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Abstract Deep-space optical navigation is among the most promising tech-

niques to autonomously estimate the position of a spacecraft in deep space.

The method relies on the acquisition of the line-of-sight directions to a num-

ber of navigation beacons. The position knowledge depends upon the tracked

objects. This paper elaborates on the impact of the observation geometry to

the overall performances of the method. A covariance analysis is carried out

considering beacons geometry as well as pointing and input errors. A perfor-

mance index is formulated, and criteria for an optimal beacons selection are

derived in a scenario involving two measurements. A test case introducing

ten available beacons pairs is used to prove the effectiveness of the developed

strategy in selecting the optimal pair, which leads to the smallest achievable

error.

Keywords Autonomous Navigation, Optimal Beacons Selection

V. Franzese
*Corresponding author
PhD Candidate, Dept. of Aerospace Science and Technology,
Politecnico di Milano, Via La Masa 34, 20156, Milan, Italy
E-mail: vittorio.franzese@polimi.it

F. Topputo
Associate Professor, Dept. of Aerospace Science and Technology,
Politecnico di Milano, Via La Masa 34, 20156, Milan, Italy,
E-mail: francesco.topputo@polimi.it



2 V. Franzese*, F. Topputo

1 Introduction

The state of the art for spacecraft navigation is radiometric tracking [24]. The

accuracy of the orbit determination solution lies in the order of meters in near-

Earth environment whereas it is in the order of kilometers in deep space. This

method yields the lowest error achievable with current technology, though it

requires persistent contact with ground. Moreover, in two-way communication

the orbit determination is performed on ground as well. All in all, radiometric-

based orbit determination involves a consistent allocation of resources and

assets.

Automation is required for next-generation missions [19]. There is an incoming

wave of miniaturized interplanetary probes [18]: the European Space Agency

(ESA) has funded several interplanetary CubeSat mission studies like M-

ARGO (Miniaturized Asteroid Remote Geophysical Observer) [26], LUMIO

(Lunar Meteoroid Impacts Observer) [25,22,7], VMMO (Lunar Volatile and

Mineralogy Mapping) [12], and CubeSats along the Hera mission [14]; the

National Aeronautics and Space Administration (NASA) funded 19 SmallSat

deep-space mission studies after Mars Cube One (MarCO) [11], the first in-

terplanetary CubeSat launched along with InSight (Interior Exploration using

Seismic Investigations, Geodesy, and Heat Transport) mission.

Interplanetary CubeSats missions are on the verge of becoming prosperous.

Yet, their overall cost scales with the system mass, except for operations [26].

There is therefore the need to reduce operation costs, in particular for what

concerns flight-related operations, which are performed incessantly during the

entire lifetime. In the field of navigation, the key is to enable autonomous

positioning by inferring information from the surrounding environment. Au-

tonomous navigation for deep space missions is thus desirable, in particular

for small mission classes.

Navigation schemes are used to determine a spacecraft position, state, or or-

bit by exploiting some kind of measurements [20]. The navigation with X-ray

pulsars compares an incoming pulsar signal to the one predicted in the So-

lar System Barycenter (SSB) to compute the time-of-arrival difference, thus

estimating the range between the spacecraft and the SSB [21,1]. The horizon-

based navigation exploits the apparent full-disk of known spherical or nearly

ellipsoidal bodies and the attitude knowledge to estimate the spacecraft posi-
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tion vector relative to the body [8,16,9,6,4,5]. In deep space, the line-of-sight

(LOS) navigation using visible objects exploits the LOS to some bodies for

which ephemerides are known to infer the spacecraft position [15,10]. In the

frame of the latter method, the error depends on the observation geometry. In

particular, since LOS measurements to a pair of celestial bodies are needed to

triangulate, questions arise when more than two objects are visible.

Inspired by the LOS navigation mechanism, this work elaborates on the im-

pact of the observation geometry to the overall performances of the method.

The aim is to derive the theoretical optimal pair of celestial objects to be

tracked as function of a spacecraft trajectory that yields the highest accuracy

in the navigation solution. Thus, a real mission scenario including the camera

characteristics like the field-of-view and visibility performances is neglected.

A covariance analysis is carried out considering beacons geometry as well as

pointing and input errors. The optimal pair of beacons stem from the solu-

tion of a combinatorial optimization problem. The validity of the approach is

discussed by virtue of a test case involving ten available beacons pairs, out of

which the optimal pairs are extracted, so yielding to the smallest achievable

error. This work complements the results in [2], where similar results were

found.

The remainder of the paper is organized as follows. The navigation problem

is described in Section 2, the covariance of the navigation solution is derived

in Section 3, and the selection criteria is elaborated in Section 4. A test case

is discussed in Section 5, whereas final remarks are given in Section 6.

2 The navigation problem

The geometry of a spacecraft that observes two objects in deep-space is shown

in Fig. 1. The spacecraft position vector at a given epoch and in a given inertial

reference frame is denoted as r, which is unknown. The objects positions at

the same epoch and in the same frame are denoted as r1 and r2. The relative

position vectors of the objects with respect to the observer are denoted as ρ1

and ρ2. The problem is to estimate r by acquiring the LOS directions to the

bodies, ρ̂1 and ρ̂2, assuming their ephemeris known; that is, r1(t) and r2(t)

are known at any time.
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Fig. 1: Line-of-sight navigation exploiting two navigation beacons.

2.1 Solution with exact data

The optical navigation problem with synchronous measurements of two bea-

cons can be solved algebraically. For each object, let ρ = ρρ̂, ρ and ρ̂ being the

ranges and the unitary LOS directions, respectively. The latter are assumed

exact for now. The ranges ρ1,2 to the observed objects can be determined as

follows.

From Fig. 1, the observer position can be written as [10]:

r = r1 − ρ1 ρ̂1 or r = r2 − ρ2 ρ̂2 (1)

which leads to

r1 − ρ1 ρ̂1 = r2 − ρ2 ρ̂2 (2)

The scalar product of Eq. (2) by ρ̂1 and ρ̂2, respectively, yields

ρ̂>1 r1 − ρ1 ρ̂>1 ρ̂1 = ρ̂>1 r2 − ρ2 ρ̂>1 ρ̂2

ρ̂>2 r1 − ρ1 ρ̂>2 ρ̂1 = ρ̂>2 r2 − ρ2 ρ̂>2 ρ̂2
(3)

Keeping in mind that ρ̂>1 ρ̂1 = ρ̂>2 ρ̂2 = 1, and rearranging Eq. (3), the follow-

ing matrix form can be obtained[
1 −ρ̂>1 ρ̂2

−ρ̂>2 ρ̂1 1

]
︸ ︷︷ ︸

A

[
ρ1
ρ2

]
︸︷︷︸

x

=

[
ρ̂>1 (r1 − r2)
ρ̂>2 (r2 − r1)

]
︸ ︷︷ ︸

b

(4)

Eq. (4) is in the form Ax = b, where the geometry matrix A and the input

vector b are both known: ρ̂1,2 are measured directly using star trackers and

r1,2 are read from ephemeris look-up tables stored on board. The system can

be solved for the unknown x = [ρ1, ρ2]>; that is, x = A−1 b. Assuming a

perfect measurement (so no errors coming from the sensors), the solution x is
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exact. The spacecraft position r is in turn known as well, by using any of Eqs.

(1).

However, even under the assumption of exact measurements, the accuracy of

the method depends upon the angle between the two LOS directions. Let γ be

the angle between the two observed beacons, ρ̂>1 ρ̂2 = cos γ, then the geometry

matrix can be rewritten as

A =

[
1 − cos γ

− cos γ 1

]
(5)

Note that the determinant of A is

detA = 1− cos2 γ = sin2 γ (6)

Thus, the matrix A becomes singular for γ = {0, π} (note that γ is known

modulo π). The celestial triangulation is singular when the spacecraft and

the two observed objects lie on the same line. On the contrary, detA = 1 for

γ = π/2 and A becomes the identity matrix, so that x = b.

The same conclusions can be drawn by checking the condition number of A,

denoted as κ(A), defined as the ratio of the largest and the smallest singular

values of A (σmax and σmin, respectively), that is

κ(A) =
σmax(A)

σmin(A)
(7)

Note that, for a symmetric matrix, the singular values are equal to the absolute

values of the eigenvalues. For A in Eq. (5), the eigenvalues are easily found to

be

λ1 = 1 + cos γ λ2 = 1− cos γ (8)

Note that λ1 and λ2 are always non-negative. Thus, for the computation of

κ, σmax(A) = max{λ1, λ2}, while σmin(A) = min{λ1, λ2}. Figure 2 shows

the condition number of the geometry matrix A as function of γ. For values

of γ approaching 0 or π the problem becomes ill-conditioned (detA → 0,

κ(A) → +∞), while for values of γ approaching π/2 the problem becomes

well-conditioned (detA → 1, κ(A) → 1). Thus, the best posedness of the

problem is achieved when the two LOS directions are orthogonal.



6 V. Franzese*, F. Topputo

0 45 90 135 180
100

102

104

106

Fig. 2: Condition number of the geometry matrix A as function of γ.

2.2 A simple test case

A simple test case is now considered. A spacecraft is assumed to be on an

heliocentric orbit (Fig. 3) whose orbital parameters on the 1st January 2020

are shown in Table 1, where a is the semi-major axis, e the eccentricity, i the

inclination, ω the pericenter anomaly, Ω the right ascension of the ascending

node, and ν the true anomaly. The values of these parameters have been chosen

arbitrarily. During the trajectory, the spacecraft acquires the LOS directions

to two beacons, namely the Earth and Mars, without any error associated to

the measurements. The planets’ trajectories are assumed known and exact.

The ideal optical navigation problem can then be solved.

-2 -1 0 1 2
-2

-1

0

1

2

Earth

Spacecraft

Mars

Venus

Mercury

Fig. 3: Spacecraft and planets orbits.

In top plot of Fig. 4, the angle γ is shown as function of the epoch, whereas in

the bottom plot the position error norm (left y-axis) and the condition number

κ (right y-axis) are reported. The position error is computed as the best case

difference between the spacecraft real positions and the spacecraft estimated
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Table 1: Spacecraft heliocentric orbital parameters.

a [AU] e [-] i [deg] ω [deg] Ω [deg] ν [deg] Epoch

1.23276 0.50038 25.58506 48.98111 1.23296 129.78597 01 Jan 2020

0

90

180

7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

10-9

10-6

10-3

100

100

104

108

1012

Fig. 4: Angle between beacons γ, position error norm δr, and condition number
κ.

positions. Thus,

δr = min{‖r − (r1 − ρ1 ρ̂1)‖, ‖r − (r2 − ρ2 ρ̂2)‖} (9)

where

ρ1 = h1A
−1b, ρ2 = h2A

−1b (10)

and h1 = [1 0], h2 = [0 1].

Inspection of Fig. 4 suggests that under the ideal assumption that the LOS

measurements are exact the error in position is always below the meter. Nev-

ertheless, the dependency of the error on γ is clear, since the accuracy of the

method for γ = 90 deg is in the order of 10−8 km, while the accuracy for γ = 0

or 180 deg is in the order of 10−3 km. Thus, there is a difference of 5 orders of

magnitude in position accuracy albeit with ideal measurements. This feature

is ascribable to the geometry. It is remarkable to note that, as expected, δr

and κ follow the same trend as function of γ.
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2.3 Test case with LOS uncertainty

The line-of-sight directions to the navigation beacons are now assumed known

with given confidence. Three different cases are considered where the LOS

directions are affected by a white noise having a 3σ standard deviation of 1,

10, and 20 arcseconds, respectively, which is consistent with current technology.

Let the exact LOS be

ρ̂ = [cosφ cos θ, cosφ sin θ, sinφ]
>

(11)

where θ and φ are the nominal azimuth and elevation, respectively. These two

angles are perturbed by the white noises vθ ∼ N (0, σ2
L) and vφ ∼ N (0, σ2

L)

having zero mean and given standard deviation σL; that is θε = θ + vθ, φ
ε =

φ+ vφ. The perturbed LOS direction

ρ̂ = [cosφε cos θε, cosφε sin θε, sinφε]
>

(12)

is given as input to Eq. (4) (both to A and b) and the solution error δr is eval-

uated as per Eq. (9). The same orbital geometry in Section 2.2 is considered.

Figure 5 shows the performances of the method, where the total error δr

is shown on the left y-axis for the three different levels of LOS uncertainty.

There are several orders of magnitude difference in δr for the different cases.

The total error for the 1 arcsecond case ranges in 101–104 km, while it grows

up to 103–107 km for the 20 arcseconds case. On the right y-axis, the condition

number κ computed with exact γ is reported. Again, it is remarkable to note

the same trend between the condition number and the solution error, which

stresses the importance of having a good observation geometry in addition to

accurate LOS measurements.

2.4 Dependency on γ

The navigation problem with perturbed LOS measurements is now simulated.

The time window covers 13 years with a sampling time of 2 days. A total

of 100 runs are executed at each time step. Then, the mean error and the 3σ

covariance bounds across all the runs are computed. This procedure is repeated

for three levels of LOS uncertainty introduced in Section 2.3.
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Fig. 5: Total error δr for different levels of LOS uncertainty (1, 10, 20 arcsec)
and condition number κ.

The dependency of the total error δr as function of γ for different levels of

LOS uncertainty 1, 10, and 20 arcseconds is shown in Fig. 6a, Fig. 6b, and

Fig. 6c, respectively. It can be noted that for the two limiting cases of 1

arcseconds and 20 arcseconds, the total error reaches 105 and 107 km for

γ = 0, respectively, while it is in the order of 103 and 104 km for γ = 90 deg.

This remarks once again that the accuracy of the method is strongly dependent

on the observation geometry. The geometrical considerations drawn for this

two beacons case with synchronous measurements apply also to other similar

methods with asynchronous measurements.

(a) (b) (c)

Fig. 6: Total error δr as function of γ for different LOS uncertainties: (a) 1
arcsec; (b) 10 arcsec; (c) 20 arcsec.
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3 Covariance Analysis

The covariance analysis for the deep-space optical navigation problem exploit-

ing two beacons is presented in this section. Eq. (4) is the algebraic system to

solve with exact data.

However, the line-of-sight directions ρ̂1,2 measured by a sensor (e.g., a star

tracker) are affected by errors. Thus, both the input to the system (b) and the

geometry matrix (A) are affected by the errors as well. It is then desirable to

estimate the solution error covariance by considering perturbed line-of-sight

directions.

3.1 LOS measurement model

In presence of small perturbations, the QUEST measurement model can be

used to introduce the errors in the line-of-sight directions [13]. The QUEST

measurement model is a linear additive model, thus it considers the perturbed

LOS direction as a linear sum of the true line-of-sight with a white noise

process. In other words

ρ̂ε = ρ̂+ v (13)

where ρ̂ε is the perturbed LOS direction, ρ̂ is the true one, and v is a white-

noise process whose components have zero mean and standard deviation σ.

Calling E the expected value operator, then [3]

E[v] = 0 E[vv>] = σ2[I − ρ̂ρ̂>] (14)

Equations (13) and (14) hold for small rotations, where the spherical surface

generated by a rotation of the tip of ρ̂ is locally approximated by the tangent

plane. Thus, v lies on this plane and is orthogonal to ρ̂, i.e.,

ρ̂>v = 0 (15)

Note that this model alters the unitary norm of the LOS direction, yet it is a

good approximation in case of small angles; it is widely used in the literature

[3]. In case of large angles, a more accurate multiplicative model shall be used

[17].
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3.2 Perturbed input

In presence of perturbed LOS directions, the perturbed input to the system is

bε = b+∆b (16)

where bε is the perturbed input, b the exact input, and ∆b the input error.

Assuming exact ephemeris data (that is, no errors in r1 and r2), and defining

z = r1 − r2, the perturbed input is

bε =

[
ρ̂ε
>

1 z

−ρ̂ε>2 z

]
=

[
ρ̂>1 z
−ρ̂>2 z

]
︸ ︷︷ ︸

b

+

[
v>1 z
−v>2 z

]
︸ ︷︷ ︸

∆b

(17)

3.3 Perturbed geometry matrix

The perturbed geometry matrix Aε is

Aε =

[
1 −ρ̂ε>1 ρ̂ε2

−ρ̂ε>2 ρ̂ε1 1

]
(18)

Note that the off-diagonal terms in Aε can be developed as

ρ̂ε
>

2 ρ̂
ε
1 = ρ̂ε

>

1 ρ̂
ε
2 = (ρ̂1 + v1)> (ρ̂2 + v2) = ρ̂>1 ρ̂2 + ρ̂>1 v2 + v>1 ρ̂2 + v>1 v2 (19)

The term v>1 v2 can be neglected because it is a perturbation of higher order.

Thus, let the first-order term be

m = ρ̂>1 v2 + v>1 ρ̂2 (20)

Equation (19) can be rewritten as

ρ̂ε
>

2 ρ̂
ε
1 = ρ̂ε

>

1 ρ̂
ε
2 ' ρ̂>1 ρ̂2 +m (21)

Note that E[m] = 0 because E[v1] = E[v2] = 0. Thus, Eq. (18) can be ex-

panded as

Aε =

[
1 −ρ̂ε>1 ρ̂ε2

−ρ̂ε>2 ρ̂ε1 1

]
=

[
1 −ρ̂>1 ρ̂2

−ρ̂>2 ρ̂1 1

]
︸ ︷︷ ︸

A

−m
[
0 1
1 0

]
︸ ︷︷ ︸

Y

(22)
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In this way, the perturbed geometry matrix can be seen as Aε = A + ∆A

where ∆A = −mY . Note also that E[Aε] = A since E[m] = 0.

3.4 Perturbed solution

The perturbed solution of system (4), xε, can now be computed as

xε = (Aε)
−1
bε (23)

In presence of small perturbations, the inverse of a perturbed matrix can be

approximated as [23]

(Aε)
−1

= (A+∆A)−1 ' A−1 −A−1∆AA−1 (24)

Considering that ∆A = −mY (see Eq. (22)), Eq. (24) becomes

(Aε)
−1

= A−1 +m A−1Y A−1︸ ︷︷ ︸
M

= A−1 +mM (25)

Again, note that E[(Aε)
−1

] = E[A−1] because E[m] = 0. Considering that ,

through Eq. (5),

A−1 =
1

sin γ2

[
1 cos γ

cos γ 1

]
(26)

it is easy to derive the expression for M as

M = A−1Y A−1 =
1

sin4 γ

[
2 cos γ cos2 γ + 1

cos2 γ + 1 2 cos γ

]
(27)

Now, expanding the perturbed solution as xε = x + ∆x where ∆x is the

solution error, Eq. (23) can be written as

x+∆x = (A−1 +mM)(b+∆b) = A−1 b+A−1∆b+mMb+mM∆b (28)

Eliminating the exact solution x = A−1b from both sides of Eq. (28) and

neglecting the higher order term mM∆b, the following expression for the

solution error is obtained

∆x = A−1∆b+mMb (29)
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The solution error can thus be seen as a sum of two contributions, one coming

from the perturbed part of the input (A−1∆b) and one coming from the

perturbed part of the geometry matrix (mMb). Note that E[∆x] = 0 since

E[∆b] = 0 and E[m] = 0.

3.5 Solution covariance

The covariance of the solution error is

P∆x∆x = E[∆x∆x>] = A−1E[∆b∆b>]A−>︸ ︷︷ ︸
P1

+MbE[m2]b>M>︸ ︷︷ ︸
P2

+ A−1E[m∆b]b>M> +MbE[m∆b>]A−>︸ ︷︷ ︸
P3

(30)

The three terms composing P∆x∆x are developed in the following.

3.5.1 Computation of P1

Let

P1 = A−1E[∆b∆b>]A−> (31)

Keeping in mind that ∆b = [v>1 z ; −v>2 z]> and z = r1 − r2 (see Eq. (16))

the covariance of the input error can be developed as

E[∆b∆b>] = E

[
z>v1v

>
1 z −z>v1v>2 z

−z>v2v>1 z z>v2v
>
2 z

]
(32)

Assuming no errors in the ephemeris, E[z] = z. Then, for uncorrelated pro-

cesses,

E[v1v
>
2 ] = 0 E[v2v

>
1 ] = 0 (33)

Thus, Eq. (32) becomes

E[∆b∆b>] =

[
z>E[v1v

>
1 ] z 0

0 z>E[v2v
>
2 ] z

]
(34)

Then, plugging Eq. (14) into Eq. (34)

E[∆b∆b>] = σ2

[
z>L1 z 0

0 z>L2 z

]
︸ ︷︷ ︸

B

(35)

where

L1 = I − ρ̂1ρ̂>1 L2 = I − ρ̂2ρ̂>2 (36)
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Thus, noting also that A−> = A−1

P1 = A−1 E[∆b∆b>]A−> = σ2A−1BA−1 (37)

3.5.2 Computation of P2

The expression for P2 is

P2 = E[Mbm2b>M>] = Mbb>M>E[m2] (38)

Recalling that m = ρ̂>1 v2 + v>1 ρ̂2, then

m2 = ρ̂>1 v2 v
>
2 ρ̂1 + ρ̂>2 v1v

>
1 ρ̂2 + 2 ρ̂>1 v2 v

>
1 ρ̂2 (39)

Considering the properties of v1 and v2 as per Eq. (14) and Eq. (33), and L1

and L2 as per Eq. (36), the expected value of Eq. (39) yields to

E[m2] = σ2ρ̂>1 L2 ρ̂1 + σ2ρ̂>2 L1 ρ̂2 (40)

Keeping in mind that ρ̂>1 ρ̂1 = ρ̂>2 ρ̂2 = 1 and ρ̂>1 ρ̂2 = ρ̂>2 ρ̂1 = cos γ, it is easy

to verify that

ρ̂>1 L2 ρ̂1 = ρ̂>1 ρ̂1 − ρ̂>1 ρ̂2 ρ̂>2 ρ̂1 = 1− cos2 γ (41)

ρ̂>2 L1 ρ̂2 = ρ̂>2 ρ̂2 − ρ̂>2 ρ̂1 ρ̂>1 ρ̂2 = 1− cos2 γ (42)

Thus, the expected value of m2 can be simply obtained as

E[m2] = σ2(1− cos2 γ) + σ2(1− cos2 γ) = 2σ2 sin2 γ (43)

Thus

P2 = 2σ2 sin2 γMbb>M> (44)

3.5.3 Computation of P3

The expression for P3 is

P3 = A−1E[m∆b]b>M> +MbE[m∆b>]A−> (45)

Noting that

m∆b = (ρ̂>1 v2 + ρ̂>2 v1)

[
v>1 z
−v>2 z

]
(46)
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It can be verified that

E[m∆b] =

[
ρ̂>2 E[v1v

>
1 ] z

−ρ̂>1 E[v2v
>
2 ] z

]
= σ2

[
ρ̂>2 L1 z
−ρ̂>1 L2 z

]
︸ ︷︷ ︸

c

= σ2c (47)

Note that c can be further developed as

c =

[
ρ̂>2 L1 z
−ρ̂>1 L2 z

]
=

[
ρ̂>2 z − cos γρ̂>1 z
−ρ̂>1 z + cos γρ̂>2 z

]
=

[
− cos γ −1
−1 − cos γ

] [
ρ̂>1 z
−ρ̂>2 z

]
= −

[
0 1
1 0

]
︸ ︷︷ ︸

Y

[
1 cos γ

cos γ 1

]
︸ ︷︷ ︸

sin2 γA−1

[
ρ̂>1 z
−ρ̂>2 z

]
︸ ︷︷ ︸

b

(48)

Thus

E[m∆b] = −σ2 sin2 γ Y A−1b (49)

So, keeping in mind that M = A−1Y A−1 and noting that M = M>, P3 can

be developed as

P3 =A−1E[m∆b]b>M> +MbE[m∆b>]A−>

=− σ2 sin2 γ A−1Y A−1︸ ︷︷ ︸
M

bb>M> − σ2 sin2 γMbb>A−>Y >A−>︸ ︷︷ ︸
M>

=− 2σ2 sin2 γMbb>M>

(50)

And, recalling Eq. (44), it can be noted that

P3 = −P2 (51)

So, the covariance of the solution error is

P∆x∆x = P1 + P2 + P3︸ ︷︷ ︸
= 0

= σ2A−1BA−1 (52)

4 Optimal Beacons Selection

This section features the derivation of a figure of merit for deep-space optical

navigation. The goal is to find the optimal pair of beacons to track among

all the available ones. Figure 7 shows a three beacons scenario, where r1,2,3

denote the objects inertial positions, ρ1,2,3 the objects positions with respect

to the observer, and γ12, γ13, and γ23 the angles between the beacons as

seen from the observer. In presence of three beacons, there are three possible
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pairs to be exploited for optical navigation. Each pair of beacons will yield a

different navigation solution accuracy owing to the problem geometry. Thus,

the optimal beacons selection aims to determine the pair of beacons that yield

the best accuracy of the navigation solution. This is done by exploiting the

solution error covariance matrix derived in Section 3.

𝒓1

𝒓2

𝝆1

𝝆2

OBJECT 1
OBSERVER

OBJECT 2

SUN

OBJECT 3

𝝆3

𝒓3

𝛾13

𝛾23
𝛾12

Fig. 7: Optical navigation scenario with multiple beacons.

4.1 Trace of the covariance matrix

Since ∆x = [∆ρ1∆ρ2]>, the covariance of the solution error is

P∆x∆x =

[
E[∆ρ1∆ρ1] E[∆ρ1∆ρ2]
E[∆ρ2∆ρ1] E[∆ρ2∆ρ2]

]
(53)

where ∆ρ1 and ∆ρ2 are the errors in the range estimation to the beacons as

function of the LOS error uncertainty σ, the angle between beacons γ, the

geometry of the beacons (r1 and r2), and the line-of-sight directions to the

beacons (ρ̂1 and ρ̂2); see Eq. (52). The trace of P∆x∆x,

Tr[P∆x∆x] = E[∆ρ21] + E[∆ρ22] (54)

is a good indicator of the solution accuracy, and its expression is easily derived

in the following.

Starting from Eq. (52), where A−1 and B have been defined in Eq. (26) and

Eq. (35), respectively, P∆x∆x can be expanded as

P∆x∆x =
σ2

sin4 γ

[
z>(L1 + cos2 γL2) z cos γ z>(L1 +L2) z)
cos γ z>(L1 +L2) z z>(cos2 γL1 +L2) z

]
(55)
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and therefore

Tr[P∆x∆x] =
σ2

sin4γ
z>(L1 + cos2 γL2 + cos2 γL1 +L2) z (56)

Thus, defining L = L1 + L2, Eq. (56) can be put in a more compact and

elegant form as

Tr[P∆x∆x] = σ2 1 + cos2 γ

sin4γ
z>Lz (57)

Note that Eq. (57) is function of the LOS error uncertainty σ, the angle be-

tween beacons γ, the positions of the beacons (r1 and r2 inside z), and the

line-of-sight directions to the beacons (ρ̂1 and ρ̂2 inside L). Equation (57)

can be used to measure the quality of the navigation solution, it being an

always non-negative function of all the quantities and errors involved in the

deep-space optical navigation problem.

4.2 Figure of merit

Following the rationale of Eq. (57), the figure of merit for two-beacon, deep-

space navigation can be defined as

Jkl = σ2

(
1 + cos2γkl

sin4γkl

)
(rl − rk)>[Lk +Ll](rl − rk) (58)

where k and l denote the k-esimal and l-esimal beacon, respectively, σ the

angular error associated to the LOS measurements, γkl the angle between

them as seen from the observer, rk and rl their position vector with respect

to the Sun, and Lk = [I − ρ̂kρ̂>k ] and Ll = [I − ρ̂lρ̂>l ]. A similar solution has

been derived in [2].

Given a set of N visible beacons, the problem consists in finding those two

yielding Jkl minimum. This is a combinatorial optimization problem. That is,

the problem is to find i ∈ {1, . . . , N} and j ∈ {1, . . . , N}, i 6= j, such that Jij

is the minimum among all the possible combinations Jkl. More compactly

Jij = min
k=1,··· ,N
l=1,··· ,N
k 6= l

Jkl (59)

Note that the combinatorial optimization problem in Eq. (59) is to be solved

every time a measurement is made.



18 V. Franzese*, F. Topputo

5 Test Case

The example in Table 1 is now considered as test case to assess the optimal

couples of beacons to be tracked during the deep-space travel. For simplicity,

only the planets are considered as beacons. The line-of-sight measurements

are assumed to be affected by a white noise of 10 arcseconds in 3σ confidence.

Figure 8 shows the navigation error δr and the figure of merit Jkl (shown

simply as J) for all the possible pairs of beacons exploiting Mercury, Venus,

Earth, Mars, and Jupiter during the spacecraft deep-space travel. Note that

the error δr and the figure of merit J follow the same trend for all the possible

configurations. Sun exclusion angles are neglected as the focus is on beacons

geometry.

Solving problem (59) yields the optimal pairs of beacons to track at each

time instant. This solution is shown in Figure 9b where the black stripes are

the tracking windows. Figure 9a shows the error δr and the figure of merit

trend J obtained exploiting the optimal beacons. In practice, the Jkl for each

couple made up of the planet k and the planet l is evaluated, and then the

minimum among all the possible combinations Jkl is obtained (Eq. (59)). In

this way, the planets corresponding to the minimum Jkl are used to solve for

the spacecraft position, and the corresponding navigation error is computed.

Thus, the error in Figure 9a is derived exploiting always a different couple of

beacons, according to the selection in Figure 9b.

For the example in Table 1, it is worth to note that the combinations involving

Jupiter are rarely optimal (see the Mar-Jup, Ear-Jup, Ven-Jup, and Mer-Jup

options in Figure 9b): Jupiter being far with respect to the spacecraft trajec-

tory, it amplifies the error due to the pointing. The pairs involving Mercury

and Mars are ones mostly used.

Table 2 reports the mean error and the standard deviation for the navigation

solutions exploiting all the couples of beacons. The last row of the table shows

the results for the optimal beacons selection case. It can be seen that, exploiting

the optimal beacons selection case, the mean error and the standard deviation

of the navigation solutions are at least one order of magnitude lower than all

the other cases. To help visualize the data, Figure 10a shows the mean error

and 10b shows the standard deviation for all the aforementioned cases.
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(a) Mercury - Venus
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(b) Mercury - Earth
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(d) Mercury - Jupiter
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(f) Venus - Mars
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(g) Venus - Jupiter
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(h) Earth - Mars
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(i) Earth - Jupiter
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Fig. 8: Accuracy of triangulation method (left axis) and figure of merit (right
axis) exploiting different pair of beacons during the spacecraft trajectory (the
x-axis is Epoch in MJD). The faded lines correspond to δr while the black
lines correspond to the figure of merit J.

6 Conclusions

In this paper, the impact of the observation geometry to the deep-space nav-

igation solution accuracy has been assessed, and an optimal beacons selec-

tion criteria has been derived. The selection criteria has been tested under a
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(a) Navigation error (left y-axis) and figure of merit (right y-axis). The faded lines correspond
to δr while the black lines correspond to the figure of merit J.
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Fig. 9: Accuracy of the deep-space optical navigation exploiting the optimal
beacons selection.
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Fig. 10: Mean navigation error (a) and standard deviation (b) exploiting pairs
of navigation beacons.
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Table 2: Mean error and standard deviation of deep-space optical navigation
with given pairs of beacons (rows 1–10)) and optimal beacons strategy (row
11).

Mean Error Std. Dev.
[104 km] [105 km]

Mercury–Venus 2.2310 0.5223
Mercury–Earth 2.0987 0.5193
Mercury–Mars 1.9735 0.6413

Mercury–Jupiter 3.5412 1.1346
Venus–Earth 2.4138 0.5347
Venus–Mars 1.8924 0.5811

Venus–Jupiter 3.4819 0.9693
Earth–Mars 2.9473 1.8041

Earth–Jupiter 4.2104 1.1863
Mars–Jupiter 3.4301 1.8850

Optimal Beacons 0.6665 0.0506

representative deep-space spacecraft trajectory exploiting different couples of

planets. The corresponding performances of the deep-space navigation solution

have been reported showing the quality of the selection criteria in predicting

the accuracy of the navigation solution. This criteria is meant to be the guide

for beacons selection in more elaborated navigation schemes (e.g., Kalman

filtering).
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