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a b s t r a c t 

Flow in fractured porous media occurs in the earth’s subsurface, in biological tissues, and in man-made materials. Fractures have a dominating influence on flow 

processes, and the last decade has seen an extensive development of models and numerical methods that explicitly account for their presence. To support these 

developments, four benchmark cases for single-phase flow in three-dimensional fractured porous media are presented. The cases are specifically designed to test 

the methods’ capabilities in handling various complexities common to the geometrical structures of fracture networks. Based on an open call for participation, 

results obtained with 17 numerical methods were collected. This paper presents the underlying mathematical model, an overview of the features of the participating 

numerical methods, and their performance in solving the benchmark cases. 
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. Introduction 

Flow in fractured porous media is characterized by an interaction
etween the fractures and the surrounding porous medium, commonly
eferred to as the matrix. The strong influence of fracture network geom-
try on flow patterns has motivated the development of mathematical
odels and numerical methods that explicitly account for the geome-

ry of fractures ( Berre et al., 2019 ). Considering flow both in the frac-
ures and in the surrounding porous medium, these models are based
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n the conceptual discrete-fracture-matrix (DFM) representation of the
ractured porous media. 

With the development of a wealth of simulation tools for flow in
ractured porous media, a need for verification benchmarks for numer-
cal methods has emerged. To accommodate this need, four research
roups working in the field initiated a comparison study, which led to
he presentation of a suite of two-dimensional benchmark tests and cor-
esponding results for a range of numerical methods ( Flemisch et al.,
018 ). The methods were probed on test cases featuring known
21 September 2020 
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1 0 
ifficulties for numerical methods, including fracture intersections and
ombinations of blocking and conducting fractures. The study exposed
he relative strengths and weaknesses between the participating meth-
ds, both in terms of accuracy and computational cost. After the publi-
ation of the results, these benchmark cases have been widely applied
y the scientific community in testing numerical methods and new sim-
lation tools ( Arrarás et al., 2019; Budisa and Hu, 2019; Köppel et al.,
019a; 2019b; Odsæter et al., 2019; Schädle et al., 2019 ). 

Based on the reception of the first benchmark study ( Flemisch et al.,
018 ) and the capabilities of three-dimensional modeling in the research
ommunity, the next phase in the work on verification benchmarks was
aunched with a call for participation ( Berre et al., 2018 ). The purpose
f this call was to extend the platform of verification benchmarks for nu-
erical methods to three-dimensional problems. In addition, the stud-

es were extended to include simulations of linear tracer transport as
 means to highlight additional nuances in the comparison of the cal-
ulated flow fields. The present paper discusses the results received as
nswers to this call. 

The paper is organized as follows. In Section 2 , an overview of
he participation process is given. Section 3 describes the mathemat-
cal models for fluid flow and transport in fractured porous media.
ection 4 briefly describes the participating numerical methods as well
s the discretization of the transport problem. The four test cases are de-
cribed in Section 5 , with each description followed by a presentation
nd discussion of the corresponding results. Section 6 summarizes the
iscussion of the results, and Section 7 provides concluding remarks. 

. Benchmark process 

The verification benchmark study was laid out as a four-stage pro-
ess: the development of benchmark cases, a call for participation, col-
ection and synchronization of the results by the participants, and a final
iscussion and reporting. 

The process started with the participants of the first benchmark study
 Flemisch et al., 2018 ) developing four new test cases. These were de-
igned to test the capabilities of numerical methods for DFM representa-
ions of flow in three-dimensional fracture networks. The design of each
est case was rendered by the ”benchmark case designers ” listed in the
RediT author statement at the end of the paper. An open call for partic-

pation was launched in September 2018 ( Berre et al., 2018 ), followed
y a dedicated mini-symposium at the SIAM Conference on Mathemat-
cal and Computational Issues in the Geosciences, March 2019, Hous-
on. Researchers interested in participating in the benchmark followed
 predefined registration procedure, were approved by the authors issu-
ng the call, and were asked to sign a participation agreement. During
his process, applications concerning 15 additional numerical methods
ere submitted, all of which were approved by the call authors. Finally,

he results of 12 of these methods were submitted and included in the
tudy. 

The case descriptions presented in the call ( Berre et al., 2018 ) were
ccompanied by data in the form of geometry descriptions, existing
imulation results, and plotting scripts, all available in the Git repos-
tory https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d.git .
his repository was reused in the fully transparent collection and syn-
hronization phase. During this phase, the results were uploaded and
ade available to all participants, and recomputations and adjustments
ere allowed until August 2019. In the fourth phase, all participants

ontributed to the reporting of the results presented in Section 5 . The
ast two phases were led by assigned ”benchmark case coordinators ”.

hile access to the Git repository was restricted to the benchmark par-
icipants during the phase of collection and comparison of the results,
ll data have been made publicly available upon submission of this
anuscript. In addition to the data and plotting scripts, five Jupyter
otebooks are provided, four focusing on reproducing the figures en-
ountered in Section 5 , and one for facilitating the comparison of new
esults. 
. Mathematical models 

This section introduces two models for flow and transport in frac-
ured media. First, the flow model is presented in the conventional
qui-dimensional setting, allowing a natural introduction to the phys-
cal parameters. From this formulation, an appropriate reduction of the
quations results in the mixed-dimensional model that forms the focus
f this study. Finally, the equi- and mixed-dimensional transport models
re presented. 

.1. Equi-dimensional flow model 

Consider a steady-state, incompressible, single-phase flow through a
orous medium described by Darcy’s law. With the imposition of mass
onservation, the governing system of equations is given by 

 + 𝕂 ∇ ℎ = 0 , 
 ⋅ 𝒖 = 𝑞, 

in Λ. (1a) 

Here, u denotes the fluid velocity in m/s, 𝕂 is hydraulic conductivity
easured in m/s, h is hydraulic head measured in m, and q represents
 source/sink term measured in 1/s. The domain Λ ⊂ ℝ 

3 will be called
he equi-dimensional domain. The following boundary conditions on the
oundary 𝜕Λ of Λ complete model (1a) : 

 = ℎ on 𝜕Λℎ , 

 ⋅ 𝒏 = 𝑢 on 𝜕Λ𝑢 . 
(1b) 

Assume 𝜕Λ = 𝜕Λℎ ∪ 𝜕Λ𝑢 , 𝜕Λℎ ∩ 𝜕Λ𝑢 = ∅, and 𝜕Λh ≠ ∅. ℎ is the hy-
raulic head imposed on the boundary 𝜕Λh , while 𝑢 is the prescribed
arcy velocity normal to the boundary 𝜕Λu with respect to the outer
nit normal vector n . 

By substituting Darcy’s law in the mass conservation, the dual prob-
em (1) can be recast in its primal formulation, given by 

∇ ⋅ 𝕂 ∇ ℎ = 𝑞 in Λ, 

ℎ = ℎ on 𝜕Λℎ , 

− 𝕂 ∇ ℎ ⋅ 𝒏 = 𝑢 on 𝜕Λ𝑢 . (2) 

roblems (1) and (2) are equivalent, however, the two formulations (pri-
al and mixed) require different numerical approximation schemes: for

nstance, while standard FEM can be applied to (2) a mixed approxi-
ation scheme is needed for (1) . The reader is referred to Chavent and

affré (1986) for more details on the formulation, and to Raviart and
homas (1977) , Brezzi and Fortin (1991) , Roberts and Thomas (1991) ,
nd Ern and Guermond (2004) for an introduction to mixed methods. 

Assume that Λ contains several fractures, i.e., thin inclusions in the
omain. The fracture walls are assumed to be planar with smooth bound-
ries. The fractures have two distinguishing features: a) the thickness,
easured by the aperture 𝜀 , is small compared to the spatial extent of

he fracture; and b) the hydraulic conductivity may differ significantly
rom that of the rest of Λ. The latter implies that the fractures may have
 significant impact on the flow in Λ. 

In the setting of equi-dimensional flow, we further make the assump-
ion that the principal directions of the local hydraulic conductivity ten-
or are aligned with the orientation of the fractures. In particular, the
ydraulic conductivity in the matrix ( 𝕂 3 ), the fractures ( 𝕂 2 ), as well as
n the intersections between two fractures ( 𝕂 1 ) and at the crossings of
ntersections ( 𝕂 0 ) are (3 × 3)-tensors and allow for the following de-
ompositions: 

 3 = 𝐾 

𝑒𝑞 

3 , 𝕂 2 = 

⎡ ⎢ ⎢ ⎣ 
𝐾 

𝑒𝑞 

2 
0 
0 

0 0 𝜅
𝑒𝑞 

2 

⎤ ⎥ ⎥ ⎦ , 

 1 = 

⎡ ⎢ ⎢ ⎣ 
𝐾 

𝑒𝑞 

1 0 0 
0 𝜅

𝑒𝑞 

1 0 
0 0 𝜅

𝑒𝑞 

⎤ ⎥ ⎥ ⎦ , 𝕂 0 = 

⎡ ⎢ ⎢ ⎣ 
𝜅
𝑒𝑞 

0 0 0 
0 𝜅

𝑒𝑞 

0 0 
0 0 𝜅

𝑒𝑞 

⎤ ⎥ ⎥ ⎦ . 

https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d.git
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ere, 𝐾 

𝑒𝑞 

d denotes the tangential hydraulic conductivity for 𝑑 = 1 , … , 3
nd is thus given by a symmetric, positive definite ( d × d )-tensor.
oreover, 𝜅𝑒𝑞 

𝑑 
represents the normal hydraulic conductivity, given by

 positive scalar. Note that the normal bundle of a line in 3D is two-
imensional whereas all three basis vectors of ℝ 

3 are normal to an in-
ersection point. The actual meaning of “tangential ” and “normal ” hy-
raulic conductivity will be clear in the subsequent part. The superscript
q indicates that these quantities are related to the equi-dimensional
odel. The subscript d , on the other hand, indicates that these parame-

ers will be used on d -dimensional objects in the reduced model, which
he next section derives. 

.2. Mixed-dimensional flow model 

The small aperture of the fractures justifies a reduction of di-
ensionality to a representation where fractures and their intersec-

ions are approximated by lower-dimensional objects. For more de-
ails on the derivation of mixed-dimensional models for flow in frac-
ured porous media, the reader is referred to Martin et al. (2005) ,
ngot et al. (2009) and to Kumar et al. (2020) , Brenner et al. (2018) ,
hmed et al. (2017) , List et al. (2020) for extensions concerning two-
hase and unsaturated flows. 

The mixed-dimensional decomposition of Λ is Ω. It contains the
hree-dimensional domain Ω3 that represents the (possibly uncon-
ected) matrix, and, furthermore, up to three lower-dimensional, open
ubdomains, namely, the union of fracture planes Ω2 , their intersection
ines Ω1 and intersection points Ω0 . Individual lower-dimensional fea-
ures are referred to as Ωd,i with d its dimension and i a uniquely assigned
ounting index. Finally, Γ𝑑 = Ω𝑑 ∩ 𝜕Ω𝑑+1 is the set of d -interfaces be-
ween neighboring subdomains of codimension one. Each interface Γd,j 

s endowed with a unit normal vector n . To be mathematically precise,
 is chosen from the tangent bundle of the higher-dimensional neighbor

𝑑+1 ,𝑖 , is normal to Γd,j , and is oriented outward with respect to Ω𝑑+1 ,𝑖 . 
Remaining consistent with the notation convention above, data and

nknowns will also be annotated with a subscript related to the dimen-
ion. As a first example, on a d -dimensional subdomain Ωd,i , let 𝜀 d,i de-
ote the cross-sectional volume, area, or length of the corresponding
hysical domain for 𝑑 = 0 , … , 2 , respectively. It has the unit of measure
 

3−d and its definition extends to the three-dimensional bulk as 𝜀 3 = 1 .
oreover, a typical length a d,i is defined such that 𝜀 𝑑,𝑖 = 𝑎 3− 𝑑 

𝑑,𝑖 
. 

The continuation of this subsection presents the reduced model as-
ociated with (1) in the two-dimensional fractures Ω2 followed by its
eneralization for all 𝑑 = 0 , … , 3 . 

.2.1. Flow in fractures 

To present the flow model, the derivation done in
artin et al. (2005) and Boon et al. (2018) has been considered.
he variables in this formulation are the velocity 𝒖 3 = 𝒖 and hydraulic
ead ℎ 3 = ℎ in the rock matrix Ω3 , as well as the integrated tangential
elocity u 2 and average hydraulic head h 2 in the fracture. These are
iven pointwise for x ∈ Ω2 by 

 2 ( 𝑥 ) = ∫𝜀 2 ( 𝑥 ) 
𝒖 ‖ and ℎ 2 ( 𝑥 ) = 

1 
𝜀 2 ( 𝑥 ) ∫𝜀 2 ( 𝑥 ) 

ℎ. 

ere, u ‖ denotes the components of u tangential to Ω2 . The integrals
re computed in the normal direction of the fracture, and thus, the cor-
esponding units of measurement are m 

3 /s and m for u 2 and h 2 , respec-
ively. 

Averaging and integrating, respectively, over the direction normal
o the fractures derives the reduced Darcy’s law and mass balance equa-
ion. Recall that the vector n here refers to the normal unit vector ori-
nted outward from Ω3 . We have 

1 
𝜀 2 
𝒖 2 + 𝐾 

𝑒𝑞 

2 ∇ 2 ℎ 2 = 0 

 2 ⋅ 𝒖 2 − [[ 𝒖 3 ⋅ 𝒏 ]] = 𝑞 2 
in Ω2 , (3a)

here ∇ 2 is the del-operator in the tangential directions and q 2 is the
ntegrated source term, i.e., 𝑞 2 ( 𝑠 ) = ∫

𝜀 2 ( 𝑠 ) 
𝑞. 
Note the assumption that 𝐾 

𝑒𝑞 

2 is constant in the direction normal
o Ω2 . The jump operator is defined as [[ 𝒖 3 ⋅ 𝒏 ]] |Ω𝑑 

= 

∑
( 𝒖 3 ⋅ 𝒏 |Γ2 ) , thus

epresenting the mass exchange between fracture and matrix. In par-
icular, for each subdomain Ω2, i ⊆Ω2 , all flux contributions are summed
ver sections of Γ2 that coincide geometrically with Ω2, i . These fluxes
re assumed to satisfy the following Darcy-type law given by a finite
ifference between the hydraulic head in Ω2 and on 𝜕Ω3 : 

 3 ⋅ 𝒏 + 𝜅
𝑒𝑞 

2 
2 
𝑎 𝑑 

( ℎ 2 − ℎ 3 ) = 0 on Γ2 . (3b)

.2.2. Generalization to intersections and complete model 

The following generalizes the equations described above to domains
f all dimensions, thus including the intersection lines and points. For
hat purpose, the integrated velocity u d for 𝑑 = 1 and average hydraulic
ead h d with 𝑑 = 0 , 1 are introduced, and given pointwise for x ∈ Ωd by 

 1 ( 𝑥 ) = ∫𝜀 1 ( 𝑥 ) 
𝒖 ‖ and ℎ 𝑑 ( 𝑥 ) = 

1 
𝜀 𝑑 ( 𝑥 ) ∫𝜀 𝑑 ( 𝑥 ) 

ℎ, for 𝑑 = 0 , 1 . 

gain, u ‖ denotes the components of u tangential to Ω1 . The correspond-
ng units of measurement are m 

2 /s and m for u 1 and h d , respectively.
he analogs of (3a) on these lower-dimensional manifolds are then given
y 

1 
𝜀 1 

𝐮 1 + 𝐾 

eq 

1 ∇ 1 ℎ 1 = 0 

 1 ⋅ 𝐮 1 − � 𝐮 2 ⋅ 𝐧 � = 𝑞 1 in Ω1 , 

− � 𝐮 1 ⋅ 𝐧 � = 𝑞 0 in Ω0 . (4) 

ere, ∇ 1 denotes the del-operator, i.e., the derivative, in Ω1 . For
ach Ωd,i , the linear jump operator [[ ⋅]] is naturally generalized
o [[ 𝒖 𝑑+1 ⋅ 𝒏 ]] |Ω𝑑,𝑖 

= 

∑
( 𝒖 𝑑+1 ⋅ 𝒏 |Γ𝑑,𝑗 

) , where all flux contributions are
ummed over sections Γd,j ⊆Γd that coincide geometrically with Ωd,i . Fi-
ally, q 1 and q 0 correspond to the integrated source terms in the inter-
ection lines and points, respectively. 

Due to our choice of defining u d as the integrated velocity, a scaling
ith 𝜀 𝑑+1 appears in the equation governing the flux across Γd : 

1 
𝜖𝑑+1 

𝒖 𝑑+1 ⋅ 𝒏 + 𝜅
𝑒𝑞 

𝑑 

2 
𝑎 𝑑 

( ℎ 𝑑 − ℎ 𝑑+1 ) = 0 on Γ𝑑 , 𝑑 = 0 , 1 . (5)

ecalling that 𝜖3 = 1 , it now follows that the effective tangential and
ormal hydraulic conductivities are given by: 

 d = 𝜀 𝑑 𝐾 

𝑒𝑞 

d , in Ω𝑑 , 𝑑 = 1 , … , 3 (6a) 

𝑑 = 𝜀 𝑑+1 
2 
𝑎 𝑑 

𝜅
𝑒𝑞 

𝑑 
, on Γ𝑑 , 𝑑 = 0 , … , 2 . (6b) 

From these definitions, it is clear that the units of 𝐾 d and 𝜅d are
 

4−d /s and m 

2−d /s, respectively. 
Collecting the above equations gives the generalization of system

3) to subdomains of all dimensions. The system consists of Darcy’s law
n both tangential and normal directions followed by the mass conser-
ation equations: 

 𝑑 + 𝐾 d ∇ 𝑑 ℎ 𝑑 = 0 , in Ω𝑑 , 𝑑 = 1 , … , 3 , (7a) 

 𝑑+1 ⋅ 𝒏 + 𝜅𝑑 ( ℎ 𝑑 − ℎ 𝑑+1 ) = 0 , on Γ𝑑 , 𝑑 = 0 , … , 2 , (7b) 

 𝑑 ⋅ 𝒖 3 = 𝑞 3 , in Ω3 , (7c) 

 𝑑 ⋅ 𝒖 𝑑 − [[ 𝒖 𝑑+1 ⋅ 𝒏 ]] = 𝑞 𝑑 , in Ω𝑑 , 𝑑 = 1 , 2 , (7d) 

[[ 𝒖 1 ⋅ 𝒏 ]] = 𝑞 0 , in Ω0 . (7e) 

The source term is given by q 3 for the rock matrix and 𝑞 𝑑 ( 𝑥 ) = ∫
𝜀 𝑑 ( 𝑥 ) 

𝑞

easured in m 

3−d /s. 
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System (7) is then compactly described by: 

 𝑑 + 𝐾 d ∇ 𝑑 ℎ 𝑑 = 0 , in Ω𝑑 , 𝑑 = 1 , … , 3 , (8a) 

 𝑑+1 ⋅ 𝒏 + 𝜅𝑑 ( ℎ 𝑑 − ℎ 𝑑+1 ) = 0 , on Γ𝑑 , 𝑑 = 0 , … , 2 , (8b) 

 𝑑 ⋅ 𝒖 𝑑 − [[ 𝒖 𝑑+1 ⋅ 𝒏 ]] = 𝑞 𝑑 , in Ω𝑑 , 𝑑 = 0 , … , 3 , (8c) 

n which the nonphysical u 4 and u 0 are understood as zero. The bound-
ry conditions are inherited from the equidimensional model with the
ddition of a no-flux condition at embedded fracture endings: 

 𝑑 = ℎ on 𝜕 Ω𝑑 ∩ 𝜕 Λℎ , 𝑑 = 0 , … , 3 , (9a) 

 𝑑 ⋅ 𝒏 = 𝜀 𝑑 𝑢 on 𝜕 Ω𝑑 ∩ 𝜕 Λ𝑢 , 𝑑 = 1 , … , 3 , (9b) 

 𝑑 ⋅ 𝒏 = 0 on 𝜕 Ω𝑑 ∖(Γ𝑑−1 ∪ 𝜕 Λ) , 𝑑 = 1 , … , 3 . (9c) 

Finally, this section presents the primal formulation of the mixed-
imensional fracture flow model. Analogous to (2) , this formulation is
erived by substituting Darcy’s laws (8a) and (8b) into the conservation
q. (8c) : 

∇ 𝑑 ⋅𝐾 d ∇ 𝑑 ℎ 𝑑 + [[ 𝜅𝑑 ( ℎ 𝑑 − ℎ 𝑑+1 ) ]] = 𝑞 𝑑 , in Ω𝑑 , 𝑑 = 0 , … , 3 . (10) 

gain, the divergence term is interpreted as zero if 𝑑 = 0 and the jump
erm as zero if 𝑑 = 3 . The boundary conditions are given by 

 𝑑 = ℎ on 𝜕 Ω𝑑 ∩ 𝜕 Λℎ , 𝑑 = 0 , … , 3 , (11a) 

 𝐾 d ∇ 𝑑 ℎ 𝑑 ⋅ 𝒏 = 𝜀 𝑑 𝑢 on 𝜕 Ω𝑑 ∩ 𝜕 Λ𝑢 , 𝑑 = 1 , … , 3 , (11b) 

 𝐾 d ∇ 𝑑 ℎ 𝑑 ⋅ 𝒏 = 0 on 𝜕Ω𝑑 ∖(Γ𝑑−1 ∪ 𝜕Λ) , 𝑑 = 1 , … , 3 . (11c) 

Many discretization schemes presented in this study ignore flow in
he one-dimensional fracture intersections and zero-dimensional inter-
ections thereof. Although these correspond to discretizing a simpler
odel, this is perfectly in line with the proposed study. 

.3. Equi-dimensional transport model 

A scalar quantity c with the unit of measure m 

−3 is transported
hrough the porous medium subject to the velocity field resulting from
he flow model presented in the previous sections. The purely advective
ransport of c is described by the conservation equation: 

𝜕𝑐 

𝜕𝑡 
+ ∇ ⋅ ( 𝑐 𝒖 ) = 𝑞 𝑐 in Λ, (12)

here 𝜙 is the porosity of the medium and q c is a source/sink term for c
iven in m 

−3 /s. Boundary segments where inflow occurs have Dirichlet
oundary conditions, i.e., 

|𝜕Λ𝑐 
= 𝑐 on 𝜕 Λ𝑐 , 𝜕 Λ𝑐 = { 𝑥 ∈ 𝜕Λ ∶ 𝒖 ⋅ 𝒏 < 0} , (13)

ith 𝑐 being the value for c prescribed on the boundary 𝜕Λc . 

.4. Mixed-dimensional transport model 

Analogous to Section 3.2 , the average value for c is chosen as the
rimary variable, which is defined as 𝑐 3 = 𝑐 in Ω3 and for the lower
imensional objects (with d ≤ 2) as 

 𝑑 ( 𝑠 ) = 

1 
𝜀 𝑑 ( 𝑠 ) ∫𝜀 𝑑 ( 𝑠 ) 

𝑐. 

ollowing the derivation of the mixed-dimensional flow model pre-
ented in Section 3.2 , the resulting mixed-dimensional transport model
eads as: 

 𝑑 𝜙𝑑 

𝜕𝑐 𝑑 

𝜕𝑡 
+ ∇ 𝑑 ⋅

(
𝑐 𝑑 𝒖 𝑑 

)
− [[ ̃𝑐 𝑑+1 

(
𝒖 𝑑+1 ⋅ 𝒏 

)
]] = 𝑞 𝑐,𝑑 in Ω𝑑 , 𝑑 = 0 , … , 3 . 

(14) 
ote that for 𝑑 = 0 , the divergence term is void and for 𝑑 = 3 the con-
ribution of the jump operator is set to null. Here, the porosity is sim-
ly 𝜙𝑑 = 𝜙𝑒𝑞 and 𝑐 𝑑+1 is evaluated on the basis of a first-order upwind
cheme, i.e., 

̃ 𝑑+1 = 

{ 

𝑐 𝑑+1 if 𝒖 𝑑+1 ⋅ 𝒏 |Γ𝑑 
> 0 

𝑐 𝑑 if 𝒖 𝑑+1 ⋅ 𝒏 |Γ𝑑 
< 0 . (15) 

s in the flow model, the jump operator represents the sum of the fluxes
ver all contributions defined on sections of Γd that coincide geometri-
ally with Ωd,i . 

. Participating discretization methods 

The intent of this benchmark study is to quantitatively evaluate dif-
erent discretization schemes for the mixed-dimensional flow models
8) - (11) . The modeling error resulting from averaging the underlying
qui-dimensional models is deliberately disregarded. In the sense of this
tudy, the solution to be approximated by the participating methods
s the solution to the corresponding mixed-dimensional model, not the
qui-dimensional one. For a detailed benchmark study taking into ac-
ount the modeling error from averaging, see Flemisch et al. (2018) . As
 means of evaluating a discrete solution, the velocities were inserted
nto a standard cell-centered, first-order upwind scheme for the trans-
ort Eq. (14) . The temporal discretization is given by the implicit Euler
ethod with a fixed time-step prescribed for each test case. The main
roperties of the discretization methods covered by the benchmark are
ummarized in Tables 1 and 2 , which also contain references for further
etails. The majority of the methods followed the mixed-dimensional
ow model and the specified transport discretization, with the follow-

ng exceptions: 
The schemes NCU_TW-Hybrid_FEM and DTU-FEM_COMSOL de-

cribe the flow along the fractures by additional terms defined on the
racture surfaces. This effectively adds connectivity between the degrees
f freedom located on fractures without introducing additional degrees
f freedom. This means that these schemes do not solve the mass bal-
nces (8c) for d < 3. Moreover, this approach implies continuity of the
ydraulic head across the fractures and therefore replaces the coupling
ondition (8b) . Other schemes participating in this study also assume
ontinuity of the hydraulic head across the fractures, and a complete
verview is given in Table 2 . 

The scheme UNIL_USI-FE_AMR_AFC is an equi-dimensional ap-
roach, meaning that the fractures, their intersections, and intersections
f intersections are discretized with three-dimensional elements using
ocally refined grids. Therefore, the lower-dimensional mass balances
8c) for d < 3 and the coupling conditions (8b) are not relevant for this
cheme. 

Finally, the schemes ETHZ_USI-FEM_LM and UNIL_USI-FE_
MR_AFC do not use a first-order upwind scheme but apply an alge-
raic flux correction technique for the stabilization of a finite element
iscretization of the transport model ( Kuzmin et al., 2012 ). Such stabi-
ization techniques provide a similar discretization as the given upwind
cheme. 

. Benchmark cases and results 

This section presents the benchmark cases and compares the sub-
itted results. For each case, the hydraulic head and tracer concen-

ration are compared using several predefined macroscopic metrics. In
ection 5.1 , a benchmark case containing a single fracture problem is
onsidered. Section 5.2 presents a benchmark based on a synthetic net-
ork composed of nine regularly arranged fractures. The benchmark

ase in Section 5.3 considers the geometrically challenging case of al-
ost intersecting fractures, fractures with small intersections, and other

eatures that a fracture network may exhibit. Finally, Section 5.4 studies
 case with 52 fractures selected from a real network. 
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Table 1 

Names, acronyms, references and test cases covered for all participating discretization methods. 

Acronym References Open source code Run scripts Test cases 

Two-point flux approximation 

UiB-TPFA Keilegavlen et al. (2019) and 

Nordbotten et al. (2019) 

✓a ✓b 1–4 

Multi-point flux approximation 

UiB-MPFA Keilegavlen et al. (2019) and 

Nordbotten et al. (2019) 

✓a ✓b 1–4 

Lowest order mixed virtual element method 

UiB-MVEM Keilegavlen et al. (2019) and 

Nordbotten et al. (2019) 

✓a ✓b 1–4 

Lowest order Raviart-Thomas mixed finite elements 

UiB-RT0 Keilegavlen et al. (2019) , 

Nordbotten et al. (2019) , and 

Boon et al. (2018) 

✓a ✓b 1–4 

Multi-point flux approximation 

USTUTT-MPFA Koch et al. (2020) ✓c ✓d 1–4 

Two-point flux approximation 

USTUTT-TPFA_Circ Koch et al. (2020) ✓c ✓d 1–4 

Mimetic Finite Differences 

LANL-MFD Lipnikov et al. (2014) ✓e ✕ 1–4 

Hybrid finite element method 

NCU_TW-Hybrid_FEM Lee and Ni (2015) and 

Lee et al. (2019) 

✕ ✕ 1 

Vertex Approximate Gradient continuous hydraulic head 

UNICE_UNIGE-VAG_Cont Brenner et al. (2016a) ✕ ✕ 1–4 

Hybrid Finite Volumes continuous hydraulic head 

UNICE_UNIGE-HFV_Cont Brenner et al. (2016a) ✕ ✕ 1–4 

Vertex Approximate Gradient discontinuous hydraulic head 

UNICE_UNIGE-VAG_Disc Brenner et al. (2016b) ✕ ✕ 1–4 

Hybrid Finite Volumes discontinuous hydraulic head 

UNICE_UNIGE-HFV_Disc Brenner et al. (2016b) ✕ ✕ 1–4 

Lagrange multiplier - L2-projection finite elements 

ETHZ_USI-FEM_LM Schädle et al. (2019) , 

Köppel et al. (2019b) , and 

Krause and Zulian (2016) 

✓Zulian et al. (2016) ✕ 1–4 

Hybrid H(div) 

UNICAMP-Hybrid_Hdiv Devloo et al. (2019) and 

Durán et al. (2019) 

✓f ✓f 1–4 

Flux-corrected finite element method and adaptive mesh refinement 

UNIL_USI-FE_AMR_AFC Favino et al. (2020) and 

Kuzmin et al. (2012) 

✓Zulian et al. (2016) ✕ 1–3 

Embedded discrete fracture method 

INM-EDFM Nikitin and Yanbarisov (2020) ✕ ✕ 1,3 

First-order Lagrangian finite elements (COMSOL) 

DTU-FEM_COMSOL COMSOL (2019) g ✕ ✓Berre et al. (2020) 1–4 

a https://github.com/pmgbergen/porepy . 2019. 
b https://github.com/pmgbergen/arXiv _ 1809 _ 06926 . 2019. 
c https://git.iws.uni-stuttgart.de/dumux-repositories/dumux . 2019. 
d https://git.iws.uni-stuttgart.de/dumux-pub/berre2020 . 2020. 
e https://github.com/amanzi . 2019. 
f https://github.com/labmec/HDiv/tree/master/HDiv _ Benchmarks . 2019. 
g https://www.comsol.com/release/5.4 . 2019. 
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The reasoning behind the design of the four cases is to isolate typical
hallenges encountered in practice by means of dedicated synthetic sce-
arios. The focus is always on the behavior of the discretization meth-
ds in the presence of fractures. While considering a full geologically
elevant outcrop model would be interesting, adding such a case would
ake it impossible to track down the reasons for differences in the re-

ults and is therefore out of scope for this study. For similar reasons,
nvestigating strong local heterogeneities in the matrix itself as well as
pscaling approaches are excluded. 
m  
.1. Case 1: Single fracture 

.1.1. Description 

Fig. 1 illustrates the first benchmark case, with a geometry
hat is slightly modified from works Zielke et al. (1991) and
arlag et al. (1998) . The domain Ω is a cube-shaped region (0m, 100m)

(0m, 100m) × (0m, 100m) which is crossed by a planar fracture,

2 , with a thickness of 0.01m. The matrix domain consists of subdo-
ains Ω3,1 above the fracture and Ω3,2 and Ω3,3 below. The subdo-
ain Ω3,3 represents a heterogeneity within the rock matrix. Inflow

https://github.com/pmgbergen/porepy
https://github.com/pmgbergen/arXiv_1809_06926
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux
https://git.iws.uni-stuttgart.de/dumux-pub/berre2020
https://github.com/amanzi
https://github.com/labmec/HDiv/tree/master/HDiv_Benchmarks
https://www.comsol.com/release/5.4
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Table 2 

Numerical properties for the discretization methods. An entry in the column “conforming ” can be “fully ” if each fracture element needs to coincide with a facet shared 

by two neighboring matrix elements, “geometrically ” if each fracture needs to be a union of element facets from each of the two neighboring matrix subdomain 

meshes, or “none ” if fracture and matrix meshes can be completely independent of each other. 

Acronym Degrees of freedom Local mass conservation Allows h discontinuity Conformity Subdomain dimensions 

UiB-TPFA h (elem), 𝜆 (mortar flux) ✓ ✓ Geometrically 0–3 

UiB-MPFA h (elem), 𝜆 (mortar flux) ✓ ✓ Geometrically 0–3 

UiB-MVEM h (elem), u (faces), 𝜆 (mortar flux) ✓ ✓ Geometrically 0–3 

UiB-RT0 h (elem), u (faces), 𝜆 (mortar flux) ✓ ✓ Geometrically 0–3 

USTUTT-MPFA h (elem) ✓ ✓ Fully 2–3 

USTUTT-TPFA_Circ h (elem) ✓ ✓ Fully 2–3 

LANL-MFD h (faces) ✓ ✓ Fully 2–3 

NCU_TW-Hybrid_FEM h , u (nodes) ✓ ✕ Fully 2–3 

UNICE_UNIGE-VAG_Cont h (nodes), (fracture faces) ✓ ✕ Conforming 2–3 

UNICE_UNIGE-VAG_Disc h (nodes), (fracture faces) ✓ ✓ Conforming 2–3 

UNICE_UNIGE-HFV_Cont h (faces), (fracture edges) ✓ ✕ Conforming 2–3 

UNICE_UNIGE-HFV_Disc h (faces), (fracture edges) ✓ ✓ Conforming 2–3 

ETHZ_USI-FEM_LM h (nodes) 𝜆 (nodes) ✕ ✕ None 2–3 

UNICAMP-Hybrid_Hdiv h , u (elem), 𝜆 (faces) ✓ ✓ Geometrically 0–3 

UNIL_USI-FE_AMR_AFC h (nodes) ✓ ✕ Not applicable equi-dim. 

INM-EDFM h (elem) ✓ ✕ None 2–3 

DTU-FEM_COMSOL h (nodes) ✓ ✕ Fully 2–3 

Fig. 1. Conceptual model and geometrical description of the domain for Case 

1 of Section 5.1 . Inlet and outlet part of the boundary are indicated in blue and 

purple, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Table 3 

Parameters used in Case 1 of Section 5.1 . 

Matrix hydraulic conductivity K 3,1 , K 3,2 1 × 10 −6 𝑰 m/s 

Matrix hydraulic conductivity K 3,3 1 × 10 −5 𝑰 m/s 

Fracture effective tangential hydraulic conductivity K 2 1 × 10 −3 𝑰 m 

2 /s 

Fracture effective normal hydraulic conductivity 𝜅2 20 1/s 

Matrix porosity 𝜙3,1 , 𝜙3,2 2 × 10 −1 

Matrix porosity 𝜙3,3 2 . 5 × 10 −1 
Fracture porosity 𝜙2 4 × 10 −1 

Fracture cross-sectional length 𝜖2 1 × 10 −2 m 

Total simulation time 1 × 10 9 s 

Time-step Δt 1 × 10 7 s 
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nto the system occurs through a narrow band defined by {0m} × (0m,
00m) × (90m, 100m). Similarly, the outlet is a narrow band defined
y (0m, 100m) × {0m} × (0m, 10m). 

At the inlet and outlet bands, the hydraulic head is set to ℎ in = 4m
nd ℎ out = 1m respectively, and 𝑐 in = 0 . 01m 

−3 is set at the inlet for the
ransport problem. All remaining parts of the boundary are assigned no-
ow conditions. The parameters for conductivity, porosity, and aperture
re listed in Table 3 together with the overall simulation time and time-
tep size. 

.1.2. Results 

Three different simulations were carried out with approximately 1k,
0k and 100k cells for the 3d domain. The precise number of cells and
egrees of freedom for each method are listed in Table A.7 and will
e discussed in Section 5.1.2.7 . The basis for comparison of the meth-
ds is computed pressure head and concentration, plotted along pre-
cribed lines. The first comparison, represented in Section 5.1.2.1 , de-
icts the hydraulic head along a line crossing the 3d matrix domain,
hile the solutions reported in 5.1.2.2 and 5.1.2.3 visualize the ma-

rix and fracture concentration along lines at the final simulation time.
he purpose of these three plots is to visualize the spread of the so-

utions, in particular its reduction upon grid refinement. To this end,
or a quantity such as the concentration c let c [ i ] denote the i -th per-
entile of the provided numerical solutions. The quantification of the
pread of the solutions along a given line 𝜉 is based on the following
easures: 

[ 𝑖 ] 
𝑐 

= 

𝑐 [ 𝑖 ] − 𝑐 ref 

𝑐 ref 
, 𝜎𝑐 = 

∫
𝜉

(
𝑐 [90] − 𝑐 [10] 

)
d 𝑥 

∫
𝜉
𝑐 ref d 𝑥 

. (16)

Here, c ref is the reference solution and 𝑐 ref is its average over 𝜉. We
ote that 𝜎c is equal to the mean of ( 𝜎[90] 

𝑐 − 𝜎
[10] 
𝑐 ) over 𝜉. 

Plots in Section 5.1.2.4 and 5.1.2.5 depict integrated ma-
rix and fracture concentrations over time, respectively. Finally,
ection 5.1.2.6 presents comparison of concentration fluxes across the
utlet over time. 
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Fig. 2. Case 1 of Section 5.1 . On the top, the hydraulic head h 3 in the matrix over the line (0m, 100m, 100m) - (100m, 0m, 0m) for three refinements (coarse to 

fine). The reference was computed with the USTUTT-MPFA scheme on a refined grid with 1,991,176 cells Gläser (2020) . On the bottom, the deviations 𝜎[90] 
ℎ 3 

and 

𝜎
[10] 
ℎ 3 

from the reference solution are illustrated, as defined in (16) . Results of Section 5.1.2.1 . 
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.1.2.1. Hydraulic Head Over Line. Fig. 2 depicts the hydraulic head
 3 in the matrix along the line (0m , 100m , 100m) − (100m , 0m , 0m) . Each
lot corresponds to one of the three refinement levels. 

At the coarsest level of around 1000 cells, all methods already show
easonable agreement. As expected, differences between the methods as
ell as to the reference solution decrease with increasing refinement

evel. Two classes of methods can be distinguished in these plots. First,
he methods that use cellwise constant values exhibit staircase-like pat-
erns. On the other hand, methods using nodal values are interpolated
ithin each cell and yield a smoother appearance. 

To quantify the differences between the participating methods and
heir convergence behavior over all refinement levels, the spread of the
ssociated data sets is evaluated as outlined above and visualized in the
ottom row of pictures. The number 𝜎ℎ 3 

in each picture’s title is cal-
ulated by (16) and quantifies the observed convergence behavior. The
pikes in the local differences obviously result from the cellwise con-
tant solution values. While a possible post-processing procedure could
ave reduced these differences, it would obscure the differences in the
aw result data and is therefore excluded deliberately. 

.1.2.2. Matrix Concentration Over Line. The pictures at the top of Fig. 3
llustrate the concentration c 3 in the matrix at the final simulation time
long the line (0m , 100m , 100m) − (100m , 0m , 0m) , again for the different
efinement levels. The behavior is similar to that in 5.1.2.1 in the sense
hat the differences between most of the methods decrease with increas-
ng refinement level. However, two methods show more pronounced de-
iations from the rest: ETHZ_USI-FEM_LM exhibits oscillations that
an be attributed to the fact that the employed algebraic flux correc-
ion stabilization scheme does not suppress all spurious oscillations. The
CU_TW-Hybrid_FEM does not capture the curve behavior at all. The
bviously larger spread in the results is visualized more explicitly in the
ottom row of Fig. 3 , showing much slower convergence compared to
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Fig. 3. Case 1 of Section 5.1 . On the top, concentration c 3 in the matrix, at the final simulation time, along the line (0m, 100m, 100m) - (100m, 0m, 0m) for three 

refinements (coarse to fine). On the bottom, the deviations 𝜎[90] 
𝑐 3 

and 𝜎[10] 
𝑐 3 

from the median 𝑐 ref 3 = 𝑐 [50] 3 of the solutions on the finest grid are illustrated. Results of 

Section 5.1.2.2 . 
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ection 5.1.2.1 . The magnitude of the local spread is clearly influenced
y the presence of the fracture. 

.1.2.3. Fracture Concentration Over Line. Fig. 4 shows the concentra-
ion c 2 within the fracture at the final simulation time along the line
0m , 100m , 80m) − (100m , 0m , 20m) . 

Again, almost all methods appear to converge with increasing refine-
ent. NCU_TW-Hybrid_FEM exhibit the largest deviations over all

efinement levels. Close to the outlet boundary, ETHZ_USI-FEM_LM
ields rather different values than the rest of the methods, but it clearly
pproaches the other methods with increasing refinement. Minor devia-
ions close to the outlet can also be observed for INM-EDFM , UiB-RT0
nd UiB-MVEM which become more pronounced for higher refinement
evels. Moreover, UiB-TPFA obviously underestimates the concentra-
ion in the medium observed arc length for the finest grids. Looking at
he bottom row of Fig. 4 , the convergence behavior of the spread is bet-
er than that of the matrix concentration reported in Section 5.1.2.2 , yet
orse than for the matrix hydraulic head in Section 5.1.2.1 . Since the

nflow boundary with an associated Dirichlet boundary condition is lo-
ated at the beginning of the line, the spread is considerably lower there
nd increases over the arc length, i.e., the distance to this boundary. 

.1.2.4. Integrated Matrix Concentration Over Time. Unlike the first
hree plots in 5.1.2.1 –5.1.2.3 , Fig. 5 illustrates an integrated quantity
ver time, namely, the integrated matrix concentration ∫Ω3 , 3 

𝜙3 𝑐 3 d 𝑥 .
orrespondingly, all curves appear much smoother than above. Over
he three refinement levels, most methods again exhibit decreasing dif-
erences between each other. Remarkably, the UiB-TPFA shows a pro-
ounced underestimation that increases over time. This can be explained
y the inconsistency of the employed two-point flux approximation on
he tetrahedral grids. Additionally, the NCU_TW-Hybrid_FEM and
THZ_USI-FEM_LM again exhibit larger differences. 

.1.2.5. Integrated Fracture Concentration Over Time. Analogously, the
ntegrated fracture concentration ∫Ω2 

𝜀 2 𝜙2 𝑐 2 d 𝑥 for each time-step is vi-
ualized in Fig. 6 . The behavior of the curves is generally different
rom that reported in Section 5.1.2.4 , as the fracture fills up com-
letely before the final simulation time. Here, the UiB-TPFA is in
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Fig. 4. Case 1 of Section 5.1 . On the top, concentration c 2 within the fracture, at the final simulation time, along the line (0m , 100m , 80m) − (100m , 0m , 20m) for three 

refinements (coarse to fine). On the bottom, the deviations 𝜎[90] 
𝑐 2 

and 𝜎[10] 
𝑐 2 

are illustrated, as defined in (16) . Here, the median 𝑐 [50] 2 of the solutions on the finest grid 

is used as the reference solution 𝑐 ref 2 . Results of Section 5.1.2.3 . 
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ine with the other methods whereas the NCU_TW-Hybrid_FEM and
THZ_USI-FEM_LM both deviate from the majority. 

.1.2.6. Concentration Flux Across the Outlet Over Time. Finally, Fig. 7
epicts the integrated concentration flux across the outlet boundary over
ime. Compared to the results in Section 5.1.2.5 , the agreement be-
ween the methods appears to be poorer. In particular, the two-point
ux approximation of the UiB-TPFA results in an underestimation
imilar to that reported in 5.1.2.4 . Again, ETHZ_USI-FEM_LM and
CU_TW-Hybrid_FEM yield considerably different results at all re-
nement levels. 

.1.2.7. Computational Cost. Indicators for the computational costs as-
ociated with the different methods are presented in Table A.7 . Most
ethods satisfy the prescribed numbers of elements. The most notable

xception is given by the NCU_TW-Hybrid_FEM , where six to ten
imes as many tetrahedral elements have been employed, to compen-
ate for the fact that the degrees of freedom are associated with the
ertices. The number of vertices are in line with the prescribed cell
umbers. The relations of the number of degrees of freedom to the
umber of cells vary considerably between the different schemes, re-
ecting the characteristics from Table 2 . The lowest of such numbers
re for the purely head- and vertex-based schemes on tetrahedra for
he NCU_TW-Hybrid_FEM and DTU-FEM_COMSOL , while the high-
st ones result from the schemes that have head and velocity values as
egrees of freedom. Additionally, the ratios of the number of nonzero
ntries to the number of degrees of freedom exhibit a large variabil-
ty, ranging from approximately 5 (TPFA on tetrahedrons) to 30 (MPFA
chemes with only head degrees of freedom). 

.2. Case 2: Regular fracture network 

.2.1. Description 

The second benchmark is a three-dimensional analog of the two-
imensional test case 4.1 from the benchmark study ( Flemisch et al.,
018 ). The domain is given by the unit cube Ω = (0m , 1m) 3 and contains
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Fig. 5. Case 1 of Section 5.1 . Integrated matrix concentration ∫Ω3 , 3 
𝜙3 𝑐 3 d 𝑥 for three refinements (coarse to fine). Results of Section 5.1.2.4 . 

Fig. 6. Case 1 of Section 5.1 . Integrated fracture concentration ∫Ω2 
𝜀 2 𝜙2 𝑐 2 d 𝑥 over time for three refinements (coarse to fine). Results of Section 5.1.2.5 . 
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Fig. 7. Case 1 of Section 5.1 . Integrated flux of c across the outlet boundary over time for three refinements (coarse to fine). Results of Section 5.1.2.6 . 

Fig. 8. Representation of the domain ( Ω3 = (0m , 1m) 3 ) and 

the fractures for Case 2 of Section 5.2 . The inlet and out- 

let boundaries are colored in blue and purple, respectively, 

and on the right side, the permeability distributions among 

Ω3 and Ω2 are illustrated. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred 

to the web version of this article.) 
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 regularly oriented fractures, as illustrated in Fig. 8 . The boundary 𝜕Ω
s decomposed into three parts, each corresponding to a chosen bound-
ry condition (see Fig. 8 ). First, 𝜕Ωℎ = {( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕Ω ∶ 𝑥, 𝑦, 𝑧 > 0 . 875m}
s the part of the boundary where ℎ = 1m . Second, a flux boundary
ondition is set on 𝜕Ωin = {( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕Ω ∶ 𝑥, 𝑦, 𝑧 < 0 . 25m} by imposing
 = −1m∕s . On the remainder of the boundary of Ω, no-flow conditions
re imposed. 

Two variants of the test case are considered: Case 2.1 has highly
onductive fractures and Case 2.2 has blocking fractures. In both cases,
ifferent hydraulic conductivities are prescribed in the following matrix
ubregions: 

3 , 0 = Ω3 ⧵Ω3 , 1 

3 , 1 = {( 𝑥, 𝑦, 𝑧 ) ∈ Ω3 ∶ 𝑥 > 0 . 5m ∩ 𝑦 < 0 . 5m} 

∪{( 𝑥, 𝑦, 𝑧 ) ∈ Ω3 ∶ 𝑥 > 0 . 75m ∩ 0 . 5m < 𝑦 < 0 . 75m ∩ 𝑧 > 0 . 5m} 

∪{( 𝑥, 𝑦, 𝑧 ) ∈ Ω3 ∶ 0 . 625m < 𝑥 < 0 . 75m ∩ 0 . 5m 

< 𝑦 < 0 . 625m ∩ 0 . 5m < 𝑧 < 0 . 75m} . 
he right part of Fig. 8 illustrates these regions. A complete overview of
he parameters used in this test case is given in Table 4 . 

Finally, for the transport problem, a unitary concentration is imposed
t the inflow boundary 𝜕Ωin . 

.2.2. Results 

The results were collected for a sequence of 3 simulations by dis-
retizing the 3d domain using approximately 500, 4k, and 32k cells.
he number of cells and degrees of freedom used by the participating
ethods are reported in Table A.8 . In the following, results are discussed

n the basis of line profiles of the hydraulic head in the 3d matrix as well
s plots of the average concentrations within specified subregions of the
d matrix. 

.2.2.1. Hydraulic Head Over Line. Fig. 9 shows the hydraulic head h 3 
lotted along the diagonal line segment (0m, 0m, 0m)-(1m, 1m, 1m)
or all grid refinements and for both Case 2.1 and Case 2.2. In the case
f conductive fractures the spread and the differences to the reference
olution decrease significantly upon grid refinement, although some no-
iceable differences still prevail for the finest grid. 
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Table 4 

Parameters used in Case 2 of Section 5.2 . 

Case 2.1 Case 2.2 

Matrix hydraulic conductivity 𝐾 3 |Ω3 , 0 
𝑰 m/s 𝑰 m/s 

Matrix hydraulic conductivity 𝐾 3 |Ω3 , 1 
1 × 10 −1 𝑰 m/s 1 × 10 −1 𝑰 m/s 

Fracture effective tangential hydraulic conductivity K 2 𝑰 m 

2 /s 1 × 10 −8 𝑰 m 

2 /s 

Fracture effective normal hydraulic conductivity 𝜅2 2 × 10 8 1/s 2 1/s 

Intersection effective tangential hydraulic conductivity K 1 1 × 10 −4 m 

3 /s 1 × 10 −12 m 

3 /s 

Intersection effective normal hydraulic conductivity 𝜅1 2 × 10 4 m/s 2 × 10 −4 m/s 

Intersection effective normal hydraulic conductivity 𝜅0 2 m 

2 /s 2 × 10 −8 m 

2 /s 

Matrix porosity 𝜙3 1 × 10 −1 1 × 10 −1 
Fracture porosity 𝜙2 9 × 10 −1 1 × 10 −2 
Intersection porosity 𝜙1 9 × 10 −1 1 × 10 −2 
Fracture cross-sectional length 𝜖2 1 × 10 −4 m 1 × 10 −4 m 

Intersection cross-sectional area 𝜖1 1 × 10 −8 m 

2 1 × 10 −8 m 

2 

Intersection cross-sectional volume 𝜖0 1 × 10 −12 m 

3 1 × 10 −12 m 

3 

Total simulation time 2 . 5 × 10 −1 s 

Time-step Δt 2 . 5 × 10 −3 s 

Fig. 9. Case 2 of Section 5.2 . Plots of the hydraulic head h 3 along the line (0m, 0m, 0m) - (1m, 1m, 1m) for the different refinement levels (grid refinement increases 

from left to right) for the case of conductive fractures (Case 2.1, upper row) and blocking fractures (Case 2.2, lower row). The reference was computed with the 

USTUTT-MPFA scheme on a refined grid with 1,046,566 cells. Results of Section 5.2.2.1 . 
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Table 5 

Parameters used in Case 3 of Section 5.3 . 

Matrix hydraulic conductivity K 3 𝑰 m/s 

Fracture effective tangential hydraulic conductivity K 2 1 × 10 2 𝑰 m 

3 /s 

Fracture effective normal hydraulic conductivity 𝜅2 2 × 10 6 1/s 

Intersection effective tangential hydraulic conductivity K 1 1 m 

2 /s 

Intersection effective normal hydraulic conductivity 𝜅1 2 × 10 4 m/s 

Matrix porosity 𝜙3 2 × 10 −1 
Fracture porosity 𝜙2 2 × 10 −1 
Intersection effective porosity 𝜙1 2 × 10 −1 
Fracture cross-sectional length 𝜖2 1 × 10 −2 m 

Intersection cross-sectional area 𝜖1 1 × 10 −4 m 

2 

Total simulation time 1 × 10 0 s 

Time-step Δt 1 × 10 −2 s 
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In the case of blocking fractures, the highest discrepancies are
hown by the schemes that assume continuity of the hydraulic head
cross the fractures. As expected, these methods cannot capture the
ump in the hydraulic head present in this test case. On the other
and, the remaining schemes approach the reference solution. The
NICE_UNIGE-VAG_Disc and the UNIL_USI-FE_AMR_AFC pro-
uce slightly lower and the UNICAMP-Hybrid_Hdiv scheme slightly
igher hydraulic heads, but the deviations tend to diminish with increas-
ng grid refinement. 

The UNICE_UNIGE-VAG_Cont and UNICE_UNIGE-VAG_
isc methods incorporate Dirichlet boundary conditions on the
ertices rather than on faces. This may explain, in part, the deviations
n hydraulic head observed on coarse meshes for these methods. As
xpected, these differences decrease with mesh refinement. For the
NIL_USI-FE_AMR_AFC method, the differences might come from

he representation of the fractures, which have the same spatial dimen-
ion as the background matrix. In particular, each fracture consists of a
ayer of elements that is refined at least twice by using adaptive mesh
efinement. 

.2.2.2. Mean Matrix Concentration Over Time. The second comparison
n Case 2 concerns the solution of the transport equation over time.
hese solutions are computed only on the second level of mesh refine-
ent, i.e., using approximately 4000 cells. For the simulation of the

ransport model, the upwind scheme is employed for all methods ex-
ept UNIL_USI-FE_AMR_AFC and ETHZ_USI-FEM_LM , which em-
loy a finite element discretization with an algebraic flux correction
uzmin et al. (2012) . 

The top of Fig. 10 depicts the temporal evolution of the mean tracer
oncentrations in three matrix regions for the case of highly conduc-
ive fractures. These regions were selected to form a representative
llustration of the spread between the schemes. It can be seen that
he majority of the schemes produce rather low concentrations in the
rst region, on the order of 2.5% at the final simulation time. In con-
rast, the ETHZ_USI-FEM_LM and the UNIL_USI-FE_AMR_AFC
chemes produce significantly higher concentrations with values above
0% at the end of the simulation. In general, the temporal evolution
f the concentrations in these three regions agrees very well among
he majority of participating schemes, while the ETHZ_USI-FEM_LM
nd the UNIL_USI-FE_AMR_AFC schemes show significant devi-
tions. These might be related to the flow discretization methods,
ut could also be affected by the different discretization that is em-
loyed for the transport discretization related to these methods, and,
or UNIL_USI-FE_AMR_AFC , also the underlying equi-dimensional
odel. 

For the case of blocking fractures, the concentrations in the same
atrix regions are illustrated in the bottom row of Fig. 10 . In general,
 larger spread of the computed concentrations can be observed. For
he first region, the schemes that assume continuity of the hydraulic
ead produce significantly lower concentrations, while the remaining
chemes produce solutions that agree rather well. However, for the sec-
nd and third regions, the concentrations at the final simulation time
how a wide spread among all participating schemes. 

As a general trend, it can be observed that the differences in com-
uted concentrations increase with time. Additionally, differences in-
rease with the regions’ distance from the inflow boundary. As expected,
or the case of conductive fractures, the differences are smaller than in
he case of blocking fractures. 

.3. Case 3: Network with small features 

.3.1. Description 

This test case is designed to probe accuracy in the presence of small
eometric features, which may cause trouble for conforming meshing
trategies. The domain is the box Ω = (0m , 1m) × (0m , 2 . 25m) × (0m , 1m) ,
ontaining eight fractures (see Fig. 11 ). 
The inlet and outlet boundaries are defined as follows: 

𝜕Ω𝑁 

= 𝜕Ω ⧵
(
𝜕Ωin ∪ 𝜕Ωout 

)
𝜕Ωin = ( 0m , 1m ) × { 0m } × ( 1∕3m , 2∕3m ) 
𝜕Ωout = 𝜕 Ωout , 0 ∪ 𝜕 Ωout , 1 

Ωout , 0 = ( 0m , 1m ) × { 2 . 25m } × ( 0m , 1∕3m ) 
Ωout , 1 = ( 0m , 1m ) × { 2 . 25m } × ( 2∕3m , 1m ) 

he boundary conditions for flow are zero Dirichlet conditions on 𝜕Ωout 

nd uniform unit inflow on 𝜕Ωin , so that ∫
𝜕Ωin 

𝐮 3 ⋅ 𝐧 dS = −1∕3m 

2 ∕s , and
ero Neumann conditions on 𝜕ΩN . For the transport problem, the initial
ondition is zero in Ω, and the boundary condition is a unit concentra-
ion at 𝜕Ωin . A complete overview of the parameters used in Case 3 is
iven in Table 5 . 

.3.2. Results 

Similar to the previous cases, the methods are compared on the ba-
is of a) the hydraulic head of the matrix domain along two lines, b)
he integrated fracture concentration over time, c) the fluxes out of the
omain and d) computational cost. Two different simulations with ap-
roximately 30k and 150k cells for the 3d domain were performed. It
as seen as infeasible to include one more level of refinement for all
ethods. However, refined versions of the USTUTT-MPFA with up to

pproximately 10 6 matrix cells were produced. At this stage, there were
o noticeable differences between solutions on different grids, and the
nest solution was included as a reference solution. 

.3.2.1. Hydraulic Head Over Line. Fig. 12 shows the profile of the
ydraulic head h 3 in the matrix along the line (0 . 5m , 1 . 1m , 0m) −
0 . 5m , 1 . 1m , 1m) . This shows considerable differences between the
ethods for both refinement levels. However, the agreement is

etter for the second refinement level, where most of the meth-
ds are within a relative hydraulic head range of approximately
0%. The UNICE_UNIGE-VAG_Disc , UNICE_UNIGE-VAG_Cont ,
TU-FEM_COMSOL , and UNIL_USI-FE_AMR_AFC methods show

he highest discrepancies in these plots, but the deviation from the ref-
rence solution decreases significantly with higher refinement. The sig-
ificant difference between the refinements may indicate that the small
eatures of the fracture network geometry are not adequately resolved,
t least not by the coarser grids. This is in line with the purpose of the
est case. 

.3.2.2. Mean Fracture Concentration Over Time. Data were reported
or the integrated concentration 𝑐 2 = ∫Ω2 ,𝑖 

𝑐 2 ∕ |Ω2 ,𝑖 | on each fracture i

hroughout the simulation. There is a general agreement between the
ethods, with the method of ETHZ_USI-FEM_LM showing some de-

iations for some of the fractures. As an example, Fig. 13 shows the plots
or both refinement levels for fracture number 3, demonstrating limited
ifference between the refinement levels. 
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Fig. 10. Case 2 of Section 5.2 . On the top, temporal evolution of the average tracer concentration in matrix regions 1, 10 and 11 (from left to right) for the case of 

conductive fractures (Case 2.1). On the bottom, temporal evolution of the average tracer concentration in the matrix regions 1, 10 and 11 (from left to right) for the 

case of blocking fractures (Case 2.2). Results of Section 5.2.2.2 . 

Fig. 11. Representation of the fractures and the outline of 

the domain for Case 3 of Section 5.3 . 
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Fig. 12. Case 3 of Section 5.3 . Hydraulic head h 3 in the matrix over the line (0 . 5m , 1 . 1m , 0m) − (0 . 5m , 1 . 1m , 1m) for the coarse (left) and fine (right) grid. The solid 

black line shows the solution obtained with the USTUTT-MPFA scheme on a grid with approximately 10 6 matrix cells. Results of Section 5.3.2.1 . 

Fig. 13. Case 3 of Section 5.3 . Mean concentration 

within fracture number 3 throughout the simulation time 

for the coarse (left) and fine (right) grid. Results of 

Section 5.3.2.2 . 
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.3.2.3. Boundary Fluxes. The total outflow 𝑢 𝑜𝑢𝑡 = ∫
𝜕Ω𝑜𝑢𝑡 

𝒖 3 ⋅ 𝒏 𝑑𝑆 and

he proportion exiting over 𝜕Ωout ,0 , i.e., 𝑟 𝑜𝑢𝑡 = ∫
𝜕Ω𝑜𝑢𝑡, 0 

𝒖 3 ⋅ 𝒏 𝑑𝑆∕ 𝑢 𝑜𝑢𝑡 ,
re shown in Fig. 14 . When compared to the prescribed inflow of
1/3m 

3 /s, the 𝑢 𝑜𝑢𝑡 values reveal a small lack of volume conservation
or ETHZ_USI-FEM_LM , but the method improves for the finer grid.
he ratio r out provides an indication of whether the flux fields agree.
he ratios generally agree well with the refined USTUTT-MPFA , ex-
ept for the ETHZ_USI-FEM_LM method, which does not approach
he reference value for the finest grid. 

.3.2.4. Computational Cost. Based on the data presented in Table A.9 ,
ote that the UNIL_USI-FE_AMR_AFC applies 68k and 203k cells
or the cases where 30k and 150k cells were prescribed, respectively.
he rest of the methods are well within 10% of the prescribed values.
s for the other test cases, there are significant variations in the number
f degrees of freedom and nonzero matrix entries related to the design
f the methods. 

.4. Case 4: Field case 

.4.1. Description 

The geometry of the fourth case is based on a postprocessed outcrop
rom the island of Algerøyna, outside Bergen, Norway, and is a subset
f the fracture network presented in Fumagalli et al. (2019) . From the
utcrop, 52 fractures were selected, extruded in the vertical direction
nd then cut by a bounding box. The resulting network has 106 frac-
ure intersections, and multiple fractures intersect the domain boundary.
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Fig. 14. Case 3 of Section 5.3 . Total outflux (left) and ratio exiting over 𝜕Ωout ,0 (right). The bar pairs correspond to the coarse and fine grid, while the reference 

solution is indicated by the horizontal line. Results of Section 5.3.2.3 . 

Fig. 15. Case 4 of Section 5.4 . Representation of the frac- 

tures and the outline of the domain. Inlet boundaries are 

shown in blue, outlets in purple. (For interpretation of the 

references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Table 6 

Parameter used in Case 4 of Section 5.4 . 

Matrix hydraulic conductivity K 3 𝑰 m/s 

Fracture effective tangential hydraulic conductivity K 2 1 × 10 2 𝑰 m 

3 /s 

Fracture effective normal hydraulic conductivity 𝜅2 2 × 10 6 1/s 

Intersection effective tangential hydraulic conductivity K 1 1 m 

2 /s 

Intersection effective normal hydraulic conductivity 𝜅1 2 × 10 4 m/s 

Matrix porosity 𝜙3 2 × 10 −1 
Fracture porosity 𝜙2 2 × 10 −1 
Intersection porosity 𝜙1 2 × 10 −1 
Fracture cross-sectional length 𝜖2 1 × 10 −2 m 

Intersection cross-sectional area 𝜖1 1 × 10 −4 m 

2 

Total simulation time 5 × 10 3 s 

Time-step Δt 5 × 10 1 s 
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he simulation domain is the box Ω = (−500m , 350m) × (100m , 1500m) ×
−100m , 500m) . The fracture geometry is depicted in Fig. 15 . 

The inlet and outlet boundaries are defined as follows: 

𝜕Ω𝑁 

= 𝜕Ω ⧵
(
𝜕Ωin ∪ 𝜕Ωout 

)
, 

𝜕Ωin = 𝜕 Ωin , 0 ∪ 𝜕 Ωin , 1 , 𝜕 Ωout = 𝜕 Ωout , 0 ∪ 𝜕 Ωout , 1 , 

𝜕Ωin , 0 = ( −500m , −200m ) × { 1500m } × ( 300m , 500m ) , 

𝜕Ωin , 1 = { −500m } × ( 1200m , 1500m ) × ( 300m , 500m ) , 

Ωout , 0 = { −500m } × ( 100m , 400m ) × ( −100m , 100m ) , 

Ωout , 1 = { 350m } × ( 100m , 400m ) × ( −100m , 100m ) . 

he boundary conditions for flow are zero Dirichlet conditions on 𝜕Ωout 

nd uniform unit inflow on 𝜕Ωin , so that ∫
𝜕Ωin 

𝐮 3 ⋅ 𝐧 dS = −1 . 2 𝑒 5m 

3 ∕s , and
ero Neumann conditions on 𝜕ΩN . For the transport problem, the initial
ondition is zero in Ω, and the boundary condition is a unit concentra-
ion at 𝜕Ωin . The parameters for conductivity, porosity and aperture are
iven in Table 6 , as is the total simulation time and time-step size. 

Because of the complex network geometry, grid refinement studies
ere considered infeasible and the benchmark specified the usage of a

ingle grid. A Gmsh ( Geuzaine and Remacle, 2009 ) configuration file
as provided to assist participants with geometry processing and mesh-

ng. The use of this predefined grid was optional, but the number of 3d
ells should be approximately 260k. 
.4.2. Results 

Results were reported for 14 schemes. The two methods that partic-
pated in Case 3, which is closest in geometric complexity, but not in
ase 4, are INM-EDFM and UNIL_USI-FE_AMR_AFC . The partici-
ating methods are compared in terms of a) hydraulic head of the ma-
rix domain along two lines, b) time series of concentrations in selected
ractures and c) computational cost. 
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Fig. 16. Case 4 of Section 5.4 . Hydraulic head profiles across the domain. Left: Profile from outlet 𝜕Ωout ,0 towards the opposite corner. Right: Profile from outlet 

𝜕 Ωout ,1 towards 𝜕 Ωin . On the bottom, the deviations 𝜎[90] 
ℎ 3 

and 𝜎[10] 
ℎ 3 

are illustrated, as defined in (16) . Here, the median ℎ [50] 3 of the solutions on the finest grid is used 

as the reference solution ℎ ref 3 . Results of Section 5.4.2.1 . 

5  

t  

B  

h  

s  

d  

a  

s  

a  

h  

t  

o  

h  

m  

1  

i

5  

b  

g  

e  

4  

p  

m  

a

5  

p  

t  

a  

D  

n  

i  

p  

u

6

 

F  

S

 

.4.2.1. Hydraulic Head. Fig. 16 shows the hydraulic head along the
wo specified lines, together with the spread of the reported results.
oth lines start in points at the outflow boundaries where the hydraulic
ead is set to 0; the first line ends far away from the inlet, while the
econd ends at the inlet boundary. For the first line there are noticeable
eviations for some of the solutions: The UiB-TPFA scheme predicts
 significantly higher hydraulic head drop, likely caused by the incon-
istency of the scheme. Conversely, the UNICE_UNIGE-VAG_Disc
nd UNICE_UNIGE-VAG_Cont methods underestimate the drop in
ydraulic head compared to the average of the reported results, while
here is only minor disagreement among the other methods. On the sec-
nd line, the UiB-TPFA scheme overestimates the drop in hydraulic
ead over the domain, while the other methods are in very good agree-
ent. The average spread 𝜎ℎ 3 

calculated according to (16) of around
5% is within a reasonable range, considering the geometrical complex-
ty of the fracture network. 

.4.2.2. Concentration Plots. The quality of the flux field is measured
y the time series of average concentrations in the fracture planes, with
ood agreement among most of the methods. Fig. 17 shows the time
volution of concentration for three of the fractures, numbers 15, 45 and
8, which show the largest differences between the methods. The results
roduced by the ETHZ_USI-FEM_LM deviate slightly from the other
ethods on two of these figures, while UNICE_UNIGE-VAG_Disc

lso shows a slight deviation for one of the figures. 

.4.2.3. Computational Cost. Measures for the computational cost of the
articipating methods are given in Table A.10 . Most of the groups used
he provided mesh file. The UNICAMP-Hybrid_Hdiv method used
 grid with only approximately 40% of the cells in the provided grid.
TU-FEM_COMSOL employed almost seven times more 3d cells for its
odal-based method, yielding a number of degrees of freedom that is
n the lower half with respect to all participating methods. As in the
revious test cases, there are significant differences in the number of
nknowns and nonzero matrix elements among the methods. 

. Summary of results 

The performance of each method for all test cases is indicated in
ig. 18 . The main points emerging from the discussion of the results in
ection 5 are: 

1. Of the 17 schemes that participated in at least one of the test cases,
14 presented simulation results on all four cases. 
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Fig. 17. Case 4 of Section 5.4 . Mean concentration over time in three selected fractures with identification 15, 45, and 48. Results of Section 5.4.2.2 . 

Fig. 18. Summary of the performance of all methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Cases 3 and 4 pose the highest demands on the methods in terms
of geometrical complexity. Taken together, the cases point to the
challenges inherent to DFM simulations and indicate the methods’
robustness in this respect. 

3. Although the prescribed numbers of cells was adhered to for most of
the methods, the numbers of degrees of freedom and matrix density
reported in Tables A.7 through A.10 vary significantly, indicating
differences in computational cost. 

4. Not unexpectedly, fractures that act as barriers cause trouble for the
methods that assume a continuous hydraulic head over the fracture,
as seen in Case 2. Blocking fractures are outside the intended range
of validity for these models, and alternative approaches should be
sought for those cases. 

5. Out of the 17 schemes, one is not mass conservative. There are no
signs of the lack of conservation in the reported concentration fields,
likely due to successful postprocessing of the flux fields. Neverthe-
less, for most of the test cases, the concentration fields reported
by the nonconforming mesh method ETHZ_USI-FEM_LM deviate
from the other reported results. 

6. The well-known inconsistency of the widely used two-point flux
approximation is manifested in the underestimation of permeabil-
ity in the hydraulic head results reported for UiB-TPFA . The
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USTUTT-TPFA_Circ method circumvents this inconsistency by
locating the hydraulic head values at the circumcenters of the tetra-
hedrons. However, this poses additional restrictions on the mesh. 

The observations herein can to some degree be used as guidance
hen choosing discretization schemes for practical simulations, with the
 methods that showed no deviations on any of the benchmark methods
eing natural candidates. Nevertheless, said observations should not be
ncritically transferred to other geometries, problem setups and quan-
ities of interest. The choice of discretization method can also be influ-
nced by aspects not discussed in this benchmark, such as the avail-
bility of efficient linear solvers and the ease of implementation. More-
ver, the participating methods obviously don’t cover the whole range
f available DFM discretization approaches. 

. Conclusion and outlook 

This paper has presented a set of benchmark cases for the simulation
f flow in three-dimensional fractured porous media, assuming Darcy
ow in both matrix and fractures. The suite consists of one case with
 single fracture, one case with 9 fractures and setups with conductive
nd blocking fractures, one case with 8 fractures designed to emphasize
omplex geometric details, and finally a case with 52 fractures, based on
 real fracture network. The metrics employed to measure discretization
erformance are a) the profiles of the hydraulic head, b) the quality of
he flux field measured by simulation of passive tracers and c) the com-
utational cost as indicated by the number of degrees of freedom and
atrix sparsity pattern. A total of 17 methods participated in the bench-
ark. While these can’t include all discretization schemes proposed for
ow in fractured porous media, they nevertheless cover a wide range of
umerical approaches. 

The benchmark uncovered important differences between the meth-
ds, with 10 methods showing significant deviations. While the obser-
ations and discussions herein offer some guidance to identifying well-
uited methods for practical simulations, such extrapolation requires
are and consideration of the particularities of the simulation in ques-
ion. Moreover, the high number of participating methods and research
roups proves that simulations in 3d media are fully feasible for a wide
ange of schemes and research codes. For further development of dis-
retization methods, 3d cases should therefore become a natural com-
lement to the more traditional 2d simulation results. 

To advance the field of numerical methods for physics-based mod-
ls, there is a need both for creative development of new mathematical
odels and numerical methods and for rigorous testing and comparison.
he current paper presents a contribution to the latter. The provided test
ases and data provides researchers with a suite of problems to bench-
ark methods and implementations for single-phase flow in fractured
orous media. With this, researchers in the field are invited to utilize
he test cases, results and data from the current study in development of
ew methods. Further, with recent developments of models and numer-
cal methods for more complex and coupled physics in fractured porous
edia, the present work can hopefully also serve as inspiration for de-

elopment of additional benchmark studies in the future. 
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ppendix A. Measures of Computational Cost 

This section provides three indicators related to computational cost:
he number of cells (0d-3d), the number of degrees of freedom and
he number of nonzero matrix entries. There is one table for each test
ase with data of all the participating methods at all refinement levels.
or the equi-dimensional UNIL_USI-FE_AMR_AFC method, the cells
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Table A.7 

Computational cost indicators for Case 1. 

Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz 

UiB-TPFA 
0 0 0 112 1,022 1,358 6,008 

1 0 0 756 9,438 11,706 53,904 

2 0 0 4,576 98,311 112,039 533,547 

UiB-MPFA 
0 0 0 112 1,022 1,358 62,200 

1 0 0 756 9,438 11,706 672,454 

2 0 0 4,576 98,311 112,039 7,481,237 

UiB-MVEM 
0 0 0 112 1,022 3,905 24,435 

1 0 0 756 9,438 33,651 222,927 

2 0 0 4,576 98,311 326,561 2,259,630 

UiB-RT0 
0 0 0 112 1,022 3,905 24,435 

1 0 0 756 9,438 33,651 222,927 

2 0 0 4,576 98,311 326,561 2,259,623 

USTUTT-MPFA 
0 0 0 100 1,000 1,100 22,626 

1 0 0 400 9,600 10,000 227,354 

2 0 0 3,600 108,000 111,600 2,731,104 

USTUTT-TPFA_Circ 
0 0 0 193 3,400 3,593 17,373 

1 0 0 448 9,085 9,533 46,505 

2 0 0 2,582 104,578 107,160 530,224 

LANL-MFD 
0 0 0 100 1,000 4,400 51,720 

1 0 0 400 8,000 34,840 390,840 

2 0 0 1,600 64,000 267,280 3,035,280 

NCU_TW-Hybrid_FEM 
0 0 0 625 9,572 1,840 25,539 

1 0 0 2,453 65,934 11,537 169,937 

2 0 0 22,262 638,332 104,581 1,603,776 

UNICE_UNIGE-VAG_Cont 
0 0 0 81 1,134 1,511 34,085 

1 0 0 361 10,108 11,721 288,933 

2 0 0 1,849 103,544 111,233 2,877,105 

UNICE_UNIGE-HFV_Cont 
0 0 0 81 1,134 3,870 39,060 

1 0 0 361 10,108 32,319 340,879 

2 0 0 1,849 103,544 320,221 3,454,921 

UNICE_UNIGE-VAG_Disc 
0 0 0 81 1,134 1,943 43,519 

1 0 0 361 10,108 13,483 328,867 

2 0 0 1,849 103,544 119,771 3,073,987 

UNICE_UNIGE-HFV_Disc 
0 0 0 81 1,134 4,077 40,041 

1 0 0 361 10,108 33,231 345,135 

2 0 0 1,849 103,544 324,779 3,475,475 

ETHZ_USI-FEM_LM 
0 0 0 120 1,000 1,617 38,834 

1 0 0 480 10,115 12,714 335,023 

2 0 0 1,920 93,150 103,470 2,775,270 

UNICAMP-Hybrid_Hdiv 
0 0 0 526 1,054 5,968 11,4924 

1 0 0 2,884 10,589 62,164 1,249,536 

2 0 0 15,052 100,273 604,019 12,448,629 

UNIL_USI-FE_AMR_AFC 
0 0 0 720 540 1,857 49,417 

1 0 0 10,880 38,180 56,947 1,545,935 

2 0 0 39,520 108,671 579,837 16,878,449 

INM-EDFM 
0 0 0 140 1,000 1,140 7666 

1 0 0 720 10,000 10,720 73,364 

2 0 0 3,800 100,000 103,800 719,292 

DTU-FEM_COMSOL 
0 0 0 0 1,006 259 3,082 

1 0 0 0 10,091 1,931 26,771 

2 0 0 0 100,014 17,850 258,202 
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Table A.8 

Computational cost indicators for Case 2. 

Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz 

UiB-TPFA 
0 27 90 252 512 1,820 8,253 

1 27 180 1,008 4,096 8,074 43,513 

2 27 360 4,032 32,768 46,622 281,717 

UiB-MPFA 
0 27 90 252 512 1,820 8,609 

1 27 180 1,008 4,096 8,074 44,984 

2 27 360 4,032 32,768 46,622 287,565 

UiB-MVEM 
0 27 90 252 512 4,706 20,795 

1 27 180 1,008 4,096 24,862 118,620 

2 27 360 4,032 32,768 161,414 806,000 

UiB-RT0 
0 27 72 226 612 3,970 21,687 

1 27 159 1,192 5,339 24,727 153,263 

2 27 270 4,536 39,157 148,245 980,955 

USTUTT-MPFA 
0 0 0 284 843 1,127 42,060 

1 0 0 686 3,076 3,762 207,260 

2 0 0 4,578 38,877 43,455 2,918,322 

USTUTT-TPFA_Circ 
0 0 0 312 978 1,290 7,488 

1 0 0 1,206 4,286 5,492 31,402 

2 0 0 4,578 38,877 43,455 226,201 

LANL-MFD 
0 0 0 434 628 2,758 23,246 

1 0 0 1,736 5,024 18,610 150,314 

2 0 0 6,944 40,192 134,812 1,062,572 

UNICE_UNIGE-VAG_Cont 
0 0 0 252 512 974 22,324 

1 0 0 1,008 4,096 5,902 143,470 

2 0 0 4,032 32,768 39,908 1,014,088 

UNICE_UNIGE-HFV_Cont 
0 0 0 252 512 2,223 22,599 

1 0 0 1,008 4,096 15,048 157,980 

2 0 0 4,032 32,768 109,368 1,172,592 

UNICE_UNIGE-VAG_Disc 
0 0 0 252 512 2,102 46,348 

1 0 0 1,008 4,096 10,223 238,891 

2 0 0 4,032 32,768 56,607 1,390,939 

UNICE_UNIGE-HFV_Disc 
0 0 0 252 512 2,730 24,138 

1 0 0 1,008 4,096 17,076 164,148 

2 0 0 4,032 32,768 117,480 1,197,288 

ETHZ_USI-FEM_LM 
0 0 0 1,212 512 3,159 67,183 

1 0 0 1,212 4,096 7,343 182,793 

2 0 0 1,212 32,768 38,367 1,036,960 

UNICAMP-Hybrid_Hdiv 
0 27 69 534 923 6,018 123,312 

1 27 90 1,896 3,912 23,988 479,322 

2 27 249 10,744 38,742 236,868 4,830,288 

UNIL_USI-FE_AMR_AFC 
0 1,331 2,787 6,513 1,745 16,283 410,491 

1 1,331 5,211 20,673 8,129 45,257 1,180,333 

2 1,331 10,059 72,033 47,553 161,805 4,274,281 

DTU-FEM_COMSOL 
0 0 0 0 550 129 1,561 

1 0 0 0 3,881 836 10,900 

2 0 0 0 32,147 6,060 84,954 
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Table A.9 

Computational cost indicators for Case 3. 

Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz 

UiB-TPFA 0 0 50 4,305 31,644 44,786 207,295 

1 0 86 13,731 138,446 180,024 849,349 

UiB-MPFA 0 0 50 4,305 31,644 44,786 2,596,061 

1 0 86 13,731 138,446 180,024 11,196,843 

UiB-MVEM 0 0 50 4,305 31,644 120,696 818,151 

1 0 86 13,731 138,446 496,032 3,438,098 

UiB-RT0 0 0 50 4,305 31,644 120,696 818,151 

1 0 86 13,731 138,446 496,032 3,438,098 

USTUTT-MPFA 0 0 0 4,321 31,942 36,263 2,459,195 

1 0 0 12,147 131,488 143,635 10,157,331 

USTUTT-TPFA_Circ 0 0 0 4,321 31,942 36,263 191,147 

1 0 0 12,147 131,488 143,635 745,375 

LANL-MFD 0 0 0 5,617 21,056 75,878 607,730 

1 0 0 22,468 168,448 555,887 4,367,379 

UNICE_UNIGE-VAG_Cont 0 0 0 4,321 31,870 10,213 130,781 

1 0 0 7,711 150,083 35,485 479,105 

UNICE_UNIGE-HFV_Cont 0 0 0 4,321 31,870 71,708 504,872 

1 0 0 7,711 150,083 319,175 2,206,691 

UNICE_UNIGE-VAG_Disc 0 0 0 4,321 31,870 23,302 400,876 

1 0 0 7,711 150,083 59,187 966,849 

UNICE_UNIGE-HFV_Disc 0 0 0 4,321 31,870 80,538 532,114 

1 0 0 7,711 150,083 335,599 2,259,971 

ETHZ_USI-FEM_LM 0 0 0 750 29,295 33,270 899,809 

1 0 0 3,000 150,930 163,430 4,421,700 

UNICAMP-Hybrid_Hdiv 0 0 38 5,580 24,351 153,519 3,180,847 

1 0 51 23,607 162,773 994,243 20,600,135 

UNIL_USI-FE_AMR_AFC 0 0 3,877 323,779 68,386 86,594 1,206,048 

1 0 3,877 323,779 547,088 148,993 2,202,947 

INM-EDFM 0 0 0 4,036 29,952 33,988 240,398 

1 0 0 10,732 149,760 160,492 1,133,364 

DTU-FEM_COMSOL 0 0 0 0 30,984 5,641 80,669 

1 0 0 0 150,524 30,379 469,447 

USTUTT-MPFA-refined 5 0 0 49,428 980,212 1,029,640 75,207,825 

Table A.10 

Computational cost indicators for Case 4. 

Method 0d cells 1d cells 2d cells 3d cells dofs nnz 

UiB-TPFA 0 1,601 52,618 259,409 424,703 1,950,313 

UiB-MPFA 0 1,601 52,618 259,409 424,703 22,953,336 

UiB-MVEM 0 1,601 52,618 259,409 1,082,740 7,342,691 

UiB-RT0 0 1,601 52,618 259,409 1,082,740 7,342,691 

USTUTT-MPFA 0 0 52,618 259,420 312,038 21,227,071 

USTUTT-TPFA_Circ 0 0 52,618 259,420 312,038 1,721,932 

LANL-MFD 0 0 52,070 260,417 783,158 7,953,396 

UNICE_UNIGE-VAG_Cont 0 0 52,070 260,431 95,930 1,237,714 

UNICE_UNIGE-HFV_Cont 0 0 52,070 260,431 600,561 4,349,901 

UNICE_UNIGE-VAG_Disc 0 0 52,070 260,431 252,326 4,497,980 

UNICE_UNIGE-HFV_Disc 0 0 52,070 260,431 704,813 4,663,105 

ETHZ_USI-FEM_LM 0 0 52,618 212,040 223,532 5,817,930 

UNICAMP-Hybrid_Hdiv 0 938 24,853 94,294 629,065 13,233,581 

DTU-FEM_COMSOL 0 0 0 1,860,063 319,489 4,709,565 



I. Berre, W.M. Boon, B. Flemisch et al. Advances in Water Resources 147 (2021) 103759 

l  

t  

o

S

 

t

R

A  

A  

 

A  

 

B  

 

B  

 

 

B  

 

 

 

B  

B  

 

B  

 

B  

 

 

B  

 

B  

B  

C  

 

D  

 

D  

 

E  

F  

 

 

F  

 

F  

 

G  

 

G
K  

 

 

K  

 

 

 

 

K  

 

K  

 

K  

K  

 

K  

 

L  

 

L  

 

L  

L  

M  

 

N  

 

N  

 

O  

 

 

R  

 

 

R  

 

S  

 

 

Z  

Z  

 

isted as “0d-2d cells ” are also three-dimensional cells that correspond to
he fractures ( “2d ”), intersections of fractures ( “1d ”) and intersections
f such intersections ( “0d ”). 
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