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Abstract
Cardiac in silico numerical simulations are based on mathematical models describing the
physical processes involved in the heart function. In this review paper, we critically survey
biophysically-detailed mathematical models describing the subcellular mechanisms behind
the generation of active force, that is the process by which the chemical energy of ATP
(adenosine triphosphate) is transformed into mechanical work, thus making the muscle tis-
sue contract. While presenting these models, that feature different levels of biophysical
detail, we analyze the trade-off between the accuracy in the description of the subcellu-
lar mechanisms and the number of parameters that need to be estimated from experiments.
Then, we focus on a generalized version of the classic Huxley model, built on the basis of
models available in the literature, that is able to reproduce the main experimental charac-
terizations associated to the time scales typical of a heartbeat—such as the force-velocity
relationship and the tissue stiffness in response to small steps—featuring only four inde-
pendent parameters. Finally, we show how those parameters can be calibrated starting from
macroscopic measurements available from experiments.

Keywords Mathematical modeling · Cardiac modeling · Active stress · Sarcomeres ·
Crossbridges

Mathematics Subject Classification (2010) 65M22 · 65Z05

1 Introduction

Cardiovascular diseases represent the worldwide leading causes of death [60], with millions
of cases every year. While advancements in medical practice are continuously leading to

Alfio Quarteroni (Professor Emeritus)

� Francesco Regazzoni
francesco.regazzoni@polimi.it

1 MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133
Milano, Italy
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the development of new therapies and to the improvement of patients care, the role of math-
ematical and numerical modeling and, more generally, computational medicine, is being
increasingly recognized in the context of cardiovascular research. Realistic and accurate
in silico models can indeed provide valuable insights on the heart function and support
clinicians for personalized treatment of patients [13, 19, 25, 27, 63, 67, 75].

The development of a mathematical and numerical model of the heart function requires
integrating together models describing the different physical processes involved, at differ-
ent spatial scales, in the cardiac activity. The heart is indeed a multiphysics and multiscale
system, whose functions is the result of multiple processes acting in concert to accomplish
its main goal, that is pumping blood throughout the body, to supply organs with oxygen
and nutrients and to remove the metabolic waste [3, 42, 47, 81]. This process involves an
electrophysiological activity (the propagation of an electric potential throughout the cardiac
cells membrane and ionic exchanges across the membrane), a subcellular activity (the inter-
actions of contractile proteins) and a mechanical activity (the contraction of the muscle and
the resulting blood ejection form the cardiac chambers).

Each process involved in the cardiac function can be described by ad hoc developed
mathematical models, written in different forms, including:

– systems of ODEs (Ordinary Differential Equations, see e.g. [1, 7, 35, 38, 52, 61, 68–70,
78, 79, 85]);

– systems of PDEs (Partial Differential Equations, see e.g. [14, 17, 18, 30, 36, 41, 64, 68,
77]);

– continuous-time Markov Chains (see e.g. [39, 72, 76, 82, 83]);
– systems of SDEs (Stochastic Differential Equations, see e.g. [11, 12]).

In this review paper, we focus on the models describing the subcellular processes by
which the energy stored in ATP is transformed into mechanical work, thus leading to the
contraction of the myocardium. To fulfill their predictive role, these mathematical models
should accurately describe the complex mechanisms involved in the process of active force
generation. However, very detailed models typically feature large numbers of parameters,
which need to be estimated by experimental measurements. The difficulty inherent to direct
measures of the subcellular properties of the cardiac tissue calls for a difficult trade-off
between the biophysical detail of the models and the identifiability of their parameters.

1.1 Paper Outline

This paper is organized as follows. In Section 2 we illustrate the physiological basis of the
active contraction of the cardiac muscle and the main experimental characterizations of this
phenomenon, and we highlight the fundamental behaviors that need to be reproduced by
mathematical models. Then, in Section 3, we review several mathematical models, avail-
able in the literature, describing the mechanisms by which force is generated in the cardiac
muscle. In Section 4 we consider the issue of parameter identifiability for force generation
models. In particular, we show, for a modified version of the Huxley model [41], how the
model parameters can be estimated by measurements typically available from experiments.
Finally, in Section 5, we discuss some concluding remarks.

2 Active Force Generation in the Cardiac Tissue

Sarcomeres, the fundamental contractile units of striated (i.e., skeletal and cardiac) muscles,
have a cylindrical shape, with a length ranging from 1.7μm to 2.3μm in physiological con-
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ditions. They mainly consist of two types of filaments, thin filaments (or actin filaments,
AF) and thick filaments (myosin filaments, MF), arranged in a nearly crystalline structure
(see Fig. 1). Active force is generated by the interaction of the protein actin, located in the
thin filament, and the protein myosin, located in the thick filaments [3, 42, 47, 81].

The contraction of sarcomeres is triggered by an increase of intracellular calcium ion
concentration and can be split into two steps. The first one is the thin filament regulation,
the second one is the actomyosin interaction. The focus of this paper is on the second of the
two steps, described in Section 2.1.

In the first step, calcium ions bind to the so-called regulatory units (troponin-tropomyosin
complexes located on the thin filaments), thus inducing a conformational change in
tropomyosin. Tropomyosin acts as an on-off switch for the actomyosin interaction. When
it is in non-permissive state, it sterically hinders the binding of myosin with actin binding
sites (BSs). This means that the interaction between myosin and actin is prevented because
a given tropomyosin protein occupies the BS regulated by that protein. Conversely, when
a tropomyosin unit is in permissive state, the regulated actin BSs are free to interact with
myosin and to generate force. The actomyosin interaction is a cyclical process, whose sim-
plified view is provided by the Lymn-Taylor cycle [53], which is the subject of the next
section (Section 2.1).

2.1 The Lymn-Taylor Cycle

Myosin is a molecule made of a coiled–coil tail and two paired heads, capable of binding to
actin, thus forming the so-called crossbridges (XBs). Myosin is indeed a molecular motor,
which translates the chemical energy stored inside ATP, the primary energy carrier in living
organisms, into mechanical work. This is made possible by the so-called power stroke, that
is a rotation of the attached myosin heads (MHs) which pulls the AF towards the centre of
the sarcomere. After the power stroke, the MH detaches and binds to actin in a different
position and the cycle is repeated. The joint work of several thousands of pulling MHs
makes the sarcomere contract [3, 42, 47, 81].

thin filament M-line thick filament

Z-disc titin

Fig. 1 Representation of a sarcomere. Inside sarcomeres, thin and thick filaments are arranged with a regular
structure. M-lines, located at the center of the sarcomere, have the function of connecting thick filaments
together. Z-discs link adjacent sarcomeres to each other and to the extracellular matrix and are connected to
thick filaments through a huge cytoskeletal protein named titin
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Such attachment-detachment process takes place along a cyclical path. The precise
assessment of the functional steps involved in this process is still subject of an active
research (see e.g. [8, 37, 59]). A simplified, but sufficient at this level of description, view
of it is provided by the so-called Lymn-Taylor cycle (represented in Fig. 2), that comprises
the following four steps [3, 11, 48, 53].

1. ATP hydrolisis. Myosin, in the stage of the cycle that is traditionally considered as
the starting point, is bound to ATP and detached from actin. The catalytic site of
myosin hydrolyses ATP into ADP and a phosphate group Pi (which remains attached
to myosin), transferring to myosin the energy stored in ATP. The MH is still detached
from actin, but reoriented and in a higher energetic state.

2. XB attachment. The energized MH binds to actin and the phosphate group is released.
3. Power stroke. The MH rotates towards the centre of the sarcomere (lower energetic

state), thus pulling the actin filament in the same direction. ADP is released from
myosin. The force developed by a single power stroke is nearly 0.5–1.0 pN, and the
head rotation is nearly 5–10 nm.

4. XB detachment. At the end of the power stroke, myosin is tightly bound to actin in
a rigor configuration, until an ATP molecule binds to myosin, making it detach from
actin.

The Lymn–Taylor cycle is repeated, with a pace of nearly five times per second, as long
as two conditions are satisfied: enough ATP to fuel the process is available; calcium ion
level is high enough to keep tropomyosin in the permissive configuration. When ATP is
depleted, the cycle stops in the phase between steps 3 and 4, where all XBs are firmly
attached (leading, for skeletal muscle, to the rigor state observed in cadavers). When cal-
cium concentration returns to the level corresponding to the relaxed configuration, instead,
the cycle is stopped in the phase between steps 1 and 2 [3, 81].

AF

MH

②

③

④

①

ATP Pi

ADP

power stroke

ATP = ADP + Pi

reorienta�on

a�achmentdetachment

Fig. 2 Representation of the Lymn-Taylor cycle
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(a) Force-velocity relatioship (b) Fast transient response

Fig. 3 Representation of the force-velocity curve (a) and tension-elongation curves after a fast transient (b)
that is typically obtained in experiments

2.2 Force-Velocity Relationship

One of the earliest experimental characterizations of muscle functionality is the force-
velocity relationship, dating back to Archibald V. Hill, Nobel Prize winner for his work
on the heat production and mechanical work in muscles [31]. In Hill’s experimental setup,
a muscle fiber is mounted between a motor and a force transducer. Then, by keeping the
muscle in a physiological solution, an electrical stimulus is applied, by keeping constant
the fiber length (isometric conditions), until the muscle reaches the steady-state active ten-
sion T iso

a . Then the device is switched from the length-control mode to the force-control
mode and a negative (or positive) force step is applied. After a transient phase (which is
discussed in Section 2.3), the fiber reaches a steady-state with a constant shortening (or
lengthening) velocity. The measured force-velocity relationship is a convex curve for posi-
tive shortening velocities, connecting the so-called stall force, namely the force in isometric
conditions (T iso

a ), with the maximum shortening velocity (vmax), in correspondence of which
the generated tension is zero (see Fig. 3).

The force in isometric conditions T iso
a depends on two variables (the sarcomere length

SL and the calcium concentration inside the cells [Ca2+]i, where the subscript “i” stands
for intracellular) that affect the fraction of permissive regulatory units [3, 47]. Clearly, also
the force-velocity curves are affected by the same variables; however, when the tension is
normalized with respect to its isometric value (i.e., by the steady-state tension obtained for a
fixed SL), the curves obtained with different values virtually superimpose [3, 9]. This obser-
vation suggests that the mechanism underlying the force-velocity relationship is largely
independent of the calcium-driven regulation and, therefore, it is linked to the cycling of
XBs [9, 11, 48]. The maximum shortening velocity for half-sarcomere is independent on
the [Ca2+]i and SL and it is about vmax

hs = 8μms−1 (significantly higher than for skeletal
muscle).

2.3 Fast Isometric and Isotonic Transients

Fast isometric and isotonic experiments help shedding light on the fastest time scales
involved in the dynamics of force generation in the muscle tissue. The two experimental
setups are briefly described in what follows (see also Fig. 4).
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Fig. 4 Typical length and tension traces obtained during the force clamp (left) and length-clamp (right)
experiments. In the force clamp case, the slope of the length trace gives the steady-state shortening velocity
v (represented in the picture). The phases 1,2 and 4 (we recall that phase 3 is absent in the cardiac case) are
represented by circled numbers

– Force clamp (soft device or isotonic transient). It consists in the same setup employed
to obtain the force-velocity relationship. After the isometric force is reached, a step in
tension is applied. After a fast transient, the fiber reaches a constant velocity.

– Length clamp (hard device or isometric transient). In this case, after that the steady-
state is reached while keeping constant the length of the fibers (typically in the range
of sarcomere lengths for which the force-length curve is constant, [29, 49, 80]), a step
in length is applied (without exiting the above-mentioned plateau region and by keep-
ing the device in length-control mode). The measured force undergoes a fast transient,
before returning to the original level.

In both cases, the observed transient can be split into four different phases (even though
the third phase is absent in the cardiac tissue), represented in Fig. 4 and associated with
different time scales [9, 11, 48, 55, 56].

– Phase 1 (∼ 200μs). In a first phase the tension T (respectively, the length of the fiber
L) changes simultaneously with the step in L (respectively, in T ), until it reaches a level
called T1 (respectively, L1). Interestingly, by plotting the values of T1 and L1 in the
T -L plane, the curves obtained with the soft and hard devices superimpose and show
a linear relationship between tension and elongation (Fig. 3(b)). This first phase of the
transient is indeed linked to the instantaneous elastic response of XBs. Measurements
of the stiffness of this relationship under rigor conditions (when the number of attached
XBs can be estimated) allow to estimate the stiffness of a single XB [66].

– Phase 2 (∼ 2 − 3ms). After the instantaneous response, tension (respectively, length)
quickly reaches a second level, denoted by T2 (respectively, L2). Also in this case, the
curves of T2-L2 obtained with the soft and hard devices superimpose. For lengths close
to the rest length, the T2 tension is very similar to the isometric tension T iso

a , but for
larger length steps it is approximately linear in L, with a lower stiffness than the elastic
stiffness, related to T1 (Fig. 3(b)). The time scale associated with this phase coincides
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with the time scale of the power stroke: in this phase, MHs rearrange from the non-
equilibrium condition due to the fast step in length until a new equilibrium is reached.
Indeed, for small length steps, the power stroke is sufficient for the fibers to almost
recover the initial tension level T iso

a .
– Phase 3 and 4 (∼ 500ms). After the rapid second phase, in length clamp experiments

tension slowly recovers its original level T iso
a (if the step in length is such that the sar-

comeres are still in the plateau region of the force-length relationship). In force clamp
experiments, as described in Section 2.2, the filament reaches a steady-state with a con-
stant shortening (or lengthening) velocity. Such velocity, plotted against the isotonic
tension, gives the force-velocity curve. This final phase is associated with the XBs
attachment and detachment, the slower step of the Lymn-Taylor cycle (see Section 2.1).

Similarly to the force-velocity relationship, when the tension is normalized with respect
to the its isometric value, the tension-elongation curves virtually superimpose [9]. This fact
supports the hypothesis that the phenomena associated with the fast time scales observed
through this experimental setup are linked to the XB dynamics, and not to the regulatory
unit dynamics.

3 Mathematical Models of the Actomyosin Interaction

In this section, we review several contributions available in the literature to the definition of
mathematical models describing the dynamics of XBs. The historical development of such
models reflects the progresses in the understanding by the physiologist community of the
mechanisms underlying the microscopic force generation. We notice that most of the models
are suitable for both the skeletal and the cardiac muscle, provided that the parameters are
calibrated accordingly [3, 62].

In this review we limit ourselves to the modeling aspects related to the dynamics of XBs.
Moreover, on the basis of the motivations introduced in Section 1, force generation models
are here considered in view of multiscale organ-level numerical simulations. This implies
that the focus is on those time-scales that are involved in the working regimes occupied by
XBs during a heartbeat and that the ultimate goal is predicting the force generated by con-
tracting sarcomeres. In fact, we only partially cover the aspects related to the coupling with
the metabolic activity since under physiological conditions it is legitimate to assume that
ATP is always available when needed by the myosin motors. For a review on the mathe-
matical models describing the other aspects of muscle contraction (such as the thin filament
regulation, the biochemical coupling and the thermodynamic properties of contraction mod-
els), we refer the interested reader to [10, 11, 62, 68, 71]. Furthermore, for more details
on the multiscale coupling between the microscopic models treated in this section and the
macroscopic mechanical behavior of the cardiac tissue, we refer to [63, 67, 70].

3.1 Hill 1938Model

One of the earliest mathematical descriptions of muscles dates back to [31]. By studying
the release of heat when a muscle contracts against a constant load (isotonic contraction),
A. V. Hill discovered that the relationship between the active tension Ta and the shortening
velocity vfiber is well described by the hyperbolic law:

(Ta + a)vfiber = bfiber(T
iso
a − Ta), (1)
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Force-
velocity

Fig. 5 Sketch of the phenomenological model of [31]. A contractile element, following the law (2), is coupled
in series with an elastic element, to which a quadratic energy ue(x) = 1

2 k x2 is associated

where T iso
a is the isometric tension (i.e., the tension for vfiber = 0), whereas a and bfiber

are positive constants. In what follows, it will be helpful to write relationships that are
independent of the length of the muscle fiber used to perform the experiment. With this aim,
by dividing (1) by the length of the fiber Lfiber, we get the following relationship:

(Ta + a)v = b(T iso
a − Ta), (2)

where we call v = vfiber/Lfiber the normalized velocity (dimensionally, v is the inverse of
time units). The maximum shortening velocity, that is the maximum speed at which the
muscle is able to shorten (see Section 2.2), can be computed as vmax = b T iso

a /a. In the
original paper, by fitting the experimental measurements, Hill obtained a/T iso

a = 0.22,
bfiber = 1.03cms−1 for a fiber of length Lfiber = 38mm, thus b = 0.27s−1 and vmax =
1.23s−1 [31].

On the basis of the relationship (2), Hill proposed a phenomenological model where an
elastic element is arranged in series with a contractile element governed by the same law (2)
(see Fig. 5). This model, however, does not provide any insight into the muscle functioning,
as it is not based on a microscopical description of the tissue (this is not surprising since the
muscle anatomy was not known at that time).

3.2 Huxley 1957 (H57) Model

In 1957, A.F. Huxley proposed a model (H57 model) to link the force-velocity relationship
observed by A.V. Hill with the subcellular attachment-detachment process of MHs [41].
This model considers two states (bound and unbound) and assumes that the transition rates
depend on the distance between the myosin arm rest position and the BS, denoted by x. We
have x > 0 when the attachment leads to a positive tension, x ≤ 0 otherwise (see Fig. 6).

AF

MF

Fig. 6 Scheme of the H57 model. The attachment-detachment rates of MHs (denoted respectively by f and
g) depend on the XB distortion x (i.e., to which amount the myosin arm is stretched). The myosin arm is
modeled as a linear elastic element with stiffness kXB
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Let us consider a population of MHs and BSs, and assume that the probability density of
finding a couple with a given displacement x, denoted by ρAM (actin-myosin pairs density),
is constant in an interval sufficiently close to x = 0 (more precisely, the number of couples
with displacement x ∈ (a, b) for each half filament is ρAM|b−a|, if a and b are sufficiently
close to 0). This is well motivated, assuming the effect of the units located at the border of
the filaments negligible.

Let n(x, t) ∈ [0, 1] denote the probability that a couple MH-BS with elongation x is
attached. Then, the expected value of the number of attached XBs with elongation between
a and b at time t is given by:

ρAM

∫ b

a

n(x, t)dx.

Let us consider a small time interval �t . The variation of the population of attached MHs
from t to t +�t with displacement in an interval (a, b) is given (at the first order in �t) by:

∫ b

a

n(x, t + �t)dx ∼
∫ b

a

n(x, t)dx + n(b, t)vhs(t)�t − n(a, t)vhs(t)�t

+
∫ b

a

(1 − n(x, t))f (x)�t dx −
∫ b

a

n(x, t)g(x)�t dx, (3)

where vhs(t) = − dSL(t)/2
dt

, the shortening velocity of half sarcomere (that is the relative
velocity between the MF and the AF), convects the MH distribution and f (x) and g(x)

are the attachment and detachment rates, respectively. By dividing the above equation by
�t(b − a) and letting both intervals go to zero, we get the H57 model:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1 − n(x, t))f (x) − n(x, t)g(x), x ∈ R, t ≥ 0, (4)

with suitable initial conditions. Finally, assuming that each attached XB acts as a linear
spring with stiffness kXB (experimentally, kXB is of the order of 2pNnm−1), the total force
exerted by the pair of interacting half thick filament and thin filament is equal to:

Fhf(t) = ρAM kXB

∫ +∞

−∞
x n(x, t)dx. (5)

In [41], the transition rates are phenomenologically set as:

f (x) = f1
x

h
1[0,h](x), g(x) = g21x≤0 + g1

x

h
1x>0, (6)

where f1, g1 and g2 are positive constants. Attachment can occur only in the interval x ∈
[0, h], that is for positive displacement: such symmetry-breaking feature is what makes the
muscle contract. For x < 0 the detachment rate is very high, in order to prevent the XBs to
generate force in the opposite direction.

The H57 model provides a microscopic explanation of the force-velocity relationship.
When the shortening velocity is high, the attached XBs are convected towards lower values
of x, thus leading to a reduction of force. This mechanism is often compared to a “tug-of-
war” game. If the rod is quickly pulled, the players need to detach their hands and reattach
them further on the rod, otherwise they are not able to pull any more. Thus, when the rod is
sliding towards to players, their action is less efficient than in the steady regime, when they
can firmly hold the rod. It is all about how fast the rod slides and how fast the players are
in detaching and reattaching their hands. We will see later a quantitative description of the
competition between the two phenomena.



F. Regazzoni et al.

With the choice (6), Huxley derived a steady-state solution (with a constant shortening
velocity) to (4):

n(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1

(
1 − e

− ϕ
vhs

)
e

x
2h

G2
ϕ

vhs x < 0,

F1

(
1 − e

(
x2

h2 −1
)

ϕ
vhs

)
0 ≤ x < h,

0 x ≥ h,

(7)

where ϕ = (f1 +g1)h/2, F1 = f1
f1+g1

, G2 = g2
f1+g1

. This gives the following force-velocity
relationship:

Fhf = ρAMkXBF1
h2

2

(
1 − vhs

ϕ

(
1 − e

− ϕ
vhs

)(
1 + 1

2G2
2

vhs

ϕ

))
.

Huxley, proceeding by trial and error, obtained a good fit of experimental data with F1 =
13/16 and G2 = 3.919. For these parameters, by setting Fhf = 0 we have vmax

hs � 4ϕ. For
instance, in [5], with the choice f1 = 65s−1, g1 = 15s−1, g2 = 313.5s−1, h = 10nm, one
gets vmax

hs � 1600nm s−1, which gives vmax = vmax
hs /(SL0/2) � 1.45s−1, were we denote

by SL0 the reference sarcomere length. All the above-mentioned constants are calibrated
for the skeletal muscle [48].

We remark that the H57 model, as most of its derivations, focuses on a single pair of half
MF and AF. However, because of the three-dimensional arrangement of myofilaments, each
MF can possibly bind to six different AFs. In order to account for the actin-myosin binding
within the sarcomere lattice, Monte Carlo stochastic models have been proposed (see, e.g.
[58]). Nonetheless, the large part of the literature on actin-myosin interactions considers the
approximation of focusing on a single pair of myofilaments to be acceptable.

3.2.1 The Distribution-Moment Equations

To avoid the solution of a PDE, in [86] an approximation of the model (4) by means of ODEs
was proposed. By applying a general strategy of statistical physics, the author computed the
equations for the evolution of the distribution-moments of n(x, t), defined as:

μp(t) :=
∫ +∞

−∞
xpn(x, t)dx.

Indeed, thanks to the linear spring hypothesis for the myosin arm, the full distribution
n(x, t) is not needed to compute the force, but rather its first moment is enough, as we have,
from (5):

Fhf(t) = ρAM kXB μ1(t).

By multiplying (4) by xp and integrating over (−∞,+∞) one gets, for p = 0, 1, . . . :

d

dt
μp(t) − p vhs(t) μp−1(t) = μ

p
f −

∫ +∞

−∞
xp(f (x) + g(x))n(x, t)dx, (8)

where

μ
p
f :=

∫ +∞

−∞
xpf (x) dx
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denotes the pth moment of f (x) and where we have integrated by parts the term∫ +∞

−∞
xp ∂n(x, t)

∂x
dx = [

xpn(x, t)
]+∞
−∞ − p

∫ +∞

−∞
xp−1n(x, t)dx = −pμp−1(t),

and we have used the fact that n(−∞, t) = n(+∞, t) = 0. The last term of (8) needs to
be modeled for model closure. In [86] the authors proposed to assume a specific distribu-
tion (a gaussian distribution) for n(·, t), so that this term can be computed. Specifically, by
assuming that:

n(x, t) = μ0(t)√
2πσ(t)

exp

(
− (x − x̄(t))2

2σ 2(t)

)
,

where

x̄(t) = μ1(t)

μ0(t)
, σ 2(t) = μ2(t)

μ0(t)
−

(
μ1(t)

μ0(t)

)2

,

the distribution n(·, t) is fully characterized by its first three moments, and thus (8) for
p = 1, 2, 3 is completely equivalent to the PDE model (4). However, here we have to pay
the price of a strong assumption of gaussianity for n(·, t). In fact, the analytical solution of
(7) shows that even in the steady-state case the distribution may be very skewed and thus
significantly differ from a gaussian one.

When the transition rates f (x) and g(x) take special forms, the distribution-moments
strategy can be used to derive exact equivalents to the PDE model (4) [4, 15]. In fact, if the
total transition rate is independent of the displacement (i.e. f (x) + g(x) = r), the last term
in (8) can be computed as:∫ +∞

−∞
xp(f (x) + g(x))n(x, t)dx = rμp(t),

and the hierarchy of (8) can be truncated by considering only the first two moments:
⎧⎪⎨
⎪⎩

d

dt
μ0(t) = μ0

f − rμ0(t), t ≥ 0,

d

dt
μ1(t) = μ1

f − r μ1(t) + vhs(t)μ
0(t), t ≥ 0.

(9)

Similar equations are derived in [20], where the population of MHs is split into three
families (pulling, hindering and free MHs) rather than in two families.

3.2.2 Extensions of the H57 Model

To account for the fact that not all XBs can be recruitable for attachment (e.g. because a
portion of the MF does not face any AF), in [15] the authors modified the source term
(1−n(x, t))f (x) of (4) into (n0(t)−n(x, t))f (x), where the reduction factor 0 ≤ n0(t) ≤ 1
denotes the fraction of recruitable XBs.

In [4, 15] the authors introduced a chemical input, affecting the transition rates f (x) and
g(x), to model the effect of the calcium-driven regulation. Moreover, by assuming that high
relative velocities between the two filaments can lead to destruction of XBs, they introduced
a further sink term, linearly proportional to |v(t)|. Specifically, the following transition rates
were chosen:

f (x, t) = kATP1x∈[0,1]1[Ca2+]i(t)>C,

g(x, t) = kATP1x /∈[0,1]1[Ca2+]i(t)>C + kRS1[Ca2+]i(t)≤C + α|v(t)|,
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where kATP is the ATP turnover rate, C is the activation threshold for [Ca2+]i and α is
a positive constant. Despite the introduction of the dependence on [Ca2+]i(t) and v(t),
the sum f (x, t) + g(x, t) is still independent of x. Hence, distribution-moment equations
analogous to (9) can be derived for this model. The thermodynamic properties of this model
are assessed in [15].

Velocity-dependent transition rates have been considered in [54] too, where, by assuming
that the attachment rate f (x, t) reaches an optimal value for a positive shortening velocity,
the authors obtained a better fit of experimental data.

In [51] and [50] the authors proposed a model, based on the H57 formalism, where the
population of MHs is split into two pools: the first one contains the MHs located in the
single-overlap zone, whereas the other one (for which f = 0) contains the remaining MHs.
Each pool is characterized by its own density function n(x, t), whose evolution is described
by an equation similar to (4), supplemented with a source and a sink term accounting for
fluxes across the two pools. Moreover, a variable representing the fraction of permissive
BSs multiplies the attachment rate term, in order to account for the calcium-driven force
regulation.

3.2.3 Limitations of the H57 Model

The models belonging to the family of the H57 model, however, are not able to explain
some of the phenomena experimentally observed. In particular, they fail to reproduce the
phenomena related to time scales that are faster than the time scale of the power stroke
(∼ 1ms). The reason is that this class of models does not incorporate a description of the
power stroke, but rather assumes that MHs attach in a stretched configuration. This cannot
explain the fast force recovery following a sudden change in the sarcomere length (see
Section 2.3) since, in the H57 model, force is recovered with a time scale that is compatible
with the ATP turnover (order of 100ms). These limitations were recognized by A. F. Huxley
himself, who proposed, in 1971, a model incorporating an explicit description of the power
stroke.

3.3 Power StrokeModels

In [40] the authors proposed a new model (HS71 model), by interpreting the pre-power
stroke and the post-power stroke configurations as discrete states. Thus, they introduced a
degree of freedom, y, that can be interpreted as the angular position of the rotating MH.
The variable y is associated with a discrete energy potential, with two minima in 0 and a

(where a is the power stroke length), separated by an energy barrier. This newly introduced
degree of freedom supplements the linear elastic element of the H57, with potential energy
ue(x) = kXB/2 (x + y)2.

This hard-spin model (i.e., a model where the internal degree of freedom of the MH
assumes discrete values) provided a first quantitative description of the power stroke, with
the assumption that the fast force recovery (see Section 2.3) is a passive mechanisms, inter-
pretable as a mechanical conformational change. This is coherent with the observation that
the fast force recovery is not rate limited by the chemical stages, supporting the hypothesis
that the power stroke is a mechanical phenomenon.

The main drawback of the hard-spin HS71 model is that the transition between the two
configurations requires the linear spring to be stretched by the effect of thermal fluctuation
in order to overcome the energy barrier, as highlighted in [24]. As a consequence, this model
predicts a slower time-constant for the power stroke than what is measured in experiments
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[10, 11]. This led to assume the existence of intermediate configurations, by the introduc-
tion of a number of additional states [40, 74]. For instance, in [22], the author proposed a
model with strain dependent transition rates and where, thanks to the fast reactions, it is
assumed that only three attached states are populated to a sufficient degree. This reduces the
parameters of the model to a discrete set, calibrated to reproduce experimentally observed
behaviors. A model belonging to the same family, with two detached and three attached
states, is proposed in [65].

In [82, 83], the authors considered a full-sarcomere model where the actomyosin inter-
action is described within the HS71 formalism, that is to say using transitions between
discrete states. A continuous variable describing the myosin arm stretch is associated with
each MH, so that the transition rates are made dependent on the XB distortion. Due to the
complexity of the model, that also includes a description of the regulatory units, its solu-
tion is approximated by means of the Monte Carlo method (see e.g. [57]). A similar model,
where the crossbridge dynamics is described with a H71-like model, is proposed in [39]. In
such models, additional states (besides the two states of the H71 model) are considered.

In 1974, T. L. Hill and coworkers formalized in a unified and thermodynamically sound
framework most of the existing attempts to model muscle contraction [32–34]. In their work,
they showed that the computation of the generated force requires, in a thermodynamically
consistent framework, the knowledge of the energy profiles. On this basis, they proposed
in [23] a model where the MH is interpreted as a bistable spring with an internal degree of
freedom. However, this degree of freedom is not characterized by a continuous dynamics,
but rather its evolution is described as a jump process, with transition rates assigned as
phenomenological functions of the strain.

3.3.1 Soft-Spin Models

In contrast, in [55, 56] the authors proposed to replace the rigid bistable device (or multi-
stable) of hard-spin models by a bistable element, parametrized by a continuous variable.
The transition from hard-spin to soft-spin (i.e., the replacement of the discrete internal
degree of freedom with a continuous one) removed the contradictions concerning the time
scale of the power stroke [11].

This model was extended with the inclusion of the attachment-detachement ATP-driven
mechanism by adding a colored (i.e. correlated) noise—mimicking the out-of-equilibrium
ATP reactions—to the Langevin dynamics within the energy landscape [56]. The Langevin
equation describes the time evolution of a set of degrees of freedom of a molecular system,
evolving slowly with respect to other degrees of freedom, featuring a smaller time scale (see
e.g. [28]).

This model belongs to the broad family of Brownian ratchet models (see e.g. [45]).
These models are aimed at explaining how molecular motors can generate motion in a
preferred direction when fueled by the energy contained in the surrounding environment.
The key ingredients needed to generate motion are: a periodic asymmetric energy land-
scape, such as the one generated by actin BSs along myofilaments; a colored noise, whose
white component represents the heat reservoir surrounding the molecular motor, whereas
the correlated one is associated with out-of-equilibrium chemical reactions [11, 16, 43].
One of the first applications of the theory of Brownian ratchets to muscle contraction can be
found in [44], with a focus on the attachment-detachment process, rather than on the power
stroke.
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In [12] the authors proposed a mechano-chemical model (CMC19 model), with a
soft-spin model for MHs coupled with a chemical state describing the ATP-driven
attachment-detachment process, obtaining a unified framework capable of matching both
the phenomena related to the power stroke (such as the fast velocity recovery) and those
related to the attachment-detachment of XBs (such as the force-velocity curve). Moreover,
the authors showed that the H57 model can be derived from the CMC19 model under sim-
plifying assumptions, thus giving an interpretation to the H57 model in terms of Langevin
dynamics. Remarkably, the authors also showed that a lumped version of the CMC19 model
in which the power stroke variable is assumed to be in equilibrium formally reduces to a
H57-like model, thus allowing to interpret the transition rates of the H57 model as effective
rates, in light of the CMC19 model. We illustrate in what follows the construction of the
CMC19 model.

3.3.2 Caruel–Moireau–Chapelle 2019 (CMC19) model

Model setup. We consider a single MH, described by a discrete degree of freedom, namely
ωt (ωt = 1 when the MH is attached, ωt = 0 when it is detached), and two continuous
degrees of freedom, namely Zt (measuring the distance of the MH tip from the rest-position
of the myosin arm) and Y t (associated with the angular orientation of the MH), as it is
shown in Fig. 7. In the pre-power stroke configuration, we typically have Y t = 0, and
thus the elongation of the myosin arm coincides with Zt . When power stroke occurs, Y t

becomes positive, making the total myosin arm elogation increase. The myosin arm eloga-
tion is indeed given by Zt + Y t (see Fig. 7). When the MH is attached (ωt = 1) the tip of
the MH is attached to the BS. Therefore, we have by definition Zt ≡ x (where we denote
by x, as in the previous sections, the distance between to myosin arm rest position and
the BS).

The elastic element is associated with a quadratic energy ue, whereas the internal degree
of freedom Y t is associated with a bistable energy uω, that has a different expression when
the XB is attached and when instead it is not. Specifically, in the attached (respectively,

AF

MF

Fig. 7 Scheme of the CMC19 model. The MH is described by two degrees of freedom (z and y). When the
MH is attached, the degree of freedom z coincides with the variable x. The attachment-detachment rates of
MHs (f and g) depend on the XB distortion x. The myosin arm is modeled as a linear elastic element with
stiffness kXB, whereas the degree of freedom y is associated with a bistable energy, which depends on the
XB attachment state
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detached) configuration, the minimum corresponding to the post-power stroke configura-
tion (Y t > 0) is endowed with a lower (respectively, higher) energy than the pre-power
stroke configuration (Y t = 0). The resulting energy landscape for the mechanical variables
(Zt , Y t ) is thus associated with the energy wω(z, y) = uω(y) + ue(z + y).

The Langevin dynamics (see e.g. [46]) associated with the energy wω(z, y) gives the
following stochastic differential equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηdZt =
(

−ωtη vhs − (1 − ωt )
∂wω

∂z
(Zt , Y t )

)
dt

+ηδts (t)(x − Zt)dt + (1 − ωt )
√

2ηkBT dBt
z, t ≥ 0,

ηdY t = −∂wω

∂y
(Zt , Y t )dt + √

2ηkBT dBt
y, t ≥ 0,

(10)

where dBt
z and dBt

y are the increments of a two-dimensional Brownian motion, η is the vis-
cous damping coefficient associated with the surrounding fluid, kB denotes the Boltzmann
constant, T the absolute temperature, and ts denotes the time of any switch from ωt = 0 to
ωt = 1. We notice that, far from t = ts , when the XB is detached (i.e., ωt = 0), the first
equation reduces to:

ηdZt = −∂wω

∂z
(Zt , Y t )dt + √

2ηkBT dBt
z,

while when the XB is attached (i.e., ωt = 1), it reduces to:

dZt = −vhs dt,

coherently with the fact that Zt ≡ x (we recall that vhs denotes the shortening velocity, thus
ẋ = −vhs). Finally, at time t = ts the Dirac delta term makes the variable Zt instantaneously
jump to Zt = x.

The kinetics of the chemical degree of freedom ωt is determined by the following
transition rates:

P
[
ωt+�t = 1|ωt = 0

] = k+(Zt , Y t , x, t)�t + o(�t),

P
[
ωt+�t = 0|ωt = 1

] = k−(Y t , x, t)�t + o(�t),

where the detachment transition rate is independent of Zt since when the MH is attached
we have Zt = x.

Fokker–Plank equation. To write the Fokker–Plank equation (see e.g. [46]) associated
with (10), we denote by p(z, y, ω; x, t) the probability density for a MH (at time t and
located at distance x) of being in state (z, y, ω) (we notice that x and t are regarded as deter-
ministic variables). Since for attached heads we have Zt = x, the probability density for
ω = 1 can be written as:

p(z, y, 1; x, t) = δx(z)p̄(y; x, t).
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With this notation, the Fokker–Plank equation reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
p(z, y, 0; x, t) = vhs

∂

∂x
p(z, y, 0; x, t)

+η−1 ∂

∂z

(
∂

∂z
w0(z, y) p(z, y, 0; x, t)

)

+η−1 ∂

∂y

(
∂

∂y
w0(z, y) p(z, y, 0; x, t)

)

+kBT

η

(
∂2

∂z2
p(z, y, 0; x, t) + ∂2

∂y2
p(z, y, 0; x, t)

)

+k−(y, x)δx(z)p̄(y; x, t)
−k+(z, y, x)p(z, y, 0; x, t), x, y, z ∈ R, t > 0,

∂

∂t
p̄(y; x, t) = vhs

∂

∂x
p̄(y; x, t)

+η−1 ∂

∂y

(
∂

∂y
w1(x, y) p̄(y; x, t)

)

+kBT

η

∂2

∂y2
p̄(y; x, t)

+
∫ +∞

−∞
k+(z, y, x)p(z, y, 0; x, t)dz

−k−(y, x)p̄(y; x, t), x, y ∈ R, t > 0,

(11)

endowed with suitable initial conditions. To link this model with the H57 formalism, we
notice that the fraction of attached MHs with displacement x at time t is given by:

n(x, t) =
∫ ∫

p(z, y, 1; x, t) dz dy =
∫

p̄(y; x, t) dy.

By integrating the equations of (11) with respect to z and y, we obtain the following
H57-like equation:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1 − n(x, t))f (x, t) − n(x, t)g(x, t),

where the transition rates are given by:

f (x, t) =
∫ ∫

k+(z, y, x)
p(z, y, 0; x, t)

1 − n(x, t)
dz dy,

g(x, t) =
∫

k−(y, x)
p̄(y; x, t)

n(x, t)
dy. (12)

We notice that this H57 version of (11) is not written in closed form, as f (x, t) and g(x, t)

depend on the specific distribution of the degrees of freedom z and y and not only on the
averaged quantity n(x, t).

Recovering the H57 model. This analogy with the H57 model allows for a more direct
comparison when hypotheses closer to those of the H57 model are assumed. Indeed, by
canceling the degree of freedom associated with the power stroke (i.e., Y t ≡ 0), we have:

p(z, y, 0; x, t) = p̂(z; x, t)δ(y),

p̄(y; x, t) = n(x, t)δ(y),

which gives, thanks to (12), g(x, t) = k−(0, x) = ĝ(x). Moreover, coherently with H57,
let us assume that the binding rate is independent of Zt , that is k+(z, 0, x) = f̂ (x), which
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gives, thanks to (12), f (x, t) = f̂ (x). In this way, in [12], the authors recovered the original
H57 model.

Thermal equilibriummodel. More interestingly, the authors recovered an analogy with the
H57 model under the hypothesis that the time scale of the macroscopic behavior is large
enough for the internal degrees of freedom to be at thermal equilibrium. The equilibrium
distributions can be multiplicatively decomposed as:

p(z, y, 0; x, t) = pth
0 (z, y)(1 − n(x, t)),

p̄(y; x, t) = pth
1 (y; x)n(x, t),

where

pth
0 (z, y) =

exp
(
−w0(z,y)

kBT

)
∫ ∫

exp
(
−w0(z,y)

kBT

)
dz dy

,

pth
1 (y; x) =

exp
(
−w1(x,y)

kBT

)
∫

exp
(
−w1(x,y)

kBT

)
dy

.

When the probability distribution takes this form, (12) reduces to:

f (x, t) = f th(x) =
∫ ∫

k+(z, y, x)pth
0 (z, y)dz dy,

g(x, t) = gth(x) =
∫

k−(y, x)pth
1 (y; x)dy, (13)

which gives a model, equivalent to the H57 one, in closed form. This conclusion is more
than a mere analogy and it allows to shed a new light on the H57 model. The H57 model,
which does not explicitly represent the power stroke, can indeed be interpreted as a model
where the variable describing the degree of freedom associated with the power stroke is
considered at equilibrium. Unlike in the H57 original formulation, where the power stroke
is simply neglected, here it is accounted for in the definition of the transition rates given
by (13). This allows to relate a microscopic description of the contractile mechanism with
macroscopic effective quantities.

4 Parameters Estimation in H57-Like Models

In Section 3 we reviewed several models proposed in the literature to describe the dynamics
of force generation in the cardiac muscle tissue. Those models feature different levels of
biophysical detail in the description of the complex mechanisms that determine active force
generation. We have shown how the most detailed models are able to capture phenomena
that cannot be captured by the simplest models, such as the fast time scale response of the
muscle tissue.

However, when used in specific settings such as in multiscale cardiac simulations (see
e.g. [67, 68, 73]), the most detailed models are not necessarily the most suitable to apply.
Indeed, some features such as the separation between the phase 1 and phase 2 of fast
response (see Section 2.3) cannot be appreciated when the involved time scales are those
characterizing the muscle movements during a heartbeat (as we will quantitatively assess
later in this section). Moreover, the more detailed a model is, the more parameters need to
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be calibrated. Because of the difficulty to measure the parameters characterizing the micro-
scopic features of the contractile apparatus, simpler models with fewer parameters (that
can be easily calibrated by macroscale measurements) are to be preferred. As a matter of
fact, the best compromise between biophysical detail of the model and identifiability of its
parameters ought be pursued, by “making things as simple as possible, but not simpler”, to
paraphrase a celebrated quote attributed to A. Einstein.

Motivated by the above observations, in this section we consider a generalized version
of the H57 model, that encompasses several models available in the literature, to investigate
to which extent these models can explain the experimentally observed behaviors linked to
the XB dynamics and, at the same time, how the associated parameters can be calibrated by
measurements typically available from experiments.

4.1 A Generalized H57Model

The H57 model is derived under the condition of full activation of the thin filament. To take
into account, in a simple way, the fact that not all the regulatory units may be in permissive
state (and, thus, the BSs may not be available for XB formation), we consider two options.
The first one is to multiply, in the computation of force, the number of XBs by the fraction
of permissive BSs, P . The second is to replace in (4) the term (1−n(x, t)) by (P −n(x, t)),
similarly to what proposed, to account for the filaments overlapping, in [15]. Notice that,
thanks to the linearity of the equation, both approaches lead to the same result. Even if this
approach is approximate, as it does not take into account the possible time dependence of
P(t), we restrict ourselves to the condition of constant activation.

Hence, we consider the following modified H57 model, where we allow (as in [4, 15])
for a dependency of the transition rate on the shortening velocity vhs(t), and we introduce
the dependence on the permissivity P :

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (P − n(x, t))f (x, v(t)) − n(x, t)g(x, v(t)), x ∈ R, t ≥ 0,

(14)
where we prefer to express the transition rates in function of the normalized shortening
velocity v(t) = vhs(t)/(SL0/2). The force generated by half filament, by assuming that a
XB attached with displacement x exerts a force FXB(x), is given by:

Fhf(t) = ρAM

∫ +∞

−∞
FXB(x)n(x, t)dx.

In particular, with a linear spring XB model (i.e., FXB(x) = kXBx), we have:

Fhf(t) = ρAMkXB

∫ +∞

−∞
x n(x, t)dx. (15)

The macroscopic tension, in turn, is proportional to the force generated by half filament.
We remark that (14) should not be regarded as a new model, but rather as a general formula-
tion encompassing several models available in the literature, thus allowing to analyze them
in a unified framework.

In (14), the quantities to be modeled (that is the “parameters” of the model) are f (x, v)

and g(x, v). Clearly, without a detailed microscopic model of the attachment-detachment
process, the two functions f (x, v) and g(x, v) cannot be easily calibrated from macroscale
experiments.
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4.2 Distribution-Moments Equation

Under the hypothesis that the total transition rate is independent of x (i.e., there exists a
function r(v) = f (x, v)+g(x, v)), it is possible to write the distribution-moments equations
(see Section 3.2). With this aim, we introduce the moments for p ∈ N (we notice that,
differently from the notation used in Section 3.2, μp are dimensionless, whereas μ

p
f are

inverse of time units):

μp(t) :=
∫ +∞

−∞

(
x

SL0/2

)p

n(x, t)
dx

DM

,

μ
p
f (v) :=

∫ +∞

−∞

(
x

SL0/2

)p

f (x, v)
dx

DM

. (16)

Thanks to the normalization by DM (i.e., the distance between two consecutive MHs
along the thick filament, corresponding to nearly 43nm, see e.g. [3]), μ0(t) can be inter-
preted as the fraction of BSs involved in a XB. Moreover, μ1(t)/μ0(t) corresponds to the
average distortion of attached XBs, normalized with respect to SL0/2. We notice that, under
the linear spring hypothesis, thanks to (15), the total active tension is proportional to μ1(t).
Therefore, we can write Ta(t) = aXBμ1(t), where aXB has the dimension of a pressure.
More precisely, aXB is a proportionality constant that allows to upscale the microscopically
generated force to the macroscopic stress of the tissue. As a matter of fact, aXB is propor-
tional to the XB stiffness kXB and to the filament area density in the cross-filament section
of the muscle tissue.

By multiplying (14) by (x/(SL0/2))p, integrating over x ∈ (−∞,+∞) and using the
fact that n(−∞, t) = n(+∞, t) = 0, we get the following distribution-moments equations:

⎧⎪⎨
⎪⎩

d

dt
μ0(t) = −r(v(t))μ0(t) + Pμ0

f (v(t)), t ≥ 0,

d

dt
μ1(t) = −r(v(t))μ1(t) + Pμ1

f (v(t)) − μ0(t)v(t), t ≥ 0.
(17)

By assuming that f + g is independent of x, the freedom in the choice of the functions
describing the model has been reduced, as we have to model μ0

f (v), μ1
f (v) and r(v), that

are function of v only.

4.3 Steady-State Solution

By assuming a constant shortening v(t) ≡ v̄, and solving (17) by setting all time derivatives
equal to zero, we get the following steady-state solution:

μ̄0 = P
μ0

f (v̄)

r(v̄)
,

μ̄1 = P
μ1

f (v̄)−μ0(t)v̄

r(v̄)
= P

(
μ1

f (v̄)

r(v̄)
− μ0

f (v̄)

r(v̄)2 v̄

)
.

(18)

Since the force is proportional to μ1, the last equation gives the force-velocity relation-
ship. Moreover, the steady-state solution of (18) allows to compute some quantities of inter-
est. The force in isometric conditions is given by T iso

a = aXB(μ̄1)v̄=0 = aXBPμ1
f (0)/r(0).

The fraction of attached XBs, in turn, is given by (μ̄0)v̄=0 = Pμ0
f (0)/r(0). Finally, the

maximum shortening velocity vmax can be computed as the positive solution of the equation
μ1

f (vmax)r(vmax) = μ0
f (vmax)vmax.
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As a matter of fact, the above-mentioned quantities take special forms under more restric-
tive hypotheses for f and g. For instance, it is reasonable to assume that the sliding velocity
only affects the detachment rate, so that f (x, v) = f̄ (x). In this case, assuming again that
the sum f + g is independent of x, we can write g(x, v) = r0 − f̄ (x) + q(v), for some
q(v) such that q(0) = 0 and where r0 = r(0). The term q(v) models the rate of XB
destruction due to rapid length changes. Under this additional hypothesis, the objects to be
modeled are just μ0

f̄
, μ1

f̄
, r0 and q(v) (three scalar values and a function). If we set, as in

[15], q(v) = α|v| (which reduces the quantities to be modeled to 4 scalars), the maximum
shortening velocity takes the form:

vmax = r0

⎛
⎝μ0

f̄

μ1
f̄

− α

⎞
⎠

−1

.

Let us consider now the particular case of constant attachment rate within the interval
x ∈ [s0, s0 + h] (as in [4]):

f (x, v) = kATP1[s0,s0+h](x), g(x, v) = kATP
(
1 − 1[s0,s0+h](x)

) + q(v).

This choice falls within the above-mentioned case (i.e., the sum f + g is independent of
x and v affects only g). In particular, we have r0 = kATP. The quantities to be modeled, in
this case, are kATP, h, s0, q(v), which are linked to the previous ones by:

μ0
f̄

= kATP
h

DM

, μ1
f̄

= kATP
h(h + 2s0)

SL0 DM

, r0 = kATP,

and, conversely:

h = kATP

μ0
f̄
DM

, s0 = 1

2

⎛
⎝SL0 DMμ1

f̄

kATPh
− h

⎞
⎠ , kATP = r0,

which allows to give a microscopical interpretation to the constants. In this case, the steady-
state solution reads:

μ̄0 = P
h

DM

(
1 + q(v̄)

kATP

)−1

,

μ̄1 = P
h

2 DM

(
1 + q(v̄)

kATP

)−2 (
2
h + 2s0

SL0

(
1 + q(v̄)

kATP

)
− 2

v̄

kATP

)
.

Moreover, the isometric tension is given by T iso
a = aXBP

h(h+2 s0)
SL0 DM

and the fraction of

attached XBs in isometric conditions is (μ̄0)v̄=0 = P h
DM

. With the choice q(v) = α|v|, the

maximum shortening velocity, if α <
SL0

h+2s0
, is given by:

vmax = kATP

(
SL0

h + 2s0
− α

)−1

.

Conversely, if α ≥ SL0
h+2s0

, vmax is not defined, as the force-velocity relationship never
intercepts the Ta = 0 axis.

4.4 Fast Transient Solution

Because of the lack of explicit representation of the power stroke, the generalized H57
model (16) fails to reproduce the three different phases after a fast step, either in length or



Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling...

in tension (see Section 2.3). Indeed, in place of the two fast steps (the elastic response and
the fast force recovery, due to the power stroke), we have only a single fast step, followed
by the slow force recovery (or by the constant shortening, in the case of the soft device
experiment). In this section, we study the predictions of the model concerning such a phase.

In order to study the behavior predicted by the model when a fast transient experiment
is performed (here we focus on steps in length), we suppose that at t = 0 the muscle is
in steady-state isometric conditions (i.e., μ0(0) = Pμ0

f (0)/r(0), μ1(0) = Pμ1
f (0)/r(0)).

We then consider a sudden change in length �L (the relative shortening w.r.t. half sar-
comere, thus a dimensionless quantity), accomplished in a small amount of time δ (i.e.,
v(t) = �L

δ
1[0,δ](t)). We study the solution at t = δ, for δ → 0+.

The solution of (17), when v(t) = v̄ is constant, is given by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ0(t) = μ0(0) +
(

P
μ0

f (v̄)

r(v̄)
− μ0(0)

) (
1 − e−r(v̄)t

)
, t ≥ 0,

μ1(t) = μ1(0) +
(

P

(
μ1

f (v̄)

r(v̄)
− μ0

f (v̄)

r(v̄)2 v̄

)
− μ1(0)

) (
1 − e−r(v̄)t

)

+
(

P
μ0

f (v̄)

r(v̄)
− μ0(0)

)
v̄ t e−r(v̄)t , t ≥ 0.

(19)

By setting v̄ = �L
δ

, the tension at the end of the length step reads:

Ta(δ) = aXBμ1(δ) = aXBP

[
μ1

f

r(0)
+

(
μ1

f

(
1

r(v̄)
− 1

r(0)

)
− μ0

f

r(v̄)2

�L

δ

)(
1 − e−r(v̄)δ

)

+μ0
f

(
1

r(v̄)
− 1

r(0)

)
�Le−r(v̄)δ

]
. (20)

For time t > δ, the solution is given by (19), shifted by δ, with v̄ = 0 and with initial
state given by (20). However, to characterize the fast phase, we are here only interested
in studying the asymptotic behavior of (20) for δ → 0+. The solution depends on the
behavior of r(v) for v → +∞. We distinguish between four possible cases: bounded or
with sublinear, linear or superlinear growth.

– Saturating behavior. Suppose that for v → +∞, r(v) → rmax. Then, we have:

Ta(δ) ∼ aXBP

[
μ1

f

r(0)
− μ0

f

rmax
�L + μ0

f

(
1

rmax
− 1

r(0)

)
�L

]

= aXBPμ1
f

r(0)
− aXBPμ0

f

r(0)
�L,

which is a linear response, with slope
aXBPμ0

f

r(0)
. In this case, therefore, the fast response

is that of a linear elastic spring (like the T1-L1 curve), with stiffness given by
aXBPμ0

f

r(0)
.

– Sublinear growth. Suppose that r(v) → +∞, but r(v)/v → 0. Then we have r(v̄)δ =
r(�L

δ
)δ → 0, and thus:

Ta(δ) ∼ aXBPμ1
f

r(0)
− aXBPμ0

f

r(0)
�L,

which is the same behavior as the previous case. For this reason, from now on, we will
include both cases in the sublinear growth one.
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– Linear growth. Suppose now that r(v) ∼ αv. In this case, we have r(v̄)δ = r(�L
δ

)δ ∼
α�L and thus:

Ta(δ) ∼ aXBPμ1
f

r(0)
e−α�L − aXBPμ0

f

r(0)
e−α�L�L.

Hence, in this case the response is different from a linearly elastic element. In order to
compare the stiffness for small step lengths with the stiffness predicted in the sublinear
growth case, we linearize around �L = 0, getting:

Ta(δ) ∼ aXBPμ1
f

r(0)
− aXBP

μ0
f + αμ1

f

r(0)
�L.

In conclusion, the stiffness associated with small steps is increased by a term
α aXB Pμ1

f /r(0).
– Superlinear growth. Suppose that r(v) → +∞ and r(v)/v → +∞. Then we have

r(v̄)δ = r(�L
δ

)δ → +∞, which gives:

Ta(δ) → 0.

This means that, if the destruction rate grows more than linearly in the velocity, then,
in the limit of an instantaneous length step, the velocity is such that all the XB are
destructed.

4.5 Parameter Calibration

As noticed in Section 4, the calibration of the generalized H57 model (16) requires the
definition of the functions f (x, v) and g(x, v). However, such functions, without a detailed
microscopical model, are difficult to be determined solely based on experimental results. By
assuming that the sum f +g is independent of x and that v only affects detachment, instead,
the objects to be estimated reduce to the four scalars μ0

f̄
, μ1

f̄
, r0, aXB and the function q(v).

In addition, as shown in Section 4.4, the response to fast transients is only affected by the
asymptotic behavior of q(v) for |v| → +∞, whereas the force-velocity relationship is only
affected by the values of q(v) for 0 ≤ v ≤ vmax. Therefore, in what follows, we will restrict
ourselves to the following two cases:

– Sublinear growth: we consider q(v) such that q(v) = α|v| for small velocities,
whereas for |v| → +∞ we have q(v)/|v| → 0.

– Linear growth: we consider for simplicity the case q(v) = α|v|.
We do not consider the case of superlinear growth since in the limit of instantaneous

response it predicts the detachment of all the XBs, which hinders the possibility of fitting
any fast response curve.

The behavior of the model is thus determined by five scalar parameters (μ0
f̄

, μ1
f̄

, r0, aXB,

α) and by the asymptotic of behavior q(v) (linear or sublinear). This entails a significantly
enhanced identifiability of the model parameters with respect to the case when one needs
to determine the functions f (x, v) and g(x, v), that are infinite dimensional objects. The
possibility of uniquely determine the parameters of a model from the available experimental
measurements is of fundamental importance for the predictivity of the model itself.

As a matter of fact, from the previous sections, it follows that by acting on the above-
mentioned parameters, the generalized H57 model can match the following experimentally
measured quantities.
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– Under isometric conditions, the solution allows to compute the following quantities.

◦ The isometric tension:

T iso
a = aXB(μ̄1)v̄=0 = aXBP

μ1
f̄

r0
.

◦ The fraction of attached XBs:

μ0
iso := (μ̄0)v̄=0 = P

μ0
f̄

r0
.

– The force-velocity is invariant after normalization with respect to the isometric tension
(see Section 2.2). The generalized H57 model correctly predicts this fact. If we sup-
pose, for instance, to vary the calcium concentration and consequently the value of P ,
the normalized force-length relationship would be unaffected. Indeed, the normalized
force-length relationship is given by:

Ta/T iso
a = 1

1 + α
|v|
r0

−
μ0

f̄
/μ1

f̄(
1 + α

|v|
r0

)2

v

r0
.

Unlike the original H57 model, that predicts a linear force-velocity relationship (cor-
responding to the case α = 0), by allowing for a dependence of the detachment rate
on the velocity, the experimentally observed convex shape can be obtained. Indeed, by
properly choosing the parameters of the model, one can fit the following two quantities,
characterizing the relationship for large and for small velocities, respectively.

◦ The maximum shortening velocity:

vmax = r0

⎛
⎝μ0

f̄

μ1
f̄

− α

⎞
⎠

−1

.

◦ The inverse of the sensitivity of the normalized force w.r.t. velocity changes in
isometric conditions (whose interpretation in the force-velocity curve is shown
in Fig. 8(a)):

v0 := −
(

∂T̄a/T iso
a

∂v

∣∣∣∣∣
v=0

)−1

= r0

⎛
⎝μ0

f̄

μ1
f̄

+ α

⎞
⎠

−1

.

With the original H57 model, having α = 0, we have vmax = v0 and the behaviors at
small and large velocities cannot be decoupled.

– The fast transient response is characterized by two distinct curves, associated with
different time scales (see Section 2.3). As previously noticed, models belonging to the
H57 class do not incorporate a description of the power stroke and are thus only capa-
ble of reproducing the instantaneous linear response. However, if we interpret the H57
model as the limit of a more detailed model where the power stroke is considered
at equilibrium (see Section 3.3.2), the fast response is only characterized by a single
time constant, corresponding to the slowest of the two time constants observed exper-
imentally. Such a time constant, therefore, corresponds to the second of the phases
considered in Section 2.3. For this reason, we interpret the stiffness associated with fast
steps in the generalized H57 model of (16) as the stiffness associated with the T2-L2
curve. In particular, the parameters can be chosen so that the following values are fitted.
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◦ The tangent normalized stiffness in isometric conditions (see Fig. 8(b)):

k̃2 := − ∂Ta(0+)/T iso
a

∂�L

∣∣∣∣∣
�L=0

=
{

μ0
f̄
/μ1

f̄
sublinear q,

μ0
f̄
/μ1

f̄
+ α linear q.

Moreover, we notice that, if one is only interested in macroscopic regimes characterized
by sufficiently large time scales, only the region of the T2-L2 curve associated with
small steps is of interest. Indeed, the larger the length step is, the higher shortening
velocities are needed to appreciate the distinction between phase 2 and phases 3–4 of the
response (we will quantitatively support this point in Section 4.6). In conclusion, since
in the region associated with small steps a linear fit provides a good approximation of
the curve, the quantity k̃2 alone provides a sufficiently complete characterization of the
fast step response.

The five parameters characterizing the generalized H57 model (16) can be assigned to
match the five measured quantities T iso

a , μ0
iso, vmax, v0 and k̃2. This provides a practical

way of calibrating the model parameters from experimental measurements. Specifically, in
the linear growth case, the parameters of the model can be determined by the following
relationships:

r0 = k̃2 v0,

α = r0

2

(
(v0)−1 − (vmax)−1

)
= k̃2

2

(
1 − v0

vmax

)
,

μ0
f̄

= μ0
isor0

P
= μ0

isok̃2v
0

P
, (21)

μ1
f̄

=
(
k̃2 − α

)−1
μ0

f̄
,

aXB = T iso
a r0

μ1
f̄
P

= T iso
a k̃2(1 + v0

vmax )

2μ0
iso

.

Conversely, in the sublinear growth case we have:

r0 = 2 k̃2v
max

1 + vmax/v0
,

α = vmax − v0

vmax + v0
k̃2,

μ0
f̄

= μ0
isor0

P
, (22)

μ1
f̄

= μ0
f̄
/k̃2,

aXB = T iso
a r0

μ1
f̄
P

.

In both cases of linear and sublinear growth, P denotes the permissivity associated with the
condition in which T iso

a and μ0
iso are measured.

Remark 1 Among the five quantities used to calibrate the model parameters, only one
(namely μ0

iso) is related to the microscopic scale, whereas the others are related to the
macroscale. The measurement of μ0

iso may be hard to be accomplished, indeed. However,
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(a) Force-velocity relatioship (b) Fast transient response

Fig. 8 The force-velocity relationship (a) is characterized by the maximum shortening velocity vmax (the
intercept of the curve with the axis Ta = 0) and by the inverse sensitivity of the force to velocity in isometric
conditions v0, which can be interpreted as the intercept with the axis Ta = 0 of the tangent to the curve in
isometric conditions. On the other hand, the response to fast transients is characterized by the normalized
stiffness k̃2, where the subscript 2 reflects the fact that this value characterizes the T2-L2 response

if one is interested only in the prediction of the generated tension and not in the moments
μ0 and μ1, the calibration can be accomplished regardless of μ0

iso, by considering only the
macroscopic scale. As a matter of fact, the three parameters aXB, μ0

f̄
and μ1

f̄
appear always

in the two combinations aXBμ1
f̄

and μ0
f̄
/μ1

f̄
, apart from the expression of μ0

iso. Therefore,

one could calibrate the two combined terms aXBμ1
f̄

and μ0
f̄
/μ1

f̄
rather than the three param-

eters. In other terms, thanks to the linearity of the equations, the value of μ0
iso used in the

calibration of the model only affects the prediction of the quantities related to the microscale
(i.e., μ0 and μ1), but not the tension Ta. Therefore, as far as the modeling of Ta is concerned,
the model is fully characterized by the four quantities T iso

a , vmax, v0 and k̃2.

Remark 2 The relationship between the model parameters and the experimentally measured
quantities listed in this Section allow to perform sensitivity analysis in a straightforward
manner. Indeed, they provide in closed form the relationship between the parameters and
the main quantities characterizing the outputs of the model. For instance, it is apparent that
the only role of aXB is that of affecting in a multiplicative manner the predicted tension,
while it leaves the shape of the force-velocity curve and that of the fast transient response
unaffected. On the other hand, the rate r0 is inversely proportional to the isometric tension
T iso

a and to the characteristic velocities vmax and v0, while it does not affect the shape of the
fast transient response curve. Similar considerations can be done for the other parameters.

Remark 3 From a dimensional viewpoint, the parameter aXB has the dimension of a pres-
sure (force per unit surface), the three parameters μ0

f̄
, μ1

f̄
and r0 have the dimension of

inverse of time constants, whereas α is dimensionless. Hence, if we normalize pressures by
aXB and time by r−1

0 , it turns out the dimensionless form of the model considered in this
section depends on the three dimensionless quantities μ0

f̄
/r0, μ1

f̄
/r0 and α.

4.6 Numerical Results

In this section, we perform the calibration of the parameters of model (17), by using the rela-
tionships derived in Section 4.5 ((21) and (22)), starting from experimental measurements,
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Table 1 List of the experimental data used for model calibration

Parameter Value Units Reference

T iso
a 120 kPa [80]

μ0
iso 0.22 - [6]

vmax 8 s−1 [9]

v0 2 s−1 [9]

k̃2 66 - [9]

reported in Table 1, together with a reference to the source in the literature. We consider
data coming from intact (i.e., non skinned, see [2, 21, 26, 49]) cardiac rat cell at room tem-
perature. The unique datum not satisfying these conditions is μ0

iso (which is acquired from
skeletal frog muscle). However, as we mentioned in Section 4.5, the value of such parame-
ter only affects the value of the microscopic variables (i.e., μp), but not the predicted active
tension. In Table 2 we report the parameters obtained by calibrating the model in both the
sublinear and linear growth cases.

In Fig. 9 we show the force-velocity relationship obtained with the calibrated model (in
the linear growth case), together with the experimental data from [9]. We consider only
the linear growth case because the force-velocity curve is affected just by the values taken
by q(v) for velocities smaller than vmax and, hence, it does not depend on the asymptotic
behavior of q(v).We can see that the calibration procedure is successful, as there is a good
match between the prediction of the model and the experimental measurements.

Then, in Fig. 10 we consider the fast response predicted by the model. With this aim, we
let the model reach the steady state and then we apply a length step, by applying a constant
velocity in a small time interval �t . Finally, we plot the tension obtained at the end of the
step against the step length �L. We repeat this protocol twice: first, by reproducing the same
conditions employed in laboratory, that is by applying the length step in a very small time
interval (�t = 200μs, see [9] and Section 2.3); then, we repeat the simulation, this time by
applying the step with a lower shortening velocity, compatible with the typical velocity by
which the cardiac tissue shortens during a heartbeat (we set v = 0.5s−1).

We show in Figs. 10a and 10b the results obtained, in the case of sublinear (by set-
ting q(v) = α

√|v|) and linear (by setting q(v) = α|v|) growth of q, respectively.
The models here considered do not explicitly represent the power stroke, whose effect is
instead accounted for in the definition of the attachment-detachment rates (see Section 4.5).
Therefore, we compare the tension after the 200μs fast transient with the T2-L2 data,
experimentally measured by applying a fast step within the same time interval (see

Table 2 List of the calibrated parameters in the sublinear, linear and superlinear growth cases

Parameter Units Sublinear growth Linear growth Superlinear growth

aXB MPa 35.46 22.16 20.46

μ1
f̄

s−1 0.7040 0.7040 0.7040

μ0
f̄

s−1 45.76 28.60 2.640

α − 39.00 24.37 2.250

r0 s−1 208.0 130.0 12.00
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Fig. 9 Force-velocity relationship obtained with the model (17), compared with experimental data from [9]

again Section 4.5). The good match between the simulation results and the experimental
measurements provides a further validation of the calibration procedure.

The curves obtained by letting the tissue shorten with a velocity similar to that observed
during a heartbeat are close to those obtained with an almost instantaneous step, for small
values of �L. Conversely, for larger �L, the former curves saturate and a smaller force drop
is observed. The reason is that a large length step takes a longer time to be accomplished,
and, consequently, the time interval is large enough for the attachment-detachment process
to partially recover the original tension. In other terms, when we consider the typical time
scales of a heartbeat, the dynamics of the length changes is not sufficiently fast to appreciate
the scale separation between the different phases following a fast transient (see Section 2.3).
This provides a justification for the fact that a lumped description of the power stroke is an
acceptable approximation if the model is used for organ-level simulations and for the fact
that, in the model calibration, fitting the T2-L2 curve for small values of �L is sufficient
(see Section 4.5).

Finally, in Fig. 10c we show the fast-transient obtained in the case of superlinear growth
of r (by setting q(v) = α(|v| + v2)). In this case, since we do not have a relationship
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(b) Linear growth
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Fig. 10 Normalized force after the application of a fast length step �L. The fast steps reported by the blue
lines (model result) and the blue circles (T2-L2 experimental data from [9]) are applied within a time interval
of �t = 200μs, whereas the red lines refer to fast steps applied with a shortening velocity of v = 0.5s−1.
Finally, the black dashed lines refer to the asymptotical response for �t → 0
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equivalent to (21) and (22), we employ the relationship derived in the linear growth case, by
adjusting the parameter k̃2 to fit the experimental data. We notice that, even if the asymptotic
analysis of Section 4.4 shows that, in the limit of v → ∞, the response to fast steps leads to
vanishing tension, when the step is applied within a finite time interval, we obtain a curve
that is in agreement with the experimental measurements.

5 Conclusions

In this paper, we reviewed several models describing the interaction between actin and
myosin in cardiac muscle cells. As a matter of fact, different models, with different degrees
of biophysical detail, are available in the literature. The most detailed models are able of
capturing phenomena, such as the response to fast steps, occurring at the fastest time scales
involved in the force generation mechanism [12, 55, 56]. Conversely, the models belonging
to the family of the H57 model, while being able to reproduce the phenomena occurring at
slower time scales (such as the force-velocity relationship), do not allow to match the two
different experimentally observed fast responses exhibited by the muscle tissue when a step
(either in length or in tension) is applied.

In [12] the authors show that, if the considered time scales are large enough for the
variable describing the power stroke to be considered at thermal equilibrium, detailed soft-
spring models that explicitly represent the power stroke are formally recast to the H57
model. Motivated by this observation, we have investigated the capabilities of a modified
version of the H57 model to reproduce the experimentally observed characterizations of
the force generation phenomenon. Such model, compared to the most detailed models that
explicitly represent the power stroke, has the significant advantage of featuring only five
parameters (of which four are independent parameters for the determination of the active
tension Ta), that can be determined starting from macroscopic measurements typically avail-
able from experiments. In particular, the model can match the isometric active tension, the
force-velocity relationship and the stiffness associated to small steps. Hence, if the char-
acteristic time scales of the phenomena under exam are slower than the fast time scale of
the power stroke (such as in full-organ cardiac simulations), the models of the H57 family
match a good balance between model accuracy and parameter identifiability. On the other
hand, the limitations of the models of this family show up when faster times scales are
addressed. In particular, they are not able to predict the observed spontaneous oscillations
that can be reproduced by models that, on the contrary, explicitly represent the power stroke
(see e.g. [84]). Finally, a limitation of the modified H57 model considered in this paper is
to ascribe to the dependence of the detachment rate on the shortening velocity for which, to
the best of our knowledge, experimental validation is still missing.
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