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ABSTRACT 

The ultimate barrier to prevent contamination of the environment due to a release of radioactivity 

from a Nuclear Power Plant (NPP) is the reinforced concrete (RC) Reactor Building (RB) which 

encloses the nuclear reactor. The integrity of this barrier is the main focus of Probabilistic Risk 

Assessment (PRA)-Level 2, in which accident scenarios that might affect this barrier are modeled in 

terms of their consequences and their probabilities of occurrence. Traditionally, aging and 

degradation of the RB are not explicitly considered in the modeling. In this paper, a dynamic 

reliability approach is adopted to explicitly model aging and degradation, and the effects on the RB 

resistance to the accidental stresses and eventually its failure probability. A Finite Element Model 

(FEM) of the RC is developed and coupled with a degradation model. By this, risk measures, like the 

Large Early Release Frequency (LERF) and its increase in time due to aging (ΔLERF), are actualized 

on the basis of the condition monitoring data related to the reactor building and the risk of failure is 

dynamically quantified. A case study of an internal overpressure due to a hydrogen explosion is 

considered to exemplify the methodology. 

 

KEYWORDS: Level 2 Probabilistic Risk Assessment, Dynamic reliability, Nuclear Power Plant, 

Reactor Building, Reinforced Concrete Containment, Aging, Degradation, Hydrogen Combustion. 
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List of acronyms 

ADAPT Analysis of Dynamic Accident Progression Tree 

BWR  Boiling Water Reactor 

CDF  Core Damage Frequency 

CoV  Coefficient of Variation 

DDET  Discrete Dynamic Event Tree 

DEF  Deflagration 

DET  Detonation 

EI  Early Ignition 

ESP  Equipment Storage Pool 

ET  Event Tree 

FEM  Finite Element Model 

LERF  Large Early Release Frequency 

LRF  Large Release Frequency 

LOCA  Loss of Coolant Accident 

LODHR Loss of Decay Heat Removal 

LPSD  Low Power ShutDown 

MC  Monte Carlo 

MCDET Monte Carlo Dynamic Event Tree 

NPP  Nuclear Power Plant 

NRC  Nuclear Regulatory Commission 

OS  Order Statistics 

PRA  Probabilistic Risk Assessment 

RB  Reactor Building 

RC  Reinforced Concrete 

SFP  Spent Fuel Pool 

TH  Thermal-Hydraulic 

ΔLERF Increase in LERF 

 

Notation 

𝑓𝑐 Concrete nominal compressive strength 

𝑓𝑦 Steel nominal yield strength 

E Steel elastic modulus 

𝜎𝑠𝑡 Tensile stress in reinforcement  

𝜎𝑐 Compressive stress in concrete 

[𝐻2] Hydrogen concentration 

𝑘𝑠𝑡 Proportionality constant for steel/concrete 

𝑘𝑐 Proportionality constant for concrete 

𝐶 Chlorides concentration in concrete 

𝑥 Reinforcement depth 

𝐶𝑠 Chlorides concentration at surface 

𝐷𝑎𝑣 Average diffusion coefficient 

𝐷𝑟𝑒𝑓 Reference diffusion coefficient 

𝑈𝑐 Activation energy of chlorides diffusion 

𝑅𝑔 Gas constant 

𝑇𝑟𝑒𝑓 Reference temperature 

𝑇 Concrete temperature 

𝑡𝑟𝑒𝑓 Reference time 

𝑡𝑜𝑐𝑐 random time of [𝐻2] generation 
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𝜉 Age factor 

𝑅𝐻 Concrete relative humidity 

𝑅𝐻𝑐 Concrete reference relative humidity 

𝐴𝑝𝑖𝑡 Steel cross-sectional area loss 

∅ Steel reinforcement diameter 

𝑝 Maximum pit depth  

𝑖𝑐𝑜𝑟𝑟 Corrosion current 

𝑅 Pitting factor 

𝛼 , 𝛼0 Gumbel distribution parameters 

𝜇 , 𝜇0 Gumbel distribution parameters 

𝑅𝑐 Steel resistivity 

𝑓𝑦
𝐷 Degraded compressive strength 

𝐴𝑠0 Threshold pit area for crack onset 

𝑄𝑐𝑜𝑟𝑟 Percentage cross-sectional area loss 

𝛼𝑦 Empirical parameter for degradation 

𝑓𝑐
𝐷 Degraded compressive strength 

𝜀𝑐0 Strain at peak compressive strength 

𝜀1 Strain in cracked concrete 

𝑘 Coefficient related to rebar 

N Number of outer loop simulations 

M Number of inner loop simulations 

𝑡𝑜𝑐𝑐 Occurrence time 

𝑃𝐸𝐼 Early ignition probability 

Δ𝑝𝐸𝐼 Early ignition overpressure 

Δ𝑝𝐻2 Overpressure generated by a generic [𝐻2] 

𝑃𝐷𝐸𝐹 Deflagration probability 

Δ𝑝𝐷𝐸𝐹 Deflagration overpressure 

Δ𝑝10(Δ𝑝14) Overpressure generated by 10% (14%) [H2] 

𝑃𝐷𝐸𝑇 Detonation probability 

Δ𝑝𝐷𝐸𝑇 Detonation overpressure 

𝐿𝑠𝑡 Tensile load in steel reinforcement 

𝐴𝑠𝑡 Nominal steel reinforcement area 

𝐿𝑐 Compressive load in concrete 

𝐴𝑐 Nominal concrete area 

𝑅𝑠𝑡 Steel reinforcement resistance capacity 

𝐴𝐷 Degraded steel area 

𝑅𝑐 Concrete compressive resistance capacity 

𝑔𝑠𝑡 (𝑔𝑐) Limit state function for steel (concrete) 

𝑃𝑓 Failure probability 

𝑇𝑚𝑖𝑠𝑠 Mission time 

𝑈 (𝐿) Upper (Lower) Safety Threshold 

𝑦 Safety parameter 

𝑦̂𝛾 Estimated γ-th percentile of safety parameter 

𝑦𝛾 Real value of the γ-th percentile 

𝑀(𝛾1, 𝛽1, 𝛾2, 𝛽2) Probabilistic safety margin 

𝑦𝑗 ,𝑟𝑒𝑓 Nominal, reference value of the j-th safety parameter 

𝛽 Confidence value of the safety parameter 
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1 Introduction 

Probabilistic Risk Assessment (PRA) is a comprehensive, structured and logical analysis method 

aiming at identifying and assessing risks in complex technological systems, such as Nuclear Power 

Plants (NPPs). A PRA is typically developed in three steps, Level 1, Level 2 and Level 3 

(NUREG/CR-2300; NUREG/CR-2815): Level 1 assesses the Core Damage Frequency (CDF); Level 

2, the Large Early Release Frequency (LERF) and the Large Release Frequency (LRF) of different 

types of isotopes due to Reactor Building (RB) failure; Level 3, the environmental and human health 

effects (IAEA, 1994).  

Conventional PRA traditionally does not model explicitly time-dependent phenomena. In particular, 

in this work, we are concerned with the fact that, in Level 2 PRA, the effects of RB aging and 

degradation on its failure probability are not modeled. This can become critical also in view of the 

life extension of the existing (and aging) NPPs. To overcome this limitation, we embrace a dynamic 

reliability analysis framework to introduce a time-dependent physical model that describes RB aging 

and degradation and allows accounting for the effects on its resistance to the overloads developing 

during accident scenarios throughout its life (mission) time 𝑇𝑚𝑖𝑠𝑠. Dynamic reliability analysis allows 

the integration of time-dependent phenomenological models with the models of the stochastic failure 

processes (Aldemir, 2013; Zio, 2014; Coyne & Mosleh, 2018). Compared to traditional analysis, 

dynamic reliability analysis can provide a more realistic representation of the plant response to an 

accident, by the inclusion of a Best Estimate physical model.  

Over the years, various approaches of dynamic reliability analysis have been developed, such as 

Cognitive Event Simulator, Monte Carlo Dynamic Event Tree (MCDET) (Kloos et al., 2006), 

Discrete Dynamic Event Tree (DDET) (Durga et al., 2011), Analysis of Dynamic Accident 

Progression Trees (ADAPT) (Aldemir, 2018). In literature, such approaches has so far regarded 

modelling of dynamic processes such as thermal-hydraulic (TH) transients, with focus also on 

radiological an structural aspects, initiated by the occurrence of accidents (Devooght, 1997; Labeau, 
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Smidts, & Swaminathan, 2000; Hakobyan et al., 2008; Secchi, Zio, & Di Maio, 2008; Zio & Di Maio, 

2008 Di Maio, Baronchelli, Vagnoli, & Zio, 2017). 

In this work, we develop a dynamic reliability analysis for modeling the reduction of RB resistance 

due to Reinforced Concrete (RC) degradation by aging, thus targeting slow dynamics and long time 

horizons. Even though the general idea is not new (see Naus, Oland, & Ellingwood, 1996), this is the 

first time, to the authors’ knowledge, that an analytical and numerical procedure of this type is fully 

developed, addressing: (1) a sophisticated probabilistic load model for overpressure, (2) the complete 

3D modelling of the RB structure, (3) a refined degradation model for RC and (4) a state-of-the-art 

reliability analysis procedure, which consistently accounts for both epistemic and aleatory 

uncertainties. 

For illustration, we consider a Mark I Boiling Water Reactor (BWR) and build a dynamic reliability 

analysis model for estimating the RB failure probability following the combustion of hydrogen 

internally generated at a random time 𝑡𝑜𝑐𝑐. Low Power ShutDown (LPSD) is considered for the NPP, 

as it is of concern for the United States Nuclear Regulatory Commission (NRC) licensing (Wakefield, 

Budniz, & Kiper, 2014). 

The importance and possible consequences of the aging of the RB, which can lead to microstructural 

changes due to environmental factors, was recognized by many researchers; pioneering work, in this 

field, was performed by Naus and co-authors (Naus, 2007; Naus, Oland, & Ellingwood, 1996). In 

fact, aging may impair the ability to withstand accidental internal overpressures, whose dominant 

mechanism, for NPPs RBs, is hydrogen combustion (Izquierdo et al., 2009; Fernández-Cosials et al., 

2017; Mercurio, Andersen, & Wagner, 2017). During accident sequences, the slow release of steam 

and non-condensable gas into the RB vault does not endanger the containment, because of controlled 

RB leakages, whereas pressure increase due to hydrogen combustion (either deflagrations or 

detonations) occurs more rapidly than leakage controlled pressure surge (Mercurio et al., 2017).  
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In this work, to model the progression of the hydrogen combustion accident, and the related RB 

pressure surge and structural response, a probabilistic hydrogen combustion model (Camp et al., 

1983; Mercurio et al., 2017) is coupled with a Finite Element Model (FEM) of the RB, whose 

parameters of structural properties are updated according to a probabilistic RC degradation model of 

literature, describing the pitting corrosion of steel reinforcement bars (rebars) induced by chlorides 

and leading to loss of cross-sectional area and concrete spalling, which in turns leads to RB resistance 

reduction (Stewart & Rosowsky, 1998). The code MELCOR is used to evaluate the source term of 

each accidental sequence. The RB resistance, provided by the FEM and by the material degradation 

model, is compared to the overpressure generated by the probabilistic hydrogen combustion model, 

to get the time-dependent RB fragility curve. The uncertainties involved in the analysis (both 

epistemic and aleatory, such as degradation model and FEM parameters, and timing and magnitude 

of hydrogen combustion model parameters, respectively) are accounted for by calculating 

probabilistic safety margins (Helton, 2009, 2011; Di Maio, Picoco, Zio, & Rychkov, 2017; Di Maio, 

Rai, & Zio, 2016) that are calculated via a double loop Monte Carlo (MC) simulation approach of 

literature (Durga Rao, Kushwaha, Verma, & Srividya, 2007). Eventually, time-dependent risk 

measures of LERF and ∆LERF are calculated. The latter can, for example, serve the scope of 

optimally planning RB inspections, to keep LERF below the limits prescribed by the NRC in the 

Regulatory Guide 1.174 (Nuclear Regulatory Commission, 2018).  

Figure 1 shows the overall scheme of the dynamic reliability analysis framework here developed for 

dynamically calculating the LERF and ΔLERF, with reference to a hydrogen combustion accident.  
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Figure 1 Dynamic reliability analysis framework 

 

The remaining of the paper is structured as follows. Section 2 describes the FEM of the RB of the 

Mark I BWR. In Section 3 the RB degradation model is presented. Section 4 describes the hydrogen 

combustion model. Section 5 presents the integrated simulation approach for the combustion-FEM-

degradation process. Section 6 describes the double-loop MC simulation approach for LERF and 

ΔLERF probabilistic safety margins quantification. Section 7 discusses the results. Finally, Section 8 

draws some conclusions on the work.  
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2 The FEM of RB 

The RB of a Mark I BWR comprises several floors, beams, walls and other structural elements (Naus, 

Oland, & Ellingwood, 1996), as shown in Figure 2 where a simplified view of the vertical section 

looking West is given. 

A Finite Element Model (FEM) of the upper part of the containment (highlighted by the dashed box 

in Figure 2) has been developed in Abaqus Software (Simulia, 2011), as shown in different views in 

Figure 3. It consists of the drywell, the spent fuel pool (SFP) and the equipment storage pool (ESP), 

with the dimensions reported in Figure 4. The FEM is developed for a limited portion of the RB 

because hydrogen generally accumulates at the top of the containment, making this part of the RB 

more likely to be subjected to hydrogen combustion (Kuznetsov, Yanez, Grune, Friedrich, & Jordan, 

2015). 

 

 

Figure 2 Vertical section looking West of the RB of a BWR Mark I 
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Figure 3 FEM of the main internal structural elements in the upper part of the RB (TEPCO, 2012)  

 

 

 

Figure 4 Dimensions of the main structural elements of the upper part of the RB 

 

Hexahedral solid elements C3D8R have been adopted in the model, consisting of 8-node linear bricks, 

with reduced integration and hourglass control. Since the thickness of the internal horizontal plates is 

equal to 1.0 m, the mesh has been generated with respect to an approximate global size of the finite 

elements of 0.33 m in order to correctly catch the shear and tensile/compressive response of the 

structural components. A uniform pressure equal to 1 kN/m2 has been separately applied to the walls 

of each main room of the upper part of the RB.  

The RC consists of Type II Portland cement, with fine aggregates and various admixtures to enhance 

performances against environmental stressors. This results in a nominal compressive strength 𝑓𝑐 that 
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follows a Gaussian distribution with mean 35 MPa and coefficient of variation 0.12 (Naus, Oland, & 

Ellingwood, 1996). The concrete reinforcement consists in 100 𝑐𝑚2/𝑚 of ASTM A – 615 Grade 60 

#18 steel, with nominal yield strength 𝑓𝑦 that follows a lognormal distribution with mean 420 MPa 

and coefficient of variation 0.11, and elastic modulus E equal to 200 GPa (Naus, 2007; Naus, Oland, 

& Ellingwood, 1996). In this work, it is assumed that tensile loads are withstood by steel 

reinforcements, compressive loads by concrete (Naus, 2007) and that stresses generated in the RC 

(i.e., 𝜎𝑠𝑡  the tensile stress in rebars and 𝜎𝑐 the compressive stress in concrete) depend linearly on 

overpressure (that, in turn, depends on the hydrogen concentration [𝐻2] , see Section 4) , as in 

Equations (1) and (2) below: 

 𝜎𝑠𝑡(∆𝑝) = 𝑘𝑠𝑡 ∙ ∆𝑝 (1) 

 𝜎𝑐(∆𝑝) = 𝑘𝑐 ∙ ∆𝑝 (2) 

where  ∆p is the internal overpressure and 𝑘𝑠𝑡  and 𝑘𝑐  are calculated by solving the FEM of the 

structure.  

Figure 5 shows on the left the uniform pressure applied to the most critical room of the structure, in 

which span dimensions are larger and there are no internal walls, and on the right the contour plot of 

tensile/compressive loads on the associated horizontal plates. 

  

Figure 5 FEM applied loads and results for the studied case 
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3 RB degradation model 

Steel reinforcement nominal yield strength 𝑓𝑦 and concrete nominal compressive strength 𝑓𝑐 change 

with the increase of chlorides ion concentration in the concrete 𝐶(𝑥, 𝑡), up to reaching the threshold 

value 𝐶𝑡ℎ at the reinforcement depth 𝑥; at this level, the passive layer of the rebar is destroyed, and 

corrosion pits are generated and propagated through the rebar cross sectional area (Stewart, 2009; 

Stewart & Rosowsky, 1998; Tuutti, 1982). The chloride-induced pitting corrosion process can, then, 

be divided into initiation and propagation phases: the former case concerns chlorides diffusion from 

the external surface to the rebar; the latter phase regard pits penetrating the steel (El Hassan, 

Bressolette, Chateauneuf, & El Tawil, 2010; Tuutti, 1982; Vu & Stewart, 2000).  

Chlorides diffusion depends on many factors which are related to concrete properties (composition 

and microstructure) and exposure conditions (temperature, relative humidity, chlorides…), and can 

be modeled as in Equation (3) (El Hassan et al., 2010; Kwon, Na, Park, & Jung, 2009; Luping & 

Gulikers, 2007; Papakonstantinou & Shinozuka, 2013b): 

 𝐶(𝑥, 𝑡) =  𝐶𝑠 [1 − 𝑒𝑟𝑓 (
𝑥

2√𝐷𝑎𝑣𝑡
)]    (3) 

where 𝐶(𝑥, 𝑡) is the chlorides ion concentration at exposure time t and reinforcement depth x in the 

diffusion direction, 𝐶𝑠  is the chlorides concentration at surface and 𝐷𝑎𝑣  is the average apparent 

diffusion coefficient that accounts for environmental conditions: 

 
𝐷𝑎𝑣(𝑡) =

1

𝑡
 ∫ 𝐷𝑟𝑒𝑓 ∙ 𝑒𝑥𝑝 [

𝑈𝑐
𝑅𝑔
(
1

𝑇𝑟𝑒𝑓
 −  

1

𝑇
)] (

𝑡𝑟𝑒𝑓

𝜏
)
𝜉

[1 +  
(1 − 𝑅𝐻)4

(1 − 𝑅𝐻𝑐)4
]

−1

𝑑𝜏
𝑡

0

 
(4) 

In (4), 𝐷𝑟𝑒𝑓  is the reference diffusion coefficient (see Table 1), 𝑈𝑐  the activation energy of the 

chlorides diffusion process (kJ/mol), 𝑅𝑔 the gas constant (8.314 
𝐽

𝑘𝑔∙𝑚𝑜𝑙
) ,  𝑇𝑟𝑒𝑓 the reference 

temperature of concrete (296 K), T the current temperature of concrete (K), 𝑡𝑟𝑒𝑓 the reference time 

(28 days), ξ a constant called age factor, RH the relative humidity and 𝑅𝐻𝑐 the reference humidity 

(0.75) (El Hassan et al., 2010).  
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Table 1 summarizes the uncertainty distributions here assumed (in terms of mean and Coefficient of 

Variation (CoV)) (El Hassan et al., 2010; Papakonstantinou & Shinozuka, 2013a; Mercurio et al., 

2017). 

Parameter Type Symbol Distribution Mean CoV 

Threshold for chlorides 

concentration 

Epistemic 𝐶𝑡h Uniform 0.9 kg/m3 0.19 

Reinforcement depth Epistemic 𝑥 Gaussian 50 mm 0.1 

Chlorides concentration at 

surface 

Epistemic 𝐶𝑠 Gaussian 2.95 kg/m3 0.5 

Reference diffusion coefficient Epistemic 𝐷𝑟𝑒𝑓 Lognormal 6 ∙ 10−12 

m2/s 

0.2 

Temperature of concrete Epistemic T Gaussian 296 K 0.1 

Age factor Epistemic ξ Beta 0.15 0.3 

Relative humidity Epistemic RH Gaussian 0.75 0.1 

Pitting factor Epistemic R Gumbel 23.75 0.06 

Yield Strength Epistemic 𝑓𝑦 Gaussian 420 MPa 0.11 

Compressive Strength Epistemic 𝑓𝑐 Gaussian 35 Mpa 0.12 

Hydrogen Concentration Aleatory [H2] Uniform 0 0.57 

Early Ignition Probability Aleatory 𝑃𝐸𝐼 Gaussian 0.5 0.1 

Deflagration Probability Aleatory 𝑃𝐷𝐸𝐹 Gaussian 0.5 0.1 

Detonation Probability Aleatory 𝑃𝐷𝐸𝑇 Gaussian See Eq. (13) 

Early Ignition Overpressure Aleatory  Log Normal See Eq. (11) 
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Deflagration Overpressure Aleatory  Log Normal See Eq. (12) 

Detonation Overpressure Aleatory  Uniform 7 MPa 0.08 

Table 1 Uncertainty distributions of the degradation model parameters 

 

The chlorides diffusion leads to pits generation and penetration into steel, whose loss of cross-

sectional area 𝐴𝑝𝑖𝑡(𝑡) at time t is defined as in Equation (5): 

  
(5) 

  
 

where 𝐴1 = 0.5 [𝜃1 (
∅

2
)
2

− 𝑏 |
∅

2
 −  

𝑝(𝑡)2

∅
|] ,  𝐴2 = 0.5 [𝜃2𝑝(𝑡)

2 − 𝑏
𝑝(𝑡)^2

∅
],                            

 𝑏(𝑡) = 2𝑝(𝑡)√1 − (
𝑝(𝑡)

∅
)
2

, 𝜃1 = 2 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑏

∅
) ,   𝜃2 = 2 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑏

2 𝑝(𝑡)
) , ∅  is the rebar diameter 

and p(t) is the maximum pit depth that is reached in the rebar at time t, defined as in Equation (6) 

(Stewart, 2009):  

 𝑝(𝑡) = 0.0116 𝑅 ∫ 𝑖𝑐𝑜𝑟𝑟(𝑡)𝑑𝑡    (6) 

where 𝑖𝑐𝑜𝑟𝑟 is the corrosion current density, R the pitting factor (known to be distributed as a Gumbel 

(EV – Type I) with modified parameters 𝜇 =  𝜇0 + 
1

𝛼0
 𝑙𝑛 (

𝐿𝑈

𝐿0
) and 𝛼 =  𝛼0 (Stewart, 2009), where 

𝛼0, 𝜇0 are the Gumbel parameters derived from pitting data for a reinforcement of length  𝐿0 and 𝐿𝑈 

is the length of a generic reinforcement). 

For completeness, 𝑖𝑐𝑜𝑟𝑟 can be modeled as in Equations (7) (Liu & Weyers, 1998): 

ln (1.08 𝑖𝑐𝑜𝑟𝑟(𝑡)) =  7.89 + 0.7771ln (1.69 ∙ 𝐶(𝑥, 𝑡)) − 
3006

𝑇
−  0.000116 𝑅𝑐 +  2.24𝑡

−0.215 +  

+ 𝑁(0,0.3312) (7) 

𝐴𝑝𝑖𝑡(𝑡) =

{
  
 

  
 𝐴1 + 𝐴2                            𝑖𝑓 𝑝(𝑡) ≤

∅

√2
𝜋∅2

4
 − 𝐴1 + 𝐴2             𝑖𝑓

∅

√2
 ≤ 𝑝(𝑡) ≤ ∅

𝜋∅2

4
                                   𝑖𝑓 𝑝(𝑡) ≥  ∅
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where 𝑅𝑐 is the rebar resistance that can be calculated as in Equation (8): 

ln(𝑅𝑐) = 8.03 − 0.549 ln(1 + 1.69 𝐶(𝑥, 𝑡)) + 𝑁(0,0.1203) 

 

(8) 

Finally, the loss of cross-sectional area 𝐴𝑝𝑖𝑡(𝑡) reduces steel reinforcement performance by reducing 

the nominal yield strength 𝑓𝑦, resulting in the degraded yield strength 𝑓𝑦
𝐷(𝑡) at time t according to 

Equation (9) (Du, Clark, & Chan, 2005):  

 𝑓𝑦
𝐷(𝑡) = (1 −  𝛼𝑦 𝑄𝑐𝑜𝑟𝑟(𝑡)) 𝑓𝑦 (9) 

where  𝛼𝑦  is an empirical parameter (here taken equal to 0.005, as in (Du et al., 2005)), 

and 𝑄𝑐𝑜𝑟𝑟(𝑡) =  
𝐴𝑝𝑖𝑡(𝑡)

𝐴
 ∙ 100 is the percentage of cross section loss due to corrosion.  

Furthermore, as long as the pit area increases, 𝑓𝑦
𝐷(𝑡) decreases and corrosion products, that have a 

larger specific volume than rebar material, accumulate on the external surface of the rebar; this causes 

tensile stresses in the surrounding concrete, leading to cracking when the pit area reaches the 

threshold value 𝐴𝑠0 and, in turn, to the reduction of the nominal concrete compressive strength 𝑓𝑐 into 

𝑓𝑐
𝐷(𝑡) at time t, according to Equation (10) (Coronelli & Gambarova, 2004): 

 
𝑓𝑐
𝐷(𝑡) =  

𝑓𝑐

1 + 𝑘 ∙
𝜀1(𝑡)
𝜀𝑐0

 
(10) 

where  𝜀𝑐0 is the strain at peak compressive strength 𝑓𝑐, 𝜀1(𝑡) is the tensile strain in cracked concrete, 

k is a coefficient related to the bar roughness and diameter (here taken equal to 0.01 as in (Coronelli 

& Gambarova, 2004)). 

It must be pointed out that the degradation model here presented, and hereafter adopted for the 

reliability analysis, neglects the spatial distribution of damage: this can be considered of sufficient 

level of detail to show the complexity of the phenomena modelled and the need for a dynamic 

reliability analysis. 
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4 Hydrogen generation and combustion model  

We consider the RB resistance to be verified to withstand the overpressure generated in a hydrogen 

combustion accident. During BWR operation, hydrogen is produced by steam-zirconium and steam-

steel reactions (Camp et al., 1983) in a controlled way to keep it below the combustion concentration 

threshold, although mixing with surrounding air in a non-uniform manner (i.e. hydrogen migrates 

towards higher floors of the RB). During an accident, the concentration might exceed the combustion 

threshold especially in the highest RB floors, where SFP and ESP are located (as described in Section 

2). In this paper, hydrogen generation is assumed to occur during an LPSD state due to an SFP failure 

(i.e., for a Loss Of Decay Heat Removal (LODHR) or SFP Loss Of Coolant Accident (LOCA) that 

can cause spent fuel overheating and the consequent abnormal hydrogen production). Under these 

circumstances and a predefined SFP radioactive inventory, magnitude and timing of the release can 

be calculated using the MELCOR code for simulating accident progression and the behavior of the 

fission products (Mercurio et al., 2017; Sandia National Laboratories, 2017). Indeed, MELCOR is a 

fully integrated, engineering-level computer code that models the progression of severe accidents in 

light water reactor nuclear power plants. It can simulate many physical processes following a severe 

accident: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and 

confinement buildings; core heatup, degradation and relocation; core-concrete attack; hydrogen 

production, transport, and combustion; fission product release and transport; and the impact of 

engineered safety features on thermal-hydraulic and radionuclide behavior. Thus, the time-dependent 

evolution of the hydrogen production during the SFP failure considered in the case of application 

could be simulated by MELCOR. However, in this work, neither the time-dependent evolution of 

hydrogen production nor the duration of the particular severe accident considered are modelled by 

MELCOR, but rather a random amount of hydrogen concentration [𝐻2] is assumed to be generated 

in the uniform range [0,100] % at a random time 𝑡𝑜𝑐𝑐, also uniformly distributed in [0,100] years. The 

NPP mission time Tmiss, has been considered 100 years, in light of the considerations pointed out in 
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(Nuclear Regulatory Commission, 2017) where the NRC license renewal program for existing plants 

is considered and claimed to be possibly extended to 100 years. 

As known, hydrogen concentration [𝐻2] is the parameter controlling the probabilities of the different 

hydrogen combustion modes, as summarized in Table 2 (Camp et al., 1983). 

 

Hydrogen concentration [%] Combustion mode 

0 – 4 Non-combustible 

4 – 10  Early Ignition (EI) 

10 – 14  Deflagration (DEF) 

14 – 59  Detonation (DET) 

59 – 75  Deflagration (DEF) 

75 – 100  Non-combustible  

Table 2 Hydrogen concentration and related combustion mode 

 

Early Ignition (EI) consists in hydrogen combustion close to the flammability limit, that can lead to 

deflagration (DEF) but can never progress to detonation (DET). When EI is not triggered, both DET 

and DEF must be considered as possible scenarios following hydrogen concentration build up. The 

Event Tree (ET) of Figure 6 shows the five different scenarios (S1 to S5) of progression of hydrogen 

generation into one of the combustion modes of Table 2. 



17 

 

 

Figure 6 Hydrogen combustion Event Tree 

 

The probabilities of occurrence of the five scenarios in Figure 6 depend on the probabilities of EI, 

DEF and DET, 𝑃𝐸𝐼 ,  𝑃𝐷𝐸𝐹 , 𝑃𝐷𝐸𝑇 , respectively, whose values are taken from (Mercurio et al., 2017). 

The probability 𝑃𝐸𝐼 that EI occurs is assumed to be normally distributed with mean 0.5 and standard 

deviation 0.05, whereas the resulting RB overpressure probability distribution Pr(∆𝑃 = ∆𝑝|𝐸𝐼) is 

assumed to be lognormal with mean ln(∆𝑝𝐸𝐼) and standard deviation 𝜎𝐸𝐼, as in (Mercurio et al., 2017) 

(see Equation (11)): 

 Pr(∆𝑃 = ∆𝑝|𝐸𝐼)~𝐿𝑁(ln(∆𝑝𝐸𝐼) , 𝜎𝐸𝐼) (11) 

where  ∆𝑝𝐸𝐼 = {
∆𝑝𝐻2  𝑖𝑓 [𝐻2] < 10 %

∆𝑝10 𝑖𝑓 [𝐻2] > 10 %
  , 𝜎𝐸𝐼 =  √

∆𝑝∗ − ∆𝑝 

2
 ,  ∆𝑝∗ = {

∆𝑝𝐻2  𝑖𝑓  [𝐻2] > 10 %

∆𝑝10 𝑖𝑓 [𝐻2] < 10 %
  

where ∆𝑝𝐻2 is the pressure generated while a mixture with [𝐻2] hydrogen concentration is burning, 

whereas ∆𝑝10 the maximum pressure generated while a mixture with 10% hydrogen is burning. 

When EI is not triggered, the hydrogen concentration keeps increasing and can potentially lead to 

concentrations that may originate DEF, whose probability of occurrence  𝑃𝐷𝐸𝐹  is assumed to be 

normally distributed with mean 0.5 and standard deviation 0.05. The related overpressure probability 

distribution Pr(∆𝑃 = ∆𝑝|𝐷𝐸𝐹) is assumed lognormal with mean ln(∆𝑝𝐷𝐸𝐹) and standard deviation 

𝜎𝐷𝐸𝐹, as outlined in Equation (12): 
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 Pr(∆𝑃 = ∆𝑝|𝐷𝐸𝐹)~𝐿𝑁(ln(∆𝑝𝐷𝐸𝐹) , 𝜎𝐷𝐸𝐹) (12) 

where  ∆𝑝𝐷𝐸𝐹 = {
∆𝑝𝐻2    𝑖𝑓  [𝐻2] < 14 %

∆𝑝14     𝑖𝑓[𝐻2] > 14 %
  , 𝜎𝐷𝐸𝐹 =  √

∆𝑝∗ −∆𝑝 

2
 ,  ∆𝑝∗ = {

∆𝑝𝐻2   𝑖𝑓  [𝐻2] > 14 %

∆𝑝14    𝑖𝑓[𝐻2] < 14 %
 , 

where ∆𝑝14 is the maximum pressure generated while a mixture with 14% hydrogen is burning.  

DET leads to the highest overpressure inside the containment. Its probability of occurrence is assumed 

to be normal with mean 𝑃𝐷𝐸𝑇 and standard deviation 0.02 (see Equation (13)):  

 

𝑃𝐷𝐸𝑇 =

{
 
 

 
 
0.01                        𝑖𝑓 [𝐻2] < 14% 𝑜𝑟 [𝐻2] ≥ 59%

1                              𝑖𝑓 [𝐻2] ≥ 28% 𝑜𝑟 [𝐻2] < 45%

10(
1
7
[𝐻2] − 4)          𝑖𝑓  [𝐻2] ≥ 14% 𝑜𝑟 [𝐻2] < 28%

10(− 
1
7
[𝐻2] − 

45
7
)     𝑖𝑓  [𝐻2] ≥ 45% 𝑜𝑟 [𝐻2] < 59%

 

 

(13) 

The related overpressure ∆𝑝𝐷𝐸𝑇  is assumed to be generated by a uniform distribution  

Pr(∆𝑃 = ∆𝑝|𝐷𝐸𝑇)~𝑈(6,8) bar. 

MELCOR calculations were performed in (Mercurio et a., 2018) for each scenario of the ET of Figure 

6 to evaluate the source term, i.e., the amount and type of radioactive material released. For each 

scenario, both LERF or LRF can be calculated (Rebollo et al., 2016). In this work, in line with 

(Mercurio et al., 2017; Mercurio et al., 2018), the release of 137Cs discriminates between LERF and 

LRF. 

A summary of the characterization of the scenarios of the ET of Figure 6 is given in Table 3. 

Scenario RB end state Consequence Note 

S1 Safe  LRF RB leakage 

S2 Failed  LRF Slow release 

S3 Failed LERF Early release 

S4 Safe LRF RB leakage 

S5 Failed LERF Early release 

Table 3 Characteristics of the scenarios of the ET in Figure 6 (Mercurio et al., 2017) 



19 

 

5 Dynamic reliability analysis framework 

In this Section, we present the first MC loop of the dynamic reliability analysis of an SFP failure-

initiated hydrogen combustion accident scenario during LPSD considering the aging of RB, as 

described in Section 2. This loop will be embedded in the two-loops MC approach that will be 

described in Section 6. As previously said, a physical model of rebar pitting corrosion is used to 

update the resistance capacity of the RB to withstand the overpressure generated by the hydrogen 

combustion that may occur in the RB, and, ultimately, the frequency of RB early failure and the 

consequent LERF and ΔLERF.  

The procedure, schematized in the flowchart of Figure 8, is summarized as follows. 

1) Set M=1; 

2) Set 𝑡 = 0; 

3) For each m-th simulation, simulate hydrogen combustion occurrence by sampling the 

occurrence time 𝑡𝑜𝑐𝑐 and the hydrogen concentration [𝐻2] that has triggered the combustion. 

Simulate accident progression as in the ET of Figure 6, using Equations (11) to (13), randomly 

selecting the combustion mode and the generated overpressure. Calculate the load that the RB 

is subjected to, as in Equations (14) and (15):  

 𝐿𝑠𝑡([𝐻2]) =  𝜎𝑠𝑡([𝐻2])𝐴𝑠𝑡 (14) 

 𝐿𝑐([𝐻2]) =  𝜎𝑐([𝐻2])𝐴𝑐 (15) 

4) While 𝑡 < 𝑡𝑜𝑐𝑐, simulate the chlorides ions diffusion with Equation (3) with a sampled set of 

environmental conditions (see Table 1) and calculate 𝐶(𝑥, 𝑡 = 𝑡 + 1). When 𝐶(𝑥, 𝑡) = 𝐶𝑡ℎ, 

simulate pits penetration into steel (i.e., the cross sectional area loss 𝐴𝑝𝑖𝑡(𝑡)) by means of 

Equation (5) and calculate rebar degraded yield strength 𝑓𝑦
𝐷(𝑡) by Equation (9), and the 

reinforcement resistance 𝑅𝑠𝑡(𝑡) by Equation (16): 
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 𝑅𝑠𝑡(𝑡) =  𝑓𝑦
𝐷(𝑡)𝐴𝐷(𝑡) (16) 

When 𝐴𝑝𝑖𝑡(𝑡) > 𝐴𝑠0  calculate concrete degraded compressive strength 𝑓𝑐
𝐷(𝑡) by Equation 

(10) and concrete resistance with Equation (17): 

𝑅𝑐(𝑡) =  𝑓𝑐
𝐷(𝑡)𝐴𝑐 (17) 

5) When 𝑡 = 𝑡𝑜𝑐𝑐, determine whether the structure fails or not, evaluating the limit state function 

𝑔(𝑡, [𝐻2]) as the difference between the capacity 𝑅(𝑡) and the load 𝐿([𝐻2]) (Melchers & 

Beck, 2018; Thoft-Christensen & Beck, 1982): 

 𝑔(𝑡, [𝐻2]) = 𝑅(𝑡) − 𝐿([𝐻2]) (18) 

where 𝑔(𝑡, [𝐻2]) = min{𝑔𝑠𝑡(𝑡, [𝐻2]), 𝑔𝑐(𝑡, [𝐻2]} and  

 𝑔𝑠𝑡(𝑡, [𝐻2]) = 𝑅𝑠𝑡(𝑡) − 𝐿𝑠𝑡([𝐻2]) =  𝑓𝑦
𝐷(𝑡)𝐴𝐷(𝑡) – 𝜎𝑠𝑡([𝐻2])𝐴𝑠𝑡   (19) 

 𝑔𝑐(𝑡, [𝐻2]) = 𝑅𝑐(𝑡) − 𝐿𝑐([𝐻2]) =  𝑓𝑐
𝐷(𝑡)𝐴𝐷(𝑡) – 𝜎𝑐([𝐻2])𝐴𝑐   (20) 

6) When 𝑡 = 𝑇𝑚𝑖𝑠𝑠, end simulation. 

7) M=M+1; 

8) Repeat from 2) to 7) 

When M=1000: 

9) Calculate the probability of failure 𝑃𝑓(𝑡) at each time 𝑡 by Equation (21): 

 𝑃𝑓(𝑡) = Pr{𝑔𝑠𝑡(𝑡, [𝐻2]) < 0 } ∪ Pr{𝑔𝑐(𝑡, [𝐻2]) < 0} (21) 

Figure 7 illustrates this concept: at each time t, the area 𝑃𝑓(𝑡) represents the condition in 

which the overpressure load 𝐿([𝐻2] is incidentally larger than the capacity 𝑅(𝑡), i.e., the 

structure is failed.  
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Figure 7 Capacity vs load curve to estimate failure probability. The dashed area represents the failure probability. 

 

10) Calculate LERF(t) considering failure probabilities originated by S3 and S5 scenarios only 

(being the two scenarios implying a LERF, as assumed in (Mercurio et al., 2017) and reported 

in Table 3). 

11) Calculate the increase in LERF (i.e., ΔLERF) at time 𝑡 as Equation (22): 

 Δ𝐿𝐸𝑅𝐹(𝑡) = 𝐿𝐸𝑅𝐹(𝑡) − 𝐿𝐸𝑅𝐹(𝑡 − 1) (22) 

where LERF(t) is the LERF that is calculated at the actual time (with the RB in the current 

degradation state) and LERF(t-1) is the LERF that was calculated at the previous time step 

(where the RB was less degraded than at the current time t). 
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Figure 8 Flowchart of the first-loop simulation procedure 
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6 Probabilistic Safety Margins quantification 

Here, safety margin is taken as the difference between the (conservatively) computed value reached 

by a selected safety parameter 𝑦𝑗 and an upper (lower) safety threshold  𝑈𝑗 (𝐿𝑗) for a specific accident 

scenario (Helton, 2009, 2011; Di Maio et al., 2016). To explicitly account for uncertainty and to 

reduce conservatism, the safety margin can be defined in probabilistic terms as the difference between 

the upper (lower) threshold  𝑈𝑗  (𝐿𝑗 ) and the estimate 𝑦̂𝛾𝑗  of a specific 𝛾  percentile 𝑦𝛾𝑗  of the 

distribution of the safety parameter 𝑦𝑗 (Di Maio, Picoco, et al., 2017; Di Maio et al., 2016; Martorell 

et al., 2006, 2009), as in Equation (23):  

 

𝑀(𝛾1, 𝛽1, 𝛾2, 𝛽2) = {

𝑈𝑗 − 𝑦̂𝛾𝑗

𝑈𝑗−𝑦𝑗,𝑟𝑒𝑓
    𝑖𝑓  𝑦̂𝛾𝑗 ≤ 𝑈𝑗

0               𝑖𝑓 𝑈𝑗 ≤ 𝑦̂𝑗
      1               𝑖𝑓 𝑦̂𝛾𝑗 ≤ 𝑦𝑗 ,𝑟𝑒𝑓

    

 

(23) 

where 𝛽1 = Pr(𝑦𝛾1 < 𝑦̂𝛾1) is defined as the confidence on the estimate of the actual percentile 𝑦𝛾1, 

in the same way, 𝛽2 = Pr(𝑦𝛾2 < 𝑦̂𝛾2) , and 𝑦𝑗 ,𝑟𝑒𝑓  is the nominal, reference value of the safety 

parameter j. 

In this work, we take as safety parameters 𝑦1 = 𝐿𝐸𝑅𝐹 and 𝑦2 = Δ𝐿𝐸𝑅𝐹, 𝑦1,𝑟𝑒𝑓 is the LERF value 

for the case of no corrosion, 𝑦2,𝑟𝑒𝑓 is the Δ𝐿𝐸𝑅𝐹 for the case of no corrosion, and 𝑦̂𝛾1 and 𝑦̂𝛾2 are 

estimated using Order Statistics (OS) (Nutt & Wallis, 2004), that allows obtaining, with the desired 

confidence 𝛽, the estimate of the 𝛾 percentile of the distribution of the safety parameter, limiting the 

computational cost related to the number 𝑁 of code simulations (Di Maio et al., 2016; Nutt & Wallis, 

2004). In particular, the Coverage approach (Wald, 1943) seems to suit well to our case, since it 

provides, with a given confidence, the estimates of tolerance limits (i.e., percentiles) of the 

distribution of the N sorted values of correlated outputs (LERF and ΔLERF, in our case) accounting 

for the joint probability distribution of the outputs (Nutt & Wallis, 2004).  

Following the approach proposed in (Helton, 1998) and, then, applied in (Kloos et al., 2002; Durga 

Rao et al., 2007), a two-loop MC simulation is implemented, where an external loop with N=59 allows 
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sampling values for inputs affected by epistemic uncertainties (e.g., degradation model and FEM) 

and an inner loop with M=1000 allows sampling (for each set of sampled values in the outer loop) 

values of input parameters affected by aleatory uncertainty (e.g., hydrogen combustion accident 

timing and magnitude), as shown in Figure 9.  

 

Figure 9 Double loop MC for epistemic and aleatory uncertainty propagation 

 

Input parameters distributions are given in Table 1 and 4 (Kwon et al., 2009; Naus, 2007; Naus, 

Oland, Ellingwood, Graves, & Norris, 1996). 

Parameter Symbol Distribution 

Occurrence time 𝑡𝑜𝑐𝑐 Uniform [0,100] years 

Hydrogen concentration [𝐻2] Uniform [0,100] % 

Table 4 Aleatory uncertainty distributions 

 

The procedure for probabilistic safety margin quantification by the Coverage OS approach is 

summarized as follows (Durga Rao et al., 2007): 
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1) Set the optimal number 𝑁 of code runs to estimate 𝑦̂𝛾1 and 𝑦̂𝛾2  with confidence 𝛽1 and 𝛽2 as 

in (Nutt & Wallis, 2004); 

2) Sample the n-th set of epistemic variables (i.e., degradation model parameters and 

construction materials properties) from the probability distributions listed in Table 1; 

3) Sample the m-th realization of the aleatory variables (i.e., hydrogen combustion accident 

timing and magnitude) from the distributions listed in Table 4  

4) Repeat M times Steps 2) and 3) to simulate the RB behavior with the dynamic reliability 

analysis approach described in Section 5; 

5) Estimate 𝑦̂𝛾1 and 𝑦̂𝛾2 of the distribution of the 𝛾 percentiles  due to epistemic uncertainty as 

in (Nutt & Wallis, 2004); 

6) Calculate the probabilistic safety margin 𝑀(𝛾1, 𝛽1, 𝛾2, 𝛽2) as in Equation (23). 

7 Results 

Each curve of Figure 0 represents the fragility curves (i.e., 𝑃𝑓(𝑡) vs [𝐻2]) for the RB that does not 

degrade (bold stars) or degrades in time (10-100 years) as described in Section 3, resulting in larger 

𝑃𝑓(𝑡) for aged RB, for any fixed [𝐻2]. 
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Figure 10 Fragility curve in time 

It can be seen that: 

1) The different overpressures generated by different combustion regimes are easily identifiable 

in the different ranges of hydrogen concentration (vertical dashed lines refer to the different 

combustion modes listed in Table 2); it can be seen that detonation range [14%;59%] is more 

likely to lead to large overpressure, making 𝑃𝑓(𝑡) grow faster than for any other combustion 

mode. 

2) The effect of degradation worsens the RB resistance faster for older RBs: indeed, as shown in 

Figure 1, the overlap region between the load distribution and the resistance distribution 

increases as t increases, meaning that the failure probability 𝑃𝑓(𝑡) increases.  
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Figure 11 Capacity distribution (dark) and load distribution (light) comparison for different RB ages 

 

Figure 22 shows the 𝑦̂𝛾1 and 𝑦̂𝛾2 (𝛾1 = 𝛾2 = 95) values obtained for different NPP ages (10 - 100 

years) (dots) and their uncertainty bounds (ellipses that define the pairs of iso-probability values for 

LERF and ΔLERF, with confidence 𝛽1 = 𝛽2 = 95%), and plotted against NRC criteria LERF - 

ΔLERF plane; if the increase in LERF (ΔLERF) upon RB resistance change exceeds 10−6 (i.e. it falls 

within Region I), the change is not allowed; when ΔLERF lies in the range between 10−7 and 10−6 

(i.e. it lies in Region II), the change is considered acceptable only if it can be reasonably shown that 

the total LERF is less than 10−5; finally, if ΔLERF is less than 10−7  (i.e. it falls in Region III), the 

change is accepted.  



28 

 

 

Figure 22 NRC acceptance criteria for LERF. Each dot represents the pair LERF and ΔLERF, evaluated at 10 years 

interval; ellipses indicate uncertainty bounds 

 

The dynamic reliability analysis approach here developed allows describing the time evolution of 

LERF and ΔLERF due to the degradation of the RB. The degradation due to aging can lead to 

unacceptable conditions, starting from 𝑡 > 60 years, if no maintenance activity is undertaken to 

counteract the degradation processes. Indeed, for 𝑈1 = {
10−4 𝑖𝑓 𝑦2 < 10−7

10−5 𝑖𝑓 𝑦2 > 10−7
 , 𝑈2 = 10

−6, 𝑦1,𝑟𝑒𝑓 =

1.4 ∙ 10−6 , 𝑦2,𝑟𝑒𝑓 = 0  the results of Table 5 are collected. This result confirms the necessity of 

maintaining the RB within 60 years, as it is currently done in the nuclear industry, where modeling 

the RB deterioration and repair is state-of-practice. The added value of the result shown in Figure 12 

is that it allows providing actualized estimates of risk measures and probabilistic safety margins, as 

degradation progresses with time: this information is useful for decision-makers to decide when to 

perform RB maintenance. For example, one might decide to never accept exceeding Region III or 

Region II and, correspondingly, proceed conservatively to maintain the RB no more than each 10 
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years, or 50 years, respectively, as suggested by the estimates of the percentiles 𝑦̂𝛾2 and the associated 

probabilistic safety margins 𝑀(𝛾2 = 0.95, 𝛽2 = 0.95) for LERF and ΔLERF at the different NPP 

ages 10-100 years, shown in Table 5. On the other hand, one might rely on the estimates of the 

percentiles 𝑦̂𝛾1 and the associated probabilistic safety margins 𝑀(𝛾1 = 0.05, 𝛽1 = 0.95) to decide 

with less conservativism to maintain the RB even between 70 and 80 years (after which M=0). 

 

Time LERF ∆LERF 

 
Percentile 

𝑦̂𝛾1 

Margin 

𝑀 

Percentile 

𝑦̂𝛾2 

Margin 

𝑀 

0 7.0387e-07 0.9390 / / 

10 1.4422e-6 0.8644 7.1578e-08 1 

20 1.5930e-6 0.8491 1.3545e-07 0.8732 

30 1.8899e-6 0.8192 2.9251e-07 0.7146 

40 2.4458e-6 0.7617 5.3181e-07 0.4729 

50 3.3476e-6 0.6719 8.4190e-07 0.1596 

60 4.6743e-6 0.5379 1.2893e-06 0 

70 6.5009e-06 0.3534 1.7299e-06 0 

80 8.5916e-06 0.1422 2.0129e-06 0 

90 1.0652e-05 0 1.9691e-06 0 

100 1.2151e-05 0 1.4361e-06 0 

Table 5 LERF and ΔLERF percentile estimates and probabilistic safety margin 
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8 Conclusions 

In recent years, in light of the international concern on the safety of nuclear facilities, the assessment 

of the conditions of aging RC RBs has become a focal point of attention to guarantee containment of 

radioactivities. In this work, we have proposed a dynamic reliability analysis framework and applied 

it to evaluate the resistance of the RB of a BWR Mark I to a hydrogen combustion accident scenario, 

while accounting for the effects of aging and degradation of the reinforced concrete.  

Monte Carlo is adopted to duly account for both epistemic and aleatory uncertainty, whereas a FEM 

of the RB has been built to analyze how the structure reacts to an internal overpressure and a physics-

based model of chlorides-induced corrosion of steel reinforcement and concrete cracking is employed 

to update the resistance of the RB, and the resulting time-dependent fragility curve to reflect how the 

failure probability increases in time due to aging effects: resorting to Order Statistics, the percentiles 

of the distributions of the safety parameters (i.e., LERF and ΔLERF) are estimated. In the case study 

considered, given the assumptions made, the comparison of the updated LERF and ΔLERF with the 

NRC requirements shows that, without any maintenance activity, the risk may become unacceptable 

to the purpose of license renewal. 

The main advancement of the framework here proposed consists in the capability of providing 

actualized estimates of risk measures and probabilistic safety margins, as degradation progresses with 

time. 

On the other hand, the main limitation is that the actualized estimates are not informed about the 

actual state of the RC structure (i.e., any condition monitoring system gathering data from sensors is 

neglected), but the estimates are provided on the basis of only simulated data (as the NPP RB 

degrades). Therefore, future work will consider embedding of condition monitoring data within the 

dynamic reliability framework for actualizing the risk measures and safety margins, based on 

degradation evidence measured directly on the RB. 
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