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Abstract—Empathy is a fundamental mechanism of human
interactions. As such, it should be an integral part of Human-
Computer Interaction systems to make them more relatable.
With this work, we focused on conversational scenarios where
integrating empathy is crucial to perceive the computer as a
human. As a result, we derived the high-level architecture of an
Empathetic Conversational Agent we are willing to implement.
We relied on theories about artificial empathy to derive the
function approximating this mechanism, and selected the con-
versational aspects to control for an empathetic interaction. In
particular, a core empathetic controller manages the empathetic
responses, predicting, at each turn, the high-level content of the
response. The derived architecture integrates empathy in a task-
agnostic manner, hence we can employ it in multiple scenarios
by changing the objective of the controller.

Index Terms—Empathetic Computing, Conversational Agents,
Deep Learning

I. INTRODUCTION

Empathy is the ability of human beings to relate another’s
inner state [1]. What is perceived can be organised in a
hierarchy of aspects, from a physical level to more abstract
ones. Emotion is one of the crucial aspects related to empathy;
for this reason, affective computing theory suggested that we
should provide computers with the ability to perceive and
display emotions. In this way, they appear to be “genuinely
intelligent” and interact naturally with humans [2].

Natural Language Processing (NLP) has been focusing for
a long time on the topic of Conversational Agents (CAs) and
on techniques to make them as human-like as possible. As a
result, in the last years, there has been a rising interest towards
Empathetic CAs (ECAs).

However, the models proposed up to now mostly focus only
on the emotional aspect [3], [4] while empathy is a more
complex phenomenon. Moreover, voice is rarely treated while,
in our opinion, it is essential to make ECAs more relatable.
On this basis, we argued that considering all the aspects of
empathy, and including voice as an essential component, would
have helped improving ECA capabilities.

With this work, we introduce the architecture of a data-driven
generative ECA, for task-driven Human-Computer Interaction
(HCI). With our architecture, we extend the classic modules of
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a CA [5] to include an empathetic controller. This controller
works on high-level dialogue attributes related to empathy;
depending on what is perceived from the history of dialogue
turns, it prescribes the empathetic content of its response,
to complete a given task. The architecture we propose is
completely modular and task-agnostic.

The rest of the paper is organised as follows. In Section II
we present recent solutions in terms of CAs and artificial
empathy models. In Section III we describe the modules of our
architecture. In Section IV we present the components we’re
going to employ to build our CA, as well as a brief integration
plan. Finally, in Section V we sum up our work.

II. RELATED WORKS

The agent we have proposed relies on two strong back-
grounds. On one side, there are the data-driven CAs; on the
other one, the models for artificial empathy.

A. Generative Data-Driven CAs

In the last years, generative CAs for open-domain conversa-
tions have begun to gain a lot of interest thanks to the advanced
text generation capabilities of Deep Learning models [6], in
particular generative systems, which provide more flexibility
and adaptivity in the prediction of the response. Up to now,
generative solutions have rarely been used for task-oriented
dialogues since there weren’t ways of controlling the CA
responses in an effective way without training on a specific
data set. Instead, our proposal tries to adopt a generative model
in task-oriented dialogues.

Auto-regressive SEQ2SEQ models [7] based on Transformer
[8] architectures currently provide the best solutions for
text generation. Thanks to language model pre-training these
networks start from a very representative initialization that eases
the learning of the conversational capabilities. The resulting
CAs can be fine-tuned to include particular functionalities like
knowledge or emotional grounding and persona consistency.
However, current CAs mostly focus on text; voice, if present,
is treated by connecting a generic Text-toSpeech (TTS) to the
CA textual output. Summing up, these systems provide very
good text generation but do not consider empathy at all.



ASR

AFE

DM

TFE

VC

TTS

TC

NLG

EC

MMFE

DAD

DAE

Input
speech

Output
speech

NLU

GC

DH

DAH

Fig. 1. Modular architecture of the proposed ECA.

Most of the empathetic dialogue systems, on the other hand,
focus on rule-based or scripted approaches [9], limiting the
expressiveness during the interaction.

With the architecture we have designed, we aimed at dealing
with these two problems and cast empathy into task-oriented
conversations.

B. Artificial empathy

Recent studies in HCI attempted to formalise empathy for
the specific purpose of conversation [1]. The most credited
models in this sense are the multi-layered ones. In particular,
the Asada’s model, appears to be most complete one [10].

This model decomposes empathy along two orthogonal
dimensions: the consciousness level and the abstraction levels.

The abstraction levels are controlled by means of the
following dialogic attributes (vocal and/or textual). From the
physical (i.e., vocal) level, we considered attributes like speech
rate and prominence. At the intermediate, emotional, level
we have attributes that depend on both voice and semantic
content, like emotion or sentiment. Finally, at the mental level
we consider attributes that can be seen only through the text,
like dialogue act or conversation topic.

Different kinds of consciousness lead to different empathetic
responses, perceivable from the dialogue attributes. Thus, in
order to include such dimension, our model identifies emotional
contagion, affective and cognitive empathy and sympathy and
compassion.

III. ARCHITECTURE OF AN ECA

The core architecture we propose, represented in Figure 1,
relies on a generative data-driven CA. The classic CA taxonomy
locates this kind of agents into the open domain CA group
[5]. Through the introduction of conditioning modules in the
text and speech generation processes, and by means of the
EC prescribing the desired output attributes, it is possible to
cast this architecture for task-oriented conversations. We also
introduce empathy by means of a peculiar controller, which
works on specific attributes.

A. Core modules

The core CA, represented in blue in Figure 1, is composed of
the following modules [5]: the Automatic Speech Recognition

(ASR) system converts the spoken input to text; the Natural
Language Understanding (NLU), is the component responsible
for the understanding of the meaning of the sentence; the
Dialogue Manager (DM) controls the structure of the dialogue
and maintains the Dialogue History (DH), leveraging the NLU
and generating the response (in our case, considering the
prescription of the empathetic controller); the Natural Language
Generation (NLG) chooses syntactic structures and words to
render the meaning of the response; finally, the Text-To-Speech
(TTS) synthesis system converts the generated textual response
into a speech waveform.

B. Input analysis modules

The input analysis modules, represented in orange in
Figure 1, encompass all the components necessary to extract
the high-level attributes of an utterance. The Acoustic Features
Extractor (AFE) given the raw speech input, computes the
features useful to derive the high-level descriptors of the voice
pronouncing the utterance. The Textual Features Extractor
(TFE) given the raw text input, computes the features useful to
derive the high-level descriptors of the utterance transcription.
The Multi-Modal Features Extractor (MMFE) module takes
care of combining the acoustic and textual features to ease
the extraction of descriptors that influence both linguistic and
para-linguistic aspects.

C. Output conditioning modules

The output conditioning modules, represented in green in
Figure 1, are the components to be paired with the text and
voice generators. They force the response to stick to the
controller’s prescriptions. The Text Conditioning (TC) module
guides the decoding of the response from the NLG given the
desired high-level descriptors of the output text. The Voice
Conditioning (VC) module guides the synthesis of voice from
the TTS given the desired high-level descriptors of the output
voice. The Global Context (GC) module holds what we refer to
as the invariant information of the conversation (e.g. speaker
persona and voice timbre). We encode the information within
the GC into a continuous embedding representation.

D. Empathetic control modules

The empathetic control modules, represented in red in
Figure 1, are the components responsible for modelling
empathy. The Dialogue Attributes Decoder (DAD) takes care
of projecting the continuous representation given by the
extracted features into a discrete representation. The Empathetic
Controller (EC) is the core of the ECA; it’s the component
responsible for selecting the empathetic response to perform a
given task. To serve its purpose, the EC decides the output of
the current response based on the dialogue inner state as well
as the Dialogue Attribute History (DAH) and the GC.

The Dialogue Attributes Encoder (DAE) module provides
the opposite function of the DAD. Starting from the discrete
attributes predicted by the DAD, the EC projects them into a
continuous embedding space. We plan to use these continuous
representations to control the response generation.



IV. DEVELOPMENT APPROACH

Given the impressive results of Deep Learning models in
various NLP tasks, we decided to resort to this framework for
all the components of the ECA. In the following, we describe
the architectures we selected to implement the ECA modules.
Additionally, to conclude, we provide a brief description of
the implementation steps.

A. Core modules

The five core CA modules yielded the selection of three
separate networks to provide the core dialogue capabilities.
We decided to realise the core text-to-text chatbot through a
Transformer network. An end-to-end ASR can be attached in
input providing the transcription. Similarly, an end-to-end TTS
can take the raw text output to pronounce the the response.

NLU, DM (with the DH) and NLG can be all incorporated
into a single network, and still provide their functionalities
separately. As it has become a common practice nowadays, we
decided to fine-tune a Transformer language model since they
provide impressive results in terms of text input analysis and
output generation.

In particular, we are interested in Causal Transformer
models, since they’ve already shown to be compatible with
(conditional) dialogue response generation [6]. Additionally, to
cope with the common problem of the degradation of long term
dialogue information, we have decided to resort to a variant
called Compressive Transformer [11], which explicitly model
a compression function for past tokens to deal with long-range
sequences.

For the ASR we considered many choices since there are
many networks capable of good accuracy. Among these, we
selected Wav2Vec [12], as currently it provides the best results.

For the output voice generation, we have opted for a
composition of two networks. The former is the network
generating the initial (Mel) spectrogram of the output signal
(starting from graphemes or phonemes), we selected Tacotron
[13]. The latter, called vocoder, is used to refine the raw output
signal. For this second network, we have selected WaveNet
[14], since it allows for control over speaker voice timbre.

B. Input analysis modules

Input analysis modules are feature extraction networks.
For the separate input modalities, we decided to rely on
transfer learning from pre-trained networks. These input
representations can be further refined by means of additional
hidden transformations to build the classification or regression
models needed to extract the dialog attributes. Similarly, for
the MMFE, additional hidden transformations could merge the
separate feature vectors coming from voice and text.

For TFE we adopted contextual embeddings, as they reached
state-of-the-art performances in many NLP tasks [15]. For this
purpose, we can re-use the pre-trained compressive Transformer
language model from the core CA.

For AFE we decided to adopt deep convolutional neural
networks. In particular, we considered two alternative feature

extraction networks that both proved to be useful for voice
analysis: VGGish [16] and SoundNet [17].

C. Output conditioning modules

Output conditioning modules permit to control empathetic
dialogue attributes. We introduced one module for text control
and one for voice control; additionally, there’s a module hosting
dialogue invariants, encoded in a continuous representation.

For TC we decided to implement a Plug and Play Language
Model (PPLM) [18]. The key feature of this model is that
it allows to introduce conditioning in text generation without
modifying the neural generator and considering also different
attributes at the same time.

Differently from the text, speech synthesis has a smaller
pool of conditioning solution. The main approach is to pre-
train the generator and then separately learn conditioning on
embeddings representing the desired attributes [19]. This is
the solution we decided to follow for the VC. Additionally, to
further refine speech synthesis, we considered augmenting the
text to be pronounced with prosodic clues (predicted by the
empathetic controller) [20] useful, for example, for putting the
focus on specific words.

The GC module, instead, holds the embeddings of invariant
information. For text generation, it encodes the representation
of the speaker and addressee persona, which are known to be
useful for contextual consistency [6]. For voice generation, GC
encodes the representation of the speaker’s timbre, employed
by the TTS to ensure a constant (and selectable) output voice.

D. Empathetic controller

Thanks to the modular architecture, it is possible to design
the core EC either in a model-driven or a data-driven way.
Since we were interested in data-driven approaches, and
particularly Deep Learning ones, we decided to resort to Deep
Reinforcement Learning. The controller can be trained through
either policy or value algorithms [21] (usually, policy-based
algorithms suffer from high variability but working on high-
level attributes helps to cope with this problem [22]. To learn
the control function, we considered the two main algorithms
employed in conversational tasks: REINFORCE [23] (for policy
learning) and DQN [24] (for value learning).

Either way, we need to model the policy function to structure
the whole empathetic response according to the model of
artificial empathy we are considering; in particular, Equation (1)
shows how we represent empathy in the policy function of
the reinforcement learning agent. The status s of the Markov
Decision Process is described by the context c, representing
the DAH, and the current inner status of the ECA, given by
emotional contagion response πc and the affective and cognitive
empathy response πe.

We modelled πc as an identity function on the input attributes
(the ones compatible with an identity response); in other words,
at this level the ECA tries to “stay in sync” with the emotion of
the user. We modelled πe as a supervised policy function, learn
from large conversational corpora. At this level the ECA tries
to manipulate its empathetic response as humans usually do



during generic conversations. At this point, the response is still
not aimed for a specific task, it should show understanding of
the dialogue content. The sympathy and compassion response
πσ selects the behaviour, depending on the task.

πσ = πσ(s) = πσ(πu, πe|c) (1)

We composed DAD of a set of classifiers and regressors,
designed to extract the discrete empathetic attributes of a
dialogue turn. The DAH stores the sequence of attributes of
each turn: the sequence used as context by the controller to
predict the response. DAE is instead an embedding model,
responsible for encoding the sparse and discrete response of
the EC into a continuous embedding space. We considered
to obtain this last transformation through a function learnt
contextually to the conditioning of the output response.

E. Implementation steps

In order to implement the ECA, the idea is to start from a
core text-only chatbot, augmenting it with feature extraction
and conditioning modules. Then, a first partial version of the
controller can be attached. Voice modules can be added on
top of this prototype, together with their feature extraction and
conditioning modules. Finally, the last part of the controller can
be developed. In this way we can estimate the performances
of the various components as soon as we integrate them.

For what concerns the data sets for training the various
module, we divided them into two groups: generic and labelled.
The former identifies dialogue and speech corpora used to train
the core components, they do not require any additional info,
only the raw input and output sequences. The latter requires
specific labels since they will be used to train both the modules
to identify the attributes and condition on them. Thanks to
the modular architecture, we do not require a parallel audio-
text corpus for training. For the textual part, there exist many
data sets of both kinds [25], while to train the voice-related
modules labelled data sets are rarer or contain fewer samples.
However, some of the information from speech can be extracted
automatically, like speech rate or word prominence.

V. CONCLUSIONS

In this paper, we have presented a possible architecture for
a fully data-driven ECA. We have detailed the modules com-
posing the CA and provided suggestions on the development
steps. Finally, we have presented the integration steps we are
willing to follow to deploy the ECA. In the future, we are
willing to deploy the ECA in conversational scenarios where
a more empathetic behaviour is expected from an automatic
agent, like automatic psychotherapy sessions. Thanks to the
proposed modular architecture, the only piece that would need
to be substituted among the different tasks is the core EC.
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