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A B S T R A C T

This paper analyses the accuracy of FE (Finite Element) modelling of concrete thin slabs, reinforced with GFRP
(Glass Fiber Reinforced Polymer) bars, under bending loading conditions. It considers two strategies of concrete/
bar interaction approach – direct and indirect. Indirect bond approach was combined with concrete tension stiff-
ening model, whereas the direct bond one employed plain concrete constitutive model. Apart from selection of
material and bond models, FE mesh sensitivity was examined. The efficiency of both bond modelling strategies
was proven for the slab of standard thickness (100 mm) failed due to concrete crushing, whereas direct bond
method was shown indispensable when simulating very thin slabs (40 mm) failed due to bar debonding.

1. Introduction

The intrinsic nature of RC (Reinforced Concrete) is primarily based
on the bond between concrete and reinforcing bars. The bond provides
transfer of forces from reinforcement to surrounding concrete. In addi-
tion, bond properties influence strength of laps and anchorages at ulti-
mate limit states, and crack widths and deflections at serviceability limit
states [1]. Therefore, it is considered as one of the most important issues
in RC design [2].

The effect of bond-slip on RC structural performance is usually ac-
counted for in two ways: direct and indirect. Former incorporates di-
rectly the bond-slip law into calculation, while later assumes perfect
bond hypothesis, which means no slipping occurrence between the bar
and the concrete. The simplification made by using a perfect bond is
usually overcome by implementing tension stiffening effect [3]. Tension
stiffening considers the capacity of concrete to carry tensile stresses be-
tween the cracks, which contributes to the global stiffness of RC struc-
ture and it is important especially for the behavior under service load-
ings [4].

Tension stiffening can be incorporated in design by modifying con-
crete post-cracking stress-strain response [5,6]. This so-called ‘load
sharing’ approach is very widely used, and different shapes of such ten-
sion-stiffening laws for concrete reinforced with steel bars are proposed
by many authors [7–12]. Instead, when bond-slip law is directly in-
corporated in design, the corresponding concrete post-cracking response
accounts only for the behavior of concrete material itself [13]. This
model describes the crack growth in concrete and it is characterized

by the tension softening behavior. Such models were proposed first by
Hillerborg et al. [14], based on the fictitious crack model, and by Bazant
and Oh [15], based on the crack band theory. Nowadays, frequently
used is the one adopted by fib MC (Model Code) in a form of post-crack-
ing stress-crack opening law [1,3].

Both approaches, direct and indirect, involve advantages and draw-
backs. Direct approach is by common sense preferable to be used, but it
includes difficulties in calculation and related time consumption. Indi-
rect approach is easier to be implemented, but it could result in output
inaccuracies. Parametric studies performed on RC members reinforced
with traditional steel bars [16] have shown the importance of direct
bond-slip inclusion into prediction of the behavior under static bending
loading.

The FRP (Fiber Reinforced Polymer) bars found their application
as a new type of reinforcement for concrete structures instead of tra-
ditionally used steel bars. The main advantages of FRP bars, over the
steel ones, are reflected in FRP’s noncorrosive nature, magnetic trans-
parency and high strength-to-weight ratio [17]. Not only for differ-
ent mechanical and physical characteristics of reinforcement, but also
for the different mechanisms involved in bond with concrete, FRP RC
design could be considered as a distinct research field. The bond of
FRP bars with concrete is still the subject of many research studies
[18–20]. Although the importance of bond action is highly emphasized
and the debonding is marked as one of the relevant failure modes in FRP
RC structures [21], in many studies the direct implementation is ne-
glected, and structure is modelled assuming perfect bond between con-
crete and FRP bar [22]. Debonding of FRP bars is marked as one of
the design checks [23], because FRP bar/concrete bond might be simi
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lar, but generally has weaker characteristics comparing to the bond
of concrete with steel bars [24]. This aspect becomes more relevant
considering the good durability of FRP material and, hence, the at-
tempt to minimize the concrete cover, concerning its role as a protec-
tive layer. However, small cover could affect the proper stress transfer
from FRP bar to concrete and special attention must be paid to it. Not
only debonding as a failure mode, but also bond-slip mechanism affects
the FRP RC structural response [24]. To account for the small concrete
cover, indirect bond method could be used if it considers the influence of
splitting cracks on tension stiffening law. While some studies are avail-
able for steel reinforced concrete members [5,25], up to the authors’
knowledge, there is no research about concrete splitting influence on
tension stiffening in FRP RC structures.

For the estimation of bond influence on FRP RC members, the direct
application of models developed for steel reinforcement was not rea-
sonable. Bischoff and Paixao modified the existing equation for tensile
response of cracked steel-reinforced concrete, to be applicable in both
steel and FRP RC design [26]. Using this research and the tension stiff-
ening law proposed by [27], Nour et al. [28] validated this concrete
model by the simulation of reinforced concrete members having differ-
ent layout and type of failure. Zhang and Lin [29] validated the same
tension stiffening model [27], by numerical simulation of steel- and
FRP-reinforced concrete beams, even with very coarse meshes. Tension
stiffening laws were obtained directly from GFRP and steel reinforced
beams, using an inverse analysis and considering shrinkage effects in
[30]. Derived concrete tensile stress-strain constitutive laws were im-
plemented in FE model and proved their adequacy by good agreement
with the experimental results [30].

Modelling strategy that implies direct inclusion of experimental
bond-slip law was validated by 3D FE model [31], in terms of ex-
perimental deformation and cracking behavior. Lin and Zhang devel-
oped composite beam FE that accounts directly for the bond-slip effect
[32], using the BPE (Eligehausen, Popov and Bertero) modified bond
stress-slip model [33]. The results comply with the experimental ones,
also at the final loading stage when bond slip occurs, which was less
accurately simulated with the perfect bond model. The important ad-
vantage of direct bond method was shown through simulation of flex-
ural tests of beams reinforced with smooth surface FRP bars. Due to the
significant amount of bars’ slippage, the proper modelling was possible
only by directly accounting for the bond-slip effect [24]. Jakubovskis
et al. [34] considered three different bond laws to simulate GFRP beam
flexural behavior: MC 2010, calibrated MC 2010 (based on bending
bond tests) and the one proposed by Shima et al. [35]. The authors
reported satisfactory results on prediction of cracking and deformation
states, but also the inability of the bond models to give accurate predic-
tions for all types of beams in the study. 2D FE model that involves the
experimental pull-out bond-slip law in predicting the flexural behavior
of GFRP RC slabs was developed in [36]. The study demonstrated bet-
ter agreement with the experimental load-deflection curve in the case

of direct inclusion of bond-slip law than when perfect bond is consid-
ered, whereas the latter one is sufficiently safe for estimation of the ulti-
mate load capacity of GFRP RC slabs.

As for the future research and tendencies of application of FRP bars
as concrete reinforcement, direct bond-slip method represents an impor-
tant approach to be considered for modelling and design. It is suitable to
attain a ductile behavior of FRP RC structures triggering the progressive
debonding between FRP bars and surrounding concrete under ultimate
loading conditions [37]. Furthermore, bond-slip becomes of consider-
able importance when these structures are exposed to high temperatures
[38,39].

The main focus of this study was to contribute to the existing knowl-
edge in the field by assessing the importance of including directly the
effect of bond-slip in FRP RC structures. Since debonding is marked as
one of the relevant failure modes, a bond model was implemented di-
rectly into the simulation of the structural behavior, allowing to consider
this additional important failure mechanism. Particularly, some of the
thin flexural members, subject of this study, failed in debonding caused
by concrete cover splitting. This type of failure was a consequence of
adopted small concrete cover.

This study presents a strategy for the numerical simulation of FRP
RC structural components, including debonding failure. The bond be-
havior was implemented in a 3D FE code [40] using cohesive finite ele-
ments. The damage initiation and development at the interface was sim-
ulated considering a damage model based on the secant modulus bond
degradation [41], assuming experimental data from eccentric pull-out
tests [42] (Section 2). The experimental test results of thin GFRP RC
members, quasi-statically loaded in flexure [43] (Section 3), were con-
sidered to assess the accuracy of the numerical modelling (Section 5).
Those were selected having a complete dataset as input of the numerical
analyses, which is not available in several other works in the literature.
The comparison of the experimental, design guidelines (Section 4) and
numerical outcomes was based on load-deflection curves, failure modes
and damage patterns (Section 6). Proposed strategy was shown valid
for predicting the FRP RC member flexural response, including debond-
ing failure mode.

2. Overview of the interface damage model

This study considers the relation between bond shear stress, rais-
ing due to the axial force in the bar, and the corresponding slip be-
tween bar and concrete. The bond shear stress-slip law was obtained
from pull-out tests and adopted to simulate the interaction between bar
and concrete in GFRP RC slabs. The bond deterioration effect was mod-
elled using a damage evolution approach as described in [41]. The
shear stress-slip curve of the interface was modelled assuming: 1) an
initial linear response up to the maximum bond shear stress ( ) – as-
cending part of the bond curve, 2) maximum of the bond curve as the
damage initiation criterion, and 3) damage evolution law based on the
post-peak branch of the bond curve (Fig. 1a). Bond curves with loaded-

Fig. 1. (a) Typical bond curve and (b) typical damage-slip curve, and the three steps of bond damage evolution approach.
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end slip of the pull-out tests were used. First step is considered as un-
damaged state of bond and it lasts until bond shear stress reaches its
maximum value, which is defined as a damage initiation criterion. Once
the damage initiation criterion occurs, third step begins and damage
propagation follows the adopted damage evolution law.

The damage evolution law was calibrated using the secant modulus
damage evolution model for setting the values of a scalar damage vari-
able (D). The variable D is estimated by the degradation of secant bond
stiffness according to Lemaitre-based damage model [44]. The values
of D range between 0 (denoting no damage) and 1 (denoting complete
damage) (Fig. 1b). In Fig. 1, and stand for slip at damage initiation
and slip at failure (complete damage), respectively. The degradation of
bond stiffness is quantified measuring the ratio of the secant bond stiff-
ness in the post-peak branch of bond curve ( ) and the initial bond
stiffness ( ) (Eq. (1)). Initial bond stiffness is defined considering the
maximum bond shear stress and the corresponding slip (
). The secant bond stiffness in post-peak curve is determined likewise:
the ratio of bond stress and the corresponding slip value (Fig. 2). The
damage initiation is triggered by the slip that corresponds to maximum
bond shear stress (Eq. (1)).

(1)

The bond shear stresses ( ) are subsequently calculated, depending
on the value of the damage variable D (Eq. (2)):

(2)

where is the bond stress component predicted by elastic bond
stress-slip relation without damage, considering the initial bond stiffness
( ) and the relevant slip ( ).

Fig. 2. Bond shear stress calculation based on the damage variable D: secant modu-
lus-based damage model.

The graphical interpretation of Eq. (2) is shown in Fig. 2, consider-
ing the hypothetical linear bond response and the correction factor (D,

) for damage evolution in the post-peak branch.
Present method implies phenomenological approach for simulating

bond behavior, as variable D encompasses all parameters responsible
for the bond deterioration, i.e. degradation of mechanical interlock, fric-
tional resistance and adhesion. Similar strategy for the evolution of bond
damage can be adopted for the bond stresses in the radial (normal) di-
rection ( ), when the corresponding bond normal stress-slip curves are
used. Due to the lack of relevant experimental data, present study does
not treat the evolution of bond damage in the normal direction.

3. Experimental results overview

In order to compare the two methods of bond consideration (indirect
and direct) in the numerical analysis of FRP RC members, the experi-
mental study of Schmitt and Pahn [43] was considered. It comprised
flexural testing of thin GFRP RC slabs, which are typically used as pre-
cast panels for pavement or façade panels, as well as the external lay-
ers of sandwich members. GFRP as non-corrosive reinforcement allows
maximal reduction of the concrete cover, which is particularly impor-
tant in case of such thin members. Three slabs were selected for the nu-
merical analysis to cover the complete range of thicknesses and failure
modes observed in [43]. Main characteristics of the selected slabs are
listed in Table 1.

All slabs had concrete cover of 10 mm, whereas their length and
width were 2200 mm and 300 mm, respectively. The slabs had supports
span of 2000 mm, with two overhangs of 100 mm. They were supported
by one fixed and one movable metallic roller. Three-point test had load
application point in the middle of the span, whereas four-point tests had
1200 mm distance between the loading points, with 400 mm of shear
span at each end (Fig. 3).

Slabs were only longitudinally reinforced, with GFRP Schöck Com-
BAR® bars of diameter 8 mm [45]. Concrete mechanical properties
were experimentally determined, and they were: 2.83 MPa, 37.7 MPa
and 23.6 GPa for tensile splitting strength, compressive strength and
modulus of elasticity, respectively.

The tests were displacement-controlled until slab failure, and the
load vs stroke displacement curves were considered for comparison
with numerical results. Stroke displacement corresponds to displace-
ment of a slab along load application line. As reported in [43], fail-
ure occurred in the slab V02 due to concrete compressive failure, while

Table 1
Selected slabs for numerical simulation. Thickness, reinforcement and experimental failure
load and mode [43].

ID

Slab
thickness
[mm]

Longitudinal
reinforcement

Test
setup

Failure
load
[kN] Failure mode

V02 100 3 Ø 8 mm 3-point
bending

26.9 Concrete
crushing

V03 60 2 Ø 8 mm 4-point
bending

13.9 Longitudinal
crack failure

V10 40 3 Ø 8 mm 4-point
bending

7.6 Longitudinal
crack failure

Fig. 3. GFRP RC thin slab test setup: 4-point bending.
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a shear crack occurred in the slabs V03 and V10, and was followed by a
longitudinal crack alongside reinforcement at the moment of failure.

4. Analytical predictive methods proposed by design guidelines

For the sake of comparison with numerical modelling, the selected
experimental tests were assessed by design guidelines, estimating the
type of failure and corresponding failure load. ACI440.1R-15 guidelines
[23], accounting for the debonding of FRP bars in flexure, were con-
sidered appropriate for this calculation. All slabs selected for this study
had reinforcement ratio bigger than the balanced one. Therefore, they
could theoretically fail in concrete crushing. Additionally, failure could
be consequence of bar debonding. For both failure modes, ACI440.1R-15
guidelines provide formulas for the calculation of normal stress in re-
inforcement necessary for the failure occurrence. For this initial cal-
culation, the maximum concrete compressive strain (εcu) was assumed
equal to 0.0035. Additionally, shear failure mode and corresponding
failure load were also controlled. Since shear strength of members with-
out shear reinforcement is significantly underestimated by ACI guide-
lines, CSA (Canadian Standards Association) S806-12 [46] and design
approach of Guadagnini et al. [47] were used for the calculation of
shear capacity [48]. The latter approach applied to Eurocode 2 rules
and included in fib bulletin 40 [4] was used. Relevant calculations are
presented in Table 2.

Considering the shear failure mode (Table 2), it seems that none
of the slabs was critical for shear. Analytical solutions predict concrete
crushing failure for slabs V02 and V10, while V03 is supposed to fail due
to debonding (Table 2). Analytical prediction is matching the experi-
mentally recorded failure modes in case of slabs V02 and V03 (Table
1).

5. FEM modelling strategy

The numerical simulation of experimental test results was performed
by the FEM (Finite Element Method) using the software Abaqus [40].
Constitutive model of the materials and the bar-concrete interface
model, as well as the discretization details, are summarized in this sec-
tion.

5.1. Material and interface modelling

5.1.1. Concrete constitutive model
Constitutive behavior of concrete was modelled using concrete dam-

age plasticity (CDP) model implemented in Abaqus [40]. CDP parame-
ters are adopted as follows: flow potential eccentricity , the ratio
of initial equibiaxial compressive yield stress to initial uniaxial compres-
sive yield stress , the ratio of the second stress invariant
on the tensile meridian to that on the compressive meridian ,
viscosity parameter [40]. The dilation angle was assumed to be
38° according to the concrete compressive strength [49]. Compressive
cylindrical strength of concrete is adopted as reported by experimental
measurements ( ), while the tensile strength is estimated
from experimental indirect tensile test measurements, namely the split-
ting tensile strength ( ). According to fib Model Code
1990, the conversion factor to obtain the mean axial tensile strength is
0.9, therefore [1]

Table 2
Failure load [kN] corresponding to relevant failure modes and standards (εcu = 0.0035).

ACI440.1R-15 CSA S806-12 fib (2007)

ID Concrete crushing Debonding Shear failure

V02 20.3 30.6 31.4 42.4
V03 15.8 13.9 17.5 24.4
V10 7.3 11.8 11.7 19.1

. Moreover, the effect of shrinkage on tensile strength (and behavior)
of concrete was considered and it will be explained subsequently along
with different concrete tensile models adopted. Poisson’s ratio of con-
crete was 0.2, whereas concrete modulus of elasticity ( ) was taken as
experimentally measured 23.6 GPa.

The CDP model of concrete allows visualization of damage assum-
ing that cracking initiates at points where the compressive (or tensile)
equivalent plastic strain is greater than zero. This is used for the repre-
sentation of damage pattern. The limit strain level, above which the con-
crete is considered completely cracked or crushed, was selected based on
the corresponding concrete models and the size of finite element mesh.
5.1.1.1. Tensile behavior of plain concrete Plain concrete model was used
for the simulations including the bond model between FRP bar and con-
crete. Tensile behavior of concrete was modelled as linear up to
(concrete tensile strength). Then, it is characterized by tension soften-
ing that was modelled using the stress-crack opening model, instead of
stress-strain one, minimizing the mesh sensitivity when concrete crack-
ing occurs [50]. The stress-crack opening law adopted herein is the one
proposed in [51,52] (Fig. 4), which is characterized by nonlinear con-
crete softening given by Eq. (3).

(3)

where, and are concrete post-cracking stress and its correspond-
ing crack opening value, respectively. and are experimental best-fit
parameters equal to 3 and 6.93, respectively, while is
the crack opening value at which the stress drops to 0. is concrete
tensile fracture energy that is calculated according to fib Model Code
1990, taking 8 mm as the maximum aggregate size, reported in the
experimental results.The main reason for adopting this model instead
the one in fib Model Code 1990 [1] is avoiding the sharp change of
the slope in latter one (Fig. 4). The former allows achieving better
convergence of the FE model after the first crack in the beam, when
the load is being transferred from the cracked zone of concrete to the
bars.The effect of shrinkage on tensile behavior of concrete was con-
sidered since it could noticeably decrease the cracking resistance of RC
members. Shrinkage strain developed in concrete was assumed using the
model proposed by Gilbert [53]. The period between concrete casting

Fig. 4. Post-cracking stress-crack opening model of concrete: Comparison of Hordijk
(1991) [52] and Model Code 1990 proposals.
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and testing of slabs was selected equal to 30 days. The final drying ba-
sic shrinkage strain was assumed as 1000·10−6, whereas parameter k4
was taken equal to 0.65 (interior environment) [53]. For the calculation
of hypothetical thickness, the portion of the section perimeter exposed
to the atmosphere was taken as 300 mm (upper slab edge). So-obtained
shrinkage strain was introduced into FE model before mechanical load-
ing [54]. This was attained by imposing the temperature change in con-
crete, necessary for the same strain to occur. Coefficient of thermal ex-
pansion was set to 1·10−5.
5.1.1.2. Tensile behaviour of reinforced concrete Pre-peak behavior of re-
inforced concrete was modelled as the plain one. Post-peak tensile be-
havior was modelled using the tension stiffening approach, which com-
pensates the assumption of perfect bond with no slip between FRP bar
and concrete, implemented in these simulations. The selected tension
stiffening model was by Bischoff and Paixao [26], suitable for con-
crete members reinforced with FRP bars. It is characterized by tension
stiffening parameter beta ( ) that is the ratio between average tensile
stress carried by the cracked concrete ( ) and tensile strength ( ),

. Parameter decreases exponentially with the increase of
average member strain ( ) (Eq. (4)).

(4)

In Eq. (4), is the concrete strain at cracking and is the elastic mod-
ulus of the reinforcing bar (in GPa). Bischoff and Paixao model is given
as a stress-strain formulation, calibrated on axial tests of concrete ties re-
inforced with FRP bars. The stress-strain formulation of concrete tensile
behavior is not recommendable for FE simulations, since being strongly
dependent on the selected mesh size and geometry in this case. There-
fore, in the present numerical simulations, stress-crack opening law was
obtained by multiplying the average member strain ( ) by the average
crack spacing obtained from tested concrete ties in [26] Eq. (5). rep-
resents in this case the crack bandwidth.

(5)
In Eq. (5), is average crack width, that is, the crack opening, whereas

is average strain in the reinforcing bar (equal to ) [6]). The given
assumption is certainly a simplified solution. Eq. (5) is valid for the
stabilized crack pattern, whereas here it has been used for the whole
range of post-cracking concrete response, including crack development
phase as well. However, reaching the stabilized crack phase, the as-
sumption and the estimation of the crack opening becomes more correct.
So-obtained stress-crack opening law was adopted for simulation of the
post-peak tensile behavior of reinforced concrete. The stress-stain law
was then assigned to each finite element independently, considering its
characteristic element length,
.Moreover, the tension stiffening model [26] was applied on the ef-
fective area of concrete in tension ( ). In case of flexural mem-
bers, was assumed as given in Model Code 1990 [1] (Fig. 5).In
Fig. 5, is diameter of the bar, is thickness of the slab and
is depth of the concrete compression zone. The neutral axis position
was calculated analytically from the beginning of loading until failure,
and the average value of neutral axis between the uncracked and the
section at failure was used for the estimation of . In FE model,
the tension stiffening concrete law was as

Fig. 5. The effective concrete area in tension [1].

signed to the relevant effective area of the slab, while the rest of the
concrete body was considered as plain concrete.As for the shrinkage in-
fluence on tension stiffening law, the concrete tensile strength was de-
creased by the residual stress in concrete ( ) that develops due to the
embedded reinforcement that restrains shrinkage. It is calculated as sug-
gested by Scanlon and Bischoff [55], based on the work of Gilbert [56]
(Eq. (6)).

(6)

In Eq. (6), is the reinforcing ratio, is the ratio of effective depth
of reinforcement and beam height (slab thickness), is the eccentricity
factor ( for a rectangular section), is the free shrinkage
strain (calculated according to Gilbert [53]), is the age-adjusted long
term modular ratio, which is used here only as modular ratio, that is the
ratio of modulus of elasticity of bar and concrete, since long term effects
were not considered. Finally, the resulting concrete tensile strength is
estimated as . In addition, the area under post-peak ten-
sion stiffening curve was reduced as a consequence of shrinkage. The
experimental value of factor beta ( ) was obtained from the equation
given in [6], considering the developed shrinkage strain.

(7)

In Eq. (7), is modular ratio (ratio of modulus of elasticity of bar (
) and concrete ( )) and is reinforcing ratio (ratio of steel ( ) and
concrete areas ( )). In the case of flexural members, the concrete area
was substituted by the effective tensile concrete area ( ), thus, in-
stead of , the effective reinforcing ratio ( ) was used in
Eq. (7) [6].Thus, the shrinkage influence was simulated in the effective
concrete area by modifying the tensile parameters of RC tension stiffen-
ing model. Accordingly, the plain concrete model, employed in perfect
bond simulations, was modified for the shrinkage influence by subtract-
ing the residual stress in concrete ( ) (Eq. (6)) from its tensile strength
( ), whereas the fracture energy remained unchanged.
5.1.1.3. Compressive behavior of concrete Compressive behavior of con-
crete was modelled according to the recommendations of Kratzig and
Polling [57]. It is linear elastic up to (30% of concrete com-
pressive strength), followed by the hardening behavior up to . The
hardening is characterized by nonlinear stress-strain law as proposed by
Model Code 1990 [1] (Eq. (8)).

(8)

In Eq. (8), is the strain accompanying the failure stress , assumed
equal to 0.0022 according to Model Code 1990 [1], whereas modulus

is given by Eq. (9), as proposed by [57].

(9)

Post-peak behavior of concrete in compression, similarly to the one
in tension, is characterized by softening accompanied by localization
[58,59]. Namely, the compression tests carried out on specimens of
different height have shown that softening cannot be considered inde-
pendently of the specimen dimension. Accordingly, in FE analysis, this
branch of the stress strain curve depends on the crushing energy ( )
and the characteristic finite element length ( ). It is defined by Eq.

5
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(10) [57,60].

(10)

Parameter controls the area under stress-strain curve, depending on
and [57]:

(11)

In Eq. (11), the scalar parameter , which splits inelastic strains into
plastic and damaging parts [57], was neglected due to absence of cyclic
loading.Concrete crushing energy was assumed as , being
the average value from different experimental testing [59].

5.1.2. GFRP constitutive model
GFRP material is modelled as linear elastic transversally isotropic. Its

volumetric content of fibers and matrix was 75% and 25% respectively.
The elastic constants of constituents (fibers and matrix) are assumed fol-
lowing the recommendations of fib Bulletin 40 [4]. The orientation of
fibers in matrix is shown in Fig. 6, where 1 is the bar longitudinal axis,
and 2 and 3 are transversal axis. The elastic constants of the compos-
ite material are taken from producer’s datasheet [45] (GFRP modulus
of elasticity in the longitudinal direction ), and predicted by
the rule of mixture and the Chamis’ formulae [61], namely: modulus of
elasticity in the transversal direction , shear modulus

and Poisson’s coefficients ,
.

5.1.3. Interface model
To set the interface model in Section 2, the experimental local

bond-slip law (Fig. 7) was adopted as measured by eccentric pull-out
tests [42], having the same concrete cover (10 mm), the same GFRP bar
(Schoeck Ø8) and similar concrete quality as modelled slabs. The bond
law was directly included into numerical analysis, to simulate the slip
between bar and concrete and its effects during the loading of slabs. The
nonlinearity in the bond interface properties was simulated using cohe-
sive finite elements [40], in combination with parameters of post-peak
response for the damage evolution according to the model in Section
2. For the lack of experimental measurements, the damage evolution
in normal (radial) direction was not considered, by assuming very high
damage initiation value in normal direction.

5.2. Geometry, boundary conditions and FE discretization

For decreasing the calculation time, the geometry of slabs was sim-
plified by modelling only one quarter, using two planes of symmetry.
Bar geometry was modelled as unribbed cylindrical body, since all in-
terface effects (due to the presence of ribbed surface layout) are simu-
lated using the model described in Section 2. The interface was repre-
sented as a hollow cylinder with thickness of 0.001 mm. In case of per

Fig. 6. The reference frame for orientation of fibers in GFRP bar.

Fig. 7. Bond shear stress – loaded-end slip law, experimental data [42].

fect bond simulation, bar and concrete adjacent elements shared the
same nodes.

In the numerical simulation the temperature corresponding to the
shrinkage strain was first applied, then the loading conditions were
modelled as displacement-controlled, applied on the top surface of the
slab along the lines of the load application.

Concrete and bar were modelled with 3D solid hexahedral elements
C3D8R, with reduced integration, whereas the cohesive finite elements
COH3D8 were used for the interface. FE discretization was based on
adequate representation of curved surfaces (bar, and concrete around
it), the proper subdivision of thin concrete cover and the characteristic
length related to microstructure of concrete. According to Bazant and
Oh [15], the characteristic length is three times the maximum aggre-
gate size. It presents the minimum acceptable dimension for the repre-
sentative volume, that is, for continuum smoothing of the randomly in-
homogeneous material. In present case, it was 24 mm. Accordingly, the
length of the elements along the slab load-transferring-axis was selected
equal to 25, 33.3 and 50 mm, for three different mesh subdivisions. The
element lengths were smaller than the maximum one suggested by [15]
that is . Instead, in cross-sectional plane, the sub-
division was dependent on the first two parameters mentioned above
(adequate representation of curved surfaces and proper subdivision of
thin concrete cover) and it resulted in three mesh subdivisions, corre-
sponding to the longitudinal one, so to obtain homothetic mesh refine-
ment. Three different meshes, coarse, medium and fine, for slab V03,
are presented in Fig. 8. The models had 2816, 9900 and 22,528 finite
elements, respectively. The number of finite elements for slab V02 was
3450, 11,385 and 26,400, and 2508, 8910 and 20,064 for V10, respec-
tively to the three mesh densities.

A refined mesh was applied in the zones where relatively high stress
gradients are expected to develop (contact between bar and concrete,
and through concrete cover thickness).

The same mesh topology was used for models including bond-slip
law and the ones assuming perfect bond. In case of perfect bond simu-
lations, the portion of cross section framed in red in Fig. 8, was corre-
sponding to the effective concrete area in tension and its tensile behav-
ior was modelled as the one of the reinforced concrete (Section 5.1.1).
Tensile behavior of the remaining part of the cross section was modelled
as plain concrete (Section 5.1.1).

6. Results and discussion

To assess the performance of the local bond-slip model for simulat-
ing the structural response of RC members with GFRP bars, in com-
parison with perfect bond model, the experimental outcomes for the
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Fig. 8. Slab V03, three mesh densities, from left to right: (a) coarse, (b) medium, and (c) fine; (up) axonometry (one quarter of the actual slab), (down) cross section (one half of the actual
cross section) and the portion of it assigned as effective concrete area in tension (framed in red). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

RC members geometry and test setup detailed in Section 3, were con-
sidered and compared to the outcome of the numerical analyses.

Failure mode and corresponding failure load, obtained by the exper-
imental tests, ACI and fine mesh FE models (for perfect bond and bond
slip law), are listed in Table 3.

The CDP model of concrete allows visualization of damage assum-
ing significant values of equivalent plastic strain in uniaxial tension and
uniaxial compression (PEEQT and PEEQ). Significant values in this case
are selected as: PEEQ strain equal to 0.0022 (strain corresponding to
compressive strength), and PEEQT corresponding to null post-peak ten-
sile stress. PEEQT has two significant values for perfect bond simula-
tions, one referring to tension stiffening model and the other referring
to plain concrete model. Former is always higher due to higher ca-
pacity of reinforced concrete, thus it is selected as limit tensile strain
level and it refers to the effective area of concrete in tension. Lat-
ter is designated by asterisk on the PEEQT legend (Figs. 14 and 18)
and it refers to the upper part of the slab modelled as plain concrete.
Above these limit tensile strain levels, the concrete is considered com-
pletely cracked, whereas the limit strain in compression is the one that
corresponds to the initiation of crushing. Described representation of
the damage pattern refers to all strain maps presented in this paper.
Graphics are accompanied with the symmetry symbols, and dashed lines
(and triangles) denoting support position. Loading is in the middle of

the slab in case of V02 (three-point bending), whereas it is denoted with
arrows (and dashed lines) in case of slabs V03 and V10 (four-point bend-
ing).

6.1. Slab V02

The first slab (V02) had thickness of 100 mm and failed in concrete
crushing. The FE simulation results, compared to the experimental out-
put, are given in Fig. 9. In these diagrams, and the following ones, ‘C’
stands for coarse, ‘M’ for medium, and ‘F’ for fine mesh.

Perfect bond model showed negligible dependency on the mesh den-
sity (Fig. 9a). Only the fine mesh model demonstrated clearly the fail-
ure due to concrete crushing at load level of 29.6 kN. With densification
of the mesh the structural response becomes slightly stiffer (Fig. 9a),
as a consequence of the mesh with reduced integration elements [62].
The cracking load is overestimated, whereas the stiffness corresponds
perfectly to the experiment. The failure load level is overestimated ap-
proximately for the same value as the cracking one, and this eventually
results in 10% higher failure load compared to experimental one (Table
3).

Fig. 10 gives the concrete compressive damage representation on
the top slab surface for the three mesh densities of perfect bond model
that yielded quite similar result.

Table 3
Comparison of slabs failure mode and failure load according to experimental tests, ACI predictions and FE models. Percentages in brackets are the deviation from the corresponding exper-
imental result.

Slab ID Property Experimental
ACI
440.1R-15

FE model (perfect
bond, fine mesh)

FE model (bond-
slip law, fine
mesh)

V02 FM Concrete
crushing

Concrete
crushing

Concrete crushing Concrete
crushing

FL [kN] 26.9 20.3 29.6 (+10%) 26.3 (−2%)
V03 FM Longitudinal

crack failure
Debonding Concrete crushing/

Debonding
Debonding

FL [kN] 13.9 13.9 19.2 (+38%) 12.9 (−7%)
V10 FM Longitudinal

crack failure
Concrete
crushing

Concrete crushing/
Damage of concrete
along bars

Concrete
crushing/Damage
of concrete along
bars

FL [kN] 7.6 7.3 9.8 (+29%) 8.3 (+9%)

*FM – Failure mode; FL – Failure Load.

7



UN
CO

RR
EC

TE
D

PR
OO

F

A. Veljkovic et al. Structures xxx (xxxx) xxx-xxx

Fig. 9. Slab V02 – Load-displacement curves: experimental results vs. FE simulations using three mesh densities; (a) Perfect bond model, (b) Bond-slip model. Displacement is measured in
the middle of load application line.

Fig. 10. Slab V02 – PEEQ strain map at failure, top slab view, perfect bond model: (a) coarse, (b) medium and (c) fine mesh.

Bond-slip model exhibited higher mesh dependency than the perfect
bond one. Apart from slight increase of stiffness, the failure load level
increased as well with the mesh refinement (Fig. 9b). The damage mode
changed from splitting failure, for coarse mesh, to concrete compressive
failure in combination with splitting, for fine mesh (Fig. 11). Fig. 11
shows the failure mode for coarse mesh model due to concrete cover
splitting damage along the bar position, before the strain corresponding
to compressive strength is reached at the top slab surface. This outcome
changes as the mesh is becoming denser. The splitting still occurs, but
after the concrete compressive capacity is exploited (Fig. 11d, e). Shear
cracks, observed in the experiment (Fig. 12), become visible as damage
in the fine mesh model (Fig. 11f). Opposite to perfect bond model, the
cracking load was only slightly overestimated, and the overall numerical
structural stiffness matched very well the experimental one (Fig. 9b).
The failure load was in good agreement with the experimental one only
for the fine mesh model.

Analytical solution proposed by ACI predicts, instead, the failure of
the slab at the load level equal to 75% of the experimentally recorded
(Table 3). It is mainly connected to the assumption of 0.0035 as the
ultimate concrete compressive strain, whereas the concrete compres

sive capacity does not drop sharply, but gradually, at higher levels of
strain, according to the concrete constitutive model employed in this
study and described in Section 5.1.1. This extends the performance
in compression, in comparison with conservative analytical predictions,
and matches the experimental response of RC members. Preliminary un-
derstandings on the accuracy of the adopted concrete compressive con-
stitutive model are detailed in [63].

6.2. Slab V10

Perfect bond model of the slab V10 (40 mm thickness) yielded higher
failure load, and corresponding deflection of the slab, as the mesh was
becoming denser (Fig. 13). All three meshes of perfect bond model
overestimated the cracking load, while the medium and fine one pre-
dicted well the slope of experimental load-displacement diagram.
Bond-slip models provided an overall accurate matching of the ex-
perimental response. Change of the slope of numerical diagrams oc-
curred when compressive strain in concrete on the top slab surface
reached the one corresponding to compressive strength (0.0022). The
same change of diagram inclination is visible on the experimental re

8
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Fig. 11. Slab V02 – strain maps at failure for bond-slip model, using coarse and fine mesh. Damage pattern is given for (a), (d) PEEQ – top slab view, (b), (e) PEEQT – bottom slab view,
and (c), (f) PEEQT – side slab view.

Fig. 12. Slab V02 – damage at failure (photo courtesy of authors [43]).

sponse and it is matched very well by the numerical curves of both
bond approaches with medium and fine meshes. This slope change is
visible in the behavior of this thin slab (40 mm thickness), due to very
small compressive zone thickness, opposite to the slab V02, described
previously. ACI code prognosed concrete crushing failure at load level
of 7.3 kN (assuming ultimate concrete compressive strain of 0.0035).
The concrete crushing failure, initiated in numerical models, was fol-
lowed by concrete damage spread longitudinally along the bar towards
the top slab surface (Figs. 14 and 15). Figs. 14a and 15a depict
crushed concrete in the constant bending moment zone (between load
application points) on the top side of the slab. Subsequently, the con-
crete damage spreads along the outer bars, from the middle to the sup-
ports, at the moment of failure. Figs. 14e, f and 15d, e show com-
pletely damaged concrete around the bar and cross-sectional deformed

shape with the bar’s tendency to longitudinally punch through the upper
concrete layer. This type of failure mode is reported by the experimen-
tal test, denoting it as a ‘disrupt crack failure because of bond failure’
[43] (Fig. 16). In the present work, it is denoted as ‘longitudinal crack
failure’ (Tables 1 and 3). In numerical simulations, it is appearing as
damage concentrations along the bars on the top slab surface, and ac-
companying splitting damage on the bottom side (see Figs. 14 and 15).

6.3. Slab V03

When modelling the slab V03 (60 mm thickness), finer mesh led to
slightly higher failure load and failure deflection compared to two other
mesh sizes, for both bond models (Fig. 17). Cracking load was over-
estimated by perfect bond model and matched well by the bond slip
one. Numerical member stiffness corresponds very well to the exper-
imental result in all cases. In case of perfect bond simulation, coarse
mesh model fails for premature crushing of concrete along the bar on
the top slab surface, as the bar has tendency of longitudinal punch-
ing, similar to the numerical modelling of the slab V10. However, for
medium and fine mesh models, concrete compressive capacity devel-
oped extensively before the concrete damage along the bar occurred
(Fig. 18). This resulted in corresponding failure load that significantly
overestimates (approximately 40%, in case of fine mesh) the experi-
mentally obtained one (Fig. 17a). Instead, the bond-slip model yielded
correct failure mode (bar debonding) and matched the corresponding
load level (Figs. 17b, 19). In this case, the concrete crushing initiated
as well, but developed only locally and significantly less than in case

9
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Fig. 13. Slab V10 – Load-displacement curves: experimental results vs. FE simulations using three mesh densities; (a) Perfect bond model, (b) Bond-slip model. Displacement is measured
in the middle of load application line.

Fig. 14. Slab V10 – strain maps at failure for perfect bond model, using fine mesh. Damage pattern is given by (a) PEEQ – top slab view, (b) PEEQT – bottom slab view, (c) PEEQT–side
slab view, (d) cross section and effective concrete area in tension (framed in red) (e) PEEQ – cross section at midspan, and (f) PEEQT – cross section at midspan. Cross sections (e) and (f)
are given in deformed shape. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of a perfect bond (Fig. 19a). The reason is that perfect bond model used
concrete tension stiffening constitutive law that helped bar in carrying
the stress and delayed debonding, allowing concrete compressive stress
to develop. It shows that using adopted tension stiffening model might
overestimate the load carrying capacity of such thin concrete slabs rein-
forced with GFRP bars. Bond-slip model used in combination with plain
concrete tensile law yielded correct simulation of the experimental test
(Fig. 20). In perfect bond model, concrete damage developed on the top
slab side along the bar, whereas in bond slip model it developed simulta-
neously at top and bottom surfaces. As for the analytical prediction, the
ACI proposal matched the experimental and bond-slip simulation result.

7. Discussion

Mesh sensitivity analysis showed that with densification of the mesh
the member strength remained the same or increased. The improve-
ment of strength with the refinement of the mesh is related to the
fact that the damage is expanded on a smaller volume, resulting in a
delay of global failure and a higher failure load compared to coarser
meshes. Apart from this, the failure mechanism of coarse meshes was of-
ten inaccurate, that is, premature failure of slabs due to damage of con

crete along the bar. Namely, finite elements were shaped so that the di-
mension along slab load-transferring axis was significantly longer than
the element dimensions in slab cross-sectional plane. This created the
ratio of 1:6 between the cross-sectional measures (that were approxi-
mately equal) and the longitudinal one. Such elongated shape of finite
elements could create certain problems when modelling the concrete. In
this study, concrete stress-strain compressive law was directly defined
by user, whereas tensile law was inserted as a stress-crack opening rela-
tion, being transferred to stress-strain dependency by software. In both
cases, the characteristic element length was used for these transforma-
tions, and it was calculated as a cubic root of FE volume (
). Considering the shape of finite elements, gets a value in-between
cross-sectional and longitudinal element dimension. Such condition led
to premature failure of slabs due to longitudinal splitting damage, before
their flexural capacity fully developed, as mentioned before. It caused
wrong failure modes to develop when coarse meshes have been used. It
is particularly visible in bond slip simulation of the slab V02 (bottom
side longitudinal splitting) and perfect bond simulation of the slab V03
(top side longitudinal crushing). As shown in the study, this occurrence
can be prevented when sufficiently fine meshes are used.
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Fig. 15. Slab V10 – strain maps at failure for bond-slip model, using fine mesh. Damage pattern is given by (a) PEEQ – top slab view, (b) PEEQT – bottom slab view, (c) PEEQT – side slab
view, (d) PEEQ – cross section at midspan, and (e) PEEQT–cross section at midspan. Cross sections are given in deformed shape.

Fig. 16. Slab V10 – damage at failure: (a) slab at testing setup, (b) detail of embedded reinforcing bar (photo courtesy of authors [43]).

Fig. 17. Slab V03 – Load-displacement curves: experimental results vs. FE simulations using three mesh densities; (a) Perfect bond model, (b) Bond-slip model. Displacement is measured
in the middle of load application line.

Another issue concerning the FE dimension is related to tension
stiffening model used. Regularization of stress-strain law done in Sec-
tion 5.1.1, related to the average crack spacing ( ), is valid

only when finite elements have characteristic length equal or bigger
than [64]. The average crack spacing equals approx. 140 mm in
this case, and it is estimated as too high for the characteristic element
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Fig. 18. Slab V03 – strain maps at failure for perfect bond model, using fine mesh. Damage pattern is given by (a) PEEQ – top slab view, (b) PEEQT – bottom slab view, (c) PEEQT–side
slab view, (d) PEEQ – cross section at the slab end, and (e) PEEQT – cross section at the slab end. Cross sections are given in deformed shape. for V03 is given in Fig. 8c.

Fig. 19. Slab V03 – strain maps at failure for bond-slip model, using fine mesh. Damage pattern is given by (a) PEEQ – top slab view, (b) PEEQT–bottom slab view, (c) PEEQT – side slab
view, (d) PEEQ – cross section at the slab end, and (e) PEEQT–cross section at the slab end. Cross sections are given in deformed shape.

Fig. 20. Slab V03–damage at failure: (a) slab at testing setup, (b) detail of reinforcing bar debonding (photo courtesy of authors [43]).
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length, having in mind specimen geometry and test setup. The conse-
quence of this choice is reflected on FE model damage concentrations
representing experimental observed cracks, whereas the global response
of thin GFRP RC member was matched in the case of the slabs V02 and
V10.

Finally, in the case of V02, slab of standard thickness (100 mm) that
failed due to concrete crushing, both bond modelling approaches, in
combination with corresponding concrete laws, resulted in good match
with the experimental result. Because of the above-mentioned reasons,
the preference is however given to sufficiently fine mesh models. When
it comes to very thin slabs, as V10 of 40 mm thickness that failed for
the combination of concrete compressive failure and damage of concrete
along the bars, both bond models matched sufficiently well the failure
mode, while the preference is given to the bond-slip one, matching the
failure load and corresponding deflection better. Here, the high capacity
assigned to concrete in tension, in the case of perfect bond model, re-
sulted in extended load and deflection capacity of the slab V10. Finally,
in the case of the slab V03 of 60 mm thickness that failed for concrete
splitting along the bar, only the bond-slip model reproduced the exper-
imental result. Increased tensile capacity of tension stiffening concrete
model, in perfect bond simulation, prevents the concrete splitting along
the bar on the bottom slab side, thus yielding dangerous overestimation
of member’s capacity. Opposite to this, the use of plain concrete model
in bond slip simulation resulted in correct failure mode. Thus, in the case
of debonding failure, the main influence on the accuracy of numerical
model is attributed to the concrete tensile law.

8. Conclusions

This work studied the effect of selected strategy for considering
the concrete/bar interaction in the numerical modelling of thin GFRP
RC slabs. Two strategies were adopted: perfect bond (indirect) and
bond-slip behavior modelling (direct). Each strategy was associated with
corresponding concrete tension model, that is, tension stiffening and
plain concrete law, respectively. The numerical simulations were com-
pared to experimental bending tests of thin GFRP RC slabs [43]. The
bond modelling strategy, previously adopted for simulation of pull-out
tests [41], was adopted herein to simulate the bond influence on struc-
tural components. Local bond-slip model obtained from the eccentric
pull-out experimental tests [42] having the same GFRP bar, same con-
crete cover and similar concrete mechanical properties was employed
in this study. Instead, in the case of perfect bond simulation, it was
used the concrete tension stiffening law proposed by Bischoff and Paixao
[26], suitable for concrete members reinforced with FRP bars. All per-
formed FE numerical analysis were compared with the experimental test
outcomes, as well as with the design guidelines predictions [23].

As for the numerical modelling accuracy, for slab of 100 mm thick-
ness and concrete crushing failure (V02), both bond modelling ap-
proaches matched the experimental results in terms of force-displace-
ment curves and failure mechanisms. However, with decreasing the slab
thickness and changing the failure mode from crushing to debonding,
the best accuracy was achieved with bond-slip model. Perfect bond
model led to significant overestimation (non-conservative prediction) of
the thin member capacity that failed due to bar debonding. A consid-
erable contribution was of the employed concrete tensile laws. Consid-
ering relatively small number of simulations, the given hypothesis must
be additionally confirmed. However, it underlines the need of additional
studies for assessing the tension stiffening laws for such GFRP reinforced
thin members in flexure, with specific attention to splitting of concrete
cover along the reinforcing bars.
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