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Abstract—Learning-based methods represent the state of the
art in path planning problems. Their performance, however,
depend on the number of medical images available for the train-
ing. Generative Adversarial Networks (GANs) are unsupervised
neural networks that can be exploited to synthesize realistic
images avoiding the dependency from the original data. In this
paper, we propose an innovative type of GAN, Deep Convolu-
tional Refined Auto-Encoding Alpha GAN, able to successfully
generate 3D brain Magnetic Resonance Imaging (MRI) data from
random vectors by learning the data distribution. We combined
a Variational Auto-Encoder GAN with a Code Discriminator
to solve the common mode collapse problem and reduce the
image blurriness. Finally, we inserted a Refiner in series with the
Generator Network in order to smooth the shapes of the images
and generate more realistic samples. A qualitative comparison
between the generated images and the real ones has been used
to test our model’s quality. With the use of three indexes, namely
the Multi-Scale Structural Similarity Metric, the Maximum Mean
Discrepancy and the Intersection over Union, we also performed
a quantitative analysis. The final results suggest that our model
can be a suitable solution to overcome the shortage of medical
images needed for learning-based methods.

I. INTRODUCTION

Recently developed prototypes of steerable needles repre-
sent a breakthrough in keyhole neurosurgery as they can reach
targets behind sensitive or impenetrable areas [1].

Different path planning approaches (combinatorial,
sampling-based, potential field, levels set methods) can be
applied [2]. Classical methods are affected by a trade-off
between completeness and efficiency, a limitation that recent
learning-based (LB) methods try to overcome.

LB methods for path planning leverage the power of Deep
Learning (DL) algorithms to learn how to take actions in order
to find the best trajectory. The problem in working with DL
algorithms is that their successful training is conditioned to
the availability of a large number of data, which in our case
consist of medical images. An issue that even the proliferation
of publicly accessible data-sets cannot solve.

While classical data augmentation techniques (e.g. flip,
rotation) are highly dependent on the original data, Generative

Adversarial Networks (GANs) [3] are unsupervised neural
networks that can be exploited to synthesize realistic images.
Data augmentation using GANs has proven itself to be efficient
in training classification models, such as [4]. However, cur-
rently available architectures do not allow for the generation
of MRI volumes with a sufficient resolution to train a deep-
learning model for path planning [5], [6]. The fundamental
concept behind a GAN is the one of adversarial training of
two networks: a Generator and a Discriminator. The Generator
is trained to create new samples in order to fool the discrim-
inator, which evaluates the authenticity of the images. This
family of networks has been widely exploited in the medical
field, being successfully trained either to perform image-to-
image translation (denoising, reconstruction, cross-modality
synthesis) as well as noise-to-image translation (unconditional
synthesis) [7].

This work is oriented towards this last scope, taking it to
the three-dimensional domain. The goal is the generation of
3D Magnetic Resonance Imaging (MRI) images of the brain
to train path planning agents for a steerable surgical needle.
Such an aim is chased through a Deep Convolutional Refined
(DCR) α-GAN (DCR-α-GAN). The accomplishment of our
aim would pave the way to the synthesis of brains suffering
of specific pathological conditions. This, in turn, would tackle
problems such as the shortage of these samples in public
dataset and class imbalance when training a LB path planner
on both healthy and pathological brains.

The outline of this paper is the following: in section II,
we discuss the state of the art. In Section III, we present
the proposed methodology, while we report the experimental
results in Section IV. Finally, Section VI draws the conclusions
and gives insights on future work.

II. STATE OF THE ART

In recent years, data augmentation exploiting GANs has
become more and more common, given its promising results.
In particular, in the context of MRI, it has been prominent



Fig. 1. Architecture of our proposed model. x is the real input 3D volume, zenc is the output from the encoded image, xrec and xgen are respectively the
output of the Refiner fed with the output of the Generator fed with zenc and the output of the Refiner fed with the output of the Generator fed with z, which
is the random noise vector obtained from a normal distribution.

the use of image transfer techniques, for instance, to synthe-
size X-ray Computed Tomography (CT) images from MRI
samples [8]. Data augmentation through GANs could become
critical in clinical practice, as in many countries medical
data are considered sensitive and are protected by restrictive
protection laws. Therefore, GANs may avoid the direct usage
of actual data, which could be used instead to validate the
results from GANs. Indeed, the generation of 3D MRI volumes
has made significant progress, in particular with the work
of [5]: the authors compared different available architectures
and proposed a new model, namely an auto-encoder GAN.
This architecture showed encouraging results both in terms
of diversity of the generated data and of resemblance of the
real samples. We introduce to this approach an additional
component, a Refiner network, which allows the synthesis of
smoother images, thus providing a closer resemblance to the
real data.

III. PROPOSED IMPLEMENTATION

Our network architecture is an adaptation of the α-GAN [5]
to the problem of 3D instance generation. To train our model,
we used the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset [9]. From the ADNI control normal group, 997
T1 structural brain images were taken. In the images present
in the ADNI dataset, non-brain areas are removed using the
recon-all function from the software FreeSurfer. A few pre-
processing operations were applied to the images before feed-
ing them to our GAN: first, planes with all-zero values were
removed, then, volumes were resized to 64 × 64 × 64 (from
256 × 256 × 256). Our network combines Variational Auto-
Encoder (VAE) GANs, with an additional Code Discriminator
(CD) and Refiner.

A. Model architecture

The complete architecture of our network can be seen in
detail in Figure 1. The Encoder consists of 5 3D Convolutional
layers with 4× 4× 4 filters. Moreover, Batch Normalization,
which is a technique to improve the speed, performance and
stability of artificial networks, is present after each layer,
except for the first and last ones, in which is absent to maintain
the originality of the input and the output. As activation

function, we use LeakyReLu, a variant of the Rectified Linear
Units, has output 0 if the input is less than 0, and raw output
otherwise. If the input is greater than 0, the output is equal to
the input; it is non-linear and has the advantage of not having
any backpropagation errors unlike the sigmoid function; also
for larger Neural Networks, the speed of building models
based off on ReLU is very fast. The presence of the Encoder
opposes to the mode collapse [10], which is a common
problem when training GANs and happens when the Generator
collapses, which produces limited varieties of samples. It can
occur when the Generator spots one image able to fool the
Discriminator: from then on, the generated images become
very similar, resulting in a limited variety of output samples.
The VAE solves this problem by mapping all the available
training samples to the same latent space.

The network’s Discriminator has a structure similar to the
one of the VAE and has the function explained in Section I.

The Generator consists of 5 layers. First, we apply the resize
convolution to limit the number of parameters and checker-
board artefacts. Instead of transpose convolution layers, we use
conventional nearest neighbour upscale, which is the simplest
and fastest implementation of image scaling technique, before
convolution layers with 3 × 3 filters. BatchNorm and ReLU
layers are added after each convolution, except for the last
one, to maintain training stability. The last layer has hyperbolic
tangent (Tanh) as the activation function.

Our CD network consists of three fully-connected layers.
Similar to the Discriminator, LeakyReLU and BatchNorm
layers are placed between each fully-connected layer. The CD
is trained to distinguish between latent vectors coming from
the VAE and the random ones given as input to the Generator.
This adversarial process makes the probability distributions of
the two latent vectors to match, reducing the image blurriness
that characterizes the VAE outputs.

The architecture of the Refiner consists in four ResNet
blocks [11] and is depicted in detail in Figure 2. In traditional
neural networks, each layer feeds into the next layer. In a
network with residual blocks, each layer feeds into the next
layer and directly into the layers about 2–3 hops away. The
presence of skip connections reduces the vanishing gradient



Fig. 2. Detailed architecture of the Refiner network, which consists of 4
ResNet blocks.

problem since it allows to skip the training of some layers. It
smooths the shapes of the image and allows the generation of
more realistic images. Our Refiner is similar to the one present
in SimGAN [12]. Due to memory constraints, the number of
channels has been decreased from 64 to 32.

B. Training

In the training of our network, we considered the VAE
and the Generator as one network; therefore we sum the
respective loss functions, and we optimize first the VAE,
then the Generator, the Discriminator and lastly the CD.
The optimization speed of the Generator is far slower, so
the Generator is updated twice per iteration. Then, we train
the Refiner separately, loading the weights of the previously
trained components. To perform the training we used an
NVIDIA Titan X GPU with 12GB.

C. Experimental Evaluation

The quantitative analysis considers three indexes, namely
the Multi-Scale Structural Similarity Metric (MS-SSIM) [13],
the Maximum Mean Discrepancy (MMD) [14] and the Inter-
section over Union (IoU) [15].

MS-SSIM measures the similarity between two images,
and it is used to evaluate the diversity of the generated
images. Differently from other methods, MS-SSIM considers
phenomena that are crucial in human perception such as
luminance and contrast.

Given the two images X and Y, their means µX and µY
are taken as estimates of the luminance of the images and
combined to give the luminance comparison:

l(X,Y ) =
2µXµY + C1

µ2
X + µ2

Y + C1

The variances of the images, σX and σY , account for their
contrast and allow to compute the contrast comparison:

c(X,Y ) =
2σXσY + C2

σ2
X + σ2

Y + C2

Finally, a structural similarity term is obtained looking at
the X and Y covariance, σXY :

s(X,Y ) =
σXY + C3

σXσY + C3

The terms C1, C2 and C3 in the above expressions are
constants depending on the range of the pixel values. The

single-scale Structural Similarity Metric (SSIM) is computed
as the product of the three terms, which relative importance
can be fixed by as many exponents:

SSIM(X,Y ) = [l(X,Y )]α · [c(X,Y )]β · [s(X,Y )]γ

In the multi-scale SSIM, the contrast and the structural
comparison are computed on iteratively downsampled versions
of the two images, while the luminance term is computed
only at the very last iteration, hence MS-SSIM is given by
the following expression:

MS-SSIM(X,Y ) = [lJ(X,Y )]α ·
J∏
j=1

[cj(X,Y )]β [sj(X,Y )]γ

The MMD is a distance-measure between distributions
(P(X) and Q(Y)) defined as the squared distance between
their embeddings in the reproducing kernel Hilbert space. In
such a Hilbert space of functions, if two functions are close
in the norm, then they are also pointwise close. MMD is
computed as the squared distance between the embeddings
of the distributions

MMD(P,Q) = ||µX − µY ||2H
with a low score of MMD indicating closeness between the

two distributions.
The IoU, also known as Jaccard index, is a statistic to

evaluate the similarity of two sets (X and Y) as the ratio
between the number of elements they have in common and
the total number of elements:

IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

In the present case, the real and the generated samples are
compared at a voxel level, with high scores of IoU indicating
closeness between the two distributions.

IV. RESULTS

To perform our test, we retrained on our GPU the model
from [5], to have a fair comparison with our samples. In Figure
3D slices along the three principal axes of a sample generated
by the architecture of [5] are shown. Figure 3C depicts the
samples synthesised by our architecture, which are compared
with the real 3D MRI in Figure 3A and 3B. The qualitative
comparison draws the attention to the network capability of
producing realistic brain volumes, even though a difference in
the level of detail can be spotted w.r.t the real samples. W.r.t
the samples by [5], our images show a better capability to
capture the details of the MRI volume.

For the quantitative evaluation, the similarity scores of 1000
pairs of generated images are computed and averaged to obtain
an overall value of MS-SSIMfake = 0.9991 for our architecture
and MS-SSIMfake = 0.6006 for the work by [5]. The MMD
and IoU are evaluated comparing an image from the training
set and a generated image. The procedure is repeated 100 times
and the scores are then averaged. As a result, our architecture
is characterized by MMD = (0.2240 ± 0.0008) · 104 and a
IoU = 0.6852± 0.0024; the model from [5] has an MMD =
(0.5932± 0.0004) · 104 and a IoU = 0.3668± 0.0016.



Fig. 3. (A) Real 3D MRI from the ADNI dataset control normal group. (B)
Real 3D MRI with the same resolution of the fake images. (C) Fake 3D MRI
synthesised by our trained model. (D) Fake 3D MRI synthesised by the model
in [5]

V. DISCUSSION

The gap in accuracy resulting from the qualitative com-
parison can be explained with the reduced dimensions of the
output images, as it can be noticed comparing the fake MRI
with a real downsampled one in Figure (3, centre).

The value of the MS-SSIM is close to 1, which indicates
a not excellent diversity between generated images. This pa-
rameter is worse than the one of [5], therefore our architecture
is characterised by a lower capability of generating diverse
samples. On the other hand, the values of the MMD and
the IoU suggest a better realism of the generated images by
our model w.r.t the work by [5]. For these reasons, future
works related to the network will focus on the improvement
of the Encoder or any other block involved in the mode
collapse phenomenon. The quantitative analysis shows two
controversial aspects of the our model.

The obtained results are encouraging, but their low resolu-
tion (64 × 64 × 64) prevents them from being used to train
a LB path planner. In fact, the lack of detail impedes the
reproduction of small structures, such as vessels, with suffi-
cient precision. This would make vessel avoidance impossible,
missing one of the main goals in path planning.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a GAN architecture able to
reconstruct 3D brain environment using a Deep Convolutional
Refined α GAN starting from random vectors. The fake
3D MRI synthesized by our model shows good realism and
sufficient variety. The action of the refiner is effective in
producing images that are similar to the real ones.

The diversity between generated MRIs is fundamental to
consider the network as a countermeasure to the shortage of
training data for ML applications. Together, these features
point out our architecture as a suitable solution to provide the
necessary amount of training samples to ML-based curvilinear
trajectory planners for steerable needles.

A forthcoming step is the use of a super-resolution network
to take the generated samples to 256 × 256 × 256 pixels,
improving the level of detail of the augmented data. As
additional future works, we plan to train our network on
diseased images, always taken from the ADNI dataset, to
test its ability to generate this kind of samples. Moreover,
we would like to try and use our GAN to perform style
transfer from control to diseased images. This technique could
solve the issue of class imbalance in classification problems
by creating new samples of the class with the lowest number
of instances [16].
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