality were mitigated by the embedded 
feature selection approaches, already owned by, or added to, each classifier under evaluation.

https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
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Figure 3.   Risk of recurrence. AWCA-PAM50 calls and ROR-C scores compared with Prosigna ROR scores 
(up) and with PAM50 technical replica scores (center); statistical significance in discriminating 10-year overall 
survival (OS) status (down).
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Training was done with the adoption of tenfold stratified cross-validation and hyperparameter grid search 
to perform model selection, i.e., to set properly, with respect to the final task, all the tunable hyperparameters 
of each supervised model. Thus, for all ML methods under study, we found best-trained models, i.e., models 
whose hyperparameter setting and learned parameters led to the best generalization accuracy, estimated through 
cross-validation. As we can see in Fig. 4, on the left, the results of the ML survey on TCGA​ data indicated a simple 
regularized multiclass Logistic Regression (mLR) as the most promising method to distinguish intrinsic subtypes. 
It can set differentially the parameters that directly weigh each gene in each subtype class, while providing at the 
same time parameter shrinkage to deal with the high dimensionality of RNA-seq data and prevent overfitting. 
Hence, it has also some points of contact with the nearest shrunken centroid technique, already successfully 
adopted for the intrinsic subtyping task. Its generalization accuracy of 88%, estimated with cross-validation, was 
the highest one among all the best-trained learners, even if also the Decision Jungle behaved well, with cross-
validation accuracies of 86%.

However, the strength of cross-validation and hyperparameter sweeping was not simply improving the chance 
of finding the most accurate model for our specific task, but also giving insights of how representative the overall 
dataset is and how sensitive each model could be to variations in training data or hyperparameter settings. In 
this context, cross-validation accuracies on different folds were all quite near for the mLR, despite training subset 
changes and even for several hyperparameter settings, showing the highest robustness among all the assessed 
classifiers (Supplementary Material Table S4). Moreover, best-trained mLR (with unitary Lasso L1, Ridge L2 
hyperparameters) confirmed its primacy also on the unseen samples of the TCGA​ test set, where its accuracy 
(85%) overcame the ones of all the other best-trained models (Supplementary Material Figures S17–S21). Please 
refer to Section S5 of the Supplementary Material for further details.

The performances of the regularized mLR were assessed also on the FPKM profiles of the GSE96058 dataset. 
We carried out training and test phases as done for the RSEM profiles. The best-trained mLR (L1 = 1; L2 = 0.1) 
reached even higher accuracies both on cross-validation and on the unseen samples of the GSE96058 test set 
(around 89%), confirming the suitability of this regularized classifier also for the BC subtyping of FPKM expres-
sion data (see Supplementary Material Figure S32 and Table S6).

Feature selection study to improve breast cancer classifier performances.  First, as obvious choice, we used the 
PAM50 gene panel to train mLR models respectively on TCGA​ and GSE96058 data, as to be able to compare 
both in cross-validation and testing all the results of our feature selection study with the benchmark perfor-
mances of the same learner when considering only the genes involved in the original PAM50 method. Such 
benchmarks are reported in Table 1, together with the results collected with our AWCA​-based version of the real 
PAM50 classification, to be compared with the performances reached by the mLRs, when considering several 
feature spaces of interest.

Regularized mLRs trained on the whole gene sets assigned non-null weights to nearly 1,000 genes, both in 
TCGA​ and GSE96058 datasets. Since their accuracies, respectively of 85–89% could be potentially increased 
tackling the curse of dimensionality, we evaluated if independent feature selection strategies combined with the 
embedded regularizers could improve mLR results. Particularly, all the adopted feature selection methods simply 
reduced the original whole feature space to wide relevant gene signatures, and were assessed primarily on TCGA​ 
data, as RSEM measures are easily comparable across cohorts21, while FPKM are not suitable for differentially 
expressed genes (DEG) analysis.

Initially, we considered external strategies, not involving the learner in the feature selection. We used four 
filter methods to remove genes supposed not to be meaningful for our subtyping task, based on the next scoring 
metrics: (1) Fisher scores; (2) Mutual Information; (3) Chi-squared scores; (4) Spearman Correlations. Imple-
mentation details are in Supplementary Material Section S5.4.2. We obtained four rankings, each one scoring 
all the 19,737 genes according to a given metric. For analogy with the previous embedded feature selection, we 
considered the top 1,000 genes of a scoring metric as a feature space, and we tuned and trained four regular-
ized mLRs, as formerly described. The so-obtained four best-trained models had 89–90% of cross-validation 
accuracies; tested on TCGA​ test set they reached slightly increased accuracies (86–87%) with respect to those 
of the mLR (85%) having a 19,737-gene space (Supplementary Material Table S5). We also carefully evaluated 
confusion matrices, precisions, recalls and switch cases among classes, to consider not only the quantity of dis-
cordantly classified cases (all quite comparable), but rather the balanced accuracies (or macro-average recalls) 
and the type of switches. Chi-square based filter appeared the most valuable since the mLR trained on its top 
1,000 genes improved mainly the accuracy of the Her2-Enrichded class (93%), compared to mLRs using the other 
filters (84.5% +/−3.16) (see Fig. 4 and Supplementary Material Figures S22-23 and Table S5).

As alternative external feature selection strategy, we used a DEG-based approach. We analyzed the original 
feature space of 19,737 genes using limma25, an R package for the analysis of gene expression data whose core 
capability is the use of linear models to assess differential expression in multifactor designed experiments. We 
made differential analyses on the 10 pairwise contrasts between the 5 subtypes; we obtained 10 gene lists, each one 
including all the genes differentially expressed in a pairwise contrast. Then, given an integer value N, through the 
union of the top N genes (or of all genes if less than N) from each of the 10 lists, we obtained a set called limmaN, 
whose genes are all relevant to distinguish at least a couple of subtypes. We tuned and trained again regularized 
mLRs on limmaN feature spaces obtained for 11 different N values, ranging from 10 to 1,000. The so-trained 
models reached cross-validation accuracies within 89–95% and accuracies within 84–88% on the TCGA​ test set; 
best ones are more accurate in cross-validation, and in line in testing, compared to the models trained on the 
filter-based feature spaces and on the PAM50 panel (Supplementary Material Table S5). Particularly, limma50 
was worthy of further investigations, because the mLR considering its 277 genes as feature space reached the 
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best overall accuracy (88%) on the TCGA​ test set and also the highest values for macro-averaged recall (m-aR, 
0.94) and precision (m-aP, 0.70) (Supplementary Material Figures S25-S26).

Aiming at further improving prediction performances of the regularized multiclass logistic regression with 
a combined strategy, we used limma50, top 200 and top 500 Chi-squared-based genes as starting feature spaces 
for running a wrapper method with sequential backward elimination (BWE). For each starting feature space, 
we carried out in parallel ten independent runs of backward elimination, performing each run with randomized 
feature order as to mitigate the bias introduced by the sequential gene scrolling, solvable only through an unfea-
sible exhaustive search. The algorithm iteratively discards one gene at a time until no more feature elimination 
improves the accuracy of the regularized mLR model beyond a fixed threshold of gain. Since kept genes in each 
run were not robust, also due to the needed feature shuffling, ultimately we combined all the genes kept in at 
least one run, with a downstream preservation strategy. The three gene signatures (210, 165, and 276 genes, 
respectively) preserved from the three corresponding starting feature spaces were then used as feature spaces 
for training and testing other regularized mLRs on the TCGA​ dataset (Supplementary Material Table S5). High 
cross-validation accuracies of 93% and 94%, even higher than using PAM50 genes as features, were respectively 
obtained using as feature space limma50_BWE and top 500 Chi-squared_BWE. Yet, on testing, each of these 

Figure 4.   Machine learning survey: classifiers tuned and trained on the TCGA​ training set with tenfold cross-
validation and tested on the unseen samples of the test set (left). Feature selection (right): comparison of each 
class recall on the TCGA​ test set for the mLRs trained on the complete gene set, on the four filter-based spaces 
and on the limma50 and limma50_BWE gene signatures. Normal-like class is excluded from the graph due to 
the trifling number of samples (only 5) in the TCGA​ test set.

Table 1.   Accuracies reached with several intrinsic subtyping methods. * PAM50 applied on test sets only, 
using precomputed AWCA references.

Subtyping method
Feature space of 
interest

TCGA cross-
validation (%) TCGA test set (%)

GSE96058 cross-
validation (%)

GSE96058 test 
set (%)

PAM50* PAM50 panel – 92 – 95

mLR PAM50 panel 92 89 93 93

mLR All profiled genes 88 85 88 89

mLR limma50 92 88 90 91

mLR limma50_BWE 93 87 90 91

Table 2.   Concordances with published calls (accuracies) or AWCA-based PAM50 calls for the main mLR 
classifiers.

Training set
Feature space of 
interest Intended for

Accuracy on test 
set (%)

AWCA-PAM50 
concordance on test 
set (%) External test set

Accuracy on external 
test set (%)

AWCA-PAM50 
concordance on 
external set (%)

TCGAtraining PAM50 RSEM 89 89 PanCA 90 90

TCGAtraining limma50 RSEM 88 87 PanCA 88 90

TCGAtraining limma50_BWE RSEM 87 87 PanCA 87 91

GSE81538training PAM50 FPKM 93 92 GSE81538 92 93

GSE81538training limma50 FPKM 91 91 GSE81538 89 89

GSE81538training limma50_BWE FPKM 91 91 GSE81538 89 89
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models obtained with backward eliminations behaved similarly to the model trained on the corresponding 
starting feature space. The case of limma50 compared with limma50_BWE clearly appears in Fig. 4, where the 
accuracy (or recall) of each class due to these two DEG-based signatures are compared with the ones obtained 
with filter-based approaches.

Hence, limma50 and its further-reduced version limma50_BWE brougth on the TCGA​ cross-validation and 
testing results in line with our benchmark, i.e., the mLR trained on PAM50 genes (see Table 1 and Supplementary 
Material Table S5); consequently, they were used to evaluate the suitability and possible improvements in the sub-
typing task also for FPKM gene expression values. Two regularized mLRs were trained on the GSE96058 training 
set and then tested on the test samples of the same GSE96058 dataset considering each of these two signatures 
as feature spaces of interest (excluding only the DRAIC gene, since it was unavailable within the GSE96058 and 
GSE81538 profiled genes). Both best-trained models overcame the performances of the model having all the 
30865 sequenced genes as feature space, reaching 90% of cross-validation accuracies and 91% of accuracy over 
the GSE96058 test set (Supplementary Material Table S6) although their performances were slightly less than 
the corresponding benchmark, as shown in Table 1.

External testing of the logistic regression models.  To assess performances on wholly unseen different RNA-
seq data subject to the same summarization/normalization, the most accurate mLRs developed for RSEM and 
FPKM profiles were used to classify respectively PanCA and GSE81538 datasets; all subtyping results are avail-
able in Supplementary Material Figures S29–S31, S34–S36, and here summarized in Table 2, where we reported 
also the concordances with the corresponding AWCA-PAM50 subtypings, based on precomputed references.

Specifically, the models trained on the TCGA​ training set using PAM50, limma50 and limma50_BWE as 
feature spaces were applied on PanCA samples. The found accuracies were nearly the same as the ones obtained 
on the TCGA​ test set (90%, 88%, 87%, respectively), while the macro-averaged recalls (m-aR) were 0.90 for both 
limma-based models and 0.88 for the PAM50-based mLR, which showed a lower balanced accuracy on PanCA 
(Supplementary Material Figures S29–S31). Precisions of the Her2-Enriched class (the weaker class in testing for 
all trained models—see Supplementary Material Section S6, Figure S28) eventually increased on PanCA, and 
macro-averaged precisions significantly improved in their turn (m-aP: 0.84, 0.84, 0.83). The same analysis was 
performed for the models trained on the GSE96058 training set with PAM50, limma50 and limma50_BWE as 
feature spaces, and then applied to the GSE81538 dataset (excluding unavailable genes). For both latter cases, 
accuracies were just below 90% and all performance metrics (m-aR: both 0.85, m-aP: 0.88 and 0.87) reached 
slightly lower values than the ones found with corresponding intra-dataset testing on the GSE96058 test set.

Although the mLR using PAM50 genes reached again higher accuracy, the two limma50-based results, col-
lected for FPKM values, are noteworthy considering that both intra-dataset and external testing dealt with gene 
expression data different from the RSEM ones employed in the feature selection phase. Furthermore, all the four 
mLRs computed using limma50 and limma50_BWE genes, and distinctly thought for RSEM and FPKM expres-
sion data, reached on testing high concordances with the corresponding AWCA-PAM50 subtypings, even higher 
than the accuracy with respect to the published labels in the case of the PanCA dataset (Table 2). Therefore, these 
mLRs are provided to classify external BC samples through the R code we make available at https​://githu​b.com/
DEIB-GECO/BC_Intri​nsic_subty​ping.

Robustness and prognostic ability of single‑sample classifiers.  The mLRs trained on different rel-
evant feature spaces reached progressively increasing values for recalls and precisions of all classes (Supplemen-
tary Material Figures S27 and S28), though accuracies experienced on internal/external testing did not improve 
beyond 90% on average, due to the saturation of concordances between mLRs and published calls, occurring 
also when using PAM50 genes as feature space. However, concordances with target labels can only partially 
evaluate mLR classifications, since published subtypes are not a gold standard but rather a touchstone to com-
pare performances of the mLR approaches both among them and with the other robust single-sample classifier 
here proposed, i.e., the AWCA-based PAM50 method with predefined references. Indeed, while in compar-
ing mLR results to the target PAM50 calls Cohen’s kappa agreements were slightly lower than 0.8, the main 
mLR-based classifications reached valuable pairwise statistic agreements between them, showing Cohen’s kappa 
values beyond 0.9 for most of the cases (up to 0.925+/−0.03 for top1000 Chi-squared and DEG-based feature 
spaces). Additionally, the mean concordance observed among our three best mLR models (mLR-PAM50, mLR-
limma50 and mLR-limma50_BWE) was high (94%+/−4%), with limma-based approaches reaching almost 
perfect agreement and average concordance over 92% with mLR-PAM50. This demonstrates stability of the mLR 
classifications regardless of the used feature space, provided that it is meaningful with respect to the purpose of 
BC subtyping. Intriguingly, when we directly compared our best mLR-based classifications with the single-sam-
ple AWCA-based PAM50 subtyping, we found the same mean concordance (90% +/−2%) experienced with the 
published PAM50 calls. Furthermore and most importantly, focusing on the disagreements with published sub-
types, we found several cases of full concordance among the mLR and AWCA-based PAM50 methods (mainly 
involving published Normal-like versus Luminal A, or published Luminal A versus Luminal B subtypes); these 
suggest robustness of the mLR classifiers in calling ambiguous cases, despite their training with published labels.

Additionally, we carefully examined subtype calls assigned with all the single-sample approaches under 
investigation, including also further classifications obtained with the AIMS method by Paquet et al.12. Both on 
internal and external test sets, we noticed ambiguous samples for all the approaches, confirming the already 
mentioned degree of ambiguity of intrinsic subtyping. This affects also supervised subtype labels and, in fact, it 
is partially inherited by mLR classifiers. However, all here proposed methods overcome the AIMS classifications 
(Supplementary Material Table S11), since its mean concordances with the others single-sample approaches 

https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
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(77%+/− 4% with AWCA-based one, 79%+/− 4% with mLR ones) and with the published classifications 
(77%+/−1%) appeared sub-optimal, also beyond the common criticism of ambiguity.

Eventually, we focused on capturing the prognostic potential of our single-sample approaches by compar-
ing 10-year overall survival annotations with the expected clinical outcomes based on the subtype calls. We 
performed this analysis on TCGA​ and PanCA test sets, where sufficient amounts of cases with different 10-year 
overall survival status were available. Specifically, we considered that each discordance between Luminal A and 
another subtype implies a different expected prognosis, since Luminal A is well recognized to have the lowest 
rate of recurrence and the best long-term prognosis26. Consequently, in such cases we evaluated whether the 
discordance improves or worsens the prognostic prediction. First, we focused on the subtype calls discordant 
with the published ones, and we noticed that both AWCA-based and mLR-based subtypings appeared more reli-
able in recognizing subtypes with good/poor overall survival prognosis within 10 years, showing an increased 
prognostic value over standard PAM50 classifications (Supplementary Material Figure S37). Furthermore, we 
evaluated pairwise discordances between the AWCA-based PAM50 method and each mLR approach; despite 
only very few cases were available, mLR subtypings seem to slightly improve the prognostic prediction (Sup-
plementary Material Figure S38).

Discussion
Identification of BC intrinsic subtypes by the PAM50 classifier15 has set a cornerstone in cancer genomics and 
transcriptomics, allowing to link unsupervised, clustering-based class discovery to biological insight and clini-
cally relevant stratification. However, the PAM50 classifier is typically based on centering gene expression values 
against a reference sample arbitrarily built from the dataset under study; thus, dataset composition and choices 
for reference construction affect subsequent subtype calling, as we here clearly proved. This limits robustness 
and reproducibility of the classification, as shown in the present work for RNA-seq data. Hence, as first major 
achievement of our work, we propose an innovative procedure for reference construction, named AWCA​, robust 
to the initial sample selection and improving PAM50 reproducibility, reaching high concordance and stability in 
classification. The concordance achieved by AWCA​-based classifications among them is beyond 98%, remarkably 
improving the stability of some ambiguous samples, i.e., poorly or comparably correlated to more than one class 
centroid. Moreover, the AWCA​ strategy allows constructing predefined external references (Supplementary Mate-
rial Table S3) that can be used to classify independent RNA-seq profiles. PAM50 classification of independent 
sets with external references reached again over 90% of concordance with the published subtypes and over 94% 
with inner AWCA-based classifications, suggesting the chance of building and setting universal references to 
increase portability and reliability of the PAM50 subtyping, thus solving its reproducibility issue. However, for 
single-sample AWCA-based PAM50 subtyping we strongly encourage to employ an AWCA reference subjected 
to the same normalization procedure of the used expression data, as not to undermine the gain of robustness 
provided by the approach. Conversely, internal AWCA references can be built on any expression data, even 
from other technical platforms, as we successfully experienced with microarray data from Affymetrix. Indeed, 
AWCA-based classifications on Affymetrix log2-transformed data from the GEO dataset GSE4922 improved 
subtyping stability, with over 96% of mean concordance compared with 88% for corresponding standard PAM50 
evaluations. Additionally, we used a so-obtained AWCA reference also as external reference for singe-sample 
AWCA-PAM50 classification of another Affymetrix dataset (GSE1456), for which PAM50 labels were provided, 
but no information about the ER status was available to repeat classification or allow internal AWCA-based 
PAM50 classification; we found subtype calls remarkably more reliable in recognizing samples with good or poor 
prognoses at medium-long term (see Supplementary Material Appendix). This confirms the subtyping robust-
ness and the key prognostic ability of the here proposed AWCA-PAM50 approach, regardless of the technology 
used to provide gene expression data.

However, intrinsic subtypes are intrinsically linked both to the molecular traits and to the expression levels 
of other genes than just the PAM50 panel and are recognized for their prognostic value, also regardless of the 
PAM50 approach, though it is the most widely method used to recognize them. Thus, exploiting iteratively and 
also in parallel several classifiers should strengthen the reliability of the subtyping, as in the case of boosting 
strategies combining weak learners. In this view, we performed also a ML survey considering other classifiers 
and gene signatures than PAM50, trained supervisely to recognize BC subtypes. A multiclass Logistic Regres-
sion appeared the most effective and robust in performing this task, particularly when a feature selection able 
to provide a feature space of relevant genes is combined with embedded Lasso and Ridge regularizers. Moving 
beyond PAM50 genes, from our feature selection study we traced two additional promising DEG-based gene 
signatures, limma50 and limma50_BWE (this latter one from a further backward elimination strategy), including 
genes meaningfully involved in discriminative patterns between classes and only to a limited extent overlapping 
with the PAM50 panel (Supplementary Material Table S7).

Our best mLR classifiers reached high accuracy in cross-validation, and valuable performances on internal 
and external testing, both considering concordances with target labels and with AWCA-based calls (Table 2). 
Furthermore, on the limma50_BWE feature space both the RSEM and FPKM-based mLRs got almost the same 
results as on the limma50 feature space, showing classification robustness also in case of a more compact gene 
set (210 vs. 277 genes). Although limma-derived signatures brought less convincing performances on testing 
than using mLR on PAM50 genes, or the AWCA​-based PAM50 method (see PAM50a in Table 1), it would be 
overly simplistic to underestimate their interesting results (Table 1) and Supplementary Material Table S8). 
Indeed: (1) the higher accuracies reached with mLRs using PAM50 genes or with the AWCA​-PAM50 method 
are biased by the nature of the published subtype calls, obtained in their turn from the PAM50 assay, using the 
same gene panel; (2) overall performances of any approach are also influenced by the mentioned ambiguity in 
subtype calling that possibly affects samples with mixed traits; (3) degradation is caused also by the Normal-like 
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class, whose clinical significance remains undetermined6, and that could be excluded from a refined version of 
the intrinsic subtyping approach, as in PAM50-based Prosigna test16; (4) the few amounts of training samples 
and the vast number of features influence subtyping capabilities, mainly for the cases most difficult to recognize. 
Nonetheless, mLR classifications resulted robust also when varying the feature space under consideration, show-
ing high agreement of the classifications compared both with each others (94%+/−4%) and with the AWCA-
based PAM50 calls (90%+/2%), especially in cases of discordances with the published calls used for training. 
Particularly, such agreement found with AWCA-based PAM50 subtyping suggests that mLR approaches, being 
provided with regularizations to better generalize on independent samples, can in part overcome the flaws of a 
still limited training set that includes also some incorrect labels for ambiguous samples; thus, the more samples 
with robust subtype calls will be available, as the ones from AWCA-based PAM50 classifications, the more mLR 
approaches will certainly improve. Furthermore, mLR approaches can also provide a sample with membership 
values to each subtype, which could be used in predictive models for clinical outcome or risk of recurrence, as 
in the case of correlations to each subtype centroid for the already existing ROR models of PAM50 and Pros-
igna assay. Yet, wide cohorts, well-annotated in terms of relapse events and robust subtype labels, are needed to 
enhance a preliminary study that gave us encouraging outcomes.

Eventually, all the collected results confirm the suitability and the room for improvement of the mLR as 
transcriptional classifier to recognize BC subtypes. As experienced for limma50 and limma50_BWE feature 
spaces, mLR can indeed improve its performances in intrinsic subtyping by exploiting relevantly discriminative 
parts of the genome-wide information brought by RNA-sequencing, other than the PAM50 panel and despite the 
inherent bias introduced by the PAM50-based labels, here used to training supervisely and testing. Furthermore, 
all mLR approaches showed an improved prognostic ability with respect to standard PAM50 calls and further 
studies could effectively convert their predictive value in reliable clinical outcome estimators.

Thus, in conclusion, the main contribution of this paper is twofold: 

1.	 Propose the AWCA​ reference construction approach to face the proved issues of the standard PAM50 algo-
rithm;

2.	 Define RNA-seq-based classification approaches to perform single-sample BC intrinsic subtyping with 
external-AWCA-based PAM50 or regularized mLR methods.

These strategies appeared valuable to favor the use of RNA-seq in BC clinical practice and are worthy of other 
studies on heterogeneous RNA-seq data, to evaluate and strengthen the reliability of their intrinsic subtyping 
methods.

Methods
Samples and clinical data.  Despite BC is one of the cancers with more genomic data available, only a 
small fraction of public BC RNA-seq data are annotated with PAM50 labels; we used the four of such RNA-seq 
datasets we could find. The first dataset is part of the Breast Invasive Carcinoma project of The Cancer Genome 
Atlas (TCGA​), used within the work of Ciriello et al.9 and includes 817 mRNA-seq Version2 RSEM21 profiles 
(http://cbio.mskcc​.org/cance​rgeno​mics/TCGA/brca_TCGA/). The second dataset, collected under GEO data-
set accession number GSE96058, includes 3,273 BC RNA-seq FPKM22profiles from the Multicenter Sweden 
Cancerome Analysis Network-Breast Initiative10 (https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE96​
058). Eventually, we used two additional public datasets to yield a final evaluation of the studied approaches 
on external data. The first one, called PanCA dataset, includes 236 BC samples selected from Pan Cancer Atlas 
and treated with RSEM pipeline (https​://www.cbiop​ortal​.org/study​/summa​ry?id=brca_TCGA_pan_can_atlas​
_2018). The second one is a GEO dataset, indicated as GSE81538 dataset (https​://www.ncbi.nlm.nih.gov/geo/
query​/acc.cgi?acc=GSE81​538), and contains 405 BC samples, subject to FPKM normalization. All used expres-
sion data were log2-transformed. Further details are in Supplementary Section S1.

Original PAM50 method and Prosigna test.  The original PAM50 method15 was developed as a 
shrunken centroid-based algorithm27 for Prediction Analysis of Microarrays (http://statw​eb.stanf​ord.edu/~tibs/
PAM/), focused on 50 genes, known as PAM50 panel. During its training, class centroids were differentially 
shrunken, identifying subsets of genes that best characterize and contribute to recognizing each intrinsic sub-
type. We used these centroids, built by Parker et al.15 (Supplementary Material Table S2), to replicate the PAM50 
algorithm. As required by the PAM50 assay, for each BC sample under exam, the 50-gene expression values were 
normalized against a calculated reference sample; we compared multiple choices of cohorts and strategies for 
reference construction. Each time, the nearest centroid rule, with Spearman correlation as similarity metric, was 
used to assign one of the five mentioned subtypes to each sample. Furthermore, the Cox regression model devel-
oped by Parker et al.15 was used to estimate the patient’s risk of recurrence score, as a weighted sum of Spearman 
correlations with subtype centroids and tumor size parameter (ROR-C).

The Prosigna test is a PAM50-based genetic assay used to define a category of metastatic risk at 10 years in 
hormone receptor-positive women undergoing surgery for invasive BRCA​16. It focuses on a gene subset of the 
PAM50 panel called NANO46, and provides both the BC intrinsic subtype and the category of risk of a patient, 
derived from the estimated risk of recurrence (ROR) score and differentiated also based on lymph node involve-
ment. Both classification and ROR models were independently trained and tested over NanoString profiles, 
obtained from the proprietary NanoString nCounter platform. Hence, the prognostic assay uses: (1) a normali-
zation pipeline specifically designed for its proprietary technology and a reference included in the Prosigna kit, 
and consisting of in-vitro transcribed RNA-targets, to be processed together with the sample under study; (2) 
a Pearson correlation-based Nearest Shrunken Centroid classifier, which excludes the Normal-like class; (3) a 

http://cbio.mskcc.org/cancergenomics/TCGA/brca_TCGA/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96058
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96058
https://www.cbioportal.org/study/summary?id=brca_TCGA_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=brca_TCGA_pan_can_atlas_2018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81538
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proprietary model for ROR score estimation. Here, we used Prosigna centroids and algorithms to assign each 
sample under study with a corresponding subtype call and ROR score, after normalization against a calculated 
reference sample.

Machine learning techniques for breast cancer classification.  We performed a machine learning 
survey, tracing some previous studies28–32 for cancer prediction and BC stratification. Accordingly, we assessed 
several classifiers and embedded regularizations, up to find the most promising approach for the BC intrinsic 
subtyping task. Specifically, we considered the following techniques, briefly described in Supplementary Mate-
rial Section S5.2: (1) Multiclass Decision Forest as ensemble method with bagging; (2) Multiclass Decision Jungle 
as alternative ensemble method, using directed acyclic graphs (DAGs) instead of trees; (3) Multiclass Logistic 
Regression with both Lasso and Ridge regularizations; (4) Fully connected Feed-Forward Neural Network with 
Ridge regularization, min-max input scaling and sigmoidal outputs; and (5) Support Vector Machines with Lasso 
regularization and One-versus-All approach.

In addition to the mentioned regularizers, we explored further feature selection techniques to handle the 
high-dimensionality of RNA-seq profiles, facing the curse of dimensionality and the overfitting risk without 
losing the gene expression interpretation of the maintained features. We evaluated alternatively some filter 
methods, a differentially expressed genes (DEG)-based approach, and a combined strategy involving a wrapper 
method. The aim of all these feature selection techniques was distinguishing the informative genes from the 
non-relevant ones, which behave as noise affecting data and whose removal usually increases or strengthens the 
predictive power of a classifier. In supervised tasks, filter methods are effective in computation time and robust 
to overfitting. They score and rank features with respect to the target to be predicted using a statistical measure; 
accordingly, each feature is either removed or kept in the feature space. The implemented DEG-based approach 
considers the statistical significance of gene expression variances within or between classes to trace relevant 
features according to discriminative patterns. Eventually, the applied combined strategy is focused on a wrapper 
method with sequential backward elimination as heuristic approach. Wrapper methods consider feature selection 
as a search problem: during the learning phase, different combinations of features are compared based on the 
cross-validation performances of the chosen model, up to finding a reduced set of relevant features. However, due 
to the prohibitive computational cost for high-dimensional spaces, we applied this strategy on some promising 
already reduced gene sets, rather than on all the profiled genes.

To asses alternative classifiers and feature selection techniques, we worked jointly on RStudio (http://www.
rstud​io.com/) and Azure Machine Learning Studio (https​://studi​o.azure​ml.net/), an integrated development 
environment working on the Azure cloud service platform. For further implementation details, please refer to 
Section S5 of the Supplementary Material.

Data availability
The R code to generate AWCA references, to use AWCA-based PAM50 with precomputed external references 
and to use the mLR-based BC classifiers is available at https​://githu​b.com/DEIB-GECO/BC_Intri​nsic_subty​ping.
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