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Abstract 

This exploratory study investigates the relationship of plan-driven Stage-Gate and flexible 

Agile models with new product development performance through an original 

conceptualization that focuses on their underlying principles for managing uncertainty and the 

resulting changes. While Stage-Gate attempts to control uncertainty up-front to avoid later 

changes, Agile seeks to adapt to uncertainty and accommodate changes for a longer proportion 

of the development process. In addition, we examine the interaction effects of combining the 

two models. The analysis of survey data on 181 software developers shows that the adoption 

of Stage-Gate principles is negatively associated with speed and cost performance. For Agile, 

the use of sprints is positively related to new product quality, on-time and on-budget 

completion, while early and frequent user feedback would seem to prolong time-to-market. 

Finally, the results highlight a nuanced interaction between Stage-Gate and Agile, both positive 

and negative depending on the principles considered. 
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1. Introduction 

While innovation ranks higher than ever on the strategic agenda of top managers, and R&D 

spend continues to grow, the failure to meet time, cost, and quality targets remains high 

(Markham & Lee, 2013; Kahn et al., 2012). In software development, over a quarter of projects 

are never completed (Faraj & Sambamurthy, 2006), and nearly two-thirds experience budget 

and schedule overruns (Shenhar, 2008). Identifying the factors that improve innovation 

performance is therefore essential (Evanschitzky, Eisend, Calantone, & Jiang, 2012). 

New product development (NPD) literature has investigated several success factors, 

including strategic aspects, process and organizational design, and product and marketplace 

characteristics1. Innovation studies indicate inappropriate approaches to the management of the 

NPD process as a key reason for failure (MacCormack & Verganti, 2003). A new class of 

process models has emerged that operates differently from the traditional and linear methods 

(Chow & Cao, 2008; Boehm & Turner, 2003). The latter, including Stage-Gate and Waterfall, 

prescribe detailed product specifications and front-end plans, sequential phases, development 

activities adhering to agreed specifications, and strictly defined criteria (Cooper, Edgett, & 

Kleinschmidt, 2002; Ettlie & Elsenbach, 2007). In contrast, flexible models, such as Agile and 

lean start-up, advocate minimal up-front planning, adapting product design to changing 

requirements until late in the NPD process, involving users early through prototyping and 

frequent testing, organizing development work in iterations of time-boxed design-build-test 

cycles (Lee & Xia, 2010; Chan & Thong, 2012).  

The potential for a paradigm shift is significant. Recent studies report a growing trend of 

migrating from linear plan-driven models to Agile (Petersen & Wohlin, 2010; Cram & Newell, 

2016). A key driver of the adoption of Agile is the uncertainty and volatility of business 

environments (Lee & Xia, 2010; Recker, Holten, Hummel, & Rosenkranz, 2017). For NPD, 

                                                 
1 See Ernst (2002) and Henard and Szymanski (2011) for comprehensive reviews. 
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this means that most innovation projects start with incomplete knowledge of customer needs 

and the technologies used to fulfill needs that may change over the course of projects 

(Tatikonda & Rosenthal, 2000). With today’s intensified competition, rapid technological 

advances, and fluid market demands, agility, defined as the ability to quickly change plans and 

scope in response to unanticipated and evolving requirements (Conforto et al., 2016), is 

imperative (Lee & Xia, 2010). 

The present study investigates the influence of plan-driven Stage-Gate models, flexible 

Agile models, and their combination, on NPD speed, cost, and quality performance. To this 

end, we develop an original conceptualization of the two models based on their underlying 

principles for managing the uncertainty inherent in innovation processes and the changes that 

result from deviations from the plans (Steffens, Martinsuo, & Artto 2007; Munthe, Uppvall, 

Engwall, & Dahlén, 2014). We argue that although narrow and only one of the potential 

perspectives, this underlies the two fundamentally different approaches that Stage-Gate and 

Agile prescribe: Stage-Gate attempts to control uncertainty up-front to avoid later changes; 

Agile seeks to adapt to uncertainty and accommodate changes even in later NPD phases. Based 

on this perspective, which coincides with one of the four core values in the original Agile 

Manifesto, i.e., emphasis on responding to change over following a plan (Beck et al., 2001)2, 

we investigate the two process models along a number of related key dimensions: extent of 

planning vs. learning (DeMeyer, Loch, & Pich, 2002), arrangement of NPD phases (Iansiti, 

1995), timing and mode of specification (Bjarnason, Wnuk, & Regnell, 2012), and timing and 

frequency of user feedback (MacCormack, Verganti, & Iansiti, 2001). 

Focusing on these principles is a significant departure from most existing studies that 

conceptualize Agile adoption in terms of the use of specific practices and tools, and exploring 

                                                 
2 The other three are emphasis on individuals over processes, on working software over complete documentation, 

and on collaboration over contracts. 
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their effectiveness (Vijayasarathy & Turk, 2012). Such approach entails a number of issues: 

different methods fall under the Agile umbrella3, which while sharing a common philosophy, 

have their own practices and terminology (Dybå & Dingsøyr, 2008). These artifacts 

continuously evolve and new ones are created (Mangalaraj, Mahapatra, & Nerur, 2009). In 

addition, most organizations tailor Agile practices to suit their NPD environments, often 

combining tools from different methods (Tripp & Armstrong, 2016). This “a-la-carte” 

implementation of the Agile toolkit implies the inability to distinguish a deep and mindful 

adoption from a superficial and fashion-driven one (Cram & Newell, 2016). Dikert, Paasivaara, 

and Lassenius, (2016) argue that “[a]gile development is not founded on the use of individual 

tools or practices, but rather on a holistic way of thinking”. We respond to the call of Dingsøyr, 

Nerur, Balijepally, & Moe, (2012) inviting researchers to focus on the quintessential principles 

of NPD process models that are both unequivocal and useful for practice. This approach is 

appropriate for comparative studies on Stage-Gate and Agile models due to the higher level of 

abstraction that accentuates the fundamental differences, while offering more common ground 

to compare organizations, even across various NPD environments and industries. 

Empirically, we adopt an exploratory research design using new survey data on 181 Italian 

software developers who are members of four virtual communities. Exploratory large-N studies 

(see, e.g., Birhanu, Gambardella, & Valentini, 2016; Lyngsie & Foss, 2017) constitute an 

appropriate research strategy “when existing theory provides a useful frame for a baseline 

argument but is not robust enough for precise hypotheses” (Bettis Gambardella, Helfat, & 

Mitchell, 2014, p. 950). Indeed, research on the performance of Stage-Gate vs. Agile models 

is scant, largely based on opinions, small samples, and often lacking theoretical underpinnings 

(Dybå & Dingsøyr, 2008). Most studies point to the utility of Agile and see it as universally 

                                                 
3 The main ones are Scrum and eXtreme Programming (XP). Crystal and Feature-Driven Development methods 

also belong to the Agile family. 
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desirable, yet with little empirical validation of the claimed benefits (Serrador & Pinto, 2015). 

The studies of Lee and Xia (2010), Serrador and Pinto (2015), and Recker et al. (2017) are 

notable exceptions, but do not compare the merits and limitations of plan-driven and flexible 

process models. To our knowledge, this is the first quantitative study that tests the effectiveness 

of combining Stage-Gate and Agile. Scholars increasingly pay attention to hybrid NPD process 

models (Cooper & Sommer, 2016), yet the scarce empirical evidence on their suitability and 

performance, drawing on case studies (Karlström & Runeson, 2006) or simulations (Port & 

Bui, 2009), is ambiguous. Extant studies find both synergies (Sommer, Hedegaard, Dukovska-

Popovska, & Steger-Jensen, 2015) and tensions (Dikert et al., 2016) in the combined use of the 

two approaches. Serrador and Pinto (2015) thus call for further research on the interaction 

between Stage-Gate and Agile, particularly using larger samples, and hence the use of software 

development as our empirical setting. In fact, Waterfall (a forerunner of Stage-Gate) and Agile 

both originated in the software industry (Royce, 1970; Beck et al., 2001), explaining their 

widespread yet heterogeneous adoption among software developers (Cram & Newell, 2016).  

We analyze the overall NPD process and resulting performance at the aggregate level without 

collecting data at the project level. While potentially a limitation, this is a common approach 

in extant studies (Ettlie & Elsenbach, 2007; Tripp & Armstrong, 2016; Bygstad, Ghinea, & 

Brevik, 2008). 

The paper is structured as follows. Section 2 reviews the relevant literature on the 

performance effects of Stage-Gate and Agile approaches, and their integration into hybrids. 

Section 3 develops the conceptual framework of this study. Section 4 describes the 

methodology and Section 5 presents our findings. Finally, Section 6 discusses our contribution 

to research and practice, outlining the limitations and future research avenues. 

 

2. Literature review 
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2.1. Stage-Gate and its performance effects 

Since the 70’s, Stage-Gate and its IT equivalents4 have been the conventional NPD 

management models (Royce, 1970), prescribing the division of development work into 

sequential stages separated by review gates (Cooper et al., 2002). Stage-Gate derived from the 

need to control unstructured development projects (MacCormack & Verganti, 2003), enabling 

meticulous front-end planning and monitoring work progress (Dybå & Dingsøyr, 2008), even 

if often deemed heavyweight due to extensive documentation and codification (Sheffield & 

Lemétayer, 2013).  

Early anecdotal evidence documents the performance benefits that leading companies 

achieved with Stage-Gate models (Cooper, 1993). More rigorous empirical research highlights 

that the use of a formal development process with clearly defined stages and gates increases 

NPD effectiveness (Mabert, Muth, & Schmenner, 1992), project execution success (Tatikonda 

& Rosenthal, 2000), and speed-to-market (Griffin, 1997). Other studies find a positive relation 

between Stage-Gate and creativity (Stevens, Burley, & Divine, 1999), and new product 

commercialization (Ettlie & Elsenbach, 2007). Overall, conventional plan-driven approaches 

have proven effective in relatively predictable and stable environments (MacCormack & 

Verganti, 2003; Port & Bui, 2009). However, a number of studies question the value of Stage-

Gate in today’s increasingly uncertain and fast-paced environments (Lenfle & Loch, 2010), 

citing problems of excessive rigidity and bureaucracy, budget overruns and delays (Cooper, 

2014). To correct some of the deficiencies, organizations began modifying the original Stage-

Gate models. According to Ettlie and Elsenbach (2007), these modifications have positively 

but indirectly contributed to NPD effectiveness, while Sommer et al. (2015) claim they have 

yielded little or no performance improvement. 

Traditional plan-driven models are still pervasive today. In their global survey, Markham 

                                                 
4 The main ones are Waterfall, Rational Unified Process, and V-model. 
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and Lee (2013) find that 61.5% of organizations use a formal Stage-Gate model for NPD, but 

point to an overall decline in NPD process formalization, arguing that companies increasingly 

experiment with less formal approaches. 

 

2.2. Agile and its performance effects  

Agile originated in 2001 when 17 leading practitioners formulated a manifesto of values and 

guidelines to improve the creation of new software code (Beck et al., 2001). Although some 

Agile practices existed in previous models, such as Spiral and Lean (Boehm, 1991), the way in 

which they were formalized into a cogent model was a major departure from the dominant 

plan-driven approach (Port & Bui, 2009). Agile refers to a family of iterative software 

development methods, and while including different tools and techniques pertaining to the 

technical, management, customer collaboration, organization, and team spheres5 (Wood, 

Michaelides, & Thomson, 2013), they share common principles. Feedback and change are at 

the core of Agile for a dynamic, evolving, and organic, rather than static, predefined, and 

mechanistic NPD process (Lee & Xia, 2010). To deliver timely, high-quality, and cost efficient 

innovations, Agile developers organized in small, co-located, autonomous teams, build and test 

software in short iterative cycles, actively involving users to collect feedback, updating the 

project scope and plans “on-the-fly”, using face-to-face communication as opposed to 

documentation (Chan & Thong, 2012). Hence, Agile methods are deemed lightweight (Boehm 

& Turner, 2003).  

While early research focused on the adoption of Agile methods (Nerur, Mahapatra, & 

Mangalaraj, 2005), fewer empirical studies assess their relation to performance (Dybå & 

                                                 
5 The technical sphere includes, e.g., refactoring, test-first programming, coding standards, and continuous code 

integration. The management sphere includes, e.g., stand-up meetings, retrospectives, burndown charts, and 

product backlogs. The customer collaboration sphere includes, e.g., planning game, requirements as user stories, 

and on-site or proxy customers. The organization and team sphere includes, e.g., pair programming and collective 

ownership. See Mangalaraj et al. (2009) and Tripp and Armstrong (2016) for detailed descriptions. 
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Dingsøyr, 2008). Layman, Williams, and Cunningham (2004), Ilieva, Ivanov, and Stefanova, 

(2004), and Benediktsson, Dalcher, and Thorbergsson (2006) report significant productivity 

gains from using Agile methods, ranging from 42% to over 337%. However, Layman et al. 

(2004) argue that such gains may be due to the higher experience of the team using Agile, 

Ilieva et al. (2004) find that the gains diminish in later project iterations, and Benediktsson et 

al. (2006) explain that these are simply due to delivering more lines of code without offering 

additional functionality. Conversely, Macias, Holcombe, and Gheorghe (2003) find no 

difference in productivity between Agile and traditional methods, while Wellington, Briggs, 

and Girard (2005) report a productivity loss. As regards speed of completion, Budzier and 

Flyvbjerg (2013) find that Agile methods decrease project delivery times, whereas 

Benediktsson et al. (2006) find no effect. As regards quality, Ilieva et al. (2004) and Layman 

et al. (2004) find a reduction in the number of defects when Agile is used. Wellington et al. 

(2005) report a similar result, measuring quality with standard code metrics. However, Macias 

et al. (2003) find no significant difference in either internal or external quality between Agile 

and Waterfall models. Focusing on the impact of specific Agile practices, Maruping, 

Venkatesh, and Agarwal (2009) find that collective code ownership and coding standards 

improve the quality of new software. Wood et al. (2013) demonstrate that the positive 

association of these two practices and continuous integration with performance is mediated by 

the level of cooperation in the development team. However, they also find a negative 

relationship between other Agile practices, such as test-first programming and refactoring, and 

software quality. Results for pair programming are more mixed and depend on the performance 

dimension considered and other contingent factors (Hannay, Dybå, Arisholm, & Sjøberg, 

2009).  

The seminal study of Lee and Xia (2010) conceptualizes Agile in terms of the extensiveness 

and efficiency of a team’s response to changes in customer needs. Using survey data on 399 
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software developers, they find that response efficiency positively affects on-time and on-

budget completion, as well as software functionality, whereas extensiveness only affects the 

latter. Using the same conceptualization, Recker et al. (2017) show that both dimensions of 

Agile affect NPD success, measured as process performance, customer satisfaction, and 

software functionality. In a large-scale quantitative study, Serrador and Pinto (2015) investigate 

the performance effects of Agile across multiple industries, finding improved NPD efficiency 

and stakeholder satisfaction. A particularly interesting aspect is that they measure Agile using 

the distribution of planning effort across different NPD process phases.  

Overall, no conclusive evidence supports the superiority of Agile over Stage-Gate. Most 

comparative studies are based on small samples or controlled experiments, while quantitative 

studies mainly focus on Agile practices, with some exceptions, but without offering a 

comparison with Stage-Gate methods. 

 

2.3. Hybrid models and their performance effects 

The home ground model of Boehm and Turner (2003) posits that a number of factors in the 

NPD environment determine which process model is most appropriate: large projects with 

stable and predictable requirements for Stage-Gate, and small-to-medium projects with highly 

dynamic and unpredictable requirements for Agile. However, most real-life projects do not 

have values for these factors within the model’s home ground (Port and Bui, 2009). As such, 

adopting a single model in its pure form may be risky. Instead, Boehm and Turner (2003) 

suggest a balanced approach that includes both plan-driven and Agile practices. 

The debate is ongoing on whether Stage-Gate and Agile are compatible and complementary, 

and on how to best mix the two approaches to leverage their respective strengths and mitigate 

their weaknesses (Dingsøyr et al., 2012). To date, most evidence is anecdotal. Cooper and 

Sommer (2016) describe the cases of established firms benefiting from the use of Agile 
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practices within their existing Stage-Gate systems. Hybrid models are spreading across 

organizations (Serrador & Pinto, 2015), and while some authors speculate on their potential to 

deliver exceptional innovation outcomes, few studies rigorously examine how the integration 

of Stage-Gate and Agile affects NPD performance. Based on two large-scale software projects, 

Karlström and Runeson (2006) find synergies between the use of XP methods and Stage-Gate 

project management models. They show that Agile tools are better in planning day-to-day work 

and monitoring progress, whereas Stage-Gate acts as a macro-level framework facilitating the 

coordination of development teams. Port and Bui (2009) find that a mixed strategy 

incorporating both Agile and plan-driven principles outperforms both pure approaches at 

almost any level of dynamism. The case-based evidence of Sommer et al. (2015) suggests that 

using a Stage-Gate model at the strategic level together with Scrum tools at the execution level 

increases NPD productivity, flexibility, and coordination. 

Dikert et al. (2016) instead indicate that the coexistence of the two approaches causes 

tensions at all organizational levels, bureaucracy duplication, and reward system mismatch.  

 

3. Conceptual framework 

3.1. Innovation as managing uncertainty and the resulting changes 

Uncertainty, defined as the absence of complete information on the phenomenon under 

study (Argote, 1982), is inherent in innovation initiatives with the goal of developing 

something new (Sull, 2004). The final “recipe” for a new product is unknown at the outset and 

emerges progressively as resources are invested and development activities are completed (De 

Meyer et al., 2002). Uncertainty in NPD concerns, for example, customer needs and 

preferences, technological possibilities, and competitors’ moves. These aspects can be difficult 

to predict accurately and can radically evolve over the course of typically long projects as new 

information becomes available (Milliken, 1987; Chen, Reilly, & Lynn, 2005). This 
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phenomenon creates deviations, defined as situations when something has not gone as planned 

(Hällgren & Maaninen-Olsson, 2005), which in turn calls for managerial actions to preserve or 

even improve the chance of NPD success (Munthe et al., 2014). Effectively managing 

uncertainty and the resulting changes is a core capability in NPD (MacCormack et al., 2001): 

innovation managers perform critical tasks that influence the likelihood and extent of 

deviations, and the related responses (Steffens et al., 2007). In this perspective, Stage-Gate and 

Agile constitute fundamentally different management approaches: the former attempts to 

control uncertainty up-front to avoid later changes, whereas the latter aims to adapt to 

uncertainty and accommodate changes for as long as possible. Consequently, the two models 

advocate a different balance between planning and learning (De Meyer et al., 2002). Stage-

Gate prescribes extensive planning at the outset of the NPD process to reduce learning in later 

phases, while Agile invests in ongoing learning as opposed to up-front planning, which is kept 

minimal. Opposite balances correspond to contrasting choices regarding process design, 

timing, mode of product specification, and frequency of user feedback (see Table 1 for a list of 

these principles). 

(Insert Table 1 about here) 

 

3.2. Managing uncertainty and the resulting changes according to Stage-Gate  

The linear and sequential process in Stage-Gate models implies that work in a downstream 

stage can only begin when the preceding stage has been completed and successfully passes the 

formal review of a gate (Iansiti, 1995). To avoid delays in subsequent design and 

implementation phases, product specifications and plans are set early in the process. This 

anticipated convergence decision is critical in Stage-Gate as it is scarcely reversible 

(MacCormack et al., 2001). Concept freeze occurs when senior management approves the 

selected product concept and casts it in stone, since later modifications are deemed troublesome 
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and costly (Steffens et al., 2007). To improve selection accuracy and thus minimize the risk of 

revisions in downstream phases, developers invest significant resources in extensive 

information collection through desk research practices, e.g., market intelligence and 

technology foresight, which allow evaluating the different alternatives (Munthe et al., 2014). 

Proponents of traditional Stage-Gate models posit that meticulous planning and “freezing” at 

the front-end can foster stability, discipline, and compliance (Cooper, 1993), leading to lower 

development costs, timely completion, and better product quality (Meso & Jain, 2006). This is 

likely when requirements are well-known, stable, and foreseeable (MacCormack & Verganti, 

2003), validating the inherent assumptions of Stage-Gate, i.e., that problems and solutions can 

be fully anticipated and risks can be managed proactively through buffers and contingency 

plans. Conversely, uncertain and dynamic environments pose particular challenges to the 

Stage-Gate planning orientation (Serrador & Pinto, 2015). In these conditions, it is difficult to 

identify upfront the entire range of user needs, their relative value for customers, and every 

possible design alternative to address these (DeMeyer et al., 2002). Choosing the optimal 

product concept is similarly complex: due to sequentiality, selection decisions are made before 

design creates relevant information on the performance of the different alternatives (Iansiti, 

1995), leading to evaluation errors in the form of false positives and false negatives. Proactive 

risk management, to avoid reactive changes downstream, leads developers to add safety 

margins and over-specify products, often with more functionalities than customers need, a 

phenomenon called gold-plating (Shmueli, Pliskin, & Fink, 2016), which results in resource 

wastage. Petersen and Wohlin (2010) show that the scarce reversibility of early selection causes 

developers to take too long to make decisions, delaying later phases.  

In Stage-Gate models, most of the NPD process involves minimal direct user participation. 

The collection of customer feedback through testing occurs only at the very end (Wood et al., 

2013). This allows saving on traditionally long and expensive prototyping tasks, and focusing 
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on the design likely to be launched. However, in uncertain NPD environments, deferring 

feedback from the end-use application context is a significant risk (MacCormack et al., 2001). 

Market research and analytic tools offer little to the emergence of performance issues. Late 

verification of the overall system is very complex due to testing too much at once (Petersen & 

Wohlin, 2010). This approach tends to delay the likely moment when developers discover that 

the selected concept no longer offers an optimal product-market fit (Iansiti & MacCormack, 

1997). In conditions of uncertainty and volatility, this might occur due to inaccurate early 

predictions, newly emerging information, or later environmental shifts. This deviation from the 

plan presents developers with a dilemma: ignore it and avoid changes to the original product 

specifications, as advocated by the original Stage-Gate model, or break the “freezing rule” and 

revise the concept according to the new insights. The first course of action may preserve the 

time and cost objectives, but is likely to result in launching an obsolete product where user 

requirements have long since evolved (Serrador & Pinto, 2015; Lee & Xia, 2010). 

MacCormack et al. (2001) find that releasing a design that closely mirrors the initial 

specification is not a predictor of success in unstable NPD environments. The second course 

of action, based on the logic that developing a high-quality product that fits market demand is 

better than adhering to the original targets (Meso & Jain, 2006), is however associated with 

downstream pitfalls. One of these relates to design loopbacks, as developers must iterate back 

to earlier phases and correct or redo activities (Karlström & Runeson, 2006), which is wasteful 

and time-consuming, negatively influencing the work on other features (Petersen & Wohlin, 

2010). Literature describes this situation as firefighting, i.e., the unplanned allocation of 

resources to fix problems discovered late in the development process (Repenning, 2001). 

Firefighting can have severe negative consequences, such as launch date slippage, employee 

burnout, budget overruns, and design instability, since any ad-hoc change to a component may 

trigger unexpected changes to other components (Yassine et al., 2003). According to Reagan 
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(2012), “too much up-front planning means too much change management downstream”. 

 

3.3. Managing uncertainty and the resulting changes according to Agile  

The Agile management approach invests in learning as opposed to planning (DeMeyer et 

al., 2002). Given that technical and market conditions can radically and unpredictably change 

over a project’s timeline, significant investments in up-front prediction and concept definition 

provide little return. Thus, Agile organizations strive to opportunely and continuously identify 

changes in requirements and deviations from expectations, actively responding by 

incorporating the new information into an evolving product concept, regardless of when they 

occur in a project’s lifetime (Lee & Xia, 2010). Instead of undesirable contingencies or signs 

of dysfunctional management, the deviations and resulting changes are deemed valuable 

opportunities to develop solutions that offer a better product-market fit. Agile is consistent with 

the concept of an emergent order as opposed to the imposed order inherent in plan-driven 

Stage-Gate (Meso & Jain, 2006). 

To promptly create and quickly react to new information, Agile models break innovation 

work into short fixed-length development cycles, called sprints, repeated multiple times 

throughout the process. As an iterative model, all development activities are executed in each 

sprint in a compressed and reduced form. Compared to the extensive Stage-Gate phases, the 

reduced scope and high frequency of sprints decrease the time and resource investments, while 

increasing flexibility to adjust the evolving design to the emerging context, and simply 

planning and executing the next iteration without requiring loopbacks (Bjarnason et al., 2012). 

Reduced scope also means more accurate estimations of the resources needed to meet a 

requirement (Petersen & Wohlin, 2010). The limited planning effort in Agile does not imply 

poor planning, as it is granular and oriented to the short term. A key characteristic of sprints is 

time-boxing, which fixes the time of the development cycle but not the scope of work, and thus 
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unmet requirements can be carried to the next iteration (Port & Bui, 2009). Time-boxing creates 

a regular and predictable work cadence, facilitates monitoring the development progress (Xu 

& Petter, 2014), reduces procrastination, puts healthy pressure on developers to make realistic 

commitments (Recker et al., 2017), mitigates scope creep by promoting a satisficing approach 

focused on the highest priority functionalities, and seeks a good-enough solution instead of the 

perfect one (Shmueli et al., 2016). On the negative side, the granularity and overlapping of 

sprints can lead to significant management overheads, particularly in stable and predictable 

NPD environments, due to multiple teams requiring significant coordination and 

communication (Port & Bui, 2009). A further potential problem is that the product architecture 

may lack focus (Petersen & Wohlin, 2010). 

The goal of each sprint is to produce a working prototype that can be demonstrated to users. 

Agile advocates early user involvement through rapidly and frequently testing product concepts 

to obtain valuable feedback that informs their evolution in subsequent cycles (Cooper, 2014). 

In conditions of high uncertainty, trial-and-error experimentation is superior to analytics and 

desk research as a knowledge generation and error elimination mechanism (Thomke & 

Reinertsen, 1998). Karlström and Runeson (2006) show that this helps hidden user needs 

emerge, and hence the choice of key product functionalities. Petersen and Wohlin (2010) 

demonstrate that Ericsson, by adopting an Agile testing approach, halved the number of defects 

identified that should have been found earlier in the process. Using data on 29 software 

development projects, MacCormack et al. (2001) find that projects that anticipated the first 

beta release, even if with limited functionality, outperformed projects that delayed testing. This 

factor explained a third of the variance in product quality. Agile’s continuous delivery of 

functionality allows earlier returns on investment than plan-driven development where large 

investments start paying off only at the end (Petersen & Wohlin, 2010). By more quickly and 

more often demonstrating business value to customers, developers foster greater confidence in 
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their ability to meet user needs (Grenning, 2001). However, close user interaction and co-

creation may create stress for the stakeholders involved, as well as bottlenecks (Dybå & 

Dingsøyr, 2008). 

Taking advantage of learning in Agile requires keeping the product concept open to change 

for a longer period, with final design decisions taken as close to market introduction as possible 

(Iansiti, 1995). Agile suggests that the concept specification at the beginning of the NPD 

process should be seen as tentative, including both fixed and variable elements. The former can 

be fully specified and locked-in, and are not expected to change (Cooper & Sommer, 2016), 

while the latter are unknown and fluid, defined at a high level and progressively refined through 

multiple sprints (MacCormack, Crandall, Henderson, & Toft, 2012). While potentially 

increasing project duration and costs, dynamic scoping and short frozen zones allow developers 

to incorporate the latest user requirements, which is particularly beneficial for product quality 

in volatile environments (Lee & Xia, 2010). Paradoxically, even if Agile advocates embracing 

change, Petersen and Wohlin (2010) find that this approach reduces the number of change 

requests compared to Stage-Gate, since the limited timeframe of sprints implies a small lag 

between requirement specification and implementation, and hence greater stability and less 

waste. In Agile, if a requirement is specified and planned in a sprint, then it must be 

implemented exactly as specified, a form of efficient freezing at the micro-level, whereas 

flexibility is retained across sprints at the macro-level. 

 

3.4. Combining Stage-Gate and Agile from the perspective of managing uncertainty and the 

resulting changes  

The conceptualization of Stage-Gate and Agile in this study highlights that the two process 

models build on opposing principles in terms of how they advocate managing uncertainty in 

NPD and the resulting changes. Hence, their simultaneous use may create tensions with 
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negative effects on performance (Dikert et al., 2016). Moreover, Stage-Gate (Agile) constitutes 

an internally consistent system of principles that jointly support the plan-driven (flexible) 

development of new products. Mixing and matching principles from the two approaches can 

generate fundamental inconsistencies. However, early research on hybrid models argues that 

complementarities may exist given that the two approaches support development work at 

different levels: Stage-Gate acts as a macro-level framework facilitating the coordination of 

NPD teams, whereas Agile offers effective planning of day-to-day activities and monitoring 

the progress at the micro-level (Karlström & Runeson, 2006). 

 

4. Methodology 

4.1. Sample and data collection 

This exploratory study focuses on software development, an ideal context for research on 

linear vs. flexible NPD process models that originated and are widespread in this industry 

(MacCormack et al., 2001). This empirical setting is also consistent with our focus on 

managing uncertainty and the resulting changes, an intrinsic part of software development and 

a key source of innovation failure (Dingsøyr et al., 2012). The choice of delimiting the study 

to a single type of product helps isolate the role of process variables on NPD performance, and 

achieve a higher degree of contextual homogeneity. The unit of analysis is the overall NPD 

process, as in Ettlie and Elsenbach (2007), Tripp and Armstrong (2016), and Bygstad et al. 

(2008). Due to the lack of project-level dimensions, this aggregate analysis does not capture 

heterogeneity between different projects, and therefore does not assess its effect on the 

relationships investigated. While this is a limitation, there are studies that find no moderating 

role of project characteristics, such as variability and criticality, on either the Stage-Gate 

(Tatikonda & Rosenthal, 2000) or Agile success relation (Chow & Cao, 2008).  

The unit of enquiry is software developers who are members of four Italian virtual 
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communities (Italia JavaScript, Google Development Group Slack Milan, Google 

Development Group Florence, ASP.NET Italia) focusing on the development of internet 

software products. Data collection took place in spring 2017 through a computer-assisted web-

based questionnaire. Community administrators actively informed their members about the 

survey, posting the link to the questionnaire on different internet venues (the community’s chat, 

Google and Facebook groups), and encouraging members to participate (Dholakia, Bagozzi, & 

Pearo, 2004; Steenkamp & Geyskens, 2006). The first page of the survey, in addition to 

ensuring anonymity and confidentiality, informed participants that the questions related to their 

actual overall software development work and therefore not to confine their responses to a 

specific project (Misra, Kumar, & Kumar, 2010; Vijayasarathy & Turk, 2012) but consider the 

process of NPD projects executed in the last three years (or in the last year, if their work 

experience was less). 

A sample of 276 software developers yielded a raw response rate of 16%6. This is in line 

with previous studies highlighting the possibility of fairly low response rates when using online 

virtual communities (Franke & von Hippel, 2003; Chow & Cao, 2008), which have many 

inactive members (Petrovčič, Petrič, & Manfreda, 2016). Tests of non-response bias revealed 

no statistically significant differences between early and late respondents. After excluding 

responses with missing values, the final sample consisted of 181 software developers7.  

 

                                                 
6 Of the 870 members of Italia JavaScript, 152 responded to the questionnaire, a raw response rate of 17.4% (the 

invitation to compile the questionnaire was posted on the community’s chat, and thus the number of members 

who visualized the post is unknown). Of the 83 members of Google Development Group Slack Milan, 27 

responded to the questionnaire, a raw response rate of 32.5% (the invitation to compile the questionnaire was 

posted on the community’s chat, thus the number of members who visualized the post is unknown). Of the 219 

members of Google Development Group Florence, 40 responded to the questionnaire, a raw response rate of 

18.3% (the invitation to compile the questionnaire was posted on the community’s Google Group and was 

visualized by 53 members, 75% of whom responded to the survey). Of the 552 members of ASP.NET Italia, 30 

responded to the questionnaire, a raw response rate of 5.4% (the invitation to compile the questionnaire was posted 

on the community’s Facebook Group and was visualized by 64 members, 47% of whom responded to the survey). 
7 The distribution is as follows: 117 members of Italia JavaScript; 21 members of Google Development Group 

Slack Milan; 26 members of Google Development Group Florence; 17 members of ASP.NET Italia. 
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4.2. Measurement 

The study uses multiple-item 7-point Likert-scale measures (Jarvis et al., 2003). The 

dependent variable NPD performance is a multidimensional construct based on the 

achievement of key goals (Tatikonda & Rosenthal, 2000). According to much innovation and 

software development literature, these goals relate to on-time completion, on-budget 

completion, and new product quality (Lee & Xia, 2010). To assess these performance 

dimensions, we employ perceptive measures. Recent Agile studies using perceived 

performance as reported by participants include those of Serrador and Pinto (2015) and Recker 

et al. (2017). Our aggregate level of analysis and survey design did not allow using objective 

performance measures, such as the project’s actual budget and schedule overruns (Nidumolu, 

1995), or defect rate in software code (MacCormack et al., 2012). The performance assessment 

of multiple respondents or external experts was also not possible (MacCormack & Verganti, 

2003) (Section 5.2 addresses the limitation of potential single-respondent bias). Each NPD 

performance construct was measured with multiple-item scales adapted from prior research 

(Lee & Xia, 2010; Chen et al., 2005) at the NPD process level (Ettlie & Elsenbach, 2007) in 

software development (Chow & Cao, 2008). The items primarily tapped into internal 

execution-oriented outcomes (Tatikonda & Rosenthal, 2000). A market-oriented item related 

to customer satisfaction was included in the quality construct to account for an external aspect 

of quality and due to its centrality in the Agile manifesto (Serrador & Pinto, 2015). 

Scales for the Stage-Gate and Agile constructs at the level and focus of this study (the 

principles for managing uncertainty and the resulting changes) are lacking in extant literature. 

The few available Stage-Gate measures in quantitative studies focus on process formality, the 

existence of review gates, or the use of original or modified Stage-Gate versions (Griffin, 1997; 

Tatikonda & Rosenthal, 2000; Ettlie & Elsenbach, 2007). As for Agile, abundant studies 

measure the extent to which specific tools or practices are employed (Vijayasarathy & Turk, 
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2012; Tripp & Armstrong, 2016), with some exceptions (Lee & Xia, 2010; Serrador & Pinto, 

2015), which however do not adopt this study’s conceptual lens. 

We followed Kohli, Jaworski, and Kumar’s (1993) iterative procedure to develop the scales. 

The initial pool of items was generated based on repeated discussions with expert software 

developers and an extensive literature review. The research streams considered to achieve 

theoretically sound conceptualizations include the management of linear vs. flexible NPD 

(Thomke & Fujimoto, 2000), software development (Iansiti, 1995), innovation uncertainty 

(DeMeyer et al., 2002), changes in projects (Steffens et al., 2007), definition and 

conceptualization of agility (Conforto et al., 2016). We intentionally kept the formulation of 

items broad for applicability to different NPD contexts, in line with our aggregate level of 

analysis and focus on principles. For this reason and those mentioned for the NPD performance 

dimensions, the items were designed to capture the developers’ perceptions of NPD 

management principles, and not actual project-level hard data (MacCormack & Verganti, 

2003). As a result, we generated a large pool of items for each process model (10 items for 

Stage-Gate and 15 items for Agile).  

We then selected a subset of these items using the criteria of uniqueness and the ability to 

convey different meanings (Churchill, 1979). We tested the items for clarity and 

appropriateness with seven senior developers and project managers. On average, each 

interview lasted 30 minutes. Based on their feedback, we eliminated, modified, and added new 

items. Some items were reverse-scored to minimize response set bias. The survey length was 

deemed to achieve an acceptable response rate (Rogelberg & Stanton, 2007). A further wave 

of pre-tests consisted of presenting the scales to three academic experts who critically evaluated 

the items in terms of domain representativeness, item specificity, and clarity of construction, 

providing detailed suggestions for item revision. As the last step before the full-scale survey 

administration, we conducted a pilot test with 15 Master students enrolled in computer science, 
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software engineering, and information system management, who completed the questionnaire 

and raised minor concerns that we addressed to finalize the instrument. This provided sufficient 

confidence of the instrument’s reliability and validity. 

 

(Insert Table 2 about here) 

 

Table 2 reports the measures and constructs used in this study and the results for the 

dimensionality, composite reliability, and convergent validity of the scales. For the factor 

analysis, we used principal component extraction with varimax rotation (Hair et al., 2006). We 

obtained the factors by weighted sums of the standardized items, based on corresponding 

scoring coefficients. The predicted factor variables for speed, cost, and quality performance 

emerged from the scale items. The factor analysis supports the unidimensionality of the four-

item Stage-Gate factor, which captures its underlying principles, such as early and “frozen” 

specification, linear and sequential arrangement of development stages, avoidance of late 

design changes. 

In line with Lee and Xia (2010) and Sarker et al. (2009), the factor analysis of the items in 

the Agile construct does not support its unidimensionality, instead resulting in a three-factor 

solution. The three-item scale Sprints captures the developers’ use of iterative, time-boxed, 

well-defined work cycles for the development of appropriately sized items; the three-item scale 

Feedback addresses the early and frequent deployment of beta tests and flexible adaptation to 

it; the three-item scale Specification assesses the gradual, delayed requirements detailing, and 

dynamic scoping. The identified factor structure is consistent with the conceptual development 

of the Agile principles for managing uncertainty and the resulting changes, with the first factor 

focused on the process design, the second on feedback, and the third on specification. 

Following the criteria of Bagozzi and Yi (1988) and Steenkamp and Van Trijp (1991), all factor 

loadings exceed the threshold of 0.50, the composite reliability measure is above 0.60, and the 
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average variance extracted value is higher than 0.50, indicating that the internal consistency of 

all research constructs is acceptable. 

 

4.3. Estimation procedure 

This study uses seemingly unrelated regression (SUR) models (Zellner, 1962) to take into 

account the potential correlation of the error terms of the three equations with the dependent 

variables speed, cost, and quality performance. The main independent variables are the Stage-

Gate and three Agile factor variables. To investigate the complementarity between Stage-Gate 

and Agile, we introduce the Stage-Gate and three Agile factor variables together with their 

interaction terms. To avoid multicollinearity concerns, we test interaction effects both 

separately for each Agile factor and by including all interactions between Stage-Gate and the 

three Agile factors in a full model.8   

The study uses the following controls: developer’s age measured in four categories (18-30; 

31-45; 46-60; over 60); typical size of the developer’s project team measured in six categories 

(1, independent work; 2-4 members; 5-10; 11-20; 21-40; over 40); a set of dummy variables 

that equal 1 if the developer is male, the organization is small (i.e., under 40 employees), the 

developer has a leadership role (functional manager, project manager, team leader), s/he is a 

freelancer and located in Italy. The models also include three dummy variables for the main 

market of the software developed (computer related, business services, and public services). 

We include dummies to control for fixed effects associated with the virtual community to 

which the developer belongs. 

Table 3 provides the summary statistics of all variables in our analysis. Most developers are 

male (95%) and are located in Italy (93%). The median developer’s age is 2, meaning that at 

                                                 
8 We also performed a variance inflation factor (VIF) analysis, which suggests that multicollinearity is not a 

problem in our estimates. Indeed, in all estimates, the mean VIF is below the threshold of 5, while the maximum 

VIF is below the threshold of 10 (Belsley, Kuh & Welsch, 1980). 
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least 50% of developers are less than 45 years old. They mainly develop software for computer 

related (35%) and business services (36%) markets. As for job positions, 40% work for small 

organizations, 25% are freelancers, and 31% have a leadership role in the team. The median 

team size is 2, meaning that the majority of developers work in small teams (less than 5 

members). Table 4 provides the correlation matrix (with the exception of community 

dummies). Correlations among Stage-Gate and Agile factors are generally low. The correlation 

between the Stage-Gate factor and the two Agile factors Sprints and Feedback is close to 0 (-

0.02 in both cases) and not significant. The correlation between Stage-Gate and Agile-

Specification is negative (-0.17) and statistically significant. The only significant correlation 

among Agile factors is between Agile-Sprints and Agile-Feedback (0.26). 

(Insert Tables 3 & 4 about here) 

 

5. Findings 

5.1. Main results 

Tables 5, 6, and 7 report the results of the SUR models for speed, cost, and quality performance. 

To ease the interpretation of coefficients, all continuous variables were standardized. In each 

table, column I refers to the model without interaction terms between the Stage-Gate and Agile 

factor variables, columns II-IV refer to models that separately consider the effect of a single 

Agile factor and its interaction with Stage-Gate, and column V refers to the full model with all 

factors and their interaction terms. In the full model, the correlation of the residuals among the 

three performance equations is always above 0.35. The Breusch-Pagan test rejects the null 

hypothesis that these correlations are zero, confirming the appropriateness of the SUR model 

(χ2(3)=92.8; p-value<0.001). 

The empirical analysis finds a negative association of Stage-Gate management principles 

with speed and cost performance, as shown by the consistently negative and significant Stage-

Gate coefficients across the different models in Tables 5 and 6. The results in Table 7 indicate 
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that Stage-Gate is negatively related to quality performance, but the statistical significance is 

weak. 

The results for the relationship between Agile management and performance are nuanced: 

the use of sprints is positively associated with higher speed, cost, and quality performance, as 

demonstrated by the corresponding positive and strongly significant coefficients across all 

models; in columns I and V of Table 5, the Agile-Feedback coefficient is negative and 

significant at the 10% level, suggesting that early and frequent user feedback is (weakly) 

associated with lower speed performance (Agile-Feedback instead has no statistically 

significant association with cost and quality performance). The Agile-Specification coefficients 

are not significant at conventional levels. 

This study examines how the joint adoption of Stage-Gate and Agile principles relates to 

NPD performance. As regards speed, in columns II and V of Table 5, the coefficients of the 

interaction terms between Stage-Gate and Agile-Sprints are positive and significant. In columns 

IV and V of Table 5, the coefficients of the interaction terms between Stage-Gate and Agile-

Specification are instead negative and significant at the 10% level. With regard to cost 

performance, the results in Table 6 show that interaction terms are not significant. As to quality 

performance, in columns II and V of Table 7, the coefficients of the interaction terms between 

Stage-Gate and Agile-Sprints are positive and significant at the 1% and 5% level respectively.  

To properly assess the significance and magnitude of these interaction effects, we report the 

average marginal effect (ME) of Stage-Gate, as Agile-Sprints and Agile-Specification vary in 

the speed performance equation (Figures 1 and 2 respectively), and as Agile-Sprints varies in 

the quality performance equation (Figure 3). The MEs for different values of Agile-Sprints and 

Agile-Specification are calculated based on the coefficients of the models with interaction terms 

added separately. We considered increasing values of Agile-Sprints and Agile-Specification 

starting from the minimum to the maximum value in our sample. The 95% confidence intervals 
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(the dashed lines in the figures) are estimated with the delta method. 

As to speed performance, Figure 1 shows that the ME of Stage-Gate is negative and 

significant (at least at 5%) for values of Agile-Sprints below 1 (i.e., one standard deviation 

above its mean value). For values of Agile-Sprints above 1, the association between Stage-Gate 

and speed performance is not significant. This evidence suggests that the organization of NPD 

in time-boxed work cycles attenuates the negative association between Stage-Gate and speed 

performance. Conversely, Figure 2 shows that the ME of Stage-Gate is negative and significant 

(at least at 5%) for values of Agile-Specification above -1 (i.e., one standard deviation below 

its mean value). For lower values of Agile-Specification, the association between Stage-Gate 

and speed performance is not significant. This suggests that the simultaneous pursuit of Stage-

Gate and the Agile principle of dynamic and delayed specification amplifies the negative 

association between Stage-Gate and speed performance.  

Figure 3, illustrating the association between the joint adoption of Stage-Gate and Agile-

Sprints principles and quality performance, shows that the ME of Stage-Gate is negative and 

significant (at least at 5%) for values of Agile-Sprints below its mean. For values of Agile-

Sprints above the mean, the ME of Stage-Gate is not significant. This indicates that, as for 

speed performance, the use of sprints weakens the negative association between Stage-Gate 

and quality performance. 

(Insert Tables 5, 6, & 7 about here) 

(Insert Figures 1, 2, & 3 about here) 

 

5.2. Common method bias 

As information on both dependent and independent variables was collected from the same 

respondents, we acknowledge the potential for common method bias in our analyses. We 

assessed this as follows. As to procedural remedies, first we assured respondents complete 
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anonymity, thus decreasing their tendency to provide socially desirable responses and/or be 

acquiescent or lenient when crafting their responses (Podsakoff, MacKenzie, Lee, & Podsakoff 

2003). A possible approach to overcoming self-reporting problems, matching data from two 

respondents, was not possible in our study, since collecting data from different respondents on 

dependent and independent variables separately would have made anonymity difficult to 

uphold. Second, we paid careful attention in designing the questionnaire to reduce item 

ambiguity (Tourangeau, Rips, & Rasinski, 2000). The questionnaire was presented in the 

respondent’s native language, avoiding double-barreled questions, and pre-tested with Italian 

developers, which helped us identify and replace a few ambiguous words. Finally, in our 

questionnaire, the Stage-Gate, Agile, and performance items were placed far apart, while we 

used a cover story to reduce the salience of the linkage between constructs. Questions were not 

labeled based on the reported constructs. This approach should increase “psychological 

separation” (Podsakoff, MacKenzie & Podsakoff, 2012), reducing the likelihood of 

respondents guessing the relationship between the dependent and independent variables.  

Common method bias was further assessed using statistical remedies. First, we conducted a 

Harman one-factor test (Podsakoff & Organ, 1986) loading all the items into an exploratory 

factor analysis. Factor 1 accounted for only 18.24% of variance, indicating that common 

method bias is unlikely to be a major concern. Second, we used a regression-based marker 

variable technique to correct for common method bias (Siemsen, Roth, & Oliveira, 2010). 

Specifically, we used the respondents’ experience as the marker variable, which is not 

significantly correlated to the variables of interest in this study. Adding the marker variable did 

not result in any change in our results.  

Despite their popularity, the aforementioned statistical remedies are subject to some 

criticism (Podsakoff, MacKenzie & Podsakoff, 2012). We therefore used an instrumental 

variable (IV) approach as a further robustness check. Specifically, we used two-stage least 
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squares (2SLS) to assess whether our independent variables Stage-Gate and Agile-Sprints were 

significantly related to the three performance variables. In the first stage, Stage-Gate and Agile-

Sprints were regressed on the IVs (and other variables included in the model). In the second 

stage, performance variables were regressed on the predicted values of Stage-Gate and Agile-

Sprints obtained in the first stage. To be effective, IVs must be correlated with the independent 

variable they intend to predict without being correlated with unobserved factors (such as those 

that may cause common method bias) that could affect the dependent variables. We considered 

as IVs a set of variables associated with the popularity of agile-related topics in the geographic 

area of the respondents (obtained from the frequency of search terms such as “agile” or 

“extreme programming” on Google trends), the level of digital literacy of firms in the 

respondents’ region (measured by the number of firms with high-speed Internet and number of 

employees that use computer devices), and the size of the community to which they belong. 

Our rationale is that these IVs are likely to be related to the respondents’ adoption of Stage-

Gate or Agile principles. However, it is unlikely that they are directly linked to NPD 

performance.9 The results from the 2SLS estimation confirm the main finding on the negative 

(positive) association between Stage-Gate (Agile-Sprints) and performance.  

Finally, our results show the presence of significant interaction effects for two survey-based 

variables. Support for interaction is unlikely to be an artifact of single-respondent bias, as it is 

implausible that respondents will consciously theorize interaction effects when responding to 

a survey (Makarius, Stevens, & Tenhiälä, 2017). Based on the study design and these 

observational and statistical tests, we conclude that the probability of common method bias is 

minimal. 

 

                                                 
9 F-tests on the joint significance of IVs in the first stage regressions reject the null hypothesis that the coefficients 

associated with IVs are jointly 0. Furthermore, Sargan tests on the validity of overidentifying restrictions never 

rejected the null hypothesis of IVs being uncorrelated with the error term.  
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5.3. Additional evidence 

As additional evidence, we investigated the complementarity between the three Agile 

factors identified by the factor analysis. Table 8 shows the results from the SUR models on 

speed (column I), cost (column II), and quality (column III) performance. In column III, the 

coefficient of the interaction term between Agile-Sprint and Agile-Specification is positive and 

significant at the 5% level, showing their complementary effect on quality performance. 

(Insert Table 8 about here) 

 

6. Discussion and conclusion 

6.1. Research implications 

This study has implications for innovation management, NPD, and software development 

research. 

The conceptualization of Stage-Gate and Agile as principles is an original contribution to 

literature, which has primarily assessed the adoption of these process models through tools and 

practices (Wood et al., 2013). Focusing on the inherent uncertainty and resulting changes in 

innovation management, this study adds to research investigating what constitutes agility (Lee 

& Xia, 2010; Conforto et al., 2016), articulating the key principles behind linear and flexible 

NPD management, useful for both theory development and practice (Dingsøyr et al., 2012). 

We also develop novel measures to be further validated by future research. We complement 

the work of Serrador and Pinto (2015) by adding other relevant dimensions, such as process 

design, timing, mode of specification, and frequency of user feedback. Empirically, this is one 

of the few comparative Stage-Gate and Agile studies to provide quantitative as opposed to 

mainly qualitative (Petersen & Wohlin, 2010) or experimental evidence (Port & Bui, 2009). 

Our empirical design allows quantitatively testing the performance effects of the interaction of 

Stage-Gate and Agile thus far lacking in literature. 

The results suggest that managing software development according to the Stage-Gate 
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principles is associated with time and cost overruns. One plausible explanation is the 

inadequacy of linear models in highly uncertain and dynamic environments, such as software 

development (Dingsøyr et al., 2012). With the advent of the Internet, the software industry 

experienced dramatic growth and turbulence (MacCormack et al., 2001), entailing hundreds of 

technical standards, programming languages, applications, and myriads of new firms. 

Compustat data reported in Furr and Dyer (2014) rank software among the top three industries 

for technical and market uncertainty. When requirements are little known and unstable, instead 

of being sensible management choices, the extensive analysis and early commitment to product 

specification advocated by a linear approach become detrimental to performance, as Lenfle and 

Loch (2010) and Sommer et al. (2015) indicate. In fast-changing NPD contexts, preventing 

deviations through up-front planning is an elusive goal and, due to Stage-Gate’s scant 

flexibility in dealing with inevitable changes, is likely to result in delays and extra-costs 

(DeMeyer et al., 2002). However, this interpretation of our results warrants some caution as 

we do not directly measure the level of uncertainty, assuming it high based on existing research 

on the nature of software development and the industry as a whole (MacCormack et al., 2001; 

Furr & Dyer, 2014). Interestingly, Wysocki (2009) finds that no more than 20% of software 

development projects have the characteristics of stable NPD environments, and Petersen and 

Wohlin (2009) report weak performance of Waterfall methods even in their traditional home 

ground. 

Our factor analysis suggests three distinct dimensions of Agile related to how uncertainty 

and the resulting changes are dealt with. In line with Lee and Xia (2010), we investigate the 

different effects of Agile principles on multiple aspects of NPD performance. Of the three 

dimensions, only sprints are positively associated with all three performance measures. Early 

and frequent user feedback is associated with on-time completion, but in a negative (albeit 

weakly significant) way. Gradual, dynamic product specification positively affects quality 
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performance only in interaction with sprints, as our additional evidence shows. These nuanced 

results contribute to research assessing the relative importance of various Agile elements for 

different success measures (Sarker et al., 2009). While at an aggregate level, a flexible NPD 

management approach seems superior to conventional plan-driven development, as Boehm and 

Turner (2005) find, we concur with Wood et al. (2013) that Agile as a whole cannot be termed 

“the high performance software development method”. 

More specifically, the finding that sprints result in better speed, cost, and quality 

performance offers preliminary indirect support to the claim of Lee and Xia (2010) that 

splitting development work in iterative time-boxed cycles allows overcoming the trade-off 

between inherently conflicting goals and achieving an appropriate balance between efficiency 

and extensiveness in response to uncertainty and changes. This result is not only relevant for 

the Agile research field, but also for lean start-up and design thinking advocating the use of 

rapid learning loops (Ries, 2011). 

As to the (weak) evidence that early and frequent user feedback is associated with delays, a 

plausible, yet speculative, interpretation is that extensive beta testing may result in information 

overload without discerning high-priority from low-priority information (Lee & Xia, 2010), 

potentially causing bottlenecks, lack of focus, and slowing down the NPD process (Petersen & 

Wohlin, 2010). In the context of lean start-up implementation, Ladd (2016) argues that too 

much feedback may cause entrepreneurs to change ideas so frequently that they become 

disheartened. Of interest is comparing our results with those of MacCormack et al. (2001) and 

MacCormack and Verganti (2003) who measure NPD performance only with product quality. 

The former study finds a positive relationship between early beta tests and quality of the final 

software product, but no relationship between this performance measure and the number of 

beta releases in a project. This may partly explain the non-significant effect of Agile-Feedback 

on quality in our study, which includes both items related to test timing and frequency. The 



31 
 

latter study shows the positive effect of early feedback for high-uncertainty but not low-

uncertainty NPD projects. As we do not measure project-level uncertainty, this factor may also 

partly explain the non-significant effect found. 

Gradual and dynamic product specification has no direct association with any performance 

measure. While contrary to Bjarnason et al. (2012), this result is consistent with MacCormack 

and Verganti (2003) who find no significant gains from introducing late changes to new 

product design. They argue that late changes are not an indicator of flexibility per se, but may 

stem from poor planning or emergent information, and are as likely to improve as worsen 

performance. A positive relationship with performance is instead enabled by the right 

management mechanisms to deal with and benefit from late design changes. Our evidence of a 

positive effect on quality of the interaction between Agile specification and sprints suggests 

that time-boxed iterations might constitute such a mechanism, rendering the change 

accommodation process prompt and systematic (Lee & Xia, 2010). However, this 

interpretation should be made with caution given that the measure of late changes that 

MacCormack and Verganti (2003) adopt differs from the Agile-Specification factor in this 

study. With the exception of such interaction, all other interaction effects between Agile 

principles do not reach acceptable levels of significance, thus failing to find other synergies 

among the Agile dimensions. This result is relevant for the debate on the merits of a holistic 

adoption of Agile (Cram & Newell, 2016). 

This study informs the nascent and growing research on Agile-Stage-Gate hybrid models 

investigating the performance effects of integrating the two process models (Cooper & 

Sommer, 2016). The combination of Stage-Gate and Agile sprints is positively associated with 

both speed and quality performance, whereas the combination of Stage-Gate and Agile 

specification is negatively associated with speed performance. These results may help explain 

the mixed evidence in current literature, with some studies reporting synergies between the two 
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approaches (Sommer et al., 2015) and others highlighting conflicts (Dikert et al., 2016).  

On the one hand, the positive interaction between Stage-Gate and sprints can be explained 

by the insights of Karlström and Runeson (2006) showing that companies adopting a hybrid 

model use Stage-Gate as a macro-level NPD management framework for the longer-term 

planning of the main idea-to-launch stages, key milestones, roles and resources, and use sprints 

at a more micro-level to support shorter-term task execution. These authors report that sprints 

benefit Stage-Gate with microplanning, day-to-day work control, and progress reporting, 

whereas Stage-Gate provides a means of coordinating multiple development teams across 

functions and with senior management. As Stage-Gate and Agile act at different levels, sprints 

may be symbiotic rather than contradictory paradigms. Indeed, Cooper and Sommer (2016) 

include sprints as one of the three artifacts in their Agile-Stage-Gate hybrid model. 

On the other hand, the explanation of the negative interaction effect between Stage-Gate 

and Agile specification seems rather intuitive. The two factors advocate conflicting principles 

(early, fixed vs. late, dynamic specification) that can hardly co-exist.10 The few existing studies 

on hybrid models indicate that when organizations build Agile into their existing Stage-Gate 

systems, they soften the typical rule of “freezing” the entire product specification at the outset 

in favor of a more dynamic approach that allows design changes for as long as feasible 

(Sommer et al., 2015). 

Overall, our study in the software industry would not seem to support the enthusiastic claims 

on the immense performance potential of the hybrid Agile-Stage-Gate approach (Cooper & 

Sommer, 2016). According to our study, while Stage-Gate and sprints can be combined, the 

main effects of Stage-Gate on NPD performance (speed and cost) are consistently negative. 

Hence, for organizations that already employ a traditional gating system, the use of iterative, 

                                                 
10 Dikert et al. (2016, p. 98), report that “[a] particular problem in collaboration between waterfall and agile 

projects was that in agile, the software design was fleshed out over time as sprints progressed, but the waterfall 

method required a detailed design to be frozen upfront”. 
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time-boxed development cycles could improve performance, and a hybrid model may therefore 

enable dealing with increased levels of uncertainty (Mangalaraj et al., 2009). However, when 

this is not the case, then an Agile-only approach would seem a better option. This finding 

informs literature on modified Stage-Gate (Ettlie & Elsenbach, 2007) and Agile adoption 

(Nerur et al., 2005).  

 

6.2. Managerial implications 

For innovation managers, this study advocates  organizing development tasks in iterative 

sprints to increase performance. The solid positive association with multiple and typically 

conflicting goals suggests that working in sprints is a uniformly good NPD management 

principle, seeming to support dynamic product specification, and effectively managing late 

changes. Managers are advised that early and frequent user feedback could generate schedule 

slips without improving product-market fit. If being a first-mover is a key objective, then 

following this Agile principle reduces the chances of achieving it. 

This study suggests that organizations with Stage-Gate systems should start a stepwise 

transition towards Agile by adopting sprints for micro-planning and task execution. Even if 

reluctant to fully abandon linear plan-driven models due to the strong negative association 

between Stage-Gate and performance, adhering to the traditional way of developing a new 

product may lead to NPD failure. For firms with no such process model, e.g., new ventures, 

the suggestion is to avoid following Stage-Gate principles, which appear less adequate to deal 

with the uncertainty inherent in fast-changing business contexts. While not a panacea for NPD, 

Agile principles seem the better alternative. 

 

6.3. Limitations and directions for future research 
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The study has several limitations that require future research efforts. Our cross-sectional 

analysis using perceptual questionnaire items and a single-respondent approach may imply 

retrospective, common method, and subjective biases, such as Agile enthusiasts’ claiming 

success. Despite assessing the reliability and validity of the research constructs, and adopting 

both procedural and statistical remedies to deal with these biases, we welcome studies using 

longitudinal data with multiple informants and objective indicators, such as concept freeze 

timing or number of design changes. In-depth qualitative insights could also help corroborate 

our findings. 

Another limitation is that the unit of analysis is the aggregate NPD process without 

measuring project-level factors. We were therefore unable to capture heterogeneity at this level, 

which could influence the relationships investigated in this study. This shortcoming is 

particularly acute for freelancers whose managerial approach might differ across different 

projects. Another consequence is the impossibility of observing whether the combination of 

Stage-Gate and Agile principles occurs simultaneously in the same project or sequentially 

across multiple projects. Further, the level of uncertainty the developer faces (share of 

incremental vs. radical innovation projects) is not directly measured, notwithstanding the 

central role of uncertainty management in this study’s conceptual development. In hindsight, 

the survey instrument could have included questions on this relevant aspect, and our results 

should be interpreted accordingly. The empirical design does not enable adopting a 

contingency perspective and investigating how the value of various NPD management 

principles changes at different levels of uncertainty, complexity, and the like. Future research 

should evaluate the impact of relevant contextual factors when examining the performance 

effects of Stage-Gate and Agile. 

This study focuses on the software industry, which has particular characteristics compared 

to other contexts. Although the conceptualization of Stage-Gate and Agile at the level of 
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principles instead of tools may improve the generalizability of our findings, it is not advisable 

to construe them as universally applicable. However, they should be transferable, at least to 

some degree, to other highly uncertain and dynamic industries, such as the medical, computer, 

and pharmaceutical (Serrador & Pinto, 2015). To also note is that due to the digitalization trend, 

software is an increasingly important component in many new products in non-IT industries. 

The growing number of innovation processes that include the development of software 

components enhances the relevance of this study’s findings. A further aspect that limits the 

generalizability of our results is the focus on Italy. Future research should test the relationships 

investigated in other industries and countries. 

Finally, this study offers a partial view of Agile. We do not investigate the influence of key 

elements that do not directly relate to managing uncertainty and the resulting changes. Future 

research should offer a more comprehensive and fine-grained assessment of Agile elements, 

their interaction, and their influence on performance. 
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Tables & Figures 

Table 1. Stage-Gate and Agile principles for managing uncertainty and the resulting changes 

Dimension Stage-Gate Agile 

Uncertainty Control Adapt to 

Changes Avoid Accommodate 

Planning Extensive Limited 

Learning Limited Extensive 

Process design Linear, sequential Iterative, overlapping 

Timing of (final) specification  Early Late 

Mode of specification “Frozen” Dynamic 

Timing of user feedback Late Early 

Frequency of user feedback Low High 
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Table 2. Details of the measures in the study 

Constructs and measures Mean (std. 

dev) 

Standardized 

factor 

loadings  

Composite 

reliability 

(CR) 

Convergen

t validity  

(AVE) 

Dependent Variables     

Speed performance     

Most of the software development projects I work on are finished on time 4.59 (1.66) 0.82 0.84 0.63 

In the development projects I work on, milestones and launch dates are typically postponed to what was initially scheduled 

(reverse) 

4.02 (1.63) 0.81   

In the development projects I work on, work overload and time pressure occur frequently in the near-launch phases (reverse) 3.24 (1.76) 0.75   

     

Cost performance     

Most of the software development projects I work on suffer from budget overruns (reverse) 4.33 (1.61) 0.77 0.78 0.54 

The cost estimates made at the beginning of the software development projects I work on are typically accurate 4.12 (1.57) 0.71   

I/we often commit to a new software requirement without a sense of feasibility of it and/or without considering the time and  

resources available (reverse) 

4.64 (1.77) 0.72   

     

Quality performance     

Compared to other available products, the software development projects I work on are more technically advanced 4.73 (1.41) 0.75 0.77 0.53 

User satisfaction with the new software products I/we launch is typically very high 5.25 (1.16) 0.84   

I/we often discover major bugs and malfunctions in my/our new software products after they have been launched (reverse) 3.82 (1.63) 0.57   

     

Independent Variables     

Stage-Gate     

Changing software requirements after the project specifications have been already “frozen” should be absolutely avoided 4.64 (1.95) 0.81 0.83 0.55 

Whenever a feature is added later in the project, it creates a distraction from the development of the core features of the new 

software 

4.39 (1.67) 0.66   

It is preferable to “freeze” the software requirements as early as possible during the project 4.44 (1.59) 0.76   

It is preferable to start coding new software only when you know that the software requirements will not change 3.72 (1.86) 0.73   

     

Agile Factor 1 – Sprints     

In the software development projects I work on, I/we usually develop working software in short reiterated cycles 4.34 (1.87) 0.79 0.79 0.56 

The amount of development work that is performed on each project phase or cycle is strictly defined 3.84 (1.66) 0.68   

In the software development projects I work on, a major feature is typically split into smaller components to fit with the 

length of a development phase or cycle 

5.03 (1.58) 0.78   

 

 

Table 2 (cont.). Details of the measures in the study 
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Constructs and measures Mean (std. 

dev) 

Standardized 

factor 

loadings  

Composite 

reliability 

(CR) 

Convergent 

validity  

(AVE) 

Agile Factor 2 – Feedback     

It is preferable to test a beta version of new software to users as early as possible, even it has limited functionality 5.21 (1.49) 0.73 0.76 0.51 

The more frequent the releases of beta versions are, the better it is for a software development project 4.66 (1.54) 0.70   

Software requirements should be revised every time new feedback from users who tried a beta version is collected 5      (1.43) 0.71   

     

Agile Factor 3 – Specification     

It is preferable to specify software requirements incrementally, even during the coding and testing phases of development 3.79 (1.67) 0.69 0.77 0.52 

It is better to wait to detail a specific software requirement until the coding of that requirement starts 3      (1.57) 0.75   

When the following release is too distant in the future, it is good practice to incorporate new features in the current 

development project, even if unanticipated 

3.10 (1.45) 0.73   
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Table 3. Summary statistics 

 Variable Mean SD Min Median Max 

1 Speed 0 1 -2.24 0.01 2.26 

2 Cost 0 1 -2.78 -0.03 2.19 

3 Quality 0 1 -3.82 -0.09 2.26 

4 Age 1.76 0.69 1 2 4 

5 Gender 0.95 0.22 0 1 1 

6 Team size 2.28 1.00 1 2 6 

7 Small organization  0.40 0.49 0 0 1 

8 Freelancer 0.25 0.44 0 0 1 

9 Leadership role 0.31 0.47 0 0 1 

10 Computer related  0.34 0.47 0 0 1 

11 Business services  0.35 0.48 0 0 1 

12 Public services  0.13 0.34 0 0 1 

13 Italy 0.93 0.26 0 1 1 

14 Stage-Gate 0 1 -2.52 0.01 2.06 

15 Agile-Sprints 0 1 -2.44 -0.05 2.00 

16 Agile-Feedback 0 1 -3.72 0.07 1.91 

17 Agile-Specification 0 1 -2.01 -0.04 2.40 

Notes: N =181. Factor variables are obtained as weighted sums of standardized values of original items. Therefore, by construction, they have 

mean 0 and standard deviation 1. 
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Table 4. Correlation matrix 

 Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Speed                 

2 Cost 0.55                

3 Quality 0.44 0.46               

4 Age 0.02 0.05 0.05              

5 Gender -0.05 0.00 -0.06 0.03             

6 Team size 0.09 -0.02 0.06 -0.01 0.04            

7 Small organization  0.00 0.17 0.09 0.14 -0.07 -0.32           

8 Freelancer 0.09 0.17 0.10 0.22 -0.04 -0.34 0.71          

9 Leadership role 0.11 0.17 0.16 0.20 0.10 0.27 -0.05 -0.07         

10 Computer related  0.16 0.04 0.07 0.08 0.06 -0.08 -0.01 0.07 0.02        

11 Business services  -0.04 0.04 -0.08 -0.10 -0.10 -0.14 -0.06 0.00 -0.02 0.14       

12 Public services  0.06 0.06 0.02 0.09 -0.06 -0.11 0.11 0.07 0.16 0.10 0.02      

13 Italy 0.09 -0.04 -0.11 0.06 -0.06 -0.18 0.05 0.06 -0.09 0.06 0.07 -0.02     

14 Stage-Gate -0.26 -0.17 -0.11 -0.04 0.18 -0.09 0.10 0.06 0.03 0.03 0.00 0.00 0.18    

15 Agile-Sprints 0.24 0.26 0.34 -0.07 -0.01 0.24 -0.18 -0.15 0.14 -0.05 -0.03 0.01 -0.08 -0.02   

16 Agile-Feedback -0.08 -0.03 -0.01 -0.11 0.09 0.01 -0.04 -0.08 -0.06 -0.05 0.09 -0.07 -0.06 -0.02 0.26  

17 Agile-Specification 0.03 -0.02 -0.01 0.05 -0.08 0.08 0.09 -0.05 0.10 -0.05 -0.06 0.07 0.05 -0.17 -0.03 0.08 

Note: N =181. Correlations with absolute value greater than 0.14 are significant at least at the 5% level. 
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                       Table 5. Results from seemingly unrelated regression models – speed performance 

 I  II  III  IV  V  

 

No 

interactions 
 

Stage-Gate 

 Sprints 
 

Stage-Gate 

 Feedback 
 

Stage-Gate  

Specification 
 Full model  

Age -0.078  -0.073  -0.100  -0.095  -0.087  

 (0.071)  (0.071)  (0.075)  (0.074)  (0.071)  

Gender 0.036  0.013  -0.053  -0.091  0.060  

 (0.314)  (0.312)  (0.327)  (0.322)  (0.311)  

Team size 0.060  0.077  0.108  0.110  0.071  

 (0.076)  (0.076)  (0.078)  (0.078)  (0.075)  

Small organization  -0.091  -0.065  -0.183  -0.187  -0.077  

 (0.199)  (0.196)  (0.202)  (0.205)  (0.197)  

Freelancer 0.457 * 0.427 † 0.501 * 0.508 * 0.435 † 

 (0.226)  (0.224)  (0.233)  (0.234)  (0.225)  

Leadership role 0.190  0.198  0.252  0.240  0.155  

 (0.154)  (0.153)  (0.159)  (0.159)  (0.153)  

Computer related  0.354 * 0.364 * 0.342 * 0.357 * 0.359 * 

 (0.142)  (0.142)  (0.148)  (0.147)  (0.141)  

Business services  -0.123  -0.148  -0.145  -0.162  -0.112  

 (0.143)  (0.142)  (0.150)  (0.147)  (0.142)  

Public services  0.067  0.023  0.110  0.125  0.019  

 (0.199)  (0.202)  (0.207)  (0.206)  (0.199)  

Italy 0.671 * 0.696 ** 0.656 * 0.650 * 0.648 * 

 (0.265)  (0.264)  (0.275)  (0.274)  (0.261)  

Stage-Gate -0.293 *** -0.297 *** -0.286 *** -0.292 *** -0.302 *** 

 (0.070)  (0.069)  (0.071)  (0.073)  (0.069)  

Agile-Sprints 0.279 *** 0.235 ***     0.258 *** 

 (0.071)  (0.068)      (0.071)  

Agile-Feedback -0.128 †   -0.062    -0.119 † 

 (0.070)    (0.072)    (0.071)  

Agile-Specification 0.000      -0.027  0.006  

 (0.071)      (0.073)  (0.070)  

Stage-Gate  Sprints   0.116 †     0.108 † 

   (0.062)      (0.065)  

Stage-Gate  Feedback     -0.024    -0.005  

     (0.056)    (0.057)  

Stage-Gate  Specification       -0.105 † -0.105 † 

       (0.062)  (0.061)  

Constant -0.920 * -0.924 * -0.825 † -0.834 * -0.973 * 

 (0.448)  (0.448)  (0.467)  (0.463)  (0.444)  

Community dummies  YES  YES  YES  YES  YES  

N. of observations 181  181  181  181  181  
R2 0.23  0.23  0.17  0.23  0.26  
F-Statistic 3.47 *** 3.71 *** 2.47 *** 2.65 *** 3.31 *** 

Note: † p<0.10; * p<0.05; ** p<0.01; *** p<0.001. 
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Table 6. Results from seemingly unrelated regression models – cost performance 

 I  II  III  IV  V  

 

No 

interactions 
 

Stage-Gate 

 Sprints 
 

Stage-Gate 

 Feedback 
 

Stage-Gate  

Specification 
 Full model  

Age -0.019  -0.019  -0.057  -0.037  -0.032  

 (0.072)  (0.072)  (0.077)  (0.076)  (0.073)  

Gender 0.221  0.210  0.115  0.121  0.220  

 (0.319)  (0.318)  (0.337)  (0.333)  (0.319)  

Team size -0.066  -0.059  -0.016  -0.008  -0.059  

 (0.077)  (0.078)  (0.080)  (0.080)  (0.077)  

Small organization  0.417 * 0.398 * 0.266  0.331  0.430 * 

 (0.202)  (0.200)  (0.208)  (0.212)  (0.203)  

Freelancer 0.166  0.182  0.265  0.192  0.157  

 (0.229)  (0.229)  (0.240)  (0.242)  (0.231)  

Leadership role 0.367 * 0.362 * 0.425 ** 0.444 ** 0.361 * 

 (0.157)  (0.156)  (0.164)  (0.164)  (0.157)  

Computer related  0.052  0.065  0.037  0.043  0.040  

 (0.145)  (0.145)  (0.153)  (0.152)  (0.144)  

Business services  0.135  0.122  0.127  0.096  0.155  

 (0.145)  (0.145)  (0.154)  (0.152)  (0.146)  

Public services  -0.016  -0.053  0.032  0.033  -0.045  

 (0.203)  (0.206)  (0.213)  (0.213)  (0.204)  

Italy -0.009  -0.011  -0.051  -0.017  -0.006  

 (0.269)  (0.269)  (0.283)  (0.284)  (0.268)  

Stage-Gate -0.226 ** -0.215 ** -0.204 ** -0.223 ** -0.231 ** 

 (0.071)  (0.070)  (0.074)  (0.075)  (0.071)  

Agile-Sprints 0.323 *** 0.295 ***     0.306 *** 

 (0.072)  (0.070)      (0.073)  

Agile-Feedback -0.093    -0.031    -0.092  

 (0.071)    (0.074)    (0.073)  

Agile-Specification -0.063      -0.088  -0.059  

 (0.072)      (0.075)  (0.072)  

Stage-Gate  Sprints   0.079      0.080  

   (0.064)      (0.067)  

Stage-Gate  Feedback     -0.058    -0.058  

     (0.057)    (0.059)  

Stage-Gate  Specification       -0.010  0.016  

       (0.064)  (0.063)  

Constant -0.456  -0.427  -0.300  -0.374  -0.451  

 (0.456)  (0.457)  (0.481)  (0.479)  (0.456)  

Community dummies  YES  YES  YES  YES  YES  

N. of observations 181  181  181  181  181  
R2 0.21  0.20  0.12  0.12  0.22  
F-Statistic 3.00 *** 3.09 *** 1.65 † 1.67 † 2.65 *** 

Note: † p<0.10; * p<0.05; ** p<0.01; *** p<0.001. 
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                  Table 7. Results from seemingly unrelated regression models – quality performance 

 I  II  III  IV  V  

 

No 

interactions 
 

Stage-Gate 

 Sprints 
 

Stage-Gate 

 Feedback 
 

Stage-Gate  

Specification 
 Full model  

Age -0.002  -0.001  -0.017  -0.026  0.006  

 (0.072)  (0.071)  (0.079)  (0.078)  (0.072)  

Gender -0.232  -0.207  -0.317  -0.338  -0.167  

 (0.319)  (0.313)  (0.343)  (0.340)  (0.315)  

Team size -0.030  -0.012  0.038  0.039  -0.015  

 (0.077)  (0.076)  (0.082)  (0.082)  (0.076)  

Small organization  0.232  0.276  0.119  0.128  0.290  

 (0.202)  (0.197)  (0.212)  (0.216)  (0.200)  

Freelancer 0.184  0.131  0.217  0.215  0.109  

 (0.229)  (0.225)  (0.244)  (0.246)  (0.228)  

Leadership role 0.275 † 0.266 † 0.361 * 0.358 * 0.255 † 

 (0.157)  (0.154)  (0.167)  (0.168)  (0.155)  

Computer related  0.214  0.220  0.213  0.202  0.225  

 (0.145)  (0.142)  (0.156)  (0.155)  (0.143)  

Business services  -0.147  -0.157  -0.203  -0.186  -0.159  

 (0.145)  (0.142)  (0.157)  (0.155)  (0.144)  

Public services  -0.139  -0.218  -0.100  -0.084  -0.222  

 (0.203)  (0.202)  (0.217)  (0.217)  (0.202)  

Italy -0.275  -0.260  -0.295  -0.295  -0.272  

 (0.269)  (0.264)  (0.288)  (0.289)  (0.265)  

Stage-Gate -0.113  -0.118 † -0.098  -0.109  -0.121 † 

 (0.071)  (0.069)  (0.075)  (0.077)  (0.070)  

Agile-Sprints 0.382 *** 0.347 ***     0.367 *** 

 (0.072)  (0.068)      (0.072)  

Agile-Feedback -0.085    0.028    -0.048  

 (0.071)    (0.075)    (0.072)  

Agile-Specification -0.018      -0.045  -0.010  

 (0.072)      (0.077)  (0.071)  

Stage-Gate  Sprints   0.162 **     0.140 * 

   (0.063)      (0.066)  

Stage-Gate  Feedback     0.041    0.044  

     (0.058)    (0.058)  

Stage-Gate  Specification       -0.031  -0.034  

       (0.065)  (0.062)  

Constant 0.207  0.164  0.296  0.294  0.112  

 (0.456)  (0.449)  (0.490)  (0.489)  (0.450)  

Community dummies  YES  YES  YES  YES  YES  

N. of observations 181  181  181  181  181  
R2 0.21  0.23  0.09  0.09  0.24  
F-Statistic 2.99 *** 3.61 *** 1.15  1.15  2.95 *** 

Note: † p<0.10; * p<0.05; ** p<0.01; *** p<0.001. 

 

 

 

 



50 

 

Table 8. Results from seemingly unrelated regression models – Agile factors interactions 

 I  II  III  

 

Speed 

performance 
 

Cost 

performance 
 

Quality 

performance 
 

Age -0.072  -0.014  0.009  

 (0.070)  (0.072)  (0.071)  

Gender 0.151  0.269  -0.081  

 (0.316)  (0.324)  (0.317)  

Team size 0.062  -0.065  -0.034  

 (0.075)  (0.077)  (0.075)  

Small organization  -0.168  0.402 * 0.186  

 (0.200)  (0.205)  (0.200)  

Freelancer 0.503 * 0.158  0.201  

 (0.226)  (0.232)  (0.227)  

Leadership role 0.206  0.361 * 0.256 † 

 (0.153)  (0.157)  (0.153)  

Computer related  0.338 * 0.044  0.168  

 (0.142)  (0.146)  (0.142)  

Business services  -0.143  0.146  -0.116  

 (0.143)  (0.146)  (0.143)  

Public services  0.037  -0.036  -0.190  

 (0.197)  (0.203)  (0.198)  

Italy 0.666 * -0.007  -0.230  

 (0.263)  (0.270)  (0.264)  

Stage-Gate -0.269 *** -0.225 ** -0.108  

 (0.071)  (0.072)  (0.071)  

Agile-Sprints 0.280 *** 0.332 *** 0.421 *** 

 (0.072)  (0.074)  (0.072)  

Agile-Feedback -0.093  -0.078  -0.058  

 (0.071)  (0.073)  (0.071)  

Agile-Specification -0.003  -0.075  -0.044  

 (0.071)  (0.073)  (0.071)  

Sprints  Feedback 0.082  -0.023  -0.042  

 (0.064)  (0.066)  (0.064)  

Sprints  Specification 0.012  0.029  0.157 * 

 (0.068)  (0.069)  (0.068)  

Feedback  Specification 0.115  0.071  0.114  

 (0.070)  (0.072)  (0.071)  

Constant -1.011 * -0.492  0.060  

 (0.447)  (0.459)  (0.449)  

Community dummies  YES  YES  YES  

N. of observations 181  181  181  

R2 0.26  0.22  0.25  

F-Statistic 3.26 *** 2.61 *** 3.16 *** 
Note: † p<0.10; * p<0.05; ** p<0.01; *** p<0.001. 
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Figure 1. Average marginal effect of Stage-Gate as Agile-Sprints varies – speed performance 

 

 

 
 

 

Figure 2. Average marginal effect of Stage-Gate as Agile-Specification varies – speed performance 

 

 

 

 

 

Figure 3. Average marginal effect of Stage-Gate as Agile-Sprints varies – quality performance  
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Appendix 

Variable VIF 

Age 1.24 

Gender 1.12 

Team size 1.38 

Small organization  2.30 

Freelancer 2.35 

Leadership role 1.23 

Computer related  1.08 

Business services  1.13 

Public services  1.12 

Italy 1.12 

Stage-Gate 1.17 

Agile-Sprints 1.23 

Agile-Feedback 1.22 

Agile-Specification 1.19 

Stage-Gate  Sprints 1.25 

Stage-Gate  Feedback 1.17 

Stage-Gate  Specification 1.16 

Dummy community 1 1.58 

Dummy community 2 1.62 

Mean VIF  1.36 

 

 

 

 


