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Kalman ® ltering with mixed discrete± continuous observations

G. DE NICOLAO² and S. STRADA ³

The optimal ® ltering problem for systems subject to both the discrete and
continuous measurements is studied. The observability and detectability properties
of such systems are investigated pointing out their connections with the existence of
stable discrete± continuous observers. The optimal ® lter is based on the solution of
a suitable matrix di� erential Riccati equation with jumps. Su� cient and necessary
conditions for the existence of periodic stabilizing solutions to such an equation are
worked out. The main result states that both detectability and stabilizability are
necessary and su� cient for the existence of a unique periodic solution which is also
stabilizing. Stabilizability and detectability also guarantee asymptotic convergence
of the Kalman ® lter to the steady-state periodic ® lter irrespective of the initial state
covariance. The results are illustrated by means of a numerical example.

1. Introduction

Kalman ® ltering equations are usually formulated either for continuous or
discrete-time systems. However, in many practical situations the underlying plant
is continuous-time while the measurements are taken at discrete time instants. There
are also a number of signi® cant ® ltering problems where both continuous and
discrete observations must be optimally combined. For instance, in navigation
problems continuous-time velocity measurements may be available together with
discrete-time position ®̀ xes’ (Friedland 1980). Another example arises in the control
of chemical processes where continuous temperature and pressure measurements
may be complemented with discrete concentration analyses from gas chromato-
graphy (Lennartson 1988, LindgaÈ rde and Lennartson 1994, 1995). There is also some
interest for the dual problem of optimal control with continuous-time cost
functionals including additional discrete state penalty terms at speci® ed times
(Geering 1976, Mook and Lew 1991). According to Geering (1976), such optimal
control problems arise in economics and politics where the discrete times correspond
to the end of the ® scal year or the election day.

Some theoretical contributions concerning ® ltering with mixed discrete± contin-
uous observations can be found in the works of Lipster (1975), Orlov, (1989) and
Orlov and Basin (1995). In particular, the Kalman± Bucy ® lter with discrete±
continuous observations calls for the solution of a di� erential Riccati equation
`with jumps’ (Friedland 1980). In between the discrete measurements the state-error
covariance is computed according to a di� erential Riccati equation while j̀umps’ of
the covariance occur at discrete instants. Correspondingly, the ® lter is a discrete±
continuous dynamical system whose inputs include both discrete and continuous
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observations. In the case of equally spaced discrete-time measurements the con-
tinuous gain of the steady-state ® lter is a periodic function of time (Friedland 1980).

The existing literature has not fully clari® ed theoretical issues such as the
existence and uniqueness of steady-state solutions as well as the convergence
properties of the ® lter when it is initialized with a generic initial state covariance.
The analysis would be made easier if one could assume that either only continuous-
time observations or only discrete-time ones would guarantee system observability.
A complete analysis, however, must also encompass the case where the system state
can be reconstructed only by jointly using discrete and continuous measurements.

In the present paper a comprehensive treatment of the optimal ® ltering problem
for systems with discrete± continuous observations is provided. In particular, the
observability notion for such a class of systems is investigated and its connections
with the existence of stable observers clari® ed. The di� erential Riccati equation with
jumps is studied in order to obtain su� cient and necessary conditions for the
existence and uniqueness of a stable periodic steady-state ® lter which is globally
attractive. In view of the periodic structure of the problem, the analysis heavily relies
on tools drawn from periodic system theory (Bittanti 1986, Bittanti et al. 1990). The
fact that periodic system theory only became well established towards the end of the
1980s could possibly explain why some basic questions concerning systems with
mixed discrete-continuous measurements have so far remained unanswered.

The paper is organized as follows. Section 2 is devoted to analysis of the
structural properties of mixed (discrete± continuous) systems. The ® ltering problem
is introduced in section 3 where the main results on the periodic steady-state ® lter are
derived. A numerical example is given in section 4. Some concluding remarks
(section 5) end the paper.

2. S tructural properties of `mixed systems’

2.1. System de® nition

This section is mainly devoted to analysis of the observability properties of
continuous-time systems subject to simultaneous discrete and continuous measure-
ments. More precisely, we will be concerned with the system

R 0

Çx(t) = Ax(t)
yc(t) = Ccx(t)
yd(k) = Cdx(kT )

ìï
íïî

where A Î Rn ´ n,Cc Î Rpc ´ n,Cd Î Rpd ´ n,t Î R,k Î Z, and T Î R is the sampling
period of the discrete measurements. In the following it will also be useful to refer to
the dual system with discrete± continuous inputs

R c{ Çx(t) = Ax(t) + Bcuc(t) , t /= kT
x(kT + ) = x(kT - ) + Bdud(k)

where Bc Î Rń pc and Bd Î Rn ´ pd .

2.2. Observability and detectability

Both R 0 and R c have an intrinsic periodic structure so that the usual time-
invariant observability and reachability notions do not apply. As for observability,
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the following result establishes the equivalence between three di� erent characteriza-
tions of unobservability.

Lemma 1: The following statements are equivalent.

(i) There exists x(¿) /= 0 such that yc(t) = 0,t ³ ¿, and yd(k) = 0, " k ³ ¿ /T.
(ii) There exist v /= 0,¸ Î C such that

eAT v = ¸v
Cce

Atv = 0 t Î [0, T )
Cdv = 0

ìï
íïî

(1)

(iii) The time-invariant pair (eAT ,Wo(0, T ) + CT
dCd) is not observable, where

Wo(0, T ) = ò
T

0
eATtCT

c Cce
At dt

is the observability Grammian of the continuous-time pair (A,Cc) over (0, T ) .

Proof: See the Appendix. u

In the following, whenever there exist v /= 0 and ¸ Î C such that (1) holds, ¸ will
be said to be an (A,Cc,Cd)-unobservable characteristic multiplier. The term
c̀haracteristic multiplier’ is borrowed from periodic system theory where it denotes
the eigenvalues of the transition matrix evaluated over one period. By duality, ¸ will
be said to be an (A,Bc,Bd)-unreachable characteristic multiplier if it is an
(AT,BT

c ,BT
d )-unobservable characteristic multiplier. The following result is a direct

consequence of Lemma 1.

Theorem 1 Ð modal and Grammian characterizations of observability: The following
statements are equivalent.

(i) The system R 0 (or equivalently the triple (A,Cc,Cd) ) is observable.
(ii) There exists no (A,Cc,Cd)-unobservable characteristic multiplier (modal

observability notion).
(iii) The time-invariant pair (eAT ,W0(0, T ) + CT

d Cd) is observable (Grammian
observability notion).

The modal notion of observability for the triple (A,Cc,Cd) was ® rst introduced
by De Nicolao (1994) where, however, its connection with the standard observability
(notion (i)) was not investigated.

In analogy with time-invariant and periodic systems it is also possible to
introduce a canonical decomposition for mixed discrete± continuous systems.

Proposition 1 Ð canonica l decomposition of discrete± continuous systems: Given a
triple (A,Cc,Cd) there exists a nonsingular. transformation R such that

Â = R AR - 1 = [ A ÆA
0 ~A ], ~A Î R

~ń ~n

Ĉc = CcR
- 1 = [0 ~Cc], ~Cc Î Rpc ´ ~n

Ĉd = CdR
- 1 = [0 ~Cd], ~Cd Î Rpd ´ ~n
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and the triple ( ~A, ~Cc, ~Cd) is observable.

Proof: Let v1, . . . ,vk denote the (A,Cc,Cd)-unobservable eigenvectors (for simpli-
city distinct eigenvalues are assumed). Then, just let

R = [v1v2 ´´´vkvk+1 ´´´vn]- 1

where the vectors v are chosen so as to render T nonsingular. The rest of the proof is
standard. u

For future reference it is also useful to de® ne

B̂ = R B = [ B
~B ], ~B Î R

~n ´ m

In view of the notion of an unobservable (unreachable) characteristic multiplier it is
straightforward to introduce a modal detectability (stabilizability) notion. Precisely,
the triple (A,Cc,Cd) ( (A,Bc,Bd) ) is termed H-detectable (H-stabilizable) if there
does not exist any (A,Cc,Cd)-unobservable ( (A,Bc,Bd)-unreachable) characteristic
multiplier lying outside the open unit disc. In analogy with periodic system theory
(Bittanti 1986, Bittanti et al. 1990), a further two de® nitions of detectability can be
introduced: K-detectability requires the stability of the unobservable part of the
canonical decomposition of (A,Cc,Cd) , whereas G-detectability refers to the
detectability of the invariant pair (eAT ,Wo(0, T ) + CT

dCd) . The equivalence between
the three notions is established below (the simple proof is omitted).

Theorem 2: The following statements are equivalent:

(i) The unobservable part A of the triple (A,Cc,Cd) is asymptotically stable.
(ii) There does not exist any (A,Cc,Cd)-unobservable characteristic multiplier

lying outside the open unit disc.
(iii) The time-invariant pair (eAT ,Wo(0, T ) + CT

dCd) is detectable.

When any of (i) ± (iii) is satis® ed, the triple (A,Cc,Cd) is said to be D-detectable.

2.3. Stabilization

The notion of D-stabilizability is instrumental in stating the Lyapunov Lemma
which will play a fundamental role in all the subsequent stability analyses.

Discrete± continuous Lyapunov Lemma (De Nicolao 1994): Consider the discrete±
continuous L yapunov equation (DCL E)

ÇP = AP + PAT + BcB
T
c (2 a)

P(kT + ) = P(kT - ) + BdBT
d (2 b)

(i) If A is stable, then there exists a unique T-periodic solution to the DCL E.
Moreover such a solution is non-negative de® nite.

(ii) If the triple (A,Bc,Bd) satis® es the D-stabilizability condition and the DCL E
admits a non-negative de® nite T -periodic solution, then A is asymptotically
stable.

Hereafter, we will be concerned with the state estimation problem for system R 0.
In particular we consider discrete± continuous observers of the type.
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X
Çx̂(t) = Ax̂(t) + L c(t)[yc( t) - Ccx̂(t)] t /= kT
x̂(kT + ) = x̂(kT - ) + L d[yd(k) - Cdx(kT - )]{

where L c(t) is a T -periodic gain matrix and L d is a constant gain. Accordingly,
letting e(t) = x(t) - x̂(t) , the error dynamics are governed by

X e
Çe(t) = (A - L c(t)Cc)e(t), t /= kT
e(kT + ) = (I - L dCd)e(kT - ){

Hereafter W Fc
(t,¿) will denote the transition matrix on [¿, t]of Fc(t) = A - L c(t)Cc.

The autonomous system X e has a periodic structure and, as such, it is
asymptotically stable if and only if the transition matrix over one period,
U cl = (I - L dCd) W Fc

( T ,0) , has all its eigenvalues inside the open unit disc (the
simple proof is omitted). According to the terminology of periodic system theory, U cl

is the monodromy matrix of X e and its eigenvalues are called the characteristic
multipliers of X e. It is apparent that the asymptotic stability of the error dynamics X e

is the basic requirement for any observer. In this respect, a su� cient condition for
the existence of a stable observer is provided by the following theorem

Theorem 3: If the system R 0 is observable, then there exists a discrete± continuous
gain pair ( L c(t), L d ), where L c( )́ is T-periodic, such that X e is asymptotically stable.
Moreover, a stabilizing pair is given by

L c(t) = S(t - nT ,t) - 1CT
c , t Î [0, T )

L d = S(0,nT ) - 1CT
d[CdS(0,nT ) - 1CT

d + 1]- 1

where

S(t - nT ,t) = ò
t

t- nT
eAT(t- s ) CT

c CceA(t- s ) ds + å
k+n- 1

k=k

eAT (t- kT )CT
dCdeA(t- kT )

k being the minimum integer such that kT > t - nT.

Proof: See the Appendix. u

Theorem 4: There exists a discrete± continuous gain pair ( L c(t), L d) such that X e is
asymptotically stable i� the triple (A,Cc,Cd) is D-detectable.

Proof: The result is a straightforward consequence of Theorem 3 combined with
canonical decomposition (Proposition 1). u

3. The discrete± continuous ® ltering problem

In this section, the optimal ® ltering problem for systems with discrete± continuous
observations is addressed. Consider the stochastic system

Çx(t) = Ax( t) + Bw(t)

yc(t) = Ccx(t) + vc(t)

yd(k) = Cdx(kT ) + vd(k)

üïï
ýïïþ

(3)

where w( )́ and vc( )́ are continuous-time white noises with unitary intensity and
independent of each other, i.e. E[w(t)w(t + ¿) T]= I d (¿), E[vc(t)vc(t + ¿) T]= I d (¿),
E[w(t)vc(¿)]= 0, " t,¿. The signal vd(k) represents the measurement error of the
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discrete observations and is a discrete-time white noise, independent of w( )́ and
vc( )́ , with var [vd(k)]= I, " k. Finally, the initial condition x(¿) = x¿ is assumed to be
a normally distributed random variable, independent of w( )́,vc( )́,vd( )́ , with
E[x¿]= 0 and var [x¿]= P¿.

A straightforward application of the recursive equations of discrete and
continuous Kalman ® ltering leads to the following expression for the optimal
estimate x̂( )́ minimizing E[(x(t) - x̂(t) ) 2]given all the observations (either discrete
or continuous) up to time t:

Çx̂(t) = Ax̂(t) + Kc(t)[yc(t) - Ccx̂(t)], t /= kT (4 a)

x̂(t+ ) = x̂(t- ) + Kd(k)[yd(k) - Cdx̂(t)], t = kT (4 b)

Kc(t) = P(t)CT
c (5 a)

Kd(k) = P(t)CT
d[CdP(t)CT

d + I]- 1, t = kT (5 b)

where P( )́ satis® es the discrete± continuous Riccati equation (DCRE)

ÇP(t) = AP(t) + P(t)AT + BBT - P(t)CT
c CcP(t) (6 a)

P(t+ ) = P(t- ) - P(t- )CT
d[I + CdP(t- )CT

d ]- 1CdP(t- ), t = kT (6 b)

Hereafter, we will be concerned with the following basic questions

(i) Does the ® lter (4) ± (6) admit a steady-state con® guration?

(ii) Under what conditions is the steady-state ® lter stabilizing?

(iii) Under what conditions is convergence of the generic ® lter (4) ± (6) towards a
stabilizing steady-state con® guration ensured?

The practical signi® cance of the above questions is clear as it is a common
practice in Kalman ® ltering to replace the optimal (time varying) ® lter with a
suboptimal steady-state one. Note that in the present discrete± continuous setting,
the possible steady-state con® gurations are obviously T -periodic.

Given a T -periodic solution ~P( )́ of (6), the periodic ® lter (4) ± (5) is asymptotically
stable i� its monodromy matrix ~Fdc = ~Fd W ~Fc

( T ,0) has all its eigenvalues strictly
inside the unit circle, where

~Fd = I - ~KdCd

~Fc(t) = A - ~Kc(t)Cc

with Kd and Kc as in (5) but with P( )́ replaced by ~P( )́ . When ~Fdc is stable, the T -
periodic solution ~P( )́ is said to be stabilizing.

The ® rst result shows that D-detectability su� ces to ensure the existence of a T -
periodic solution of (6) although stability of the ® lter is not guaranteed.

Theorem 5: Suppose that (A,Cc,Cd) is D-detectable and consider the sequence of
DCLEs

ÇP( i) (t) = F
( i)
c (t)P(t) + P(t)F

( i)
c (t) T + BBT + K

( i)
c (t)K

( i)
c (t) T, t /= kT (7 a)

P( i) (t+ ) = F
( i)
d P(t- )F

( i)T
c + K

( i)
d K

( i)T
d , t = kT (7 b)
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where
F

( i)
c (t) = A - K

( i)
c (t)Cc, i ³ 0

F
( i)
d = I - KdCd, i ³ 0

K
( i)
c (t) = P( i) (t)CT

c , i ³ 1

K
( i)
d = P( T )CT

d[I + CdP( T )CT
d]- 1, i ³ 1

and (K
(o)
c ( )́K

(o)
d ) are chosen so as to ensure the stability of F

(o)
dc . Then the following

hold.

(i) For each i ³ 0, (7) admits a unique real symmetric T-periodic solution.
Moreover, this solution is positive semide® nite and such that F

( i+1)
dc is stable.

(ii) For any t, 0 £ t £ T ,P( i) (t) , as a function of i, is a non-increasing sequence
that, for i ® ¥ , converges to P(t) , where P(t) is a T-periodic solution of the
DCRE.

(iii) P(t) is the maximal T-periodic solution of the DCRE, in the sense that, for any
other T-periodic solution ~P( )́ of (6), it results P(t) ³ ~P(t), " t.

Proof: The proof follows the same rationale as that of Theorem 3 in Bittanti et al.
(1988) where a similar result is proven for the discrete-time periodic Riccati equation.
In the proof, Theorem 4 of section 2.3 is used to show that D-detectability ensures
the existence of the initial gains (K

(o)
c ( )́,K(o)

d ) . The subsequent steps of the proof rely
on extensive use of the discrete± continuous Lyapunov Lemma. u

From point (i) of the above theorem it follows that the closed-loop matrix Fdc

associated with the maximal solution P( )́ has all its eigenvalues inside the closed unit
disc. According to the standard terminology of Riccati equations (Chan et al. 1984,
De Souza et al. 1986), P( )́ is the so-called strong solution of the DCRE (6). An
important connection with the stabilizing solution is clari® ed by the following
lemmas.

Lemma 2: If the stabilizing solution of (6) exists it coincides with the strong and
maximal solution P( )́ of Theorem 5.

Proof: Let ~P( )́ be the periodic stabilizing solution and ( ~Kc( )́, ~Kd) the associated
continuous and discrete gains. Since these gains are stabilizing, Theorem 4
guarantees that the triple (A,Cc,Cd) is D-detectable. Then, the procedure of
Theorem 5 can be applied with initial gains K

(o)
c (t) = ~Kc(t),K(o)

d = ~Kd . It is easily
seen that the iterative scheme converges in one step giving P(t) = ~P(t) so proving the
Lemma. u

Lemma 3: If (A,Cc,Cd) is D-detectable and (A,B) is stabilizable, then any non-
negative de® nite T-periodic solution ~P( )́ of (6) is stabilizing.

Proof: Just rewrite (6) as

Ç~P(t) = ~Fc(t) ~P(t) + ~P(t) ~Fc(t) T + BBT + ~Kc(t) ~Kc(t) T, t /= kT

~P(t+ ) = ~Fd
~P(t- ) ~FT

d + ~Kd
~KT

d , t = kT
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Then, letting

W = ò
T

0
W ~Fc

( T ,¿)[BBT + ~Kc(t) ~Kc(t) T]W ~Fc
( T ,¿) T d¿

one obtains
~P( T + ) = ~Fdc

~P(0+ ) ~FT
dc + ~Kd

~KT
d + ~FdW ~FT

d (8)

which, recalling the T -periodicity of P( )́ , yields the algebraic Lyapunov equation

~P(0+ ) = ~Fdc
~P(0+ ) ~FT

dc + ~Kd
~KT

d + ~Fd W ~FT
d

The stability of ~Fdc is then established by applying the Lyapunov Lemma to the
above equation. In this respect we just need to show that the pair
( ~Fdc, ~Kd

~KT
d + ~Fd W ~FT

d ) is stabilizable. By contradiction, assume that there exist ¸,
with |¸| ³ 1, and x /= 0 such that

~FT
dcx = ¸x (9 a)

~KT
dx = 0 (9 b)

W ~FT
dx = 0 (9 c)

Recalling the de® nition of ~Fdc and ~Fd, from (9 a) and (9 b) it follows that

~FT
c x = 0

Wx = 0

so contradicting the stabilizability of (A,B) . Hence the stabilizability of
( ~Fdc, ~Kd

~KT
d + ~Fd W ~FT

d ) is proven. u

Before stating the main result on the existence and uniqueness of the periodic
® lter, a further technical lemma is still needed.

Lemma 4: Consider the canonical decomposition in observable/unobservable part
given in section 2. If the controllable part of (A,B) is stable, the DCRE (6) admits a
non-negative de® nite T-periodic solution P̂( )́ of the type

P̂(t) = [ 0 0
0 ~P(t) ], " t

where ~P( )́ is the maximal solution of the reduced-order DCRE associated with the
matrices ~A, ~B, ~Cc, ~Cd.

Proof: The proof follows the same rationale of the su� ciency part of Theorem 4 in
Bittanti et al. (1988). u

Theorem 6: The following statements are equivalent.

(i) (A,Cc,Cd) is D-detectable and (A,B) is stabilizable.

(ii) The DCRE admits a unique non-negative de® nite T-periodic solution, which is
also stabilizing.

Proof: (i) Þ (ii) In view of Theorem 5, D-detectability implies the existence of
a non-negative de® nite T -periodic solution P( )́ . Moreover, by Lemma 3, P( )́ is
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stabilizing. Assume now, by contradiction, that there exists another T-periodic non-
negative de® nite solution ~P( )́ . Then, some computations show that

[P( T ) - ~P( T )]= Fdc[P(0) - ~P(0)]~Fdc (10)

where Fdc and ~Fdc are the closed-loop monodromy matrices associated with P( )́ and
~P( )́ respectively. In view of Lemma 3, also ~Fdc has all its eigenvalues strictly inside
the unit circle. Then, by T -periodicity of P( )́ and ~P( )́ , (10) implies P(0) = ~P(0) so
that P(t) = ~P(t), " t.

(ii) Þ (i) The proof is similar to the necessity part of Theorem 6 in Bittanti et
al. (1988). u

Before addressing the issue of convergence, it is useful to recall the statement of
the extended Lyapunov Lemma for time-varying systems.

Lemma 5 Ð Time-varying Lyapunov Lemma (Anderson and Moore 1981): L et P( )́
be a bounded solution of the discrete L yapunov equation

P(k + 1) = F(k)P(k)F(k) T + Q(k), k ³ 0

where F( )́ and Q( )́ are bounded time-varying matrix functions. If the pair (F( )́,Q( )́ )
is uniformly stabilizable, then F( )́ is exponentially stable.

Theorem 7 Ð Global convergence of the optimal ® lter: If (A,Cc,Cd) is D-detectable
and (A,B) is stabilizable then the non-negative de® nite T-periodic stabilizing solution is
a global attractor for the non-negative de® nite solutions, i.e. given any non-negative
de® nite T-periodic solution ~P( )́ it results

lim
t ® ¥

~P(t) - P( t) = 0

Proof: Using the same rationale leading to (8) one can show that

P( (k + 1) T + ) = Fdc(k)P(kT + )Fdc(k) T + Kd(k)Kd(k) T + Fd(k) W (k)Fd(k) T (11)

where

Fd(k) = I- Kd(k)Cd, Fdc(k) = Fd(k+1) W Fc
( (k+1) T - ,kT + ), Fc(k) = A- Kc(k)Cc

and

W (k) = ò
(k+1) T

kT
W Fc( (k + 1) T ,¿)[BBT + Kc(t)Kc(t) T]W Fc( (k + 1) T ,¿) T d¿

The ® rst step is proving the exponential stability of Fdc( )́ by applying the time-
varying Lyapunov Lemma to (11). To this aim we need to show that the pair
Fdc( )́,Kd( )́Kd( )́ T + Fd( )́ W ( )́Fd( )́ T) is uniformly stabilizable. First, note that
stabilizability of (A,B) implies the stabilizability of the discrete-time pair
( W Fc

( (k + 1) T ,kT + ), W (k) ) . Indeed, the stabilizability of such a discrete-time pair
is equivalent to that of the continuous-time pair (Fc( )́,[B Kc( )́]) which easily
follows from the stabilizability of (A,B) . In turn, the stabilizability of
( W Fc

( (k + 1) T ,kT + ), W (k)) implies that of (Fdc( )́,Kd( )́Kd( )́ T + Fd( )́ W ( )́Fd( )́ T) .
Indeed, letting K( )́ be such that ( W Fc

( (k + 1) T ,kT + ) - W (k) 1 /2K(k) ) is stable, it
is not di� cult to verify that

~K(k) = [- K(k) T ( W Fc
( (k + 1) T - ,kT + ) - W (k) 1 /2K(k) ) TCT

d]T
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is such that (Fdc(k) + [Fd(k) W (k) 1 /2 Kd(k)]~K(k) ) is stable. Hence, exponential
stability of Fdc( )́ follows.

Now, letting P( )́ denote a generic solution of the DCRE, it can be seen that

[P( (k + 1) T + ) - P( (k + 1) T + )]= Fdc(k)[P(kT - ) - P(kT - )]Fdc(k)

where P( )́ is the unique non-negative de® nite T -periodic solution. Observing that
both Fdc( )́ and Fdc( )́ are exponentially stable it follows that

lim
t® ¥ P(kT - ) - P(kT - ) = 0

and the thesis follows. u

4. Numerical example

In this section the results on discrete± continuous ® ltering are illustrated by means
of a simple example. Consider a tank containing a mixture of two (incompressible)
liquids A and B. The ¯ ows uA and uB are the control variables and the masses
contained in the tank are denoted by mA and mB respectively:

ÇmA = uA

ÇmB = uB{
It is assumed that measurements of the total mass mA + mB are available in
continuous time (by a level sensor, for instance) while mA is measured only at the
discrete instants tj = jT (by concentration analysis, for instance). Hence, the
continuous and discrete measurements are

yc(t) = mA (t) + mB(t)

yd( j) = mA ( jT ){
Taking into account the process noise w( )́ and the measurement noises vc( )́ and
vd( )́, the overall model is

Çx(t) = Ax(t) + Bw(t) + Gu(t)

yc(t) = Ccx(t) + vc(t)

yd( j) = Cdx( jT ) + vd( j)

ìïï
íïïî

A = [ 0 0
0 0 ], G = I, B = I

Cc = [1 1], Cd = [1 0]
In the example, the continuous-time white noise w( )́ has unitary intensity, vc( )́ has
an intensity equal to 0.1 while the discrete-time white noise vd( )́ has unit variance.
The process noise w( )́ may account for unmodelled disturbances as well as actuation
errors. Note that neither the continuous pair (A,Cc) nor the discrete one (eAT ,Cd) is
observable. Nevertheless, the triple (A,Cc,Cd) is D-observable so that the results of
the paper can be applied.

The discrete± continuous steady-state Kalman ® lter has been designed assuming
that the sampling period of the discrete observations is T = 0.5. The time pro® les of
the two entries of the periodic continuous-time gain Kc( )́ are depicted in ® gure 1(A).
In ® gures 1(B)± (D) the time pro® les of the solutions P( )́ of the DCRE (6) starting
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with initial conditions P(0) = 0 and P(0) = I are plotted together with the (unique)
steady-state periodic solution ~P( )́ (panel B, entry (1, 1); panel C, entry (1, 2); panel
D, entry (2, 2)). As predicted by Theorem 7, the periodic solution asymptotically
attracts the other two solutions. Note also the typical sawtooth patterns. Indeed, as
soon as they become available, the discrete measurements produce an instantaneous
jump of the error covariance matrix P( )́ .

5. Conclusions

Filtering problems where one must optimally combine discrete and continuous
observations have been considered. In this context, a thorough analysis concerning
su� cient and necessary conditions for the existence of stable ® lters and their
attractiveness properties was not available. The main results of the paper are as
follows. (i) The modal and Grammian characterization of observability and
detectability for systems with discrete and continuous outputs (Theorem 1). (ii)
The proof that detectability is equivalent to the existence of a stable discrete±
continuous observer (Theorem 4). (iii) A necessary and su� cient condition for the
existence of a unique periodic ® lter which is also stable (Theorem 6). (iv) The proof
that such a steady-state ® lter is globally attractive for all other optimal ® lters
irrespective of their initial state-covariance (Theorem 7).
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Figure 1. Numerical example (section 4). Panel A time pro® le of the two entries of the
steady-state continuous gain matrix. Panels B± D time pro® les of the entries of the solu-
tions P( )́ of the DCRE (6) with initial conditions P(0) = 0 and P(0) = I (continuous).
For comparison, the steady-state periodic solutions ~P( )́ are also reported (chain curves).



Appendix

Proof of Lemma 1: (ii) Þ (i). Without loss of generality one can assume ¿ ³ 0.
Letting x(¿) = eA¿v, it is easy to see that (i) follows.

(i) Þ (ii). Due to periodicity, without loss of generality one can assume ¿ £ 0.
For the sake of simplicity, it is assumed that A has n distinct eigenvalues:

Avi = q ivi, vi /= 0, q i Î C1

Then, there always exist n complex numbers a i, i = 1, . . . ,n such that

x(0) = e- A¿x(¿) = å
n

i=1
a ivi

Since the coe� cients a i cannot be all equal to zero, there is no loss of generality in
assuming a 1 /= 0. Now, yc(t) = 0,t ³ ¿, implies Ccx(t) = 0,t ³ 0 or equivalently

Cce
At å

n

i=1
a ivi = å

n

i=1

e q it a i b i = 0, t ³ 0

where b i =def
Ccvi . Then a 1 /= 0 obviously implies b 1 = Ccv1 = 0. Moreover,

Cdx(kT ) = 0,k ³ 0, implies

CdeAkT å
n

i=1
a ivi = å

n

i=1
ekvi T a i g i, k ³ 0

where g i =def
Cdvi . Then a 1 /= 0 implies g 1 = Cdv1 = 0. Hence,

Av1 = q 1v1, v1 /= 0

Ccv1 = 0

Cdv1 = 0

ìïï
íïïî

Recalling that eAtv1 = e q 1tv1, (ii) follows just by letting v = v1 and ¸ = e q 1T .

(iii) Þ (ii). If (eAT Wo(0, T ) + CT
dCd) is unobservable there exists w /= 0 such

that
eAT w = q w, q Î C1

( Wo(0, T ) + CdCT
d )w = 0{

Then it follows that
Wo(0, T )w = 0

Cdw = 0{
or also

CceAtw = 0, t Î [0, T )

Cdw = 0{
Letting v = w, (ii) follows.

(ii) Þ (iii). Just let w = v and reverse the above rationale. u
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Proof of Theorem 3: For the sake of convenience, the proof is carried out for the
dual system R c. More precisely, assuming R c reachable, we show that the discrete-
continuous control law uc(t) = Kc(t)x(t),ud(k) = Kdx(kT - ) ) is stabilizing, where

Kc(t) = - BT
c S(t,t + nT ) - 1, t Î (0, T]

Kd = - [BT
d S(0,nT ) - 1Bd + I]- 1BT

dS(0,nT ) - 1

and

S(t,t + nT ) = ò
t+nT

t
eA( t- s )BcBT

c eAT ( t- s ) ds + å
k+n- 1

k=k

eA( t- kT )BdBT
deAT (t- kT )

k being the minimum integer such that kT ³ t.
It can be seen that the reachability assumption guarantees that the reachability

Grammian S(t, t + nT ) is positive de® nite (in general, the reachability Grammian
over n periods of any reachable periodic system is nonsingular (Bittanti 1986)), so
that Kc( )́ and Kd are well de® ned.

Now, letting x(t0) = x, de® ne the function

V (x,t0,tf ) = min
{uc( )́ ,ud( )́}{ ò

tf

t0
uc( s ) Tuc( s ) ds + å

k2

k=k1

uT
d (k)ud(k)} (A 1)

subject to R c and x(tf ) = 0, where k1 is the minimum integer such that k1 T ³ t0 and
k2 is the maximum integer such that k2 T < tf .

Denoting by {uÊc ( )́,uÊd( )́} the optimal solution of (A 1) when tf = t0 + nT , it
turns out that uÊc(t0) = Kc(t0)x and, for t0 = kT ,uÊd(k) = Kdx(kT ) . For given t0 and
tf , V (x,t0,tf ) is a quadratic function of x, i.e. there exists P = PT ³ 0 such that

V (x,t0,tf ) = xTPx, " x

Let the pair (Fc(t),Fd) , where Fc(t) = A + BcKc(t) and Fd = I + BdKd, denote the
discrete± continuous closed-loop dynamics. Moreover let W F(t0 + T ,t0) denote the
transition matrix of the closed-loop dynamics over one period, i.e.

W F(t0 + T ,t0) = W Fc(t0 + T ,t0) (I + BdKd)

where W Fc(t0 + T , t0) is the transition matrix of Fc( )́ , if t0 = kT , for some k;
otherwise

W F(t0 + T ,t0) = W Fc(t0 + T ,kT ) (I + BdKd) W Fc(kT , t0)

if t0 <kT < t0 + T , for some k.
The stability of (Fc( )́,Fd) will be proven by using P as a Lyapunov function.

More precisely, using the same arguments as in (De Nicolao and Strada 1977), it can
be shown that

V (x,t0,tf ) ³ V ( W F(t0 + T ,t0)x,t0 + T , tf + T )

which implies
P = W F(t0 + T ,t0) TPW F(t0 + T ,t0) + Q

for some non-negative de® nite Q. Following the same rationale as in De Nicolao and
Strada (1997), one can show that the pair ( W F(t0 + T ,t0),Q) is reconstructible so
that, by the Lyapunov Lemma, all the eigenvalues of W F(t0 + T ,t0) belong to the
open unit disc. u
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