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Abstract 

In this paper, a data-driven prognostic model capable to deal with different 
sources of uncertainty is proposed. The main novelty factor is the application of 
a mathematical framework, namely a Random Fuzzy Variable (RFV) approach, 
for the representation and propagation of the different uncertainty sources af-
fecting Prognostic Health Management (PHM) applications: measurement, fu-
ture and model uncertainty. In this way, it is possible to deal not only with 
measurement noise and model parameters uncertainty due to the stochastic 
nature of the degradation process, but also with systematic effects, such as sys-
tematic errors in the measurement process, incomplete knowledge of the deg-
radation process, subjective belief about model parameters. Furthermore, the 
low analytical complexity of the employed prognostic model allows to easily 
propagate the measurement and parameters uncertainty into the RUL forecast, 
with no need of extensive Monte Carlo loops, so that low requirements in terms 
of computation power are needed. The model has been applied to two real ap-
plication cases, showing high accuracy output, resulting in a potentially effec-
tive tool for predictive maintenance in different industrial sectors. 
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1. Introduction 

In the last years, data-driven prognostic approaches have experienced a great 
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diffusion, mainly because of the increasing availability of condition monitoring 
data in substantial quantities, which is one of the pillars of the modern industrial 
paradigm Industry 4.0. Since such class of algorithms is based on the elaboration 
of data obtained by means of measurement processes, the development of ap-
proaches for the quantification, management and propagation of the measure-
ment uncertainty is of fundamental importance. Nevertheless, since prognostics 
deals with predicting the future behaviour of a system and it is practically im-
possible to precisely predict future events, measurement uncertainty is not the 
only uncertainty source. Other sources such as the uncertainty about the future 
operational conditions the systems will face and model uncertainty, in fact, play 
a relevant role. In this regard, it is then necessary to account for the different 
sources that affect prognostics and develop a framework for uncertainty quanti-
fication and management. 

Different approaches can be found in the literature. An example of model-based 
approaches, that rely on mathematical models to describe the degradation proc-
ess and provide a RUL prediction [1], are filtering methods, which are capable of 
accounting for the stochasticity of the process and measurement uncertainty. 
The exact Kalman filter is widely used in case of linear state space models and 
independent, additive Gaussian measurements and modelling noises [2]. How-
ever, when the dynamic of degradation is nonlinear and/or the associated noises 
are non-Gaussian, other techniques must be adopted. In this regard, numerical 
approximations based on the Monte Carlo (MC) sampling technique are very 
popular, because of their flexibility and ease of design [3] [4]. Among them, Par-
ticle Filtering is extensively used for diagnostic and prognostic applications [5]. 
In the particle filtering scheme, the probability density function (PDF) of the 
model parameters are updated when new observations of the equipment degra-
dation are acquired. The target posterior PDF is approximated by a large num-
ber of random samples termed particles, each of which has a likelihood weight 
assigned to it that represents the probability of that particle being sampled from 
the PDF. 

However, the development of a physics-based model for the description of the 
degradation process of complex systems may be a very hard task, which usually 
requires a deep domain knowledge. Furthermore, even if a stochastic model is 
available, the application of MC sampling techniques may require high compu-
tational power, due to the large number of iterations needed for the statistical 
convergence. Convergence itself may be an issue for some of the cited tech-
niques. For example, particle filtering is prone to the so-called particle degener-
acy, a phenomenon for which, after a number of posterior PDF updates, only 
one particle has significant weight. This is quite common in high-dimensional 
problems, rendering traditional particle filter algorithms ineffective in such 
cases. 

Focusing on the data-driven models domain, bootstrap ensemble approaches 
[6] [7], which are based on the aggregation of multiple model outcomes, have 
gained interest due to their ability of estimating the uncertainty in the predic-
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tions. In most applications, these approaches are used to estimate only the model 
uncertainty, by considering the variability in the predictions of the different 
models of the ensemble. An effective solution to estimate also the contribution 
of the stochasticity of the degradation process and the measurements noise to 
the RUL forecast uncertainty is given in [5] [6]. In this work, a training set is 
used to define an ensemble of predictive models that receive in input a degrada-
tion observation z and produce a RUL forecast. Each model is trained by using a 
bootstrapped replicate of the training set. The different predictions provided by 
the models are exploited in order to estimate the model error variance 2

mσ . In 
order to estimate the remaining fraction 2

rσ  of the RUL prediction variance, 
caused by the randomness of the degradation process and the observation noise, 
an independent validation dataset is used. In particular, the ensemble of empiri-
cal models is applied to the observations z in the validation dataset. Denoting as 

2RULi∆  the squared difference between the RUL forecast and the actual RUL 
when the observed degradation is zi, an estimate of 2

rσ , as function of zi, is ob-
tained as difference between 2RULi∆  and 2

mσ . Computing such difference for 
each available degradation observation in the validation set, an empirical model 
( ) 2

rzχ σ=  can be defined. 
Such solutions, however, present some problems. First, in case of complex 

empirical models characterized by large training time (f.i. deep neural networks), 
the training of an ensemble of them may be an issue. Nevertheless, a considera-
ble amount of data is usually required to ensure heterogeneity in the boot-
strapped replicas of the training set, and therefore in the resulting models. 

Another factor to take into account when dealing with prognostics, is the 
epistemic uncertainty introduced by the incomplete knowledge and information 
on the parameters used to model the degradation and failure processes. Inter-
esting methods for the representation and propagation of both aleatory (prob-
abilistic) and epistemic uncertainty sources are found in [8]. In this work, the 
authors propose two methods: a pure probabilistic method and a hybrid method 
combining Monte Carlo and possibilistic methods. In the first solution, both ep-
istemic and aleatory uncertainties are represented as probability distributions 
and a double-MC loop is performed: in the outer loop epistemic variables are 
sampled, whereas aleatory variables are sampled in the inner loop. In this way, a 
set of different cumulative distributions of the RUL is obtained (one for each 
iteration of the outer loop). Although all information about RUL uncertainty is 
preserved, its interpretation may not be straightforward in practical terms. Con-
versely, in the hybrid method the aleatory and epistemic uncertainties are 
represented respectively by probability and possibility distributions [9]. The 
method consists of a single MC loop: at each iteration, a realization of aleatory 
variables is performed and possibilistic interval analysis is carried out to process 
the epistemic uncertainty, so that a possibilistic random distribution of the RUL 
is obtained. Finally, at the end of the loop a set of possibilistic random distribu-
tions for the RUL is obtained and they can be combined into a single set of li-
miting cumulative distributions characterized by different degrees of confidence 
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[9]. 
Although operatively straightforward, such methods present some drawbacks. 

The first methods, relying on two MC loops requires a very large number of ite-
rations, so that high computational power may be required in order to decrease 
the processing time. As for the second method, even if based only on a single 
MC loop, its main drawback is that it is based on a mix of two different mathe-
matical domains, probability and possibility. 

In order to overcome the limitations of the cited literature works, in this paper 
a novel data-driven prognostic model capable to deal with different sources of 
uncertainty is proposed. The main enhancement is the application of a unique 
mathematical framework, namely a Random Fuzzy Variable (RFV) approach, 
which allows the representation and propagation of the different aleatory and 
epistemic sources of uncertainty affecting Prognostic Health Management (PHM) 
applications: measurement uncertainty, present uncertainty, future uncertainty 
and model uncertainty. 

The RFV approach, in fact, enables the representation and combination into a 
single mathematical object of the aleatory and epistemic contributions to uncer-
tainty. Therefore, it results particularly suitable to deal not only with random 
measurement noise and model parameters uncertainty due to the stochastic na-
ture of the degradation process, but also with systematic effects, such as system-
atic errors in the measurement process, incomplete knowledge of the degrada-
tion process, subjective belief about model parameters. Furthermore, the low 
analytical complexity of the employed prognostic model allows to easily propa-
gate measurement and parameters uncertainty into the RUL forecast, with no 
need of extensive MC loops, so that low requirements in terms of computation 
power are needed. The model output is the RUL forecast, which, once again, is 
represented in terms of RFV, so that a confidence interval, at the desired confi-
dence level, can be easily provided. 

The rest of the paper is structured in the following way: in Section 2 the 
sources of uncertainty in PHM are introduced. In Section 3 the concept of simi-
larity approach for prognostics is described, whereas the proposed prognostic 
model is illustrated in Section 4. Section 5 is dedicated to the introduction of the 
RFV approach for the representation of the measurement uncertainty through 
the possibility theory. The application of the RFV approach to the proposed 
prognostic model is described in Section 6. In Section 7, details about the tuning 
procedure for a crucial model parameter are given. Finally, in Section 8 the re-
sults obtained for two real case studies are presented, followed by conclusions in 
Section 9. 

2. Sources of Uncertainty in Prognostic Health Management 

Sources of error like modelling inconsistencies, system noise and degraded sen-
sor fidelity can affect prognostic predictions. In PHM, considering [9] [10] [11], 
the following sources can be considered: 
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• Measurement uncertainty: the collected data are affected by a measurement 
uncertainty due to the employed sensors and instruments. Two kinds of un-
certainty sources can be considered, typically referred to as systematic and 
random. 

• Present uncertainty: Remaining Useful Life (RUL) prediction requires the 
current state estimation of the system. The system state may depend on mul-
tiple variables, which can be directly or indirectly monitored through sensors. 
If properly processed, such signals allow the extraction of features which are 
informative about the system health state and in most cases lead to a better 
interpretation of the data. The impossibility to perfectly estimate the state, as 
well as the propagation of the measurement uncertainty into the process of 
feature extraction contribute to the definition of the present uncertainty. 

• Future uncertainty: it is due to the inability to predict exactly in advance the 
future operational conditions (like load conditions, environmental and usage 
conditions) of the system. It is often the most relevant source, as shown in 
[12]. 

• Model uncertainty: this source is strictly related to the application cases and 
to the applied approaches. Model uncertainty includes model parameters 
stochasticity, and process noise. Under-modelling is also an issue, due to 
missing failure modes in the analysis or, in case of application of data-driven 
approaches, the lack of data describing possible failure scenarios. Further-
more, epistemic uncertainty for the representation of expert’s belief about 
model parameters is another source to account for. 

3. Similarity-Based Prognostic Models 

Many methods for uncertainty processing in PHM are present in the literature. In 
this regard, similarity-based prognostic algorithms represent an interesting class 
of Data Driven prognostic approaches, whose main contribution is that they eas-
ily account for future uncertainty. 

The hypotheses for the application of a similarity-based approach are the fol-
lowings: 

1) Run-to-failure historical data from multiple units of a system/component 
are recorded (the term unit refers to an instance of a system/component). 

2) The historical data covers a representative set of units of the system/com- 
ponent. Such set of products will be referred in the following as reference library 
(or simply library). 

3) The history of each unit ends when it reaches a failure condition, or a preset 
threshold of undesirable conditions, after which no more runs will be possible or 
desirable (the history can start, however, from a variable degrading condition). 

In order to estimate the RUL of a test item (for which the RUL has to be pre-
dicted), a similarity assessment between the test degradation pattern (monitored 
degradation pattern for the test item) and the reference trajectory patterns in the 
library is performed. An example can be found in [13], where the similarity is as-
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sessed based on the computation of a distance value, as given in Equation (1): 

( )2

1

1 K

i k ik
k

d y y
K =

= −∑                      (1) 

which corresponds to the Root Mean Square Error (RMSE) between the pattern 
of the test unit and the pattern of the i-th library specimen. In particular, yk (yik) 
corresponds to the observed degradation for the test unit (library specimen i) at 
cycle (or generally time stamp) k and K is the total number of observed cycles for 
the test pattern. A small di means that the two profiles are characterized by simi-
lar degradation processes, whereas large distance values are related to products 
that are subject to different degradation mechanisms and therefore they should be 
excluded in the estimation of the RUL of the target product.  

In the same paper the Authors exploit the degradation data of library items 
with higher similarity and process them through MC simulations in order to 
forecast the future degradation pattern of the test unit and obtain a Confidence 
Interval (CI) for the related RUL. 

Another strategy is to evaluate the test unit RUL as function of the RUL of the 
reference units and their similarity degree with respect to the test unit, as shown 
in [14] [15]. In these works, a weight is assigned to each reference unit, according 
to Equation (2): 

exp i
i

sc
w

β
 

= − 
 

                       (2) 

where the similarity coefficient sci, similarly to the distance di computed in Equa-
tion (1), is a function of the sum square error between the degradation patterns of 
test unit and library specimen i. As for parameter β, it is an arbitrary parameter 
that can be set by the analyst to introduce the desired degree of selectivity (i.e. if β 
is small, few specimens are influential). Finally, the test RUL is computed as the 
weighted sum of the RULs of the library units: 

1

1

RUL
RUL

N

i i
i

N

i
i

w

w

=

=

⋅
=
∑

∑
                     (3) 

where i refers to the i-th reference unit and N is the number of units in the li-
brary.  

A similar approach is suggested in [16]. The authors, in fact, propose a defini-
tion of a deterministic model Mi for each i-th training unit of the library, so that 
an estimated value of the degradation is provided at each given time. At this point, 
if a time-sequence Y of degradation values for a test unit is available, a distance 
measure between the model Mi and Y is defined as the sum of the squared errors, 
divided by the prediction variance of the model Mi. Then the RUL estimation for 
the test product is equal to a weighted sum of the RUL of the reference products, 
where the weights are assigned applying the k-nearest neighbour method, that is 
selecting the products with the k smallest distance values and apply a weight 1/k 
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to their RULs. 
The assumption is that the future operational conditions of the test product 

will be most likely similar to those of the units exhibiting higher similarity in cor-
respondence of the observation window (i.e. the time interval for which the target 
unit degradation pattern has been monitored). Therefore, the higher the similar-
ity between the test item and the i-th training reference pattern, the higher the 
weight wi will be, so that the forecasted RUL will be closer to RULi, dealing in 
such a way with the uncertainty about the future operational, environmental and 
usage conditions. 

However, some limitations are shared by the cited works and their analogous: 
1) Their application may be precluded when there is no availability of 

run-to-failure degradation profile of a numerous, representative set of products, 
as it may occur with those systems characterized by long expected lifetime.  

2) The literature investigation about similarity-based prognostic approaches 
has highlighted that measurement uncertainty is often neglected and not properly 
quantified and processed within the adopted prognostic model. If on one hand, 
this fact can be justified by considering that often measurement uncertainty 
represents a minor contributor of the overall uncertainty (especially at early life 
stages when the uncertainty about future operating conditions is unavoidably the 
main source), on the other hand it still represents a factor that may lead to a more 
accurate prognostic output if properly accounted. 

As described in the next section, also the prognostic algorithm proposed in this 
paper estimates the RUL of a test item as weighted sum of the RUL of the library 
units, but it aims to overcome the cited limitations by applying the RFV approach. 
Such approach, in fact, is particularly suitable for the representation and propaga-
tion in a unique mathematical framework of both aleatory and epistemic uncer-
tainties, and in this work, it has allowed to effectively deal with the measurement 
uncertainty associated to the degradation data and the epistemic uncertainty as-
sociated to the RUL of those library units whose time of failure is not known. 

4. The Proposed Model 

Analogously to [14] [15] [16], the prognostic model proposed in this paper 
evaluates the test RUL according to Equation (3). The main difference lies in 
how the weighting coefficients wi are defined. Here, in fact, the distance value di 
(which gives information about patterns similarity) is mapped into a weight wi 
through a mapping function g(·), defined as: 

( ) ( )2
min
22

1 exp
22

i
i i

gg

d d
w g d

σσ

 −
 = = −

 π 

                (4) 

Function g(·) represents a Gaussian PDF, characterized by mean value equal 
to dmin (by definition, the minimum value among all di values, 1, ,i N=  ) and 
standard deviation σg, such that higher weights are assigned to reference units at 
lower distance di. The motivation behind the definition of such function as a 
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Gaussian PDF is that, as shown in Section 6, it allows to easily propagate the 
measurement uncertainty into weights wi. 

A key factor in the application of the proposed algorithm is the value assigned 
to σg, which, similarly to parameter β in Equation (2), introduces the desired de-
gree of selectivity. In Section 7, a strategy for a suitable choice of this parameter 
will be shown. 

5. The RFV Approach 

During the recent years, a more general approach to measurement uncertainty 
evaluation and propagation has been proposed by [17]. This new approach is 
framed within the mathematical theory of evidence, proposed by Shafer in the 
seventies, and represents a generalization of the probabilistic one recommended 
by the GUM. It allows one to represent and process any kind of incomplete in-
formation, both of random and systematic nature. In particular, the measure-
ment results are expressed in terms of a particular class of type-2 fuzzy variables, 
the Random-Fuzzy Variables (RFV).  

An example of RFV is shown in Figure 1. This figure shows that an RFV is 
composed by two functions, called possibility distribution functions (PD): rint(x) 
(cyan line in Figure 1) and rext(x) (blue line in Figure 1). By considering these 
two PDs, it is possible to represent, in a single mathematical object, the effects of 
all possible contributions to uncertainty on the true value of the measurand. It 
was proved [17] that the external PD rext(x) represents the effects of all contribu-
tions to uncertainty, whilst the internal PD rint(x) represents the effects of all 
non-random contributions to uncertainty, including the systematic ones. 

It is also possible to prove that rext(x) can be obtained by combining rint(x) with 
the random PD rran(x) (magenta line in Figure 1) that represents the sole ran-
dom contributions to uncertainty. It is hence possible, with a single RFV, to 
represent all contributions to uncertainty. 

An interesting property of the RFVs is that their α-cut, for each level α ∈ [0, 1], 
provide all possible confidence intervals, at confidence levels 1 − α. Therefore, 
each α-cut provides an interval, within which the true value of the measured is 
expected to lie with a coverage probability 1 − α. 

 

 
Figure 1. Example of Random-Fuzzy variable (RFV). 
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RFVs can be combined, according to a given measurement function, by means 
of appropriate operators, called t-norms, applied to the random PDs rran(x) and 
the internal PDs rint(x). Therefore, it is possible to combine, in closed form  [18] 
[19], different measurement results and obtain the final measurement result to-
gether with its associated uncertainty. 

Two t-norms have been selected to process the PDs of the RFVs: the min 
t-norm and the Frank t-norm. The choice of which one should be used is done 
according to all the available metrological information related to both the nature 
of the uncertainty contributions and the way they affect the measurement pro-
cedure [20]. In particular, the min t-norm is used when the uncertainty contri-
butions affect the measurement procedure in a systematic way and therefore, 
they do not compensate with each other. On the other hand, the Frank t-norm is 
used when the uncertainty contributions affect the measurement procedure in a 
random way and therefore, they do compensate with each other. 

Next section shows how the RFV approach can be applied to the proposed 
model. 

6. Application of the Random-Fuzzy Variable Approach to  
the Proposed Model 

To apply the RFV approach to the proposed model, Equations (1), (3), (4) must 
be evaluated in terms of RFVs. This means that the measured values yk, the dis-
tance values di, the weighing values wi and the RUL values must be considered as 
RFVs, by also considering the different uncertainty contributions. 

6.1. Computation of the RFV of the Measurement Values 

To build the RFVs associated to each measured value yk, random and systematic 
contributions to uncertainty are considered. It is supposed that the random con-
tributions distribute according to a Gaussian PDF, having a standard deviation σ. 
It is also supposed that the systematic contributions distribute over an interval, 
but no information is available on the way they distribute, so that no PDF can be 
assigned in this case. The considered interval is centered on the measured value 
yk and its width is supposed to be proportional to the measured value itself. If a 
relative error e is considered, the interval will have a semi-width yk·e.  

Under the above assumptions, it is possible to build the RFV associated to 
each measured value. According to the available information: 
• The random PD rran(x) represents the random contributions to uncertainty 

and therefore is built from the given Gaussian PDF, by applying a suitable 
transformation, called probability-possibility transformation [19] [21]. 

This transformation allows one to transform a PDF into an equivalent PD 
which preserves all the coverage intervals and corresponding coverage probabili-
ties, thus maintaining the relevant metrological information associated with the 
initial PDF; 
• The internal PD rint(x) represents the systematic contributions to uncertainty 

and therefore is built according to the given interval. In particular, in Shafer’s 
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theory of evidence, the considered situation when an interval of variation is 
given, but no PDF can be defined, is called total ignorance and is represented 
by a rectangular PD over the given interval.  

It follows that the RFV shape of the RFV Yk associated to each measured value 
is similar to the one shown in Figure 1 in cyan and blue lines. Of course, the 
mean value and width of the RFV change with the measured value. 

6.2. Computation of the RFV of the Distance between Degradation  
Curves 

Equation (1), which provides the distance di, can be considered in two different 
ways.  

The first consists in building all RFVs Yk and Yik and apply the most appro-
priate t-norms in each operation considered in Equation (1). This procedure, 
which is mathematically correct, does not consider however all available metro-
logical information and brings to an overestimation of the uncertainty associated 
to distance di (i.e. a very large RFV Di). On the other hand, using all available 
metrological information, as shown by [22], it is possible to find, for each i-th 
curve, the RFV of the distance in a more immediate and accurate way.  

In fact, let us consider that Equation (1) represents a mean square error. Let 
us start from the random contributions to uncertainty. By assumption, the stan-
dard deviation of the given PDFs (PDFs associated with the measured values) is 
the same for each measured value (see Sec. 6.1). It is known that the standard 
deviation 

idσ  of the mean square error is: 

id K
σσ =                             (5) 

Equation (5) allows us to directly build the random PD rran to be associated to 
the RFV of the distance di from the i-th curve, by simply applying the probabili-
ty-possibility transformation to a Gaussian PDF having standard deviation equal 
to 

idσ . This solution is indeed straightforward and avoids the combination of 
all different random PDs associated to the K measured values. 

Similar considerations can be done when the systematic contributions to un-
certainty are considered, associating in a straightforward way the final systemat-
ic contribution to uncertainty to the distance di, thus also avoiding the combina-
tion of all different internal PDs associated to the K measured values [22].  

In fact, distance di presents a relative error 
ide  due to the systematic contri-

butions to uncertainty: 

1 1
i

K K

d k ik
k ki

ee y y
d K = =

= ⋅ −
⋅ ∑ ∑                     (6) 

so that it is possible to directly build the internal PD rint (to be associated to the 
RFV of the distance di from the i-th curve) by considering a rectangular PD 
around di, with semi-width equal to 

id ie d⋅ . 
By combining the obtained internal and random PDs, RFV Di associated to 
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the distance di is evaluated [17].  

6.3. Computation of the RFV of the Weighting Coefficients 

Once RFVs Di are built for all curves 1, ,i N=  , also weights wi (denoted Wi) 
can be evaluated in terms of RFVs. First of all, the mapping PDF g(·) is con-
verted into an equivalent mapping PD G(·), as shown, as an example, by the red 
PD in Figure 2. 

Then, RFV Wi is obtained by considering the intersection of Di with the map-
ping PD. As an example, in Figure 2 it is shown how a single a α-cut of RFV Wi 
is obtained: a generic α-cut iDα  of RFV Di is considered (green line); this in-
terval intersects the red PD and identifies the magenta interval, which represents 
the α-cut iW α , at the same level α, of RFV Wi.  

By considering the same method for all α-cuts of RFV Di, RFV Wi is built. 

6.4. Computation of the RFV of the Test Unit RUL 

Finally, from the weights Wi and according to Equation (2), it is possible to eva-
luate the RUL in terms of RFV. In particular, the parameter RULi associated to 
the generic i-th reference unit will be either a scalar (if it is known) or a RFV (if 
not known). In the latter case, in fact, it is possible to introduce epistemic un-
certainty about RULi: assuming that the test RUL forecast is performed at time 
stamp t* and that the user assumes that the maximum lifetime for i-th reference 
unit is equal to T* (based on personal or other experts’ opinion), RULi can be 
modeled as a rectangular RFV (which describes total ignorance) ranging in [0, T* 
- t*].  

According to the available metrological information about the nature of the 
contribution and the measurement procedure, it is necessary to choose the more 
suitable t-norms to be applied. It is possible to state that the weights Wi are all 
uncorrelated with each other because they are related to the i-th curve and all N 
curves are independent from each other. Furthermore, as far as the systematic 
contributions to uncertainty affecting the weights Wi are concerned, there is no 
reason to suppose a probabilistic compensation between each other in Equation 
(2) and hence we can assume that they combine in a non-random way. There-
fore, the min t-norm is chosen and a zero correlation factor applied when com-
bining PDs rint, while the Frank t-norm with the parametric value γ = 0.1 is cho-
sen and a zero correlation factor applied when combining PDs rran [19]. 

Figure 3 represents an example of RFV RUL (in blue) obtained for a test unit 
and the corresponding CI (in red color), whose limits are denoted as RULmin and 
RULmax, obtained selecting the α-cut at level α = 0 of the RFV. 

7. Tuning σg Parameter 

As stated in Secetion 4, a key point in the application of the proposed algorithm 
is the choice of the standard deviation σg associated to the mapping function g(·) 
in Equation (3), as it controls the selectivity degree.  
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Figure 2. Example of possibility distribution functions (PD). 

 

 
Figure 3. RFV RUL (in blue) for a given unit and corresponding 
RUL CI (in red) obtained choosing α = 0. Note that the actual RUL 
value (in green) is included in the CI provided by the algorithm. 

 
In this work, a grid optimization approach is proposed for the determination 

of the value σg that maximizes the prognostic performances. Such approach con-
sists in defining an a-priori set of admissible values for the parameter to be 
tuned, { }1 , , Jσ σ σ∗ ∗ ∗=  , running the algorithm for each possible value and fi-
nally selecting the one which maximizes the performances.  

Let as assume to be interested in forecasting the RUL of a test unit whose de-
gradation pattern is known up to an observed level δ, and a reference library of 
N units is available. The following steps are performed: 

1) First, the M units at lower distance di with respect to the test unit are iden-
tified. 

2) The parameter σg is set equal to the generic j-th admissible value jσ ∗  
( 1,2, ,j J=  ). 

3) A Leave-One-Out-Cross-Validation (LOOCV) is then run: the prognostic 
algorithm is run setting the m-th unit at lower distance ( 1,2, ,m M=  ) as test 
sample (its degradation pattern is considered known up to the value δ) and the 
remaining N − 1 reference curves as training patterns. Two fundamental metrics 
are then computed. The first metric is a performance indicator PI, pjm, which 
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informs about the correctness of the prediction: 

[ ]act min max1  if RUL ,
0  otherwisejm

RUL RUL
p

 ∈= 


               (7) 

where RULact corresponds to the actual RUL value. In other words, pjm is equal to 
1 when CI of the RUL prediction contains the actual RUL value, 0 otherwise. 

The second metric, Δjm, is related to the width of the provided CI and is com-
puted as: 

max minjm RUL RUL∆ = −                      (8) 

4) Step 3 is repeated setting cyclically one of the M units as test unit. Finally, 
the average value of the performance indicators is computed for the j-th value of 
the parameter σg, according to: 

1

M

jm
m

j

p
p

M
==
∑

                         (9) 

1

M

jm
m

j M
=

∆
∆ =

∑
                        (10) 

5) The metrics pj and Δj are computed for each of the admissible value of σg. 
6) The optimal σg should lead to high value of PI, while keeping the CI width 

small (because the CI width reflects the uncertainty about the RUL output). In 
order to guarantee such conditions, first a threshold P* is set and a subset of val-
ues σg is determined, by choosing those values for which the PI is higher than the 
given threshold, that is pj ≥ P*. Let us denote with ∑ this subset and with ΔΣ the 
corresponding values of mean CI width Δj. 

In case P* is not achieved for any value of σg (i.e. ∑ is an empty set), the value 
of σg providing the highest performance is automatically selected, without the 
need to perform the next point. 

7) Once that a subset of optimal values of σg is determined, for what concerns 
the PI, the optimization of the CI width should be addressed. An idea could be 
selecting the value of σg providing the lowest value Δj. However, it must be con-
sidered that the metrics computed in steps 3-4 are obtained by means of a vali-
dation set of M units. In order the validation set to be representative of the sys-
tem under analysis, M must be sufficiently large. Unfortunately, this is not al-
ways the case in practice. Therefore, selecting the value of σg as the one provid-
ing the lowest value Δj could be too restrictive, leading to RUL forecasts with 
small CI widths, but low PI. In this work, two selection strategies (SSs) will be 
considered and compared with each other. The two selection strategies are de-
noted as SS1 and SS2 and explained below: 
• SS1: among the values in ∑, select the value σg providing the lowest CI width 

Δj. 
• SS2: select the value of σg providing the confidence width Δj equal to the 5% 

quantile of ΔΣ.  
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The aim is to determine which SS guarantees the best trade-off between high 
prognostic accuracy (i.e. the obtained CI for the RUL encloses the actual RUL 
value) and narrow confidence intervals, to provide valuable results from the pre-
dictive maintenance point of view. 

8. Algorithm Validation 

Two different application cases will be presented. The first one (AC1) is the 
same considered by [22] and consists in a database of 90 degradation patterns of 
Medium Voltage (MV) and High Voltage (HV) Circuit Breakers (CBs). Since 
the data used in the contribution are confidential information, the exact numer-
ical values are not reported. The degradation pattern y for such units is shown in 
Figure 4(a). The time is expressed as a generic Time Unit and the degradation 
level y as percentage. A degradation level y = 0% refers to a unit in a perfect 
healthy state, whereas y = 100% means that it has reached its End of Life (EoL), 
that is the time instant at which the unit is not anymore able to perform its in-
tended function and a maintenance activity, refurbishment, replacement or the 
disposal of the unit is required.  

The second application case (AC2) considers fatigue-crack-growth data, as pre-
sented by [23]. There are 21 sample paths, one for each test unit. It is assumed 
that the testing of the units is stopped at 0.12 million cycles and the units have 
failed if undergone a critical crack length of 0.04064 m (1.6 inches). All the units 
have at the beginning of the test an initial crack length of 0.02286 m (0.9 inches). 

Figure 4(b) depicts the degradation pattern of the units. To be coherent with 
the representation of the first database, also in this case the degradation level y is  

 

 
Figure 4. Degradation patterns for two different application cases. (a) A 
fleet of 90 Medium and High Voltage Circuit Breakers; (b) A fleet of 21 units 
undergone fatigue-crack-growth test. 
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expressed in percentage of the critical length previously reported. From Figure 
4(b) it can be denoted that about half of the units have not failed by the end of 
the test. This and other features considerably differentiate the two application 
cases, as reported in Table 1. 

The aim is to show the possibility to apply the proposed approach in a wide 
range of applications and its ability to overcome situations of scarce amount of 
degradation data. 

No metrological information about the measurements involved in the two 
examples is available. According to authors’ experience and personal assump-
tions, the standard deviation σ of the random contributions to measurement 
uncertainty and the relative error e are set equal to 0.1. Such quantities are adi-
mensional, since the observed data are expressed as percentage of degradation. 

Figure 5 reports the prognostic performances (in terms of the Performance 
Indicator PI) of the proposed algorithm for the two application cases, at differ-
ent levels of observed degradation. The PI is obtained as in Equation (7), aver-
aging over the testing units. In this regard, for application case AC2, the perfor-
mances have been computed only for the failed units, i.e. 12 units, whose RUL is 
known, and the validation of the provided results is viable.  

The results refer to the performances obtained by considering, for each RUL, 
the CI corresponding to the α-cut at level α = 0 of the RFV.  

It is important to understand that the choice of the α-cut represents a trade-off 
between the width of the provided CI (amount of uncertainty about the RUL 
forecast) and the accuracy of the prognostic result (the provided CI includes the  
 
Table 1. Difference in the two considered application cases. 

Application  
case 

Trend of degradation  
over time 

Number of units in  
the reference library 

Number of units in the reference  
library with known failure time 

AC1 Linear 90 90 

AC2 Exponential 21 12 

 

 
Figure 5. Comparison of the prognostic performances obtained by the 
proposed algorithm for both application cases at different levels of observed 
degradation and through different selection strategies of the parameter σg. 
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actual RUL value). Higher levels of α-cut correspond to narrower CIs but also 
higher risk of incorrect forecasts. In this work, the level α = 0 has been chosen, 
according to a pessimistic approach (worst case). 

The dashed (solid) lines refer to the results obtained with the first (second) 
selection strategy SS1 (SS2). It is interesting to observe that the percentage of 
correct RUL forecasts for the first application case increases with the observed 
degradation, for both SS1 and SS2, but SS2 guarantees more accurate predictions. 
As an example, if a minimum threshold of 95% (grey solid line) is considered, 
SS1 allows to overcome it when the degradation is approximately 92%, while SS2 
allows to overcome it in relevant advance than failure time, when approximately 
only 75% of degradation is observed.  

The better performances achieved through SS2 are also confirmed in the 
second application case. In this case, as stated in Section 8, some of the units still 
have not reached the end of life. Therefore, for these units (whose failure time is 
unknown), the Authors have built the corresponding RFV of RUL according to 
their personal belief. A maximum lifetime equal to 0.15 million cycles is consi-
dered and the related RUL and associated epistemic uncertainty is modeled as a 
rectangular PD.  

By applying SS2, the algorithm has provided correct predictions at each level 
of observed degradation for all the test units. Similar results have been obtained 
through SS1, except when RUL forecast has been performed at a level of ob-
served degradation equal to 95%. In this case, the performances fall at 91.67%. 
However, one should observe that this decrease is due to an incorrect prediction 
for one single unit (1 unit of 12, indeed, corresponds to 8.33%). More in detail, 
for this particular case the incorrect prediction is due to a late prediction pro-
vided by the algorithm, such that the lower limit of the forecasted CI is larger 
than the actual RUL by only 13 cycles (i.e. the prediction error is very small).  

Observing the results, it is important to highlight that the proposed algorithm 
have achieved excellent performances for both application cases. As already said, 
the second one is more complex than the first one, because of the exponential 
trend of the degradation over time and the smaller number of reference curves, 
for some of which the RUL is unknown. In this regard, one should not be misled 
by observing that the performances achieved for a more complex application 
case are higher. It is authors’ opinion that testing the algorithm in AC2 for a 
larger set of units, the performances should normalize and exhibit a trend like 
the one exhibited by AC1. 

At this point, once stated that SS2 guarantees more accurate predictions, it is 
useful to verify if the higher performances are counterbalanced with wider CIs. 
The benefit of better predictions would be vanished, indeed, if the provided CIs 
would be much wider. Narrow CIs for RUL, in fact, are of fundamental impor-
tance for an effective scheduling of the maintenance interventions, as they would 
reflect a lower uncertainty about the RUL forecast. 

Figure 6 shows the average width of the CIs provided at different levels of 
observed degradation, for the two application cases and for the two considered  
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Figure 6. Comparison of the average CI width provided by the proposed 
algorithm for both application cases at different levels of observed degrada-
tion and through different selection strategies of the parameter σg. 

 
selection strategies SS1 and SS2. As for the PI, the average width is obtained ap-
plying Equation (8) and averaging over the testing units. The results are satisfy-
ing, since SS2 seems to provide slightly wider CIs in both cases, but not in a sig-
nificant way. As a matter of fact, the widths of the CIs are comparable. Never-
theless, independently on the chosen SS, the width of the CIs decreases as the 
observed degradation increases, so that the prognostic information becomes 
more valuable from the preventive maintenance point of view. 

9. Conclusions 

In this paper, a similarity-based data-driven prognostic algorithm for the esti-
mation of the RUL of a unit is proposed. It is based on the exploitation of 
run-to-failure data of a representative set of units of the system/component un-
der analysis, referred to as reference library. This allows one to implicitly intro-
duce some knowledge about the future loading and operational conditions that 
the test unit will face in the rest of its life, mitigating the effect of the future un-
certainty on the final prediction. 

The core of the contribution is the application of a possibilistic framework, 
namely the RFV approach, for the representation and propagation of different 
crucial sources of uncertainty in PHM: the already cited future uncertainty; 
measurement uncertainty, whose role is particularly relevant in data-driven ap-
plications, since often the data are the results of measurement processes; epis-
temic uncertainty which arises by accounting for personal and experts’ beliefs 
about model parameters. 

Applying the mathematics of RFV, it is possible to evaluate the unit RUL in 
terms of RFV and extract the desired confidence interval. The results obtained 
for two real application cases have shown high prognostic performances of the 
proposed algorithm. In particular, a fundamental result is the high level of per-
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formances achieved already at intermediate life stages (more than 95% of correct 
predictions when the degradation is equal to 75%), highlighting the ability of the 
algorithm to provide valuable results from the predictive maintenance point of 
view. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 

[1] Luo, J., Pattipati, K., Qiao, L. and Chigusa, S. (2008) Model-Based Prognostic Tech-
niques Applied to a Suspension System. IEEE Transactions on Systems, Man, and 
Cybernetics Part A: Systems and Humans, 38, 1156-1168.  
https://doi.org/10.1109/TSMCA.2008.2001055 

[2] Gomes, J.P.P., Leao, B.P., Vianna, W.O.L., Galvao, R.K.H. and Yoneyama, T. (2012) 
Failure Prognostics of a Hydraulic Pump Using Kalman Filter. Proceedings of the 
2012 Annual Conference of the Prognostics and Health Management Society, Min-
neapolis, 23-27 September 2012, 1-5.  

[3] Pitt, M. and Shephard, N. (1999). Filtering via Simulation: Auxiliary Particle Filters. 
Journal of the American Statistical Association, 94, 590-599.  
https://doi.org/10.1080/01621459.1999.10474153 

[4] Crisan, D. and Doucet, A. (2002) A Survey of Convergence Results on Particle Fil-
tering Methods for Practitioners. IEEE Transactions on Signal Processing, 50, 
736-746. https://doi.org/10.1109/78.984773 

[5] Orchard, M.E. and Vachtsevanos, G.J. (2009) A Particle-Filtering Approach for 
On-Line Fault Diagnosis and Failure Prognosis. Transactions of the Institute of 
Measurement and Control, 31, 221-246. https://doi.org/10.1177/0142331208092026 

[6] Heskes, T. (1997) Practical Confidence and Prediction Intervals. Advances in Neur-
al Information Processing Systems, 9, 466-472. 

[7] Raviv, Y. and Intrator, N. (1996) Bootstrapping with Noise: An Effective Regulari-
zation Technique. Connection Science, 8, 355-372.  
https://doi.org/10.1080/095400996116811 

[8] Baraldi, P., Mangili, F. and Zio, E. (2013) Investigation of Uncertainty Treatment 
Capability of Model-Based and Data-Driven Prognostic Methods Using Simulated 
Data. Reliability Engineering and System Safety, 112, 94-108.  
https://doi.org/10.1016/j.ress.2012.12.004 

[9] Tang, L., Kacprzynski, G.J., Goebel, K. and Vachtsevanos, G. (2009) Methodologies 
for Uncertainty Management in Prognostics. Proceedings of the 2009 IEEE Aero-
space Conference, Big Sky, 7-14 March 2009, 1-12.  
https://doi.org/10.1109/AERO.2009.4839668 

[10] Sankararaman, S. and Goebel, K. (2014) Uncertainty in Prognostics and Health 
Management: An Overview. Proceedings of the 2nd European Conference of the 
Prognostics and Health Management Society, Nantes, 8-10 July 2014, 1-11. 

[11] Gu, J., Barker, D. and Pecht, M. (2007) Uncertainty Assessment of Prognostics of 
Electronics Subject to Random Vibration. Proceedings of AAAI Fall Symposium on 
Artificial Intelligence for Prognostics, Arlington, 9-11 November 2007, 50-57. 

[12] Sankararaman, S. and Goebel, K. (2013) Why Is the Remaining Useful Life Predic-
tion Uncertain. Proceedings of the Annual Conference of the Prognostics and 

https://doi.org/10.4236/ojs.2020.106058
https://doi.org/10.1109/TSMCA.2008.2001055
https://doi.org/10.1080/01621459.1999.10474153
https://doi.org/10.1109/78.984773
https://doi.org/10.1177/0142331208092026
https://doi.org/10.1080/095400996116811
https://doi.org/10.1016/j.ress.2012.12.004
https://doi.org/10.1109/AERO.2009.4839668


L. Cristaldi et al. 
 

 

DOI: 10.4236/ojs.2020.106058 1038 Open Journal of Statistics 
 

Health Management Society, New Orleans, 14-17 October 2013, 1-13. 

[13] Leone, G., Cristaldi, L. and Turrin, S. (2017) A Data-Driven Prognostic Approach 
Based on Statistical Similarity: An Application to Industrial Circuit Breakers. Meas-
urement, 108, 163-170. https://doi.org/10.1016/j.measurement.2017.02.017 

[14] Zio, E. and Di Maio, F. (2009) A Data-Driven Fuzzy Approach for Predicting the 
Remaining Useful Life in Dynamic Failure Scenarios of a Nuclear Power Plant. Re-
liability Engineering and System Safety, 95, 49-57.  
https://doi.org/10.1016/j.ress.2009.08.001 

[15] Guépié, B.K. and Lecoeuche, S. (2015) Similarity-Based Residual Useful Life Predic-
tion for Partially Unknown Cycle Varying Degradation. Proceedings of the 2015 
IEEE Conference on Prognostics and Health Management (PHM), Austin, 22-25 
June 2015, 1-7. https://doi.org/10.1109/ICPHM.2015.7245054 

[16] Wang, T., Yu, J., Siegel, D. and Lee, J. (2008) A Similarity-Based Prognostics Ap-
proach for Remaining Useful Life Estimation of Engineered Systems. Proceedings of 
the 2008 International Conference on Prognostics and Health Management, Den-
ver, 6-9 October 2008, 1-6. https://doi.org/10.1109/PHM.2008.4711421 

[17] Ferrero, A. and Salicone, S. (2009) The Construction of Random-Fuzzy Variables 
from the Available Relevant Metrological Information. IEEE Transactions on In-
strumentation and Measurement, 58, 365-374.  
https://doi.org/10.1109/TIM.2008.928873 

[18] Ferrero, A., Prioli, M. and Salicone, S. (2014) The Construction of Joint Possibility 
Distributions of Random Contributions to Uncertainty. IEEE Transactions on In-
strumentation and Measurement, 63, 80-88.  
https://doi.org/10.1109/TIM.2013.2273596 

[19] Ferrero, A., Prioli, M. and Salicone, S. (2013) Processing Dependent Systematic 
Contributions to Measurement Uncertainty. IEEE Transactions on Instrumentation 
and Measurement, 62, 720-731. https://doi.org/10.1109/TIM.2013.2240097 

[20] Salicone, S. and Prioli, M. (2018) Measurement Uncertainty within the Theory of 
Evidence. Springer Series in Measurement Science and Technology. Springer, New 
York. https://doi.org/10.1007/978-3-319-74139-0 

[21] Klir, G.J. and Parviz, B. (1992) Probability-Possibility Transformations: A Compar-
ison. International Journal of General Systems, 21, 291-310.  
https://doi.org/10.1080/03081079208945083 

[22] Cristaldi, L., Ferrero, A., Leone, G. and Salicone, S. (2018) A Possibilistic Approach 
for Measurement Uncertainty Propagation in Prognostics and Health Management. 
Proceedings of the IEEE International Instrumentation & Measurement Technology 
Conference, Houston, 14-17 May 2018, 1-6.  
https://doi.org/10.1109/I2MTC.2018.8409739 

[23] Lu, C.J. and Meeker, W.Q. (1993) Using Degradation Measures to Estimate a 
Time-to-Failure Distribution. Technometrics, 35, 161-174.  
https://doi.org/10.1080/00401706.1993.10485038 

 
 

https://doi.org/10.4236/ojs.2020.106058
https://doi.org/10.1016/j.measurement.2017.02.017
https://doi.org/10.1016/j.ress.2009.08.001
https://doi.org/10.1109/ICPHM.2015.7245054
https://doi.org/10.1109/PHM.2008.4711421
https://doi.org/10.1109/TIM.2008.928873
https://doi.org/10.1109/TIM.2013.2273596
https://doi.org/10.1109/TIM.2013.2240097
https://doi.org/10.1007/978-3-319-74139-0
https://doi.org/10.1080/03081079208945083
https://doi.org/10.1109/I2MTC.2018.8409739
https://doi.org/10.1080/00401706.1993.10485038

	A Possibilistic Approach for Uncertainty Representation and Propagation in Similarity-Based Prognostic Health Management Solutions
	Abstract
	Keywords
	1. Introduction
	2. Sources of Uncertainty in Prognostic Health Management
	3. Similarity-Based Prognostic Models
	4. The Proposed Model
	5. The RFV Approach
	6. Application of the Random-Fuzzy Variable Approach to the Proposed Model
	6.1. Computation of the RFV of the Measurement Values
	6.2. Computation of the RFV of the Distance between Degradation Curves
	6.3. Computation of the RFV of the Weighting Coefficients
	6.4. Computation of the RFV of the Test Unit RUL

	7. Tuning σg Parameter
	8. Algorithm Validation
	9. Conclusions
	Conflicts of Interest
	References

