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Abstract: In this research, steel alloys based on the Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni systems
have been designed, produced by different atomisation techniques, and processed by laser powder bed
fusion (L-PBF) to investigate their microstructural and mechanical behaviour. Both gas atomisation
and water atomisation were considered for powder preparation. The resulting different flowability
of powders, hence a different densification behaviour during processing, could be compensated by
tuning the L-PBF parameters and by the application of a post treatment to improve flowability of the
water atomised powders. In agreement with thermodynamic calculations, small-size oxide-based
nonmetallic inclusions of the type SiO,, MnO-5iO,, Cr,03-5i0, were found within the steel matrix
and on the fracture surfaces of the water atomised L-PBF alloys, featuring higher amounts of oxygen
than the gas-atomised steels. Analyses on microstructure and hardness of the hardenable as-built
steels suggested that during laser processing, the multilayer L-PBF structure undergoes an in-situ
tempering treatment. Furthermore, the mechanical properties of the L-PBF steels could be widely
tuned depending on the post-thermal treatment conditions.

Keywords: laser powder bed fusion; water atomisation; gas atomisation; low-alloy steel;
microstructure; mechanical behaviour

1. Introduction

Laser powder bed fusion (L-PBF) process belongs to the additive manufacturing (AM) family.
It is considered as the main technology for the processing of metallic parts having relatively small size
and complex shapes. Given the ability of this layer-by-layer manufacturing technology to produce
extremely complex shapes with high accuracy, L-PBF technology is attracting interest from different
industrial fields. The reference materials for L-PBF include a limited number of steel grades, titanium,
aluminium, nickel and cobalt-based alloys [1,2]. These materials are generally selected among the most
castable and weldable grades to ease the processing stage. In particular, the selection of steels for L-PBF
has substantially been limited to 316L stainless steel, Maraging as well as 17-4 PH grades owing to
their good processability and, for the latter two alloys, the ability to be strengthened by a post-process
aging treatment [3-9]. Besides, low-alloy steels for structural applications have also been investigated
in the literature. Starting from a hydrogen-reduced sponge iron powder containing 0.02% wt. carbon,
Song et al. [10] studied the effect of L-PBF processing parameters on the densification behaviour of
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cube samples and evaluated the tensile performance of iron bars. The authors concluded that the most
significant strengthening mechanism is the grain refinement that arises during the laser processing.
For what concerns more alloyed steels, it has been demonstrated that the L-PBF 4140-grade exhibits
higher mechanical properties compared to the counterpart wrought steel [11]. Similar results were
obtained by Jelis et.al. [12] who processed a 4340 steel by L-PBF. After a stress relieving treatment at
600 °C for 1 h, they achieved higher tensile properties than the wrought alloy. Dilip et al. [13] studied
the conventional quenching and tempering treatments of HY100 steel fabricated by L-PBF. Given the
texture induced by the epitaxial grain growth during the laser processing, direct tempering of the
as-built structure showed higher strength and fracture ductility over the conventionally quenched and
tempered specimens that recrystallised into equiaxed grains. Even if in a scattered manner, several
information about tool steels can also be found in the literature [14-22], owing to the large interest
related to specific applications exploiting conformal cooling channels and opportunities to fabricate
complex shapes with limited cost increase in dies and tools [23-25].

As already stated, the range of steel powders commercially available as powder feedstock for
L-PBF is rather limited. In particular, only few low-alloy steel grades are available within the material
portfolio of system producers and powder manufacturers. Moreover, a gap in the range of steel
grades becomes evident when considering the requirements for structural application that, for more
conventional processing techniques, would rely on plain C-steels or low-alloy steels. For the widest
application potential, such steel powders should contain limited amounts of critical raw materials such
as W, Co, Nb and V [26], be readily processable and recyclable, suitable to be hardened by quenching
and able to be fabricated into powders by sustainable atomisation techniques.

In this context, cheaper powder processing routes would be advisable, considering for instance
water atomisation for large batch production as an alternative to the gas atomisation process [27-29].
With this perspective, low-cost and sustainable low-alloy steels could push the potential applications of
L-PBF products closer to mass-production goods, especially for the automotive and machinery sectors.

In the present study a set of Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni low-alloyed steels have
been developed, moving from the powder formulation and their production to the characterisation of
the L-PBF processed and heat treated specimens. In particular, several steel powders were produced
either by water or gas atomisation techniques, selecting suitable alloying elements regarding cost
issues, sustainability and strengthening ability.

2. Materials and Methods

2.1. Steel Powders and Laser Powder Bed Fusion

In the current study, feedstock powders for L-PBF having a nominal particle size ranging from
20 to 63 um have been utilised. The steel powders have been produced by two different processes,
namely water atomisation (WA) and gas atomisation (GA). Because of the expected lower flowability
and higher oxygen content of the WA-powders, some of the alloys produced by WA were additionally
subjected either to a proprietary post-treatment (WA + PT) or to oxygen reduction (WA + OR).
The detailed chemical composition of the investigated powders produced by Hogands AB (Hoganas,
Sweden), are given in Table 1. It is to remark that WT-1 powder alloy has the same composition as W-3,
but it was additionally subjected to the post treatment after WA.

Powder flowability investigations were carried out by Hall flow rate measurements on 50 + 0.1 g
samples. The powder was initially poured into a Hall funnel and the time to exit the funnel orifice
with diameter of 2.5 mm was recorded. The Hall flow rate was considered as the average value of at
least four tests.



Metals 2020, 10, 1474 30f21

Table 1. Chemical compositions (wt.%) of the investigated steels.

Chemical Composition

Alloy Production Process
Cr Mo Si Mn Ni (0]

W-1 0.05 0.70 - 0.50 0.89 - 0.509

W-2 0.12 0.44 0.27 0.36 0.58 1.77 0.395 WA

W-3 0.15 3.10 0.50 0.33 - - 0.254

W-4 0.005 3.10 0.51 0.03 0.06 0.048 0.159 WA + OR
WT-1 0.15 3.10 0.50 0.33 - - 0.250

WT-2 0.32 0.82 0.24 0.44 - 1.89 0.262 WA+ PT

G-1 0.15 1.27 0.08 0.54 0.061

G-2 0.37 0.52 0.26 0.07 0.64 1.83 0.082 GA

For the apparent density measurements, 100 g of powder were poured into the Hall funnel where
the powder could freely flow to fill the density cup located below the exit orifice. Afterwards, the excess
powder was carefully scrapped off without packing the underlaying powder layer. The powder weight,
filling the calibrated-volume density cup, was registered and the whole procedure was carried out
twice. The calculated apparent density was set to be the average value within an error of +£0.015 g/cm?,
otherwise additional measurements were performed.

The tapped density was determined according to ISO 3953 standard. Samples of 50 + 0.05 g
of powder were poured into a measuring glass and locked in a J. Engelsmann AG tapping device
(Engelsmann AG, Ludwigshafen, Germany) with counter set for 3000 taps. The tapped volume was
recorded, and the powder was weighted again after completing the tapping cycle. The tapped density
was considered as the average value of two tests.

The powder particles size was confirmed by both Sieve Analysis according to the ISO 4497
standard and Sympatec Helos laser diffraction instrument (Sympatec GmbH, Clausthal-Zellerfeld,
Germany).

For the L-PBF processing of the GA and WA+PT powders, a Renishaw AM250 system equipped
with a single mode pulse fibre laser and a reduced build volume device (Renishaw plc, Staffordshire, UK)
was used to initially produce cube-shaped specimens with a side in the range from 5 to 10 mm. Meander
scanning strategy and the parameters reported in Table 2 were adopted for printing the specimens.

Table 2. Range of L-PBF processing parameters adopted.

Processing Parameters Renishaw AM250 EOS M270

Laser power, W 200 185
Layer thickness, um 40 40
Hatching distance, pm 70-125 50-100
Point distance, pm 30-60 _

Exposure time, us 80
Scanning velocity, mm/s - 450-750

Considering their reduced flowability, the W-series powders have been processed by an EOS M270
L-PBF system (EOS GmbH, Munich, Germany) equipped with an Yb-fibre continuous laser system
having a standard-size building platform and wider possibilities of adjusting the dosing parameters
of the powder bed. In this case, printing of cubes (10 mm side) as well as bars (8 x 8 x 80 mm?) was
accomplished by using stripes scanning strategy, according to the parameters also reported in Table 2.

For both systems, optimal parameters were achieved starting from a set of selected parameters
based on previous experience. A simplified design of experiment (DoE) was defined using the scanning
velocity (EOS M270) or the point distance (Renishaw AM250) and the hatching distance as the main
variables. In all the tests, the layer thickness was set to 40 um.
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2.2. Material Characterisation

Vertical cross-sections of L-PBF specimens were prepared for microstructural investigations
according to standard metallographic procedures. Relative density of the laser-processed steels
was evaluated by image analysis on the vertical surfaces polished with diamond paste followed by
colloidal silica suspension. At least five micrographs have been collected at a magnification of 25X and
were considered for the analysis, in which the fraction of defects was estimated by Image ] software
(Version 1.53¢c, National Institutes of Health, Bethesda, MD, USA). Afterwards, the specimens were
etched with Nital 2% reagent to highlight microstructural features.

The microstructure of the steels was characterised by means of Nikon Eclipse LV150NL optical
microscope (OM, Nikon Corporation, Tokyo, Japan) and a high resolution Zeiss Sigma 500 VP
field-emission scanning electron microscope (FE-SEM, Carl Zeiss Microscopy GmbH, Jena, Germany)
equipped with energy-dispersive X-ray spectroscopy (EDS).

A Rigaku SmartLab X-ray diffractometer (XRD, Rigaku Corporation, Tokyo, Japan) was adopted
for phase analysis. X-rays were generated using Cu-K« radiation at 40 kV and 40 mA. Scans were
performed at 1°/min with a resolution of 0.02° for the acquisition of the peaks of interest.

2.3. Thermal Analysis and Phase Modelling

Differential scanning calorimetry (DSC) analyses were carried out using a Setaram Labsys
differential scanning calorimeter (Setaram Inc., Lyon, France) on as-built steel specimens having a
mass of approximately 80 mg. The tests were conducted with heating and cooling ramps from room
temperature to 1550 °C, at a rate of 10 °C/min in Argon atmosphere.

The thermodynamic equilibrium and phase stability predictions for the different alloys were
evaluated by using the ThermoCalc AB software (Version 2020b, Stockholm, Sweden) based on TCFE9
Steel/Fe-alloy database.

2.4. Thermal Treatment

The steels produced by L-PBF were heat treated according to different strategies. Quenching
treatments were performed on steel specimens after soaking for 10 min in a Carbolite muffle furnace
(Carbolite, Neuhausen, Germany). x-Fe to y-Fe transformation temperatures were defined according
to DSC transformation peaks on heating and the quenching temperature was set 45 °C above the
transformation temperature of each steel. Tempering treatments were performed in a temperature
range between 200 to 600 °C for 1 h. A second strategy consisted of tempering the steels right from
the as-built condition since the rapid solidification and cooling conditions experienced by L-PBF was
supposed to be able to induce a high fraction of martensite in some of the investigated alloys.

2.5. Mechanical Testing

The mechanical properties of the investigated steels treated to the different conditions,
were evaluated by micro-hardness and tensile testing. Hardness tests were performed using a
Future Tech FM-700 micro-indenter, by applying a load of 500 g for 15 s on the Vickers indenter.

Room temperature tensile tests were performed on the WA alloys by means of an MTS Alliance
RT/100 universal testing machine (MTS systems, Torino, Italy) with a crosshead speed of 2.5 mm/min,
according to ASTM E8M standard. Dog-bone specimens having a diameter of 6 mm and a gauge length
of 30 mm were machined from the bars processed with optimum parameters. At least two specimens
were tested for each condition and the fracture surfaces were analysed by a Zeiss EVO-50XVP SEM
(Carl Zeiss Microscopy GmbH, Jena, Germany).
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3. Results and Discussion

3.1. Powder Properties

Figure 1 displays representative SEM images of the steel powder particles atomised according to
the different routes. It can be observed that WA powders feature an irregular morphology compared to
the spherical-shaped GA powder. This is due to the high solidification rate induced by the water spray;,
estimated to be 10 to 100 times higher than that induced by gas atomizing jets, which does not allow a
full redistribution of the surface tension field to reproduce the equilibrium spherical geometry [29].
M6 4 TR FER ARV ¥ ular WA powder morphology can be significantly improved b§ftht
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Table 3. Powder properties and achieved relative density after L-PBF processing of the steels
investigated.

Particle Size Distribution
Production Flow Papp. Ptap Relative

Alloy Process () (s/50g) (g/cm3) (g/cm3) Density (%)
D1o Dso Doo
W-1 12 32 65 36.0 2.80 3.62 97.81
W-2 WA 15 35 65 30.7 2.70 3.39 98.54
W-3 29 50 80 31.0 2.80 3.47 99.80
W-4 WA + OR 35 59 88 28.0 2.80 3.53 99.88
WT-1 WA + PT 26 46 72 18.0 3.60 4.37 99.84
WT-2 21 37 59 21.0 3.44 4.37 99.55
G-1 GA* 22 38 57 12.0 4.36 5.05 99.93

(@) 00 04
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Table 3. Powder properties and achieved relative density after L-PBF processing of the
steels investigated.

All Production Particle Size Distribution (um) Flow Papp. Ptap Relative
oy Process Dio Dso Do (s/50g) (g/em?®) (g/em®)  Density (%)

W-1 12 32 65 36.0 2.80 3.62 97.81
W-2 WA 15 35 65 30.7 2.70 3.39 98.54
W-3 29 50 80 31.0 2.80 3.47 99.80
W-4 WA + OR 35 59 88 28.0 2.80 3.53 99.88

WT-1 26 46 72 18.0 3.60 4.37 99.84

WT-2 WA+ PT 21 37 59 21.0 3.44 4.37 99.55
G-1 99.93
G2 GA* 22 38 57 12.0 4.36 5.05 99.94

* Data on GA powders were measured on G-1 powder only. Based on results for similar compositions, these results
are considered to be representative of both the G-series steels here investigated.

3.2. Microstructure Evolution

3.2.1. Relative Density

Data about the relative density achieved after L-PBF processing according to optimised parameters
for each of the steel investigated are also provided in Table 3. It is observed that the WA steels could
attain a fairly good density, which is strictly related to the powder properties such as flowability and
apparent and tapped density. The application of a post treatment on W-type powder resulted in a
further improvement of the achievable density after L-PBF, with values exceeding 99.5% achieved in
WT-type steels processed under optimal conditions. As expected, G-type steels could also be densified
to values as high as 99.9%.

3.2.2. Nonmetallic Inclusions

The nature of the WA process results in a significant oxygen pickup that reflects in the composition
of the powder (see Table 1). Upon L-PBF processing, the formation of oxide inclusions is therefore
promoted in the microstructure. FE-SEM micrographs of the investigated alloys in as-built condition
and EDS elemental maps are displayed in Figures 2 and 3, respectively to confirm this statement.

Oxides of the type MnO-5i0O, having a maximum diameter of about 4 pm were observed on
the polished surfaces of W-1 and W-2 steels. While in W-3 and WT-1 alloys containing 3.1% wt.
Cr, relatively larger (around 6 um) Cr-rich oxides, presumably of the type Cr,Os3, were detected.
In addition, Fe-rich particles were often found embedded in the Cr,O3 oxides leading to more complex
multi-phase inclusions, as shown in Figure 3c. Single phase SiO, inclusions were detected in the
low-Mn and 0.82% Cr WT-2 steel, with a size up to about 2 um, as depicted in Figure 2f. The results are
in agreement with the paper published by Shibata et.al. [30] who confirmed that Cr,O3 coexists with
other oxides of type MnO-5iO; in 5% Cr steels while only MnO-SiO; are observed in steels containing
less than 1% Cr.

Although W-4 alloy is also rich in Cr, no significant amount of inclusions was detected in the
matrix owing to the post-atomisation oxygen-reduction treatment that lowers the oxygen content
down to 0.159%. Higher magnification FE-SEM micrographs are collected in Figure 4 to highlight the
distribution of nano-inclusions found in the investigated steels. It is readily observed that less-frequent
oxides were formed in W-4 alloy compared to the other steels, confirming that the oxide inclusions are
mainly dependent on the steel chemistry, in particular on the amount of oxide-former elements and
oxygen content.
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Oxides of the type MnO-S5iO:z having a maximum diameter of about 4 um were observed on the
polished surfaces of W-1 and W-2 steels. While in W-3 and WT-1 alloys containing 3.1% wt. Cr,
relatively larger (around 6 um) Cr-rich oxides, presumably of the type Cr20s, were detected. In
addition, Fe-rich particles were often found embedded in the Cr20s oxides leading to more complex
multi-phase inclusions, as shown in Figure 3c. Single phase SiO: inclusions were detected in the low-
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matrix owing to the post-atomisation oxygen-reduction treatment that lowers the oxygen content
down to 0.159%. Higher magnification FE-SEM micrographs are collected in Figure 4 to highlight the
distribution of nano-inclusions found in the investigated steels. It is readily observed that less-
frequent oxides were formed in W-4 alloy compared to the other steels, confirming that the oxide
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elements and oxygen content.
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It is finally assumed that the dependency of achievable density of samples on oxygen content
(hence on inclusion faction and size) of steel is only of indirect nature, it being mainly dependent on
the powder properties (flowability and apparent/tapped densities).

3.2.3. As-Built Microstructure

Optical and high magnification SEM micrographs of the investigated steels in as-built condition
are reported in Figures 5 and 6, respectively. Typical features of the layer-by-layer laser melting process
are inferable in most of the micrographs given in Figure 5. The melt pools resulting from laser scanning
tracks are revealed by the different etching effect induced in those steels containing significant amount
of carbon. On the contrary, in W-1 and W-4 alloys, containing 0.05 and 0.005% C, respectively, a fairly
homogeneous structure is revealed, in which ferrite grains are dominant as indicated in Figure 5a,d.

Based on the chemical compositions given in Table 1 and on the microstructures reported in
Figures 5 and 6, it is possible to divide the investigated steels into three groups. W-1 and W-4 are low
and ultra-low C-steels featuring very low ability to be hardened upon rapid cooling. The Ni-containing
W-2, WT-2 and G-2 steels, also alloyed with Cr and Mo, with 0.12%, 0.32% and 0.37% C, respectively,
are expected to show increasing hardenability. Indeed, WT-2, and G-2 steels are designed as quench
and tempering steels. Finally, the 0.15% C W-3/WT-1 and G-1 grades, containing 3.1% and 1.27%
Cr, respectively, with variable amounts of Mo, correspond to case-hardening or low-C quench and
tempering steels.

As already mentioned, the structure of W-1 and W-4 steels is substantially made up of the
a-Fe phase. In the W-4 alloy, ferritic grains with fairly homogeneous size in the range 5-10 pm are
observed (Figure 6d) whereas in the W-1 steel, a mixture of finer equiaxed and acicular ferrite is noticed
(Figure 6a). The refinement and modification of the microstructure is supposed to be mainly related
to the higher oxide inclusion content in this latter alloy that promotes pinning effects on the grain
boundaries and suppresses the prior austenite grain growth [31,32].

W-3 and WT-1 as its post-treated counterpart, together with G-1 alloy feature a combination of
(upper) bainite and of tempered martensite. It is assumed that the moderate hardenability of these
steels does not allow reaching a fully martensitic structure upon rapid cooling from solidification
temperature. It is also worth mentioning that tempering effects on the fresh martensite formed upon
rapid cooling from solidification are induced by the heat flow from the adjacent laser tracks and from
the overlapped molten layers.
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Finally, W-2, WT-2 and G-2 steels result after L-PBF processing in an almost fully martensitic
structure. Specifically, in the W-2 specimen a small fraction of ferrite grains can be observed, whereas
in the WT-2 and G-2 grades, featuring a higher C content, only tempered martensite is observed. The
Mefisd0olphbldbgy of WT-2 compared to G-2 steel could presumably be accounted for by the refinifigf 21
effect of Si and the higher oxide content in the former steel.
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f6i%e'8”Bptical micrographs of (a) W-1, (b) W-2, (c) W-3, (d) W-4, (e) WT-1, (f) WT-2, (g) G-1 and
(h) G-2 alloys processed by L-PBF.
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morphology of WT-2 compared to G-2 steel could presumably be accounted for by the refining effect of
Si and the higher oxide content in the former steel.

XRD spectra collected on the as build steels are displayed in Figure 7. The peaks corresponding to
the main « or &’ phases can be easily recognised, while additional smaller peaks of the y-phase can be
distinguished from background signal in the magnified inset of the figure in some steels, namely W-3

amiekdls 2bzntd, k¢ @l ereR REVEEW, in WT-2 and G-2 steels. 11 of 23
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Other secondary peaks found at 1060, 1045, 1038 and 1056 °C can be noted on the cooling DSC
curves in steels W-1, W-2, W-3 and WT-2 respectively. The listed alloys correspond to the WA
powders which are rich in oxygen as a result of the atomisation process itself. According to the
thermodynamic calculations, these signals are supposed to be related to oxide precipitation of the
type MnO-5i0:z in W-1 and W-2 alloys, and single phase S5iOz in W-3/WT-1 and WT-2. It is noteworthy
to mention that the mixed Cr205-SiO:2 oxide could in principle also exist in W-3/WT-1 steels at higher
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Figure 8. Differential scanning calorimetry (DSC) thermograms (solid lines) and calculated equilibrium

phase transformations (dashed lines) for alloys: (a) W-1, (b) W-2, (c) W-3, (d) W-4, (e) WT-2, (f) G-1 and

(8) G2.
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Table 4. Solidification ranges and critical transformation temperatures of the steel alloys.

Solidification
Alloy Method * Ty >« (°C) Tc (O
Temperaoture AT(CC) Mode Y >«
Range(°C)

Wol DsC 1497.3-1488.2 9.1 898.1 760.0
) TC 1528.6-1508.0 20.6 Lo>L+6—>d 877.1 -
W2 DSC 1411.6-1403.5 8.1 775.1 753.8
) TC 1517.4-1492.3 25.1 LoL+d+y—vy 807.2 -
Wo3 DSC 1518.1-1499.1 19 912.5 758.8
) TC 1518.5-1477.9 40.6 Lo L+d+y -y 838.1 -
Wed DsC 1520.6-1506.7 13.9 909.9 757.9
) TC 1530.6-1528.1 2.5 Lo>L+6—>0 890.8 -
W2 DsC 1464.9-1457.4 7.5 783.2 756.4
) TC 1499.9-1451.3 48.6 Lo L+6+y >y 765.5 -
G1 DSC 1504.8-1490.7 14.1 934.1 755.9
) TC 1520.7-1489.6 311 Lo L+d+y -y 825.7 -
G2 DsC 1393.6-1385.5 8.1 776.9 750.8
) TC 1496.4-1453.8 42.6 LoL+y—>y 745.8 -

* Reference temperatures by DSC are adopted considering the cooling sections of the thermograms.

Other secondary peaks found at 1060, 1045, 1038 and 1056 °C can be noted on the cooling DSC
curves in steels W-1, W-2, W-3 and WT-2 respectively. The listed alloys correspond to the WA powders
which are rich in oxygen as a result of the atomisation process itself. According to the thermodynamic
calculations, these signals are supposed to be related to oxide precipitation of the type MnO-SiO,
in W-1 and W-2 alloys, and single phase SiO; in W-3/WT-1 and WT-2. It is noteworthy to mention
that the mixed CryO3-5i0; oxide could in principle also exist in W-3/WT-1 steels at higher oxygen
levels. Additionally, EDS analysis maps previously discussed in Figure 3 confirm the presence of such
oxides in as-built condition. From literature it was demonstrated that oxides can be subjected to phase
changes within a steel matrix during isothermal treatments at 900-1400 °C [31-34].

Carbide precipitation is also expected from phase stability simulation, especially in steels with the
higher C and Cr contents (WT-2 and G-2 alloys). Specific peaks for these precipitates are not observed
in the DSC curves since the precipitation is expected to occur over a wide temperature range. Finally,
changes in ferromagnetic properties of the steel alloys i.e., the curie temperature (T.) can be clearly
defined as sharp steps in some of the DSC cooling profiles [35].

3.4. Thermal Treatment Strategies

Two different heat treatment routes have been evaluated. The conventional quench and tempering
schedules have been taken as the reference hardening treatment, to be composed by an austenitising
stage carried out above Acs, followed by a water quench and a tempering stage. A second option was
devised by simply tempering the steels directly after the laser processing.

As already mentioned, it is considered that the most hardenable steels investigated can at least
partially transform into martensite on cooling after laser melting. The following adjacent laser tracks
and the overlapping of several other layers additionally produce a reheating effect (according to
complex and variable combinations of heating temperatures and times) then results in a partial in situ
tempering. Figure 9 depicts the hardness evolution during tempering of some of the investigated
steels, according to the two selected treatment schedules.

The traditional tempering curves of the quenched steels (dashed lines) show the expected
decreasing trend with increasing tempering temperature, with hardness values that are obviously
affected by the carbon content and by the amount of alloying elements. On the contrary, the analysis
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of the tempering behaviour starting from as-built specimens shows limited variations in hardness,
suggesting that the reheating cycles experienced by the materials during L-PBF processing already
resulted in a tempered structure that can be compared to a conventional tempering performed at about
400-450 °C after quenching. Considering this aspect, the direct use of some of the investigated steels
in the as-built condition could be considered as a feasible alternative. This option is also confirmed
by Wang and Kelly [11], who measured a comparable or even higher mechanical performance for an
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reported in Table 5 and presented in graphical form in Figure 11. Con31der1ng the as-built state of the




values compared to the as-built condition were observed after tempering at 200 °C. The contours of
the distinct melting pools tend to vanish at 400 °C, while tempering at 600 °C resulted in the
precipitation of dispersed carbides mainly decorating the boundaries of the martensite laths, Figure
10c,f. The thermodynamic simulations suggested that, at such condition, the stable carbides are Cr7Cs
MeEIFROR0 B4t 1 and G-2 steels, respectively. Their formation is supposed to be linked #5 ¢
decomposition of retained austenite and to the dissolution of transition carbides [36,37].
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3.5. Tensile Properties
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Table 5. Vickers” microhardness of the investigated steels.
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The tensile data about this set of WA steels systematically show that tensile strength follows a
precise trend among the different investigated conditions. The ranking, from the highest to the lowest
UTSis: AB, AB+ T, Q, Q + T. As expected, the fracture elongation values follow an opposite trend,
Q+T being the condition that allows achieving the highest ductility. The above mentioned trend is
also consistent with the observed constituents in the steels, whereby the highest to lowest UTS levels
correspond to martensitic W-3, dual phase W-2, fine grain ferritic W-1, and relatively coarse grain
ferritic W-4 steels.

Regarding the W-1 and W-4 ferritic steels in all the investigated conditions, higher ductility was
observed for W-4 steel featuring a relative density of 99.9% compared to W-1 steel with a density
of 97.8%.
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few larger dimples nucleated from relatively coarse inclusions, whereas a much wider population of
smaller pores supposedly grew from the sub-micrometre size inclusions. In Figure 14c, the complex
multi-phase inclusion of Fe-rich particle enveloped by Cr-oxide was again observed in W-3 alloy.
Finally, glassy fragmented Mn-rich and Cr-rich intermetallic compounds were occasionally detected
on the fracture surfaces of W-1/W-2 and W-3/W-4 alloys, respectively.
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opportunities grades with strength rather than improved ductility depending on their composition
and temper. Apparently, the water atomisation process does not result in any depletion of properties
when compared to other gas-atomised steels reported in the map. In addition, it is to consider that
tuning the steel temper by proper thermal treatments would supply further combinations of
properties that could profitably widen the range of structural steels to be considered for AM part
desion.
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