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ABSTRACT
Controlling the machine power state by switching off/on the machine when idle is one of the most
promising energy efficient measure for machining processes. Part arrival process is affected by uncer-
tainty and acquiring knowledge to obtain a proper and updated control model is difficult in industrial
practice. Hence, control policies should be connected to the shop floor exploiting data acquired on-
line. This work extends an on-line time-based policy recently proposed in the literature by including
constraints on machine performance. A novel optimization algorithm is proposed to minimize energy
consumption while assuring a target production rate and mitigating the risk of incurring in unex-
pected high energy consumption. Moreover, the policy is also broadened to autonomously adapt the
control when the arrival process is non-stationary in time. The benefits of the proposed algorithms
are assessed by means of realistic simulated cases and are around 25% of the energy consumed in idle
states. Differently from existing studies dealing with the off-line problem, the proposed algorithm
learns on-line while acquiring information from the real system.

Symbol Description
tp mean processing time
s = {b, id, sb, su} machine states: b busy, id idle, sb standby, su startup
ws machine power in state s
X machine idle time with pdf fX(x) and CDF FX(x)
ta mean idle time
tsu startup duration
wq holding power
� = {�off, �on} vector of machine control parameters
'(x, �) machine energy demand
 (x, �) part waiting time
�(x, �) energy consumed in a cycle
g(�) expected energy consumed in a cycle
H(�) expected waiting time
�(�) expected throughput
x = {xi|i = 1,… , n} vector of n observed data
f̂X(x|x) estimated distribution of machine starvation times
" maximum admissible throughput reduction
� energy risk probability limit
PES percentage energy saving
PTL percentage throughput loss
ER energy risk

Table 1: Notation table
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1. Introduction
According to the U.S. Energy Information Administration (2019), the amount of energy absorbed by the industrial sector

in 2018 accounts for more than 50% of the world energy consumption. Looking to the future, the long-term projections
provided show that the gross output from industrial activities is supposed to double between 2018 and 2050, resulting in
an increase of industrial energy consumption. Further, manufacturing plants are facing increasing pressure to reduce their
carbon footprint, driven by concerns related to energy costs and climate change.

In addition, the topic of energy efficiency in manufacturing has gained an increasing prominence within the scientific
community. As one of the most promising measure for machine tools, a proper control of machines standby can be applied
to improve energy efficiency (Zhou et al. (2016), Sihag and Sangwan (2020)). Herewith, we refer to this control as Energy-
Efficient Control (EEC). According to a recent EU report on energy efficiency and energy saving potential in industry (Chan
et al. (2015)), a total of 91 energy saving opportunities which are technically feasible for the sector were accounted. Among
them, integrated control systems account for the 14% of the total sector technical potential to obtain high efficiency equipment
and the increased uptake of energy management systems accounts for an additional 4%. EEC potential is part of such share.

In the last decade, several machine control strategies have been defined to properly switch off/on production resources
while not working on parts. The selection of an effective control is not trivial because a startup procedure is commonly
required to resume the operational readiness of a machine tool. EEC strategies must be properly tuned to pursue energy
efficiency while satisfying one or more criteria (e.g., target service level).

Nowadays machine tools have power saving (standby) modes to be used when the part flow is interrupted; nevertheless,
very frequently, the standby mode is not exploited and machine tool users do not profit of the available standby modes.
When machine standby is used, the control parameters are selected manually according to simple experience-based analyses.
Commonly, parameters are equal on all machines and are not updated when the production changes resulting in a lack of
effectiveness or efficiency.

The complexity and the variability of real manufacturing systems are difficult to be handled in the practice. Indeed, the
part arrival process at a certain machine is stochastic due to process variability, failures to upstream processes and machines,
or production changes and may vary in time. To cope with this intrinsic unknown stochasticity, an effective energy efficient
policy requires an experimental campaign that allows for the fitting of the control model. This process can require high effort
for a practitioner and it must be repeated for each controlled resource in correspondence of any production change. Due to
the high management effort, EEC strategies are rarely applied or do not reach their full potential.

This work deals with the on-line EEC of machine state during idle periods and we specifically refer to machine tools
executing machining operations, although the approach is flexible and can be applied also to other resources. The control
model is created by extracting information from data concurrently collected from the shop floor. Careful attention is devoted
to the identification of a solution that also addresses a production target. The exploitation of on-line data learning approaches
would allow to better cope with the intrinsic unknown stochasticity of production systems, being autonomous and flexible.
The proposed approach and algorithms reduce the barriers for a practical implementation.

2. Literature and Contribution
A key towards cleaner manufacturing is to apply measures to improve production energy efficiency. Due to the wide

range of manufacturing activities, technologies and industries, strategic measures may be applied at different levels and may
affect different manufacturing layers. A systematic overview has been proposed by Duflou et al. (2012) where measures at
different levels are discussed. Similar reviews can be found in Devoldere et al. (2007), Zhou et al. (2016), Yoon et al. (2015),
and Sihag and Sangwan (2020).

Focusing at machine level, improvements can be achieved with four main measures as in Figure 1. The reuse of energy
includes kinetic energy recovery and thermal management. Machine design improves energy transformations and machine
components (e.g., friction reduction, weight minimization). Further, to reduce energy in input includes the control of pro-
cesses and the control of machine states. Indeed, machine tools consume energy while working on parts, i.e., process-related
energy, but also while the machine is idle (Dahmus and Gutowski (2004), Yoon et al. (2015)). The non processing energy
is related to some machine components that keep executing their functions although the machine is not producing. For ex-
ample, auxiliaries (e.g., chiller unit, hydraulic unit) allow to keep the machine in a ready-for-process state enabling machine
tool cooling/heating, waste handling, and other machine conditions such that, whenever a part arrives, the part program can
immediately start. The selection of proper process parameters (e.g., parameters optimization, trajectory improvement) or
alternative processes (e.g., dry processes, different lubricants) aims at optimizing the process-related energy. The EEC of
machine state instead aims at reducing the non processing energy consumed when the part flow is interrupted toward a better
use of machine auxiliary equipment.
2.1. EEC related literature
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Figure 1: Classification of energy efficient measures at machine level.

In EEC policies, a switch off command is issued to deactivate some auxiliary units and the machine is triggered into a
low power consumption state where the service is interrupted. Operational readiness is resumed with a switch on command.
Often in manufacturing equipment, switch off/on transitions, i.e., closedown and startup, may require a certain amount of
time impacting on system production rate.

EEC differs from Energy Efficient Scheduling (EES) because it refers to a different level in the production planning and
control hierarchy. EES plans jobs schedule and off/modes to machines over a specific period of time before production starts.
A recent and complete review on EES literature can be found in Gahm et al. (2016). Recent examples of EES can be found in
Lee et al. (2017) and Materi et al. (2020). EEC provides switch off/on policies to be applied in real-time during production
progress. State transitions are triggered with ad-hoc control rules, usually expressed as IF–THEN terms.

In EEC, control policies exploit several types of real-time information. Buffer-based policies introduce buffer occupancy
thresholds such that machines can be controlled (Chen et al. (2011); Guo et al. (2013); Frigerio and Matta (2016); Duque
et al. (2019); Jia et al. (2016); Wang et al. (2019)). Time-based policies set thresholds on machine idle time to define when
service should be interrupted and resumed (Mouzon et al. (2007); Wang et al. (2013); Frigerio and Matta (2015); Squeo et al.
(2019); Marzano et al. (under review)). Buffer-based policies have higher potential savings compared to time-based policies,
but they are more complex to be developed and managed. Despite their simplicity, time-based policies are effective and can
potentially be applied easily to a wide range of real-cases.

During control parameters (i.e., thresholds) optimization, the objective function always comprises an energy efficiency
criterion. In addition, a production rate target is frequently set so as the EEC does not jeopardize the service level of the
system (Chen et al. (2011); Guo et al. (2013); Frigerio and Matta (2015, 2016)). Other performance of interest can be also
included, either as additional objectives or as constraints: as example, Frigerio and Matta (2015) included the number of
switch off/on actions per produced part to limit machine wear.

5
EEC necessarily deals with the stochastic processes involved in the system. The literature assumes the stochastic processes

to be known, solving the problem with an off-line approach. Hence, in all cited works, it is implicitly assumed that the
probability distributions have been fitted on the basis of large data sets previously collected from the system. As exception,
a recent work addresses the problem on-line (Marzano et al. (under review)). The proposed algorithm progressively fits
machine starvation times from acquired data and controls the machine with properly optimized time thresholds.
2.2. Contribution

The literature analysis points out that EEC policies are generally formulated as off-line problems. Also, the need to
enrich the optimization problemwith constraints on performance of interest clearly emerges. The possibility to autonomously
adapt the control in response to dynamic changes in the system is rarely addressed in EEC literature, despite being a clear
requirement from industry.

An on-line time-based EEC policy is the focus of this paper, following the recent approach in Marzano et al. (under
review) where machine requests are estimated through on-line collected data. The literature is extended in two directions
N Frigerio et al.: Preprint submitted to Elsevier Page 3 of 22
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and the on-line problem is enriched by: (i) constraints related to production criteria and effectiveness of the control, (ii) the
capability of adapting to arrival processes non-stationary in time.

A novel optimization algorithm is developed to select the optimal control when constraints limit the feasibility region for
possible solutions. Specifically, a constraint on the expected throughput is included. Moreover, since control parameters are
optimized based on expectations, an additional constraint accounts for the risk of deteriorating machine energy consumption
over the single service request. Further, a change point detection method is included to identify variations in the part arrival
process. This enables to autonomously adapt the control in response to the dynamic behavior of the upstream portion of the
system.

The reminder of the paper is organized in 6 sections. Section 3 includes system description and model. The constrained
on-line approach is described in Section 4 and Section 5 is devoted to the detection of changes in the stochastic process
involved in the problem. Numerical results follow in Section 6 and Section 7 concludes the work.

3. System description and control policy
We consider a single machine whose state can be controlled for energy saving purposes. In the following, we describe

the control policy applied and the model used.
3.1. Machine states and assumptions

The machine is busy (b) while working on parts, whilst it is idle (id) in ready-for-process conditions. The machine can be
triggered in a low power request state, i.e., the standby (sb). Nevertheless, while in standby, the service is interrupted. The
machine must pass through the startup (su) state to switch from the standby state to the idle state. The startup is needed to
resume the operational readiness of inactive components.

We assume that the machine is not saturated; hence, it might starve of raw parts. An upstream mechanism manages the
arrival process at the machine and parts are released to the machine only when it is not busy. Further assumptions follow:

• The machine is never blocked.
• Processing times are assumed to be random variables with mean tp.
• The power ws requested in state s = {b, id, sb, su} is constant. Also, wsu > wid > wsb ≥ 0 and wb > wid. This

assumption realistically represents manufacturing equipment that commonly requires high power.
• The duration of the startup tsu is deterministic.
• Machine idle times are iid and represented by the random variate X > 0, which is distributed accordingly to a prob-

ability density function (pdf) fX(x) with mean ta. The realization of X is denoted with x, which also constitutes the
arrival time realization in a cycle.

• The holding power wq is absorbed by the external equipment (e.g. part-handling system or heated/cooled buffer) for
keeping the part until machine operational readiness is resumed.

3.2. Time-based control policy
In common practice, the machines are not controlled for energy purposes and they are always kept idle while waiting for

parts. This policy is known as Always on (AO) policy where, focusing on the time frame lasting from the departure of a part
(t = 0) until the departure of the next one, idle and busy states alternate.

The Switching Policy (SP) (Frigerio and Matta (2015)) is employed to control machine state for energy efficiency. The
switch-off command occurs while the machine starves, and the switch-on occurs after a while or when the part arrives.
Time-based thresholds �off and �on are used to trigger state transitions:

Switch off when �off has elapsed from the last departure. Then, switch on when �on > �off has elapsed from the
last departure or when the next part arrives.

Controlled transitions are: (i) the switch off transition from the idle state to the standby state when t = �off, and (ii) the switchon transition from the standby state to the startup state when t = �on or upon part arrival t = x.
Note that the busy state, and its expected energy consumptionwb⋅tp, does not depend on the control parameters. Therefore,

it is not included in our model. Let us define a cycle as the time frame lasting from the departure of a part (t = 0) until the
process of the next one begins.

Since the time spent in a certain state during a cycle is the output of a stochastic process, the expected value of the energy
consumed in a cycle is the objective function to be minimized when tuning the control parameters � = {�off, �on}. In this
respect, SP is effectively delaying the switch-off command when the probability of part arrival is high. Also, the switch-on
command occurs when the part arrives or in advance to begin the startup before the actual arrival.
N Frigerio et al.: Preprint submitted to Elsevier Page 4 of 22
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3.3. System model
We briefly describe the model used as from the literature (Frigerio and Matta (2015)). Given control parameters � and

the occurrence of arrival in a cycle x, denote '(x, �) the machine energy demand and  (x, �) the part waiting time. The
energy consumed in a cycle �(x, �) is obtained by summing machine energy demand and the holding energy consumed to
keep the part waiting for machine readiness:

�(x, �) = '(x, �) +wq ⋅  (x, �). (1)
Given starvation time distribution fX(x), the expected value of the energy consumed in a cycle g(�) and the expected

waiting timeH(�) are:
g(�) = EX[�(x, �)] = ∫

∞

0
�(x, �)fX(x) dx

H(�) = EX[ (x, �)] = ∫

∞

0
 (x, �)fX(x) dx.

As a consequence, the expected throughput �(�) can be expressed as:
�(�) = 1

ta + tp +H(�)
.

Trivially, with AO policy gAO = g(∞,∞) = wid ⋅ ta and HAO = H(∞,∞) = 0. For more details on the model, refer to
Appendix A.

4. On-line time-based control policy with constraints
In off-line policies, the pdf fX(x) is assumed to be known; whilst in on-line policies, an estimator of the pdf is provided,

given a set of n observed arrivals x = {xi|i = 1,… , n}. The on-line approach, firstly proposed in Marzano et al. (under
review), iteratively addresses three phases:

1. A learning phase, in which the non-parametric Kernel Density Estimation (KDE) method (Parzen (1962)) is used to
provide the estimated distribution of machine starvation times f̂X(x|x). More details are provided in Appendix B.

2. An optimization phase, which solves the on-line EEC problem and provides the control �n = {�off,n, �on,n}.
3. An implementation phase, which focuses on the uncertainty of the estimates and is employed to decide whether the

new control parameters �n should be applied or if it is better to wait for more observations to accumulate.
This work focuses on the optimization and the implementation phases. The on-line EEC problem is enriched with constraints
related to the effects of the control on system performance (Section 4.1), and a novel optimization algorithm is presented
(Section 4.2). Further, besides improving the overall robustness of the implementation phase, an additional condition is
introduced to ensure that the implemented control always satisfies the constraints (Section 4.3).
4.1. Constrained optimization problem

The following on-line EEC problem is proposed:
�n = argmin

�
ĝ(�)

Subject to: �̂(�) ≥ (1 − ")�̂AO
ℙ̂[�(x, �) > �AO(x)] ≤ �
�on > �off
�off, �on ∈ ℝ+0

(2)
(3)
(4)
(5)
(6)

where estimator f̂X(x|x) is used to obtain expected system performance and probabilities.
The objective function (2) to be minimized is the expected value of the energy consumed in a cycle ĝ(�). Constraint (3),

referred to as throughput constraint, sets a lower bound for the expected throughput �̂, where " ∈ [0, 1] is the maximum
admissible throughput reduction with respect to that achieved by the AO policy, i.e., �̂AO = 1∕(tp + t̂a). The energy risk
constraint (equation (4)) limits up to � ∈ [0, 1] the probability of incurring in an energy consumption higher than that
achieved by the AO policy, i.e., �AO(x) = wid ⋅ x. This is related to starvation time distribution tails which might incur in
high energy consumption within a cycle. Constraint (5) and (6) define the domain of decision variables.
N Frigerio et al.: Preprint submitted to Elsevier Page 5 of 22



An Adaptive Policy for On-Line Energy-Efficient Control of Machine Tools Under Throughput Constraint

4.1.1. A lower bound for �onOnce the machine is switched off at �off the machine should stay in the standby state for a minimum sojourn time such
that the policy can be advantageous, resulting in a lower bound for control parameter �on.Therefore, the feasible set of solutions defined by problem constraints (5) and (6) can be successfully reduced by leveraging
the following property:
Property 4.1. Given �off, the switch on transition must be triggered at:

�on > �off + � (7)
where � is a critical sojourn duration defined as follows:

�
def
=
wsu −wid
wid −wsb

tsu. (8)
Proof. The proof of property 4.1 is carried out graphically comparing function �(x, �) and the function obtained with AO
policy, i.e., �AO(x).Trivially, in order to be effective, control parameters must ensure that �(x, �) < �AO(x) for a certain set of occurrences
x ∈ Ω; hence set Ω must be not empty.

Referring to Figure 2, denote P1 the point with x = �on+ tsu on the SP curve, and P2 that on AO curve. In Figure 2a, P1
is above P 2 and Ω ≡ ∅. In Figure 2b, P 1 is below P2 and Ω ≡ {x > x̃} where x̃ is the abscissa of the intersection among
the two curves �(x, �) and �AO(x).The critical condition is obtained when P 1 and P2 coincide; therefore:

�(�on + tsu, �) = �AO(�on + tsu). (9)
From equation (9), we obtain:

wid ⋅ �off +wsb(�on − �off) +wsu ⋅ tsu = wid(�on + tsu)

�on = �off +
wsu −wid
wid −wsb

tsu

By implication, the critical sojourn duration in the standby state � is as in equation (8) and the proof is completed.
The new constraint (7) states that the planned sojourn duration in the standby state (i.e., �on − �off) must ensure that the

energy consumed in the standby and startup states is lower than what would have been absorbed if the machine had not been
controlled. In other words, given �on > �off + �, we obtain:

�(�on + tsu, �) < �AO(�on + tsu)

wsb(�on − �off) +wsu ⋅ tsu < wid(�on + tsu − �off).

The domain of decision variables  is obtained by combining equations (6) and (7):


def
= {� ∈ ℝ2 | �on > �off + �, �off ≥ 0}. (10)

(a) �on < �off + � (�off = 10 s and �on = 15 s). (b) �on > �off + � (�off = 10 s and �on = 50 s).
Figure 2: Energy consumed per cycle under AO and SP: case where P2 < P1 (a), and case P2 > P1 (b)

. Machine data are: wid = 5.5 kW, wsb = 1.5 kW, wsu = 6.5 kW, tsu = 30 s, and wq = 0.5 kW.
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4.1.2. Throughput constraint analysis
Constraint (3) can be equivalently expressed as a constraint on the estimated expected part waiting time Ĥ(�):
Ĥ(�) ≤ Ĥmax

def
= "
1 − "

(tp + t̂a). (11)

As in Frigerio and Matta (2015), Ĥ(�)monotonically decreases over �off and monotonically increases over �on. Trivially, themaximum waiting time occurs for � = {0,∞}, when the startup is triggered by part arrival and every part waits tsu beforebeing processed. Hence, for Ĥmax ≥ tsu constraint (11) is not binding.
4.1.3. Energy risk constraint analysis

With reference to Figure 2b, constraint (4) can be computed as follows:
F̂X[x̃(�)|x] − F̂X(�off|x) ≤ � (12)

where F̂X(x|x) is the estimated cumulative density function of the starvation times, while x̃(�) indicates the abscissa of the
intersection among �(x, �) and �AO(x) (see Figure 2b). Moreover, the following property holds:
Property 4.2. The probability �̂(�) = ℙ̂[�(x, �) > �AO(x)] is non-decreasing in �on and reaches the maximum in �on =
�off +$. Where$ is defined as:

$
def
=
wsu +wq

wid −wsb
tsu.

Proof. Based on equation (12), the partial derivative of �̂(�) with respect to �on is non negative. In details:
)�̂(�)
)�on

=
)F̂X(x|x)

)x
|

|

|

|x=x̃(�)
⋅
)x̃(�)
)�on

. (13)
The first term is non-negative by definition. Whilst, for the second term, we need to analyze the intersection abscissa x̃(�).
Firstly, x̃(�) = ∞ if �on < �off + �; nevertheless, this case never happens when constraint (7) is verified. In other cases,
solving �(x, �) = �AO(x) for x > �off we obtain:

x̃(�) =
⎧

⎪

⎨

⎪

⎩

wid⋅�off+wsu⋅tsu+wsb(�on−�off)+wq(�on+tsu)
wid+wq

if C1
�off +$ if C2

(14)

with conditions Ci|i = 1, 2 depending on � . We have:
• C1 ∶ �on ∈ (�off + �; �off +$];
• C2 ∶ �on > �off +$.

According to equation (14), the abscissa of intersection x̃(�) is trivially non-decreasing in �on, and there exists a limit sojourn
duration in the standby state$ beyond which x̃(�) is constant in �on. As a consequence, the second term of equation (13) is
non-negative and the proof is completed.

Trivially, the maximum probability occurs for �on = �off +$ and when it happens to be smaller than �, constraint (4) is
not binding.
4.2. Solving algorithm

The solving algorithm is now detailed, whose rationale is to select the best solution among:
1. The local solutions of the unconstrained optimization problem, obtained relaxing (3) and (4);
2. The minimum of ĝ(�) along the boundary of the feasibility region.

It is noteworthy that, in the practice, constraints (3) and (4) does not have the same importance and are rarely addressed
simultaneously. In most of practical problems, the fulfillment of a target throughput is the most important requirement, hence
constraint (4) becomes less important and could be relaxed. Vice versa, in other cases, constraint (3) could be relaxed giving
priority to constraint (4). Hence, the proposed algorithm can be used to address the throughput constraint (3) and the energy
risk constraint (4) separately, despite the main idea is common.

Let us consider the optimization problem in equations (2)–(6) relaxing constraint (4). We obtain:

N Frigerio et al.: Preprint submitted to Elsevier Page 7 of 22
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Step 1 Solve the unconstrained problem, minimizing the objective function (2) within set , see equation (10). Denote the
optimal solution with �unc. The algorithm in Appendix C is used (Frigerio and Matta (2015)).
Step 2 If the following condition holds:

Ĥ(�unc) ≤ Ĥmax,

the unconstrained solution is feasible and the algorithm stops giving �n = �unc. Otherwise, create setcon ⊂ unc of feasiblesolutions using constraint (3) and continue.
Step 3 Define problem boundary Θ as the set of points meeting the throughput constraint (3) at equality:

Θ
def
= {� ∈  | Ĥ(�) = Ĥmax}.

Step 4 Select problem solution �n:
�n = min

�∈{con∪Θ}
ĝ(�). (15)

The flowchart of the optimization algorithm is in Figure 3.
We reformulate Step 2 and Step 3 while considering constraint (4) instead of (3). We obtain:

Step 2 (II) If the following condition holds:
ℙ̂[�(x, �unc) > �AO(x)] ≤ �,

the unconstrained solution is feasible and the algorithm stops giving �n = �unc. Otherwise, create setcon ⊂ unc of feasiblesolutions using constraint (4) and continue.
Step 3 (II) Define problem boundary Φ as the set of points meeting the energy risk constraint (4) at equality:

Φ
def
= {� ∈  | ℙ̂[�(x, �) > �AO(x)] = �}. (16)

Trivially Step 4 finds problem solution �n solving equation (15) constrained by Φ (16).

Figure 3: Flowchart of the optimization algorithm when throughput constraint is considered. When risk constraint is
considered, Step 2 and Step 3 are substituted with Step 2 (II) and Step 3 (II), respectively.

4.3. Implementation phase
Denote �impl,n−1 as the control parameters employed when observation n is collected (trivially �impl,0 = {∞,∞}). At new

iteration, new control �n is found in the optimization phase given the updated pdf estimate f̂X(x|x). The control applied to
the machine is changed from �impl,n−1 to �n if at least one of the following conditions holds:
I1. Control parameters �impl,n−1 are not anymore feasible according to constraints (3) and (4);

N Frigerio et al.: Preprint submitted to Elsevier Page 8 of 22
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I2. The new control parameters improve significantly the objective function.
Condition I1 checks the feasibility of control parameters �impl,n−1, considering the updated pdf estimate f̂X(x|x). Sincemore observations are used, the variability on the estimate is reduced. I1 holds if at least one of the following requirements

is met:
• �̂(�impl,n−1) < (1 − ")�̂AO;
• ℙ̂[�(x, �impl,n−1) > �AO(x)] > �.
Condition I2 focuses on themean improvement �Z obtainedwith control �n with respect to the objective function obtainedby �impl,n−1. Specifically, �Z is the expected value of the following random variable Z:
Z = �(X, �impl,n−1) − �(X, �n).

Being unknown, �Z is estimated using the sample mean obtained from observations x. I2 is verified if the null hypothesis
H0 ∶ �Z ≤ cn is rejected. Parameter cn is a discounted implementation cost defined as:

cn = c0 ⋅ (1 − 
)n

where 
 ∈ [0, 1] is a discount factor. Since random variableZ is generally unlikely to be iid normal, a (1−�)% bias-corrected
and accelerated bootstrap confidence interval is constructed to assess the null hypothesis (Efron (1987)). This confidence
interval is very simple to form and not necessarily symmetric.

5. Variations in stochastic processes
Manufacturing environments are highly dynamic, e.g., switches between different production batches, unreliable re-

sources, continuous improvement interventions. Therefore, the arrival of parts at a single machine is generally non-stationary
in the long range and the on-line EEC should adjust in response to this dynamic behavior.

We assume that the starvation times distribution fX(x) changes at unknown points in time, i.e., change points, and the
approach is extended to ensure an effective adaptation. Hence, the algorithm is enriched with a detection phase to be executed
before the learning phase to identify significant variations in fX(x) (see Figure 4). As a consequence, once the change pointis detected, the previous observations are discarded so that the estimates are adapted to the current stochastic process.

Figure 4: Flowchart of the on-line EEC algorithm. We assume Δn new data are observed at each iteration.

Several Change Point Detection (CPD) approaches are available in the literature (Aminikhanghahi and Cook (2016)).
Among the unsupervised, on-line and non-parametric ones, we selected the Relative Unconstrained Least-Squares Impor-
tance Fitting (RuLSIF) method (Liu et al. (2013)). According to the related literature, RuLSIF method yields strong accuracy
and robustness. Further, the Matlab implementation of the method is directly provided by the authors.
N Frigerio et al.: Preprint submitted to Elsevier Page 9 of 22
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The idea behind RuLSIF is to compare the probability distributions of two data sets, respectively before and after a
candidate observation xi, and to quantify the dissimilarity with a change point score �(xi). The higher �(xi), the more likely
xi is a change point. The following conditions defines xi as a change point:

⎧

⎪

⎨

⎪

⎩

�(xi−1) < �(xi)
�(xi) > �(xi+1)
�(xi) ≥ �d

where �d is a threshold to filter out false alarms.
In details, the method is illustrated in Figure 5. Let X(i) be the subset of kd observations starting with xi:
X(i) = [xi, xi+1,… , xi+kd−1].

Moreover, denote  (i) ∈ ℝkd×nd as the matrix of nd consecutive subsets starting with X(i) in the first column:
 (i) = [X(i)T ,X(i + 1)T ,… ,X(i + nd − 1)T ].

The RuLSIF method estimates the symmetrized �d-relative Pearson divergence (PE) between (i) and (i−nd) and returns
�(xi) as:

�(xi) = P̂E�d (Pi−nd ||Pi) + P̂E�d (Pi||Pi−nd )

where Pi−nd and Pi are the true probability distributions of samples  (i − nd) and  (i), and P̂E is the estimated PE based
on collected data. As a property, �(xi) ∈

[

0, 1�d

)

(Liu et al. (2013)).
RuLSIF parameters must be calibrated in order to ensure an effective and responsive CPD while reducing false alarms.

In detail, nd and kd influence the responsiveness of the approach (i.e., detection delay). Specifically, nd +kd −2 observationsmust be inspected ahead of the candidate change point xi to return �(xi). �d defines the smoothness and the domain of the
change point score �(xi). Threshold �d ∈

(

0, 1�d

)

is the most sensitive parameter, since it affects both false alarms and
detection capability of the method. These parameters will depend on the specific application and user willingness at risk.
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Being unknown, �Z is estimated using the sample mean ob-
tained from observations x. C2 is verified if the null hypoth-
esis H0 : �Z f cn is rejected. Parameter cn is a discounted
implementation cost defined as:

cn = c0 � (1 * �)n (16)

where � À [0, 1] is a discount factor. Since random variable
Z is generally unlikely to be iid normal, a (1 * ↵)% bias-
corrected and accelerated bootstrap confidence interval [18]
is constructed to assess the null hypothesis. This confidence
interval is very simple to form and not necessarily symmet-
ric, easily indulging for distribution skewness.

4. Variations in stochastic processes

Real manufacturing environments are characterized by
clear switches between di�erent production batches and un-
reliable resources. Therefore, the arrival of parts at a sin-
gle machine is generally non-stationary in the long range.
If control parameters were not systematically adjusted in re-
sponse to this dynamic behavior, the e�ectiveness of EEC
would considerably decrease.

Assuming that the starvation times distribution fX(x)
changes at unknown discrete points in time, the on-line ap-
proach is herewith extended to ensure an e�ective and au-
tonomous control adaptation. Specifically, an additional de-

tection phase is introduced upstream of distribution fitting to
identify significant variations is the part arrival process. As
a consequence, once a change point is detected, the previous
observations are discarded so that the control can be adapted
to the current starvation times distribution.

4.1. RuLSIF method

On the basis of a detailed review of change point de-

tection (CDP) algorithms [19], the relative unconstrained

least-squares importance fitting (RuLSIF) method is imple-
mented [20]. Indeed, being unsupervised, on-line and non-
parametric, it completely complies with the requirements of
the considered problem. The idea behind this approach is to
compare the probability distributions of the data before and
after a candidate observation xi, and quantify the dissimi-
larity with a change point score �(xi): the higher this score,
the more likely observation xi is a change point. Specif-
ically, observation xi is regarded as a change point in the
part arrival process if the following conditions simultane-
ously hold:

• �(xi*1) < �(xi) · �(xi) > �(xi+1)

• �(xi) g ⌘d

where ⌘d is a threshold to filter out false alarms.
Descending further into the details (cf. figure 2), let X(i)

be the subsequence starting from xi with length kd:

X(i) = [xi, xi+1,… , xi+kd*1] (17)

Moreover, denote X (i) À Rkdùnd as the set of nd retrospec-
tive subsequence samples starting from observation xi:

X (i) = [X(i)T ,X(i + 1)T ,… ,X(i + nd * 1)T ] (18)
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5.1. Non-Stationary Arrival Process

samples starting from observation xi:

X (i) = [X(i)T ,X(i+ 1)T , . . . ,X(i+ nCPD � 1)T ] (5.2)

For change point detection, the RuLSIF method considers two consecutive sets
X (i) and X (i+nCPD) and computes the symmetrized ↵CPD-relative Pearson
divergence as a dissimilarity measure between them1. More specifically, this
measure can be interpreted as a change point score: the higher the dissimilarity,
the more likely point xi+nCPD

is a change point.
According to the authors, peaks of change point score should be perceived

as detection alarms. Moreover, in order to filter out false alarms, a threshold
⌘CPD for the change point score is introduced. In conclusion, change points
correspond to peaks of change point score whose value is greater than or
equal to ⌘CPD.

In addition to the threshold ⌘CPD, the effectiveness of the RuLSIF method
is affected by the choice of three main parameters:

• nCPD, which controls the number of retrospective subsequences in each
set X .

• kCPD, which indicates the size of the sliding window employed to
generate each subsequence.

• ↵CPD, which acts as a smoothness controller for the change point score.
In particular, the ↵CPD-relative density-ratio, which is bounded above
by 1/↵CPD, tends to be smoother as ↵CPD gets larger.

Note that nCPD should be large enough to store a sufficient number of data
to represent the time series state, yet small enough to guarantee a responsive
detection [79]. The RuLSIF method is indeed defined to be nCPD + kCPD-real
time, since it needs to look at nCPD+kCPD data points ahead of the candidate
change point. Finally, 2nCPD + kCPD � 1 observations should be collected to
estimate the first change point score, which is referred to point nCPD + 1.

5.1.2 Parameter Calibration

RuLSIF parameters are calibrated on the basis of a specific generating
process for the starvation times data stream (labeled P1), which is character-
ized by two states. In detail, distribution D1 is employed in state 1, while
distribution D3 is selected for state 2. A back and forth transition (D1-D3-D1)

1The Matlab implementation of the proposed method is provided by the authors, refer
to [80] for the exhaustive procedure.
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Figure 2: An illustrative example of RuLSIF method notation.

CC: Devo sistemare la notazione della figura

The RuLSIF method estimates the symmetrized ↵d-relative
Pearson divergence 1 (PE) between X (i) and the antecedent
set X (i * nd) and returns this measure as the change point
score of observation xi:

�(xi) = †PE↵d
(Pi*nd

Pi) + †PE↵d
(PiPi*nd

) (20)

where Pi*nd
and Pi are the probability distributions of sam-

ples X (i * nd) and X (i).
As a consequence, besides threshold ⌘d, this method re-

quires an appropriate selection of three additional parame-
ters. In detail, ↵d controls the smoothness and the scale of
the change point score, which is bounded above by 1_↵d.
On the contrary, nd and kd influence the detection accuracy
and the responsiveness of the approach (i.e., detection de-
lay). Specifically, nd+kd*2 observations must be inspected
ahead of the candidate change point xi to return �(xi).

RuLSIF parameters are properly calibrated in order to
ensure an e�ective and responsive CDP, along with the min-
imization of the number false alarms. In this regard, the fol-
lowing combination will be employed hereafter:

{↵d, nd, kd, ⌘d} = {0.01, 30, 5, 25}

TODO: @CC SPIEGARE MEGLIO IL NEED E, dopo,

COME NOI LO AFFRONTIAMO (ovvero cercando di

identificare i cambi significativi).

TODO: Spiegare che è una fase precedente al learn-

ing (quindi l’on-ine algorithm diventa di 4 fasi).

TODO: @CC Indicare il “change point score” con

una variabile. Sintetizzare rendendo più chiaro da "in

more details" a qui. Come sono stati scelti i parametri?

1Note that the ↵d-relative Pearson divergence is expressed as:

PE↵d
(P P ®) = PE(P ↵dP + (1 * ↵d)P ®) (19)
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Being unknown, �Z is estimated using the sample mean ob-
tained from observations x. C2 is verified if the null hypoth-
esis H0 : �Z f cn is rejected. Parameter cn is a discounted
implementation cost defined as:

cn = c0 � (1 * �)n (16)

where � À [0, 1] is a discount factor. Since random variable
Z is generally unlikely to be iid normal, a (1 * ↵)% bias-
corrected and accelerated bootstrap confidence interval [18]
is constructed to assess the null hypothesis. This confidence
interval is very simple to form and not necessarily symmet-
ric, easily indulging for distribution skewness.

4. Variations in stochastic processes

Real manufacturing environments are characterized by
clear switches between di�erent production batches and un-
reliable resources. Therefore, the arrival of parts at a sin-
gle machine is generally non-stationary in the long range.
If control parameters were not systematically adjusted in re-
sponse to this dynamic behavior, the e�ectiveness of EEC
would considerably decrease.

Assuming that the starvation times distribution fX(x)
changes at unknown discrete points in time, the on-line ap-
proach is herewith extended to ensure an e�ective and au-
tonomous control adaptation. Specifically, an additional de-

tection phase is introduced upstream of distribution fitting to
identify significant variations is the part arrival process. As
a consequence, once a change point is detected, the previous
observations are discarded so that the control can be adapted
to the current starvation times distribution.

4.1. RuLSIF method

On the basis of a detailed review of change point de-

tection (CDP) algorithms [19], the relative unconstrained

least-squares importance fitting (RuLSIF) method is imple-
mented [20]. Indeed, being unsupervised, on-line and non-
parametric, it completely complies with the requirements of
the considered problem. The idea behind this approach is to
compare the probability distributions of the data before and
after a candidate observation xi, and quantify the dissimi-
larity with a change point score �(xi): the higher this score,
the more likely observation xi is a change point. Specif-
ically, observation xi is regarded as a change point in the
part arrival process if the following conditions simultane-
ously hold:

• �(xi*1) < �(xi) · �(xi) > �(xi+1)

• �(xi) g ⌘d

where ⌘d is a threshold to filter out false alarms.
Descending further into the details (cf. figure 2), let X(i)

be the subsequence starting from xi with length kd:

X(i) = [xi, xi+1,… , xi+kd*1] (17)

Moreover, denote X (i) À Rkdùnd as the set of nd retrospec-
tive subsequence samples starting from observation xi:

X (i) = [X(i)T ,X(i + 1)T ,… ,X(i + nd * 1)T ] (18)
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samples starting from observation xi:

X (i) = [X(i)T ,X(i+ 1)T , . . . ,X(i+ nCPD � 1)T ] (5.2)

For change point detection, the RuLSIF method considers two consecutive sets
X (i) and X (i+nCPD) and computes the symmetrized ↵CPD-relative Pearson
divergence as a dissimilarity measure between them1. More specifically, this
measure can be interpreted as a change point score: the higher the dissimilarity,
the more likely point xi+nCPD

is a change point.
According to the authors, peaks of change point score should be perceived

as detection alarms. Moreover, in order to filter out false alarms, a threshold
⌘CPD for the change point score is introduced. In conclusion, change points
correspond to peaks of change point score whose value is greater than or
equal to ⌘CPD.

In addition to the threshold ⌘CPD, the effectiveness of the RuLSIF method
is affected by the choice of three main parameters:

• nCPD, which controls the number of retrospective subsequences in each
set X .

• kCPD, which indicates the size of the sliding window employed to
generate each subsequence.

• ↵CPD, which acts as a smoothness controller for the change point score.
In particular, the ↵CPD-relative density-ratio, which is bounded above
by 1/↵CPD, tends to be smoother as ↵CPD gets larger.

Note that nCPD should be large enough to store a sufficient number of data
to represent the time series state, yet small enough to guarantee a responsive
detection [79]. The RuLSIF method is indeed defined to be nCPD + kCPD-real
time, since it needs to look at nCPD+kCPD data points ahead of the candidate
change point. Finally, 2nCPD + kCPD � 1 observations should be collected to
estimate the first change point score, which is referred to point nCPD + 1.

5.1.2 Parameter Calibration

RuLSIF parameters are calibrated on the basis of a specific generating
process for the starvation times data stream (labeled P1), which is character-
ized by two states. In detail, distribution D1 is employed in state 1, while
distribution D3 is selected for state 2. A back and forth transition (D1-D3-D1)

1The Matlab implementation of the proposed method is provided by the authors, refer
to [80] for the exhaustive procedure.
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Figure 5: Illustrative example of RuLSIF method (Liu et al. (2013)).

6. Numerical results
The benefits of the proposed policy are analyzed in this section. Specifically, algorithm results are studied comparing

the obtained solution with the AO policy. Given a set of n observed arrivals x = {xi|i = 1,… , n}, we define the following
sample-based KPIs:

• Percentage energy saving:

PES =
∑n
i=1 �AO(xi) −

∑n
i=1 �(xi, �impl,i−1)

∑n
i=1 �AO(xi)

⋅ 100;

• Percentage throughput loss:

PTL =
∑n
i=1  (xi, �impl,i−1)

∑n
i=1

[

xi + tp +  (xi, �impl,i−1)
] ⋅ 100;
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Scenario Machine fX(x) " � �∗ [s] g(�∗) [kJ/part] �(�∗) [parts/h] �(�∗)

M1-0-0 (AO) M1 Erlang(3,0.037) 0 0 {∞,∞} 445.95 9.45 0
M1-1-1 M1 Erlang(3,0.037) 1 1 {0,∞} 331.62 (-25.64) 8.76 (-7.30) 0.308

M1-0.05-1 M1 Erlang(3,0.037) 0.05 1 {0,78.64} 348.85 (-21.77) 8.97 (-5.00) 0.308
M1-0.02-1 M1 Erlang(3,0.037) 0.02 1 {0,32.42} 397.61 (-10.84) 9.26 (-2.00) 0.241
M1-1-0.27 M1 Erlang(3,0.037) 1 0.27 {0,41.13} 383.45 (-14.01) 9.20 (-2.63) 0.270
M1-1-0.22 M1 Erlang(3,0.037) 1 0.22 {0,25.78} 410.54 (-7.94) 9.30 (-1.53) 0.220

Table 2: Scenarios description and off-line results. The percentage relative difference against AO policy is reported within
braces for g(�∗) and �(�∗).

Machine wsb [kW] wid [kW] wsu [kW] wq [kW] tsu [s]

M1 1.5 5.5 6.5 0.5 30
M2 0.52 5.35 6.08 1 24
M3 0.8 4.3 9.3 0 25

Table 3: Machine parameters.

• Energy risk:

ER = 1
n

n
∑

i=1

[

�(xi, �impl,i−1) > �AO(xi)
]

where indicator function [⋅] = 1 whenever the energy consumed in a cycle with the on-line control is higher than that
obtained with the AO policy.

Several simulated scenarios are investigated varying the controlled machine, the arrival distribution and problem con-
straints. Despite the algorithm can generally iterate at each new observation, for computational saving it herewith iterates
every Δn = 10 collected observations. Further, each computer simulation experiment is replicated 10 times. The implemen-
tation phase works with the following setting: C0 = 10 kJ/part, � = 0.05, 
 = 0.006.The algorithm has been implemented in Matlab®R2018b and results have been obtained by computer simulation on a
laptop with 2.4GHz i-5 Intel Core and 8GB RAM (1600MHz DDR3).
6.1. Results of the control policy with constraints

The goal of these {computer experiments is to compare the unconstrained solution with the constrained one. Evaluated
scenarios are described in Table 2 where the code "M1-"-�" includes the controlled machine (M1, with parameters as in
Table 3 and deterministic processing time tp = 300 s), the starvation time distribution (Erlang-3 with rate � = 0.037 and
mean ta = 81.08 s), the maximum throughput loss " (see equation (3)) and the maximum risk � (see equation (4)). In more
detail, we analyze the unconstrained scenario (M1-1-1), two scenarios with constrained throughput (M1-"-1), and two with
constrained energy risk (M1-1-�), such that in each scenario the constraint is binding.

A production run of 2500 parts is considered. For comparison purpose, the collected starvation times have been sampled
from fX(x) using common random numbers (Law (2015)), such that the variability among scenarios is reduced.
6.1.1. A note on off-line results

The results of the off-line control problem, assuming the starvation time distribution is known, are collected in Table 2.
Denote the theoretical optimal control of a certain policy with �∗. Note that the comparison with the off-line solution is
always reported in next sections, despite the off-line SP cannot actually be applied while observing data.

The AO policy obtains an objective function value of g(∞,∞) = gAO = 445.95 kJ/part and an expected throughput of
�(∞,∞) = �AO = 9.45 parts/h. Relaxing constraints (3) and (4), the off-line SP achieves 25.64% of savings on the objective
function, a throughput loss of 7.30%with respect to the AO policy and the probability of having an increased energy is 0.308.

When the problem becomes constrained, the switch-on command is progressively anticipated reducing the amount of
energy saving. Indeed for scenarios M1-"-1, the throughput is decreasing in �on because of the probability that an incoming
part finds the machine in the standby or startup state (Frigerio and Matta (2015)). For M1-1-�, according to property 4.2, a
similar consideration also holds for constraint (4).

Further, scenarios M1-1-1 and M1-0.05-1 result in the same energy risk (�(�∗) = 0.308%) because the planned sojourn
duration in the standby state is grater than the limit duration$ = 52.50 s (�∗off = 0). In other scenarios, probability �(�∗) is
increasing in �on.
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Scenario Performance Observation number
n = 50 n = 250 n = 500 n = 1000 n = 2500

M1-0-0 (AO) Energy [kJ/part] 455.37±22.07 445.06±12.79 445.56±7.42 446.75±6.48 445.54±3.11
Throughput [parts/h] 9.41±0.10 9.45±0.06 9.45±0.03 9.44±0.03 9.45±0.01

M1-1-1
PES [%] 17.36±2.34 23.46±1.21 24.42±0.77 25.07±0.70 25.30±0.34
PTL [%] 4.60±0.84 6.55±0.26 6.81±0.21 6.99±0.12 7.14±0.08

ER 0.148±0.051 0.278±0.011 0.294±0.012 0.298±0.012 0.302±0.007

M1-0.05-1 PES [%] 15.93±2.15 20.18±1.26 21.21±0.84 21.84±0.63 21.84±0.44
PTL [%] 3.56±0.90 4.69±0.29 4.80±0.17 4.90±0.09 5.00±0.05

M1-0.02-1 PES [%] 5.82±2.65 10.29±1.41 10.68±1.08 10.95±0.85 10.95±0.58
PTL [%] 0.87±0.49 1.82±0.08 1.94±0.08 1.97±0.06 2.00±0.04

M1-1-0.27 PES [%] 10.37±4.46 16.31±3.12 15.72±2.36 15.25±1.77 14.66±1.18
ER 0.112±0.059 0.252±0.013 0.264±0.012 0.268±0.008 0.269±0.05

M1-1-0.22 PES [%] 4.63±2.33 8.56±2.47 8.54±2.21 8.50±1.91 8.20±1.48
ER 0.078±0.046 0.194±0.012 0.210±0.011 0.216±0.066 0.219±0.051

Table 4: Sample-based comparison of the on-line algorithm for different scenarios (95% CI of 10 replications).

6.1.2. On-line results
Scenarios described in Table 2 are herewith solved by applying the on-line approach while observations are collected.

Results are thoroughly collected in Table 4 and show that the on-line approach achieves good performances in terms of PES
despite a limited set of observations is available. This constitutes a significant advantage with respect to an off-line approach
that requires, instead, a large learning period to collect observations without controlling the system.

Algorithm performance improves on average when more observations are collected. From replication to replication, the
applied control differs and it might happen that some replications obtain negative energy saving (or high throughput loss)
while few observations are available. As an example, Figure 6 represents the PES for scenario M1-1-1. A more conservative
implementation phase (i.e., high C0, low �, and low 
) would help in this direction. As a drawback, the control application
would be delayed and energy saving on the long run reduced.

After the initial transitory, the switch-off control parameter remains �off,impl = 0whilst the switch-on control significantly
varies from replication to replication according to the estimated f̂X(x|x) to maintain good performance. Also, it tends to the
off-line solution. As an example, Figure 7 represents the control applied for two different replications of M1-0-05-1.

Figure 6: PES in scenario M1-1-1 (10 replications). The first 500 observations are reported.
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Figure 7: Implemented switch on parameter �on,impl for scenario M1-0.05-1. The first 500 observations are reported.

6.1.3. Effect of the constraints
Focusing on the constrained scenarios (off-line results in Table 2 and on-line results in Table 4), the PTL and the PER

satisfy the imposed targets, respectively " and �. The introduction of a binding constraint decreases the amount of PES
with respect to unconstrained scenario M1-1-1. This behavior is not surprising, since the constrained solutions are a trade-off
among different conflicting objectives.

As in Figure 8, the on-line approach progressively increases the PES while the number of observations increases. All
constrained scenarios appear more conservative despite being on average feasible. Furthermore, the effect seems to be non-
linear in the constraint target value ". As " decreases, the PES decreases more significantly and the AO policy will become
the optimal. Similarly for �.
6.1.4. A note on computational effort

Computational times per iteration are collected in Table 5. The learning phase, which does not vary among scenarios,
requires more time as the number of collected observations increases. However, it is still performed in a reasonable time
considering the application field. The optimization phase depends both on the amount of collected observations and on
the typology and setting of problem constraints and constitutes most of the computational effort. The time required for
the implementation phase is not reported because it is not significantly affected by the number of observations, it is almost
constant among scenarios, and it can be considered negligible (i.e., <1 s).

It is noteworthy that the total computational time for an iteration is quite limited in all tested scenarios. This indicates
that the proposed algorithm features fast response time laying the foundations for a real-time applicability.
6.2. Control adjustment to production dynamics

The goal of these computer simulation experiments is to assess the benefits of detecting changes in the upstream produc-
tion process (i.e., detection phase of the algorithm), while controlling the machine for energy saving purposes.

We consider a real CNC (Computer Numerical Control) machining center (M2), characterized by the use of a power meter
that elaborates the three-phase voltages and the linked current, measured through LEM sensors, as in Table 3. The machine
is a COMAU SmartDrive700L machining center equipped with 5 linear axes, a working cube of 700mmx700mmx800mm, a
HSK63 horizontal spindle (31.5kW) and 110kW of installed power. The machine commonly executes machining operations
(milling, drilling, finishing) for powertrain applications. According to the information provided by the company, the process-
ing time is assumed deterministic and equal to tp = 168 s and the maximum admissible throughput reduction is " = 0.02.
Also, we relax the energy risk constraint (i.e., scenario M2-0.02-1).

A production run of 600 parts is considered and we assume that the pdf fX(x) changes at observations i = 201 and
j = 401. A Weibull distribution f1(x) with shape k = 5 and scale � = 49.011 (i.e., ta,1 = 45 s) is employed when
n ∈ [1, 200] and n ∈ [401, 600]. The following pdf f2(x) with mean ta,2 = 46 s is instead employed when n ∈ [201, 400]:

f2(x) = (0, 7.5) + 0.1(70, 5) + 0.4(90, 10); ∀ x ≥ 0

where (m, v) is a Gaussian distribution with meanm and standard deviation v conveniently truncated to have x ≥ 0. Function
f2(x) is in Figure 9 and it is characterized by a mode in x = 0 followed by a second bi-modal peak. Despite the differences
in shape and variance, distribution f1(x) and f2(x) have a similar mean; hence, the change point is very difficult to handle.

Assuming that f1(x) and f2(x) are known, the AO policy obtains respectively gAO,1 = 240.75 kJ/part and gAO,2 = 246.06kJ/part. In addition, the achievable throughput is respectively �AO,1 = 16.90 parts/h and �AO,2 = 16.82 parts/h. The off-line
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(a) Throughput constraint.

(b) Energy risk constraint.
Figure 8: Sample-based comparison among scenarios M1-"-�. The first 500 observations are reported. Full line represents the

mean and dotted lines represent the respective 95% CI (10 replications).

Phase Scenario Observation number
n = 50 n = 250 n = 500 n = 1000 n = 2500

Learning M1-"-� 0.04±0.03 0.18±0.05 0.41±0.12 1.20±0.30 5.19±1.78

Optimization

M1-1-1 1.51±0.18 5.51±0.82 7.16±0.52 8.23±0.61 11.35±0.84
M1-0.05-1 2.67±0.14 8.09±0.80 10.03±0.43 12.03±0.55 16.05±2.11
M1-0.02-1 3.08±0.14 8.21±1.01 10.05±0.65 11.60±0.40 15.67±1.32
M1-1-0.27 2.05±0.59 9.29±1.86 12.91±1.33 13.80±1.02 18.99±1.06
M1-1-0.22 2.87±0.23 9.83±1.67 12.87±1.40 14.00±1.19 18.91±0.96

Table 5: Computational times [s] per iteration according to the tested scenario: learning and optimization phases (95%CI of 10
replications).

constrained policy achieves 24.36% and 36.47% of savings on the objective function with the theoretical optimal controls
�∗1 = {0, 21.55} s and �∗2 = {13.04, 65.48} s.In the following, we compare the results obtained with (namely "On-line+CPD" algorithm) and without (namely
"On-line" algorithm) the detection phase. Common random numbers are used to sample starvation times in simulation
experiments. The considered implementation phase setting is: C0 = 10 kJ/part, � = 0.05 and 
 = 0.006.
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Figure 9: Probability density function f2(x).

Actual change point Located mean Located range

i = 201 197.20 [190,201]
j = 401 396.70 [390,403]

Table 6: Location of detected change points (10 replications).

6.2.1. Accuracy in change point detection
In order to provide an accurate and responsive performance, the RuLSIFmethod is employed with the following parameter

combination:
{nd, kd, �d, �d} = {30, 5, 0.01, 25}. (17)

The parameters have been chosen after a calibration phase.
With reference to Section 5, the considered setting entails a delay of nd + kd − 2 = 33 observations in change point

detection. In other words, the change point score of observation i can be computed only when n ≥ i + 33. The detection
phase returns the change point locations in Table 6, which vary according to the considered sample path. In some cases, the
identified change point precedes the actual one.
6.2.2. CPD effect on on-line results

The behavior of the algorithm enriched with CPD can be appreciated from the control applied in one replication, as
reported in Figures 10a and 10b. Initially, the two algorithms ("On-line" and "On-line+CPD") behave identically and control
parameters are close to the theoretical ones. When the first change in fX(x) occurs at n = 201, the estimation of f2(x) becomes
biased due to the observations from f1(x) and the algorithms start decreasing �on,impl. At n = 240 the "On-line+CPD"
algorithm detects a change point in i = 201 and discards previous observations xi with i ∈ [1, 200]. The learning phase nowfocuses on a homogeneous subset and control parameters are closer to the theoretical ones. Similarly for the second change
point identified at j = 395 when n = 430. The "On-line" algorithm, instead, becomes strongly biased, since the algorithm
learns from data belonging to two different populations.

The PES and PTL obtained by algorithms "On-line" and "On-line+CPD" are in Figures 11a and 11b. Both algorithms
improve the AO scenario but the CPD significantly enhances the performance.

Initially, the two algorithms behave identically; whilst, when the first change in fX(x) occurs at n = 201, the performance
of the "On-line" algorithm drops andPES decreases (Figure 11a). The detection phase allows to reverse the initially declining
trend of PES for the "On-line+CPD" algorithm, and maintains a good performance despite the variation in the starvation
process. Similarly for the second change point. Over the observation period, this entails a PES which is, on average, double
with respect to that obtained without the detection phase.

In Figure 11b, the performance detriment of "On-line" algorithm is also visible. After an initial peak of PTL, the
"On-line" algorithm reacts and adjust the control parameters to maintain a feasible solution. This reaction is faster for the
"On-line+CPD" algorithm since the detection phase contributes to the control adaptation.

The computational effort required for the detection phase is negligible (i.e., < 0.05 s) and it is not affected by observed
data n: observations are indeed processed within a sliding window of fixed size 2nd +kd −1. In terms of total computational
effort of the algorithm, when a change point is detected, a certain portion of observations is discarded and the learning and
optimization phases become faster for next iterations.
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(a) Switch-off parameter �off,impl. (b) Switch-on parameter �on,impl.
Figure 10: Implemented control parameters for on-line algorithm with vs without the detection phase. Scenario M2-0.02-1, 1

replication. Actual change points at observations n = 201 and n = 401.

(a) Percentage energy saving. (b) Percentage throughput loss.
Figure 11: Comparison among on-line algorithm with ("On-line+CPD") and without ("On-line") detection phase (scenario

M2-0.02-1, 10 replications). Dotted lines represent the 95%CI among the mean.

6.3. A realistic production case
The goal of this section is to assess algorithm performance at higher level, showing the robustness of our approach in more

complex environments of application. We consider a two-stage manufacturing system decoupled by an infinite intermediate
buffer of parts, where the second stage is controlled for energy saving purposes. The first stage is composed of five parallel
and equal machines followed by a single-server stage.

All machines are of type M3 as in Table 3 and parameters have been obtained after ad-hoc measurements. Random
processing times are used to model microstoppages at machines: Uniform(415, 435) s is used for machines at the first stage
and Uniform(77.5, 82.5) s for the second stage.

A production run of 900 parts is simulated, assuming that from observation i = 151 to j = 751 one of the parallel
machines is not producing due to a severe failure requiring a long maintenance intervention. Expected system throughput is
42.35 parts/h, reduced to 33.88 parts/h when only four machines are working in parallel. The temporary reduction of 20%
in the throughput leads to an energy saving potential at the second stage. Note that the first stage is the bottleneck of the
system and, for this reason, machines are not controlled. The machine at the second stage has a utilization of 95%, which
theoretically decreases to around 75% when one of the upstream machines fails.

TheAO policy consumes on average 26.68±0.37 kJ/part when five parallel machines are working and 112.03±0.30 kJ/part
when only four work (over the whole observation period: 83.58±0.28 kJ/part). This consumption is related to the starvation
of the second-stage machine, because the first stage is never starved of raw parts and never blocked. The RuLSIF method
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uses parameters as in equation (17).
Results in terms of PES, system throughput and ER are in Figure 12. Initially, the "On-line" algorithm does not control

the machine keeping an AO policy. Then, after n = 500, it controls the machine with �off = 0 s and �on ≈ 126 s. Change
points are detected along the observation period and the "On-line+CPD" algorithm starts sooner in controlling the machine.
This can be noticed in Figure 12a, where the savings obtained are significantly higher than those of the "On-line" algorithm.
As an example, the control applied to one replication is reported in Figure 13. Three change points are detected: the first
(n = 185) identifies the failure at first stage, the second (n = 751) the repair, and the third (n = 793) is actually a false alarm.
Initially, the AO policy is implemented (� = {∞,∞}), then the machine is controlled because the starvation mean increases,
and at last the AO policy is implemented.

(a) Percentage energy saving. (b) System throughput.

(c) Energy risk.
Figure 12: Sample-based comparison of results obtained for M3 in the two-stage scenario. Full line represents the mean and

dotted lines represent the respective 95% CI (10 replications).
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Figure 13: "On-line+CPD" control for M3 in the two-stage scenario. Example of one replication.

As in Figure 12b, system throughput decreases after observation i = 151 because of the failures at the first stage and
recovers after observation j = 751 when the service is resumed. This behavior is not affected by the control because the
intermediate buffer absorbs the variation in queue length. Indeed, the average buffer occupancy is 0.80 parts (up to amaximum
of 4 parts) in the AO case, and 0.91 parts (up to amaximum of 4 parts) in the "On-line+CPD" case. In addition, the assumption
of infinite capacity is realistic and it is not affecting the blocking probability at the first stage. Thus, results of the throughput
constrained problem are equal to those of the unconstrained problem.

TheER is quite variable because of the difficulties in estimating fX(x), but the maximumER obtained in a replication is
6% which represents a very low energy risk. Nevertheless, as in Figure 12c, the CPD maintains a lower ER given the better
estimation of fX(x).

7. Conclusions and future developments
The objective of this work is to move a step forward in the energy efficient control of machine states under uncertainty

in part arrival. Compared to existing studies, the proposed approach is highly flexible and can be applied on-line without an
intensive effort for practitioners. Considering the widespread diffusion of machining processes in industry, our study can be
of high impact for the sector. Specifically:

• In the analyzed simulated scenarios, the proposed approach reduces the energy consumption up to 25% with respect to
the AO policy.

• The proposed algorithm solves the on-line problem of minimizing energy while assuring constraints on machine per-
formance so as a target throughput.

• The proposed algorithm learns from acquired data and autonomously selects the control to be applied.
• When the arrival process is non-stationary in time, the proposed algorithm reacts effectively limiting the deterioration

of performance.
• Low computational times ensure shop floor applicability.
As future development, the proposed algorithm can be generalized to include both constraints simultaneously. However,

this might result in a severe increase of computational time which might be not suitable for practical application where, in
addition, those constraints are rarely both binding.

Future effort will be devoted to the application of change point detection methods to other performance of interest. This
may allow to identify variations in the system or in the external environment in a more effective way. Steps towards sys-
tem level application will be pursued. Indeed, when model assumptions are not completely fulfilled, the algorithm might
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be not efficient; for example, starvation times are hardly iid and can be affected by the applied control policy. Also, the
detection method might fail. New methods should be investigated to better estimate and react to variations in the production
environment.

Appendix A. Machine model
The model has been proposed in the literature (Frigerio and Matta (2015)). Machine energy demand '(x, �) follows:

'(x, �) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wid ⋅ x if A1
wid ⋅ �off +wsb(x − �off) +wsu ⋅ tsu if A2
wid ⋅ �off +wsb(�on − �off) +wsu ⋅ tsu if A3
wid ⋅ �off +wsb(�on − �off) +wsu ⋅ tsu
+wid(x − �on − tsu)

if A4

where Ai|i = 1, 2, 3, 4 are the following conditions:
A1 = {0 ≤ x ≤ �off}
A2 = {�off < x ≤ �on}
A3 = {�on < x ≤ �on + tsu}
A4 = {x > �on + tsu}.

Conditions Ai|i = 1, 2, 3, 4 depend on the interaction between x and � and their probability of occurrence depends on fX(x).Similarly, we obtain the part waiting time  (x, �):

 (x, �) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if A1
tsu if A2
�on + tsu − x if A3
0 if A4.

Therefore, the energy consumed in a cycle �(x, �) is obtained by equation (1).

Appendix B. Learning phase
Given a set of n observed arrivals x = {xi|i = 1,… , n}, the estimated distribution is:

f̂X(x|x) =
1
nℎ

n
∑

i=1

(x − xi

ℎ

)

where (⋅) is the Gaussian Kernel function and ℎ > 0 is a smoothing parameter, referred to as bandwidth (Parzen (1962)).
The implemented KDE method finds the optimal bandwidth ℎ∗n with the leave-one-out cross validation method (Bowman
(1984)). Therefore, we use ℎ = ℎ∗n that makes most likely the n data observed by maximizing the Likelihood function:

ℎ∗n = arg maxℎ∈ℝ+
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.

Appendix C. Solving algorithm for the unconstrained problem
The unconstrained off-line optimization problem, obtained by relaxing constraints (3) and (4), has been addressed in the

literature (Frigerio and Matta (2015)). In details, control parameters are independent and problem solution can be found. The
algorithm proposed in the literature is herewith improved to address general f̂X(x|x) estimated after n observations:
Step 1 Create set off collecting the solutions of the following equation:

)ĝ(�)
)�off

= 0

and include also �off = 0 to account for potential solutions on the domain boundary.
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Step 2 Create set on collecting the solutions of the following equation:
)ĝ(�)
)�on

= 0.

Step 3 Create setunc of candidate problem solutions combining elements of sets off and on such that each pair {�off,i, �on,j}
∀ �off,i ∈ off, �on,j ∈ on belongs to the domain of decision variables  , see equation (10). Note that candidate solution
{∞,∞} represents the AO policy and must be included in unc.
Step 4 Select:

�n = min
�∈unc

ĝ(�).
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