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Abstract: In this paper, we propose a distributed LQR control method, applicable to physically
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1. INTRODUCTION

In the last decades, the complexity of engineering systems
and the connectivity between plants (e.g., stemming from
production systems to process and manufacturing plants)
have continuously and dramatically increased. Some no-
table examples of new generation complex and large-
scale systems are current power networks (Resende and
Peças Lopes, 2011) (including smart grids and distributed
generation systems), environmental monitoring systems
(Tennina et al., 2011), large-scale chemical plants (Fa-
rina et al., 2016), large-scale irrigation and hydraulic net-
works (Cantoni et al., 2007), and fleets of multi-agent
autonomous (possibly cooperating) vehicles (Cortés et al.,
2004).

The widespread of new generation plants has posed sig-
nificant challenges in the design and the development of
dedicated control systems (Šiljak, 1991; Lunze, 1992). This
includes dramatic challenges in the design and implemen-
tation of monitoring, fault detection, state estimation,
and control algorithms. The centralized paradigm relies
upon the assumption that the control scheme is integrated
in a monolithic computing unit and is based upon a
reliable communication network allowing for a fast and
synchronous data exchange with all the system actuators
and sensors.
This paradigm shows significant pitfalls. Indeed, as the
system scale increases, the control algorithm becomes, on
one side, prohibitively complex and both computationally
? This work has received support from the Swiss National Sci-
ence Foundation under the COFLEX project (grant number
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and communication-wise demanding. On the other hand,
it exhibits increasing fragilities with respect to model in-
accuracies, system changes, and communication issues.

To provide solutions to these challenges, distributed
methods have been developed over the years, both
for unconstrained (Šiljak, 1991; Lunze, 1992) and con-
strained (Maestre and Negenborn, 2014) systems. Dis-
tributed algorithms rely upon the assumption that the
system under control can be regarded as a set of interacting
subsystems, and that a local control unit - having both
computational and communication capabilities - can be
integrated in each subsystem. Among the main challenges
and opportunities of distributed approaches, the following
have been subject of particular attention: (i) local control
algorithms should be integrated in the local computing
units and should provide stability properties, robustly
for any possible system configuration and possibly in ab-
sence of communication; (ii) thanks to communication and
data exchange between local control units, cooperation
and system-wide optimality should be sought for; (iii)
distributed and automatic self-design capabilities should
be conferred, not only to make the design procedure
perfectly distributed and scalable, but also to make the
system adaptive to system changes, including plug-and-
play events.

In this paper we focus our attention on linear quadratic
regulators (LQR), which have been thoroughly studied in
the past, especially in the centralized framework (Bert-
sekas, 2017). Only few notable works have addressed the
design of distributed LQRs, proposing suboptimal solu-
tions, e.g., (Borrelli and Keviczky, 2008; Jiao et al., 2019;



Vlahakis and Halikias, 2018; Wang et al., 2016; Zhang
et al., 2015; Deshpande et al., 2012). However, the existing
works have been developed under the assumption that,
although the overall control problem (which relies upon
the solution to an optimization one) accounts for the states
and the inputs of all subsystems in an integrated fashion,
the subsystems under control are physically decoupled, in
the sense that their dynamics are independent with each
other.
In this paper, we propose a distributed LQR control
method, applicable to physically coupled systems, with
general-type cost functions. In the proposed method, gains
are computed according to the usual equation of LQR.
On the other hand, we propose a suboptimal but dis-
tributed cost-to-go matrix update that enforces block-
diagonality. Thank to this, the possibly time-varying LQR
gain matrix is structured, making the overall control
scheme distributed. More precisely, neighbor-to-neighbor
bidirectional communication is required for cost-to-go ma-
trix update and for computing the control action to take,
by each subsystem, at local level.
Therefore, the proposed control scheme is totally dis-
tributed, scalable, and has self-tuning capabilities, since
an actual design procedure is not required, being implic-
itly carried out through the cost-to-go matrix update.
Another remarkable fact about the proposed scheme is
that it automatically provides a block-diagonal Lyapunov
function, explicitly required by the majority of available
distributed model predictive control algorithms (Maestre
and Negenborn, 2014).
The theoretical properties, including the stability of the
so-obtained sub-optimal control scheme, are investigated.
Also, a case study is illustrated to show the potentialities
of the current scheme.

This paper is organized as follows. In Section II, we give
the problem formulation and in Section III, we demon-
strate the stability and performance of the proposed dis-
tributed controller. In Section IV, simulations are con-
ducted to verify the effectiveness the proposed controller.
Conclusion remarks are made in Section V.

Notation: Through out the paper, all the matrices and
vectors are assumed to have compatible dimensions. ‖ · ‖
denotes the vector 2-norm or the matrix induced 2-norm.
A′ denotes the transpose of A. A−1 denotes the inverse of
A. [Aij ] denotes a matrix whose ij-th element (block) is
Aij . diag{Ai} denotes a diagonal (block diagonal) matrix
whose diagonal element (block) is Ai. [A]ij denotes the
ij-th element of A. I denotes the identity matrix. 0 zero
denotes the matrix with all elements to be zero. We say
that a matrix X fulfills a structural constraint if certain
blocks of X are required to be zero, i.e., Xij = 0 for some
i, j. Moreover, we say that two matrices X,Y have the
same information structure, if Xij = 0 implies Yij = 0 and
vice versa.

2. PROBLEM FORMULATION

Consider N physically coupled systems, each described by

xi(t+ 1) = Aiixi(t) +
∑
j 6=i

Aijxj(t) +Biui(t),

for i = 1, . . . , N , where xi(t) ∈ Rni and ui(t) ∈ Rmi

are the state and control input for the i-th system, and

∑
j 6=iAijxj(t) denotes the physical coupling. The inter-

connection among systems can be described by a directed
graph G = {V, E}, where V is the node set and the E is
the edge set. Each node i ∈ V represents a system, and
the edge (i, j) ∈ E exists if and only if Aij 6= 0. The in-
neighbors’ set N in

i of agent i is defined as {j : (i, j) ∈ E}.
The out-neighbors’ set N out

i of agent i is defined as {j :
(j, i) ∈ E}. The sets N in

i and N out
i may contain agent i

itself if Aii 6= 0. The adjacency matrix A ∈ RN×N for the
graph G is defined by the elements: [A]ij = 1 if Aij 6= 0
and [A]ij = 0 if Aij = 0.

We can write the collective system in a compact form as

x(t+ 1) = Ax(t) +Bu(t),

where x = [x′1, . . . , x
′
N ]′, A = [Aij ], B = diag{Bi},

u = [u′1, . . . , u
′
N ]′. In this paper, we are interested in

the infinite-horizon LQR control problem, i.e., to design a
control law u(t) such that the following LQR performance
is minimized

J =

∞∑
t=0

x(t)′Qx(t) + u(t)′Ru(t),

where Q = [Qij ] ≥ 0, R = diag{Ri} ≥ 0. It is known
that the optimal centralized control law is given by u(t) =
K∗x(t) with

K∗ = −(B′S∗B +R)−1B′S∗A, (1)

where S∗ is the solution to the following Riccati equation

S∗ = A′S∗A+Q−A′S∗B(B′S∗B +R)−1B′S∗A.

Moreover, the optimal cost is given by

J∗ = x(0)′S∗x(0).

However, computing the control law ui from (1) could
require the knowledge of xj for all j = 1, . . . , N . When
the number N of subsystems is high, such a centralized
controller becomes prohibitive, both in terms of computa-
tion and communication requirements.

In this paper, we will study distributed solutions where
the computation of ui requires only system i’s neighbors’
states. In other words, we would like to design a controller
gain K with the same information structure as A. As
shown in (Rotkowitz and Lall, 2006), solving optimization
problems with controller information structure constraints
can be extremely difficult. To circumvent this issue, we will
develop a suboptimal approach.

It is clear from (1) that, the reason why K∗ does not satisfy
the information structure constraint is because S∗ might
be a full matrix. If S∗ was block diagonal, K∗ would have
the same information structure as A. Therefore, in this
paper, we propose a suboptimal controller design, where
S∗ is approximated by a block diagonal matrix P (t) to
generate the controller gain K(t). Moreover, we require
that P (t) is an upper bound to the optimal cost, with
which we can guarantee the stability of closed-loop system
by studying the boundedness of P (t).

3. MAIN RESULTS

In this section, we first propose the controller design and
then analyze the asymptotic stability and performance of
the closed-loop system.



3.1 Controller Design

Our controller is designed as u(t) = K(t)x(t) with

K(t) = −(B′P (t)B +R)−1B′P (t)A, (2)

where P (t) = diag{Pi(t)} is calculated from the following
iteration for t = 0, 1, 2, . . . and i = 1, . . . , N

Pi(t+ 1) =
∑

j∈N out
i

A′jiP
F
j (t)Aji +Qi +

∑
j∈N out

i
,j 6=i

‖Qij‖I

+
∑

k∈N out
i

‖A′ki‖‖PFk (t)‖(
∑

j∈N in
k
,j 6=i

‖Akj‖)I, (3)

with

PFj (t) = Pj(t)

− Pj(t)Bj(B′jPj(t)Bj +Rj)
−1B′jPj(t). (4)

From the collective control law (2), the control law for
agent i is given by

ui(t) =
∑
j∈N in

i

Kij(t)xj(t),

where

Kij(t) = −(B′iPi(t)Bi +Ri)
−1B′iPi(t)Aij .

Remark 1. Since P (t) is block diagonal, as previously
described, the control law ui depends only on the states
xj , j ∈ N in

i , which must be measured and made available
to the controller of system i through a communication
network.

Remark 2. For computing Pi(t), we require information
from systems that are one-hop away from system i. Indeed,
(i) the term

∑
j∈N out

i
A′jiP

F
j (t)Aji in (3) can be updated

using the matrices Pj and Aji from the out-neighbors of
agent i; (ii) the term∑

k∈N out
i

‖A′ki‖‖PFk (t)‖(
∑

j∈N in
k
,j 6=i

‖Akj‖)I

in (3) depends on matrices Pk, Aki, Akj . Pk and Aki can
be obtained from the out-neighbor k of agent i. Moreover,
Akj can also be obtained from the out-neighbor k of agent
i since agent k has access to the coupling matrix Akj for
j ∈ N in

k .

Remark 3. The proposed control law is a variant of the
value iteration in approximate dynamic programming,
see (Bertsekas, 2017). In value iteration, the following
Centralized Riccati Iteration (CRI) is used to approximate
the optimal cost S∗

S(t+ 1) = A′S(t)A+Q

−A′S(t)B(B′S(t)B +R)−1B′S(t)A. (5)

In contrast, we propose to use a block diagonal matrix P (t)
generated from (3) and (4) to approximate S∗. Moreover,
similar to the value iteration, the control law K(t) is
obtained from the Bellman equation assuming the optimal
cost is the approximation P (t), i.e.,

K(t) = arg min
K

x(t)′Qx(t) + x(t)′KRKx(t)

+ (Ax(t) +BKx(t))′P (t)(Ax(t) +BKx(t)).

In the following, we will show that if certain conditions are
satisfied, K(t) converges to a stabilizing gain.

3.2 Asymptotic Stability of the Closed-loop System

Assume that, in (5), S(t) is replaced by P (t). Then,
from (5), the CRI gives A′PF (t)A + Q, which, unfortu-
nately, is not block-diagonal due to the coupling among
subsystems. In contrast, the proposed iteration (3) remains
to be block-diagonal, which guarantees a distributed im-
plementation of the controller K(t). Moreover, the next
lemma shows that the block-diagonal matrix P (t) obtained
through (3) is an upper bound to the result of CRI, which
is essential for characterizing the stability property of the
closed-loop system.

Lemma 4. In the iteration (3), one has

P (t+ 1) ≥ A′PF (t)A+Q,

where PF (t) = diag{PFi (t)}.

The following lemma is needed for the proof, which is the
Gersgorin theorem for block matrices.

Lemma 5. (Theorem 6.3 of (Varga, 2010)). Consider A =
[Aij ]. Let

Gi = σ(Aii)

∪ {λ /∈ σ(Aii) : (‖(λI −Aii)−1‖)−1 ≤
∑
j 6=i

‖Aij‖},

where σ(·) denotes the spectrum of a matrix. Then

σ(A) ∈ ∪iGi.

The proof of Lemma 4 is given below.

Proof. Since

[A′PF (t)A]ij =
∑
k

A′kiP
F
k (t)Akj ,

we have that

[P (t+ 1)−APF (t)A′ −Q]ij

=


∑
l 6=i

∑
k

‖A′ki‖‖PFk (t)‖‖Akl‖I +
∑
l 6=i

‖Qil‖ j = i

−
∑
k

A′kiP
F
k (t)Akj −Qij j 6= i

In view of the Lemma 5, the eigenvalues of P (t + 1) −
A′PF (t)A−Q are in the region

∪i

λ :

∣∣∣∣∣∣λ−
∑
j 6=i

(∑
k

‖A′ki‖‖PFk (t)‖‖Akj‖I + ‖Qij‖

)∣∣∣∣∣∣
≤
∑
j 6=i

∥∥∥∥∥−∑
k

A′kiP
F
k (t)Akj −Qij

∥∥∥∥∥
 ,

which is included in the right half complex plain. Since
P (t+1)−A′PF (t)A−Q is symmetric, we know P (t+1)−
A′PF (t)A−Q ≥ 0, which finishes the proof. �

In this section, we analyze the asymptotic stabilizing prop-
erties of the proposed controller. The following assumption
is needed.

Assumption 6. Aii is invertible for all i.

Under Assumption (6), we can show that if we initialize
Pi(0) appropriately and suitable conditions on the cou-
pling between subsystems are satisfied, the matrices P (t)
and K(t) converge to constant values P̄ and K̄. Moreover,
K̄ is stabilizing. The result is stated as follows.



Theorem 7. Initialize Pi(0) = 0 for all i. Let Fi = Aii +
BiKi with Ki ∈ Rmi×ni , F = diag{‖Fi‖2} and define the
matrix Γ as

[Γ]ij =


1 +

∑
k 6=i

‖A−1ii ‖
2‖Aii‖‖Aik‖ j = i,

‖A−1jj Aji‖
2 +

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖ j 6= i.

If there exist Ki for i = 1, . . . , N such that

ρ(FΓ) < 1, (6)

then

lim
t→−∞

P (t) = P̄ , lim
t→−∞

K(t) = K̄

and K̄ is stabilizing.

To prove Theorem 7, we first show monotonicity and
boundedness of the P (t) iteration. The monotonicity prop-
erty is stated in the following lemma.

Lemma 8. Let PAi (t) ∈ Rni×ni and PBi (t) ∈ Rni×ni be
two positive semidefinite matrices. Let PAi (t + 1) and
PBi (t + 1) be the matrices produced by (3) and (4) when
selecting Pi(t) = PAi (t) and Pi(t) = PBi (t), respectively.
Suppose PAi (t) > PBi (t) for all i. Then PAi (t+1) > PBi (t+
1) for all i.

Proof. From the definition of Pi(t + 1) in (3), we only
need to prove that A′jiP

F
j (t)Aji and ‖A′ki‖‖PFk (t)‖‖Akj‖

are monotonic with respect to Pi(t). The monotonicity of
A′jiP

F
j (t)Aji with respect to Pi(t) follows from Lemma 1.c

in (Kar et al., 2012). Therefore, we only need to prove the
monotonicity of ‖A′ki‖‖PFk (t)‖‖Akj‖ with respect to Pi(t).
Let PAFk (t) denote the matrix PFk (t) when Pk(t) = PAk (t).
Assume PBFk (t) is defined similarly. Assume PAk > PBk ,

since PFk = (P−1k + BkR
−1
k B′k)−1, we have PAFk > PBFk .

Therefore,

‖A′ki‖‖PAFk (t)‖‖Akj‖ > ‖A′ki‖‖PBFk (t)‖‖Akj‖,

which means ‖A′ki‖‖PFk (t)‖‖Akj‖ is monotonic with re-
spect to Pi(t). The proof is completed. �

Next, we will show the boundedness of the P (t) iteration.
The result is stated in the following lemma.

Lemma 9. If (6) holds, the sequence of matrices P (t)
generated from (3) is bounded for all t.

Proof. From the definition of Pi(t+ 1), we have that

Pi(t+ 1) = PLi (t+ 1) + ∆i(t+ 1) + Si(t+ 1) + Q̃i,

where

∆i(t+ 1) =
∑
j 6=i

A′jiP
F
j (t)Aji,

Si(t+ 1) =
∑
j 6=i

∑
k

‖A′ki‖‖PFk (t)‖‖Akj‖I.

PLi (t+ 1) = A′iiP
F
i (t)Aii, Q̃i = Qi +

∑
j 6=i

‖Qij‖I.

Since Aii is invertible, we have that

PFi (t) = (A′ii)
−1PLi (t+ 1)A−1ii .

Therefore, we obtain

∆i(t+ 1) =
∑
j 6=i

A′ji(A
′
jj)
−1PLj (t+ 1)A−1jj Aji,

Si(t+ 1) =
∑
j 6=i

∑
k

‖A′ki‖‖(A′kk)−1PLk (t+ 1)A−1kk ‖‖Akj‖I,

which further implies

PLi (t+ 1) = A′iiP
F
i (t)Aii

= (Aii +BiKii(t))
′Pi(t)(Aii +BiKii(t)) +Kii(t)

′RiKii(t)

(a)

≤ (Aii +BiKi)
′Pi(t)(Aii +BiKi) +K ′iRiKi

= F ′iPi(t)Fi +K ′iRiKi

= F ′i (P
L
i (t) + ∆i(t) + Si(t))Fi +K ′iRiKi + F ′i Q̃iFi

= F ′i (P
L
i (t) + ∆i(t) + Si(t))Fi + δi, (7)

where (a) follows from the fact that Kii(t) minimizes
(Aii +BiKi)

′Pi(t)(Aii +BiKi) +K ′iRiKi for any Ki and

δi = K ′iRiKi + F ′i Q̃iFi.

Since

‖∆i(t)‖ = ‖
∑
j 6=i

A′ji(A
′
jj)
−1PLj (t)A−1jj Aji‖

≤
∑
j 6=i

‖A−1jj Aji‖
2‖PLj (t)‖

and

‖Si(t)‖ ≤
∑
j 6=i

∑
k

‖A−1kk ‖
2‖Aki‖‖Akj‖‖PLk (t)‖

=
∑
j

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖‖PLj (t)‖,

where the last equation is obtained via the swap of index
j, k, from (7), we have

‖PLi (t+ 1)‖

≤ ‖Fi‖2
‖PLi (t)‖+

∑
j 6=i

‖A−1jj Aji‖
2‖PLj (t)‖

+
∑
j

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖‖PLj (t)‖

+ ‖δi‖

= ‖Fi‖2(Γii‖PLi (t)‖+
∑
j 6=i

Γij‖PLj (t)‖) + ‖δi‖.

Therefore, we have that

‖PL(t+ 1)‖ ≤ FΓ‖PL(t)‖+ ‖δ‖,
where with a slight abuse of notion ‖PL‖ = [‖PL1 ‖, . . . ,
‖PLN‖]′ and ‖δ‖ = [‖δ1‖, . . . , ‖δN‖]′. Therefore, if ρ(FΓ) <
1, we have that PLi (t+1) is bounded, which further implies
the boundedness of Pi(t+ 1). The proof is completed. �

Based on the above results, the proof of Theorem 7 is given
below.

Proof. Since Pi(1) = Q̃i > Pi(0) = 0, in view of
Lemma 8, we can show that Pi(t + 1) > Pi(t) for all t
by induction. Therefore P (t) is monotonically increasing
with respect to time t. Moreover, since ρ(FΓ) < 1, P (t)
is bounded from Lemma 9. Therefore P (t) and K(t)
converges to some constant value P̄ , K̄ as t→∞. Besides,
in view of Lemma 4, P̄ , K̄ should satisfy that

P̄ > (A+BK̄)′P̄ (A+BK̄).

Therefore, K̄ is stabilizing. �



Remark 10. Verifying the stability conditions in Theo-
rem 7 requires to solve the nonlinear optimization problem
minKi ρ(FΓ). An alternative is to manually select Ki and
then decide whether the condition ρ(FΓ) < 1 is satisfied.
A first heuristic method of selecting Ki is to let Ki solves
the optimization problem minKi ‖Aii +BiKi‖, which can
be cast into the following LMI problem

min
Ki,γ

γ

s.t.

[
γI (Aii +BiKi)

′

(Aii +BiKi) I

]
≥ 0.

The motivation is that if ‖Aii + BiKi‖ = 0 for all i,
ρ(FΓ) = 0 < 1. Therefore, we are motivated to select
Ki to make ‖Aii +BkKi‖ as small as possible and expect
that ρ(FΓ) < 1. Another heuristic method is to run the
iteration (3) for a sufficiently long time, use the final Pi(t)
to construct Ki = Kii(t) with Kii(t) = −(B′iPi(t)Bi +
Ri)
−1B′iPi(t)Aii and use such Ki for verifying ρ(FΓ) < 1.

The motivation is that if Pi(t) converges and K̄ is stabiliz-
ing, we can expect that the finite horizon approximation
Kii(t) fulfills the stability condition ρ(FΓ) < 1.

4. SIMULATIONS

We consider a system composed of N = 6 subsystems. For
i ∈ {1, 2, ..., 6}, we set

Aii =

[
0.9 0.1
0.1 −0.9

]
, Bi =

[
1 0
0 1

]
,

and for i, j ∈ {1, . . . , 6}, let

Aij =

{
diag(α,−α) if |i− j| = 1

0 otherwise,

where α > 0. For the LQR control problem, we set the
symmetric matrices Qii = Ri = I for i = 1, . . . , 6 and
Qij = 0 for i 6= j. For each system, we compare its
behaviour when using (i) K∗, the static gain from the
infinite horizon centralized LQR controller (1), (ii) K(t)
as proposed in our paper, (iii) Kd(t) obtained by the
dualisation of the Partition-Based Distributed Kalman
Filter from (Farina and Carli, 2018), which is given by
Kd(t) = [Kd,ij(t)] with

Kd,ij(t) = −(B′iPi(t)Bi +Ri)
−1BiPi(t)Aij , (8)

Pi(t+ 1) =
∑

j∈N out
i

Ã′jiP
F
j (t)Ãji +Qi, (9)

where PFj (t) is given by (4); Ãji =
√
|N in

j |Aji and |N in
j |

is the cardinality of N in
j .

In Figure 1, we show the response for the first subsystem
when α = 0.4, T = 100 and initial conditions of each sub-
system are x = [100,−50]

′
. We plot the system response

of the first subsystem using K∗ (see (1)), K(t) and Kd(t),
where it can be seen that the temporal response converges
to [0, 0]′ when using K∗ and K(t) and diverges when using
Kd(t). Besides, the response with K∗ and K(t) are close
to each other, which demonstrates the effectiveness of our
proposed controller. Responses of other subsystems are not
shown since they have a similar evolution.

Figure 2 shows the spectral radius of A+BK with respect
to α when let K equal to K∗, K(T ) and Kd(T ), after T =
100 iterations of (3) and (9), respectively. In the considered
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Fig. 1. Temporal response of the first subsystem state vari-
ables x1,1(t) and x1,2(t) under different controllers.
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Fig. 2. Values of ρ(A + BK) as a function of α under
different controllers.

situations, we can verify that the gains K(t) and Kd(t)
converge to constant values after T = 100 iterations. From
Figure 2, it is clear that in spite of the coupling between
subsystems, the overall system remains stable when using
our proposed controller K(t). In contrast, if the controller
Kd(t) is used, the coupling α should be sufficiently small
(in this case, α < 0.36) in order to preserve stability of the
closed-loop system.

We verify Theorem 7, by corroborating that if ρ(FΓ) < 1
then the closed-loop system is stable. In order to ob-
tain FΓ, we calculate Γ from Theorem 7, and F =
diag{‖Aii +BiKi‖2} using Ki = Kii(T ) obtained after
T = 100 iterations of (3). Figure 3 presents ρ(FΓ) for
α ∈ [0, 6]. As ρ(FΓ) < 1, from Theorem 7, we can conclude
that the asymptotic control gain K̄ is stabilizing, which is
also reflected in Figure 2.

Finally, we evaluate the finite-horizon cost
∑T
t=0 x

′(t)Qx(t)+
u′(t)Ru(t) when using the three different control laws
for α = {0.1, 0.2, 0.3}. Table 1 summarises the obtained
results, for the finite-horizon LQR with T = 100. As
it is expected, the performance of our controller K(t) is
suboptimal but improves over Kd(t).
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Fig. 3. Values of ρ(FΓ) as a function of α.

Table 1. Cost-to-go of the T -step finite-horizon
LQR performance, for different coupling values

and different controllers

K∗ K(t) Kd(t)

α = 0.1 5.47× 104 7.27× 104 7.54× 104

α = 0.2 7.76× 104 11.3× 104 14.8× 104

α = 0.3 10.6× 104 17.0× 104 45.2× 104

5. CONCLUSIONS

This paper studies distributed LQR control design for
physically coupled systems. Different from other contri-
butions available in the literature, we do not assume any
structures for the state penalty matrix in the LQR per-
formance index. We propose a distributed control design
and provides an upper bound to its LQR performance.
Moreover, we study the asymptotic performance of the
closed-loop system and show that if certain conditions are
satisfied, asymptotic stability is guaranteed. Further re-
search will consider the development of distributed output
feedback controllers with stability guarantees by combin-
ing the partitioned Kalman filter in (Farina and Carli,
2018) with the distributed LQR scheme proposed in this
paper.
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