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Abstract— Advanced Assistance Driver Systems (ADAS)
adaptation with respect to driver driving style is a research field of
major interest, given the additional benefits that could be obtained
in terms of comfort and safety perceived by the user. In this work, a
personalized Adaptive Cruise Control (ACC) oriented driving style
features extraction method is proposed, meant to be used to choose
an ACC tuning which better fits the driver on road behaviour. The
method exploits an Artificial Neural Network driver model, capable
of capturing the driver behaviour in a car following scenario, trained
and validated over real data. From a closed-loop model analysis in
a simulation environment driving style features are then extracted,
looking at the system response to variations of the preceding vehicle
speed. Finally, the effectiveness of the extracted features for a
non-trivial characterization of the driver behaviour is assessed,
comparing the results obtained considering three different drivers.

I. INTRODUCTION

In the late years, it has undoubtedly been a growing trend to
equip new vehicles on the market with Advanced Driver Assis-
tance Systems (ADAS), given the benefits they can bring in terms
of comfort and safety of the driver. In the ADAS context, Adaptive
Cruise Control (ACC) [1], [2] is the natural evolution of the Cruise
Control system. While the latter is a mere vehicle speed controller,
the ACC maintains the user-defined speed set point when the road
ahead is clear, switching to distance control whenever obstacles are
detected, thanks to the information usually retrieved from a radar
sensor. Whereas the state-of-the-art in ACC technology is already
in an advanced stage, open issues are still related to user acceptance.
In fact, since the ACC completely substitutes the human driver in
controlling the longitudinal vehicle dynamics during car following,
it is essential for its behaviour to be perceived safe and comfortable
by users [1], [2]. In such sense, ACC adaptation w.r.t. to personal
driving style is a research field of great interest [3], that could
potentially enhance the advantages brought by the deployment of
such technology. However, up to now the great majority of ACC
systems available on the market only give the user the possibility
to manually choose among a certain number of predefined ACC
settings the one that satisfies him/her the most, without the
implementation of any adaptation or personalised strategy.

A first approach towards the goal of an ACC adaptation
w.r.t. driver behaviour exploits driving style classification and
recognition methods based on learning techniques (see the recent
survey [4]). In this setup, in [5] an adaptation method specifically
designed for ACC controllers based on a binary driving style
classification is proposed. Exploiting a SVM classifier that takes
as input driving style characteristic features, drivers are divided
in two clusters, calm and sportive behaviour respectively: this

∗Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Italy.
Corresponding author: giulio.panzani@polimi.it

information might be used to automatically select the best ACC
setting for the driver within a set of labelled tunings.

A different approach to ACC adaptation problem consists in the
exploitation of driver models (see [2], [6]) capable of accurately
reproducing his behaviour during car following. The ACC system
is then designed so to mimic the identified behaviour: typically
the driver model is used to produce targets for different variables
in a car following scenario. For example, in [7] a driver physical
model for steady car-following is presented that, identified on
real driving data by means of Recursive Least Squares, is able to
generate throttle/braking pressure according to the driver driving
style. The model output is given as reference to a PID controller,
that generates the control action. Similarly, in [8]–[10], a model,
combination of Hidden Markov Model and Gaussian Mixture
Regression, is trained on driving data. Such model produces as
output the desired vehicle acceleration sequence over a prediction
horizon, emulating the driver behaviour. Its output is given as input
to an MPC controller, which generates a final safe acceleration
sequence to be applied as control action in autonomous mode. A
features based learning-from-demonstration method is applied in
[11], where a driver model is trained, capable of producing driving
trajectories during car following similar to the ones shown by the
driver. In [12] and [13] Neural Network black-box models are
exploited. In [12] the suitability of deploying both Feedforward
and Elman Neural Networks to identify human driver behaviour
during car following is assessed. In [13] instead, a Forward Neural
Network is trained to capture the driver behaviour, producing
as output a desired distance to be maintained from the preceding
vehicle. Such set point is then given as input to a PID controller.

The work presented in this paper lies in between the two dis-
cussed approaches. Similarly to the first one, we consider the ACC
as characterized by a certain set of pre-defined and unchangeable
configurations with the final objective of choosing the one that
better matches the driver’s behaviour. However, avoiding a too
generic driving style labelling and specifically focusing on the
driver’s behaviour in a car following scenario, we take advantage of
a detailed Neural Network model of his/her behaviour and we anal-
yse it in terms of closed-loop dynamic response. Some features that
precisely characterize different aspects of the driver closed-loop
behaviour are discussed. They could be exploited in future works
for ACC adaptation purposes, where the selected ACC tuning is
the one that better matches the discussed closed-loop parameters.
Indeed, the method could also be applied as to characterize the
”equivalent” driving style of different tunings of the ACC.

This idea is partially inspired by the work presented in [14],
where a second order linear model is used to describe the driver’s
behaviour. However, as shown in the following of the paper and
testified by the significant amount of works related to driver
behaviour modelling, this turns to be a too simplistic assumption.
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Fig. 1: Car following scenario schemes: general scheme (top) and
car following dynamics blocks scheme (bottom).

The remainder of the paper is organized as follows. In Section
II the approach used for the characterization of the drivers’
behaviour, within a personalised ACC tuning perspective, is
presented. In Section III, the Neural Network black-box driver
model is presented and trained on real driving data for three
different drivers. In Section IV, the ACC adaptation oriented
features extraction procedure will be described. Finally, in Section
V conclusions and future steps for the presented work are drawn.

II. PROBLEM DEFINITION AND DESCRIPTION

A. The Car Following Scenario

Given the ACC application, the driver’s behaviour is analysed
in a car following scenario which represents the closest driving
condition to the autonomous cruise control one. Such scenario [6]
consists of two vehicles, a Leader Vehicle (LV) and a Follower
Vehicle (FV) both characterized by their speed (vl(t) and v f (t)
respectively), proceeding at a certain distance d(t), as shown in
Figure 1. In the same figure, a block diagram of the car following
dynamics is depicted: the system is a closed-loop one where the
driver of the FV acts as a controller on the gas/brake pedal based
on the perceived distance d(t), speed v f (t) and relative speed ḋ(t).
Its objective is to maintain a desired distance from the LV. The
decision on which and how to keep such distance is based on
different factors that constitute the individual driving style. The
pedals pressure exerted by the driver translates, through the FV dy-
namics, into the instantaneous acceleration a f (t) of the FV, which
regulates the distance d(t) and relative speed ḋ(t) between the LV
and FV (”Leader-Follower Dynamics” block). In this setup, the
LV speed vl(t) can be seen as a disturbance acting on the system.

It is worth to notice that the described dynamics are highly
non-linear both in the FV dynamics (e.g. actuators saturation,
non-linear engine map, etc.) and, most important, in the driver
one which exhibits different behaviours, e.g. in response to
vehicle speed, distance from the LV, braking or acceleration
situations, and so on. In the car following setup, two well-known
fundamental quantities must be introduced: the Time Headway
(THW) and Time To Collision (TTC) [5], [7]. The THW is the
time taken by the FV to reach the actual position of the LV, and
gives information about the preferred distance maintained by the
FV driver as a function of its speed:

THW(t)=d(t)/v f (t) (1)

The TTC is defined as the time interval the FV takes to reach the
LV, assuming the two maintaining the actual relative speed, and
carries information about the level of crash risk accepted by the
FV driver during car following:

TTC(t)=
d(t)

v f (t)−vl(t)
=

d(t)
ḋ(t)

(2)

In order to avoid numerical issues during a perfect steady-state car
following, usually the inverse TTC−1(t) is considered in place
of TTC(t).

B. Experimental Setup and Data Collection
The feature extraction approach, described in the following, has

been tested on actual experimental data, collected during highway
car following driving sessions with a leader and a follower vehicle.
In particular, the latter was instrumented with the following
devices, likely to be already installed on an ACC equipped vehicle:
• a long range automotive radar, to measure distance d(t) and

relative speed ḋ(t) between the FV and LV;
• a 6 d.o.f. IMU which, in particular, measures the longitudinal

acceleration a f (t) of the FV;
• wheel encoders to measure the FV speed v f (t);
• a dSpace MicroAutoBoxII prototyping platform to acquire

all the sensors signals at a sampling frequency of 100 [Hz].
In order to collect effective data on drivers’ behaviour, the LV

was driven at an average speed of 90 [km/h] alternating braking,
accelerations and constant speed manoeuvres. Three different
drivers alternately drove the FV, chasing the LV according to their
own particular driving style. Since the behaviour of the leader
has a strong influence on the test protocol, controlling also the
leader car during the experiments ensures repeatability: to this
end, the same person drove the the LV for the full experimental
campaign duration. Altogether, approximately 20 minutes of car
following data were recorded for each one of the drivers. For each
driver, a training and a validation dataset have been created, the
first containing the 75% of acquired samples (training) and the
latter the 25% of samples (validation). Examples of the acquired
data relative to each driver are depicted in Figure 2 (where the
leader speed is obtained as vl(t) = v f (t)+ ḋ(t)). Inspecting the
signals, it is possible to draw some qualitative conclusions about
the driving style of the three drivers. Looking at the FV and LV
speeds, it can be seen how for Driver 1 and 3 the leader and the
follower speed are close one another almost over the entire test,
while in the Driver 2 case the two signals have slightly different
trends and a consistent phase delay. Drivers 1 and 3 show a much
more reactive behaviour, suggesting a more aggressive driving
style w.r.t. Driver 2. The inspection of the vehicles distance d(t)
corroborates this hypothesis. Indeed Driver 1 and 3 keep, on
average, smaller distances from the LV during the tests compared
to Driver 2: this leads to smaller values of THW(t) for the first
two - once again a symptom of the more aggressive behaviour of
Driver 1 and 3. For the sake of completeness, the average distance
Time Headway values for the three drivers, namely THW , held
during experimental tests are reported in the caption of Figure 2.

Finally, the inspection of the longitudinal acceleration helps
to appreciate the non-linear behaviour of the drivers in general.
In fact, the braking manoeuvres compared to the acceleration
ones are characterized by higher |a f (t)| values, due to the greater
power available. This unbalance between braking and accelerating
dynamics will be better highlighted in Section IV-B.
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Fig. 2: Examples of experimental data recorded during car
following for the three drivers. The average time headways THW
are 0.92[s] for Driver 1, 1.06[s] for Driver 2, 0.85[s] for Driver 3.

C. Discussion on the proposed approach

One possible approach for ACC personalization, described in
the recent work [5], is to infer the drivers’ style from the available
quantities that describe the overall car following behaviour, like
the Time Headway and the Time To Collision. However, such
variables are influenced by definition by both the Leader and
the Follower driving styles and their sole analysis might thus be
misleading: indeed in the mentioned work all results are obtained
in a LV constant speed scenario. In view of a possible application
in a realistic situation where LV speed variations are accounted
for, a two step approach is hence proposed.

Firstly, in order to isolate the FV driver behaviour, we opted
for a black-box data driven modelling of his/her driving style, as
a dynamic non-linear system that produces vehicle accelerations
in response to variations in the LV-FV distance. It is interesting to
highlight the role of the LV in such approach: indeed, the higher
the variations in the LV behaviour, the more the FV driver inputs
are excited, possibly leading to a more accurate description.

Given the complexity and the huge number of parameters
needed, a direct comparison among the different driver models
is inapplicable. Thus, as second step, each identified model
is analysed by inspecting its simulated closed-loop dynamics,
aiming at the extraction of some simplified features capable of
catching the different drivers’ behaviours. The a priori knowledge
about the style of each driver directs and assesses the effectiveness
of the proposed approach.

III. DRIVER MODEL IDENTIFICATION

Following the suggestions of [8]–[10], [14] in this section
a model of the driver behaviour is introduced, capable of
reproducing his/her dynamics in the car following context. The FV
driver is modelled as a dynamic system which produces as output
the vehicle acceleration a f (t) in response to the available measures.
In the proposed approach, to account also for differences in the
vehicle longitudinal dynamic response, both the driver and FV
dynamics will be included in the modelling (see Figure 1).

A. Driver model structure
Due to the complexity and non-linearity of the dynamics

involved, the driver modelling problem is herein addressed
in a black-box identification framework, exploiting Artificial
Neural Networks. A Time Delay Neural Network (TDNN) [15],
with time delays on the input stage only, is used. Such network
architecture is capable of modelling a dynamic system thanks
to its external delays structure but still keeping a reasonable
complexity and parameter number, easing its tuning efforts.

The network accepts as input a number m of time series,
namely u(t)= [u1(t),...,um(t)]T . At every time instant t, the last
h+1 samples ui(t−h),...,ui(t) of every i-th time series, i=1,...,m,
are processed by the N hidden layers of the network to produce
the final output y(t). Each j− th hidden layer, j = 1, ...,N, is
characterized by a number n j of artificial neurons. The number
of network parameters is a function of the number of inputs m,
the value h of the input time delay, the number of hidden layers N
and the numbers n j of neurons for each one of the hidden layers.

In our specific setup, a TDNN structure with a single hidden
layer (N = 1, with n neurons in the layer) has proved to be
sufficient to correctly match the dynamics of interest, as will
be shown in the following. The output y(t) of the network is the
instantaneous FV acceleration a f (t), as already explained, whereas
for the input variables the THW and the inverse of TTC has been
chosen: u(t) = [THW(t) TTC−1(t)]T . The proposed choice
reflects the widely accepted correlation of the two quantities with
the scenario under analysis. Moreover, it allows to reduce the
number of inputs - thus the model parameters - as the two variables,
see (1) and (2), are a non-linear combination of three measures:
the vehicle speed v f (t), the distance d(t) and its derivative ḋ(t).

B. Model structure selection and training
The experimental data collected for each driver are employed

to train his/her black-box model. In order to fully determine
the model structure, the values of n and h that lead to the best
modelling performances must be found. For fixed values of n
and h, the training of the TDNN parameters is done exploiting
the Bayesian Regularization backpropagation method [16].

In this context, the role of the data sampling time Ts is important:
its value must be sufficiently small to match the dynamics of
interest. On the other hand, a too small Ts results in the need to
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Fig. 3: Training and validation RMSE trend for increasing values
of n and h, Driver 1.

increase the value of h, so that the input time window is large
enough (i.e. contains enough information) to compute the output
value. Given that the typical human visual time response is in the
order of magnitude of 200-300 [ms], the dataset signals have been
sub-sampled to 10 [Hz] (Ts=100 [ms]) before training the network.

In order to fix the TDNN structure, the training and validation
errors for different values of n and h are studied. Since a combined
optimization of the two parameters would result into a complex
non-linear optimization problem, a sequential two-steps approach
is here followed. In the first step, the value of h is kept constant and
different TDNN models are then trained for values of n=1,...,10
and for each one of the three drivers datasets (for a total of 30
different models): for each model, validation and training Root
Mean Square Errors (RMSE) are computed. In this phase, the
value of h is set equal to 10, which implies that the driver takes
actions based on the past 1 second, as the studies on the human
perception and reaction time suggest. The training and validation
errors, as functions of n, are depicted in the upper plot of Figure
3 for Driver 1. While the training error drops as n increases, the
validation error shows the typical decreasing-increasing trend that
indicates the model data overfitting for values of n>3.

In the second step of the model order selection, the value of h
is refined keeping n constant, equal to the previously found value.
Training and validation errors as functions of h are represented
in the bottom plot of Figure 3. In this case, the best value of the
parameter which minimizes the validation error is found to be
h=9, close to the a priori value set in the first phase.
Such structure choice for the TDNN leads to an overall number of
67 degrees of freedom (network parameters) for the model itself.
The same training and order selection procedure is applied for
Driver 2 and 3 models, leading to practically identical results.

C. Driver modelling results

The performance of the trained models are assessed in terms of
validation errors on the respective validation datasets. Firstly, each
model effectiveness is verified on its own driver dataset. In Figure
4, training and validation results are shown. As can be noticed,
the output acceleration a f (t) of the TDNN models matches with
good approximation the behaviour of the drivers in both cases.

It is also interesting to analyse how each model behaves when
trying to explain the driving style of a different driver. This check
allows to highlight the specificity of each driver behaviour, that
cannot be generically described by a single model. The results
of such cross-test are reported in Table I by means of RMS error
values on validation data. For each driver, the best modelling results
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Fig. 4: Training and validation results for the three TDNN driver
models, obtained fixing n=3 and h=9.

Validation Data RMSE [m/s2]
Model #1 Model #2 Model #3

Driver #1 0.25 0.27 0.30
Driver #2 0.49 0.33 0.44
Driver #3 0.39 0.41 0.25

TABLE I: Driver TDNN models performance on training and
validation datasets of the unseen drivers.

are obtained with its respective model (as expected). Moreover, the
use of different model leads to a non negligible performance loss
(ranging from 8% to more than 50%). This confirms that, despite
the structure of the TDNN being the same (h=9, n=3), the model
parameters must be different for each driver, and that the proposed
modelling is capable of capturing their driving style differences.

To conclude the model identification discussion, in Figure 5
a comparison between the performances of the identified TDNN
model and a second order linear one (as suggested in [14]) are
shown, on the training set of Driver 2. In particular, it can be
noticed how the linear model is not capable, by construction,
of differentiating the acceleration from the braking manoeuvre,
leading to poor RMS fits.
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Fig. 6: Block diagram of the closed-loop simulation setup.

IV. ACC-ORIENTED DRIVER MODEL ANALYSIS

As discussed in Section II-C, the drawback of using a Neural
Network model is the complexity in its parameter interpretation
and feature extraction, due to the high number of degrees of
freedom. Thus, to extract relevant features for an ACC-oriented
driving style classification, each driver model is analysed in a
simulated car following scenario. It should be stressed that the
simulation approach proposed does not imply any ideality or
constraint on actual implementation of the method: the driver
behaviour is analysed in the natural closed-loop scenario it is
meant to describe but the non-linearity of the model does not
allow for any analytical study on its closed-loop behaviour.

A. Simulation Setup

The block diagram of the simulation setup used for the trained
models analysis is depicted in Figure 6: it reproduces the car
following scenario (Figure 1) with some appropriate modifications.

The FV Driver and FV Dynamics blocks are here substituted
by the identified driver model, and the FV speed v f (t) is obtained
by integrating the driver model output a f (t). The LV dynamics is
reduced to the exogenous signal vl(t). The relative speed between
FV and LV is computed by subtracting the two vehicle speeds
ḋ(t)= v f (t)−vl(t) and the relative distance d(t) is obtained by
integration. Finally, the THW(t) and TTC−1(t) are calculated
and their instantaneous values fed as input to the driver model,
closing the control loop. In this setup, the LV speed vl(t) is used
to perturb the Leader-Follower dynamics.

B. Closed-loop analysis and features extraction

To extract features for the characterization of each driver, their
closed-loop system responses, as in Figure 6, are analysed. The
simulation is initialized with v f (0)=vl(0)=90[km/h] and d(0)=
d0 = 23[m] (the average speed and distance values registered
during the experimental campaign). After the initial transitory is
settled, a positive and a negative variation in the leader speed is
applied. In order to mimic a realistic driving scenario, the absolute
value of the leader acceleration has been limited to 1[m/s2], equal
for the acceleration and braking manoeuvre. The final steady-state
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Fig. 7: Simulated responses of the closed-loop systems.

speed value vlF of the LV has been limited, to keep all the simulated
variables within the experimentally observed ranges. Indeed, since
we are dealing with non-linear models, results change quantita-
tively for different vlF values; nevertheless the considerations that
can be derived from the following analysis still hold.

The results of such simulations are shown in Figure 7a and 7b.
The inspection of the first transient (common to both scenarios)
allows to draw some initial considerations on the responses. It is
interesting to notice how the three drivers transitorily modify their
speed to match different values of Time Headway, compatible
with the expected driving aggressiveness: smaller THW for Driver
3, and higher for Driver 2. It should be remarked that while
training the model no specific information about the steady-state
Time Headway has been explicitly included, pointing out the
effectiveness of the modelling approach in learning the driver style.

The analysis of the responses w.r.t. leader speed changes shows
how all the identified driver models react to the perturbation,
adapting the value of the v f (t) accelerating/braking so that, after
a transient, it corresponds to the final value vlF of the LV speed.
The transient behaviour however, varies from model to model
and differs in the two cases of positive and negative variations
of v f (t). Furthermore, notice that the steady-state value of the
Time Headway settles on the same value prior to the perturbation,
proving the driver model capability of adapting the value of
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Fig. 8: Spider plots of the drivers features, normalized w.r.t. the
value corresponding to the most aggressive driving style. Arrows
indicates direction of growth of the features.

the safety distance d(t) according to the absolute vehicle speed
v f (t). Finally, the comparison between acceleration and breaking
cases allows for another interesting consideration: in the braking
case the driver closed-loop performance is better, with a smaller
settling time and overshoot, at the cost of a higher vehicle absolute
acceleration. This reflects, on the one side, the already discussed
higher vehicle longitudinal dynamic performance in the breaking
case. On the other, this result can be nicely interpreted as a
generally higher attention and care of the driver in avoiding
collisions with the preceding vehicle - which are possible when
the leader vehicle brakes if no action is taken by the follower.

In light of the simulation results, four different features has
been selected, which carry useful information about the driving
style matched by the models. Firstly, the settling time of the FV
speed v f (t) response tset , defined as the time instant after which
the following condition holds:

|v f (tset+τ)−vlF |<0.02·|vlF−vlI |∀τ≥0 (3)

The smaller the value of tset , the more responsive/aggressive is
the driving style. Then, the percentage overshoot OS% of the
v f (t) response with respect to the final value of the LV speed
vlF . Greater values of OS% indicate a more aggressive behaviour.
As third, the steady-state Time Headway value THWss. The
smaller the value of such feature, the more aggressive is the driver
behaviour, as suggested by [5]. Finally, the acceleration peak value
apeak =max|a f (t)|, that represents the maximum control action
required to adjust the FV speed. The higher the value of apeak, the
more aggressive is the driver behaviour. The normalized features
values, computed over the simulated responses, are represented
using spider plots in Figure 8b. Notice that, for a better graphic
yield, the axis of the settling time tset and the percentage overshoot
OS% have been reversed. From the spider plots, it can be seen
how Driver 3 shows the most aggressive behaviour, as pointed out
by the values of all features. Nevertheless, also Driver 1 could be
classified as aggressive, if one would inspect only the maximum
acceleration (especially for the acceleration case). Focusing now
on Driver 1 and 2, the former shows a more reactive behaviour in
terms of settling time and peak acceleration, along with a greater
aggressiveness (higher value of THWss). However, it can be seen
how the overshoot of the latter driver reverses this trend, both
during the acceleration and braking manoeuvre.

The discussed analysis allows to highlight the effectiveness
of the proposed features in describing different facets of human

driving behaviours: for a better personalised ACC experience
several aspects - sometimes conflicting in terms of driving style
binary classification - should be taken into account.

V. CONCLUSIONS

In this paper a driving style features extraction procedure is
presented, meant to be used for the choice of an ACC controller
configuration that best fits the driver road behaviour. A two-step
approach is followed: in the first one a non-linear TDNN black-
box model, is employed to learn the driver behaviour yielding
excellent modelling results on real data. To compare the different
driver models, as a second step, a closed-loop analysis is done
in a simulated car following scenario. In particular, four features
that characterize the drivers’ style are isolated: their analysis is
consistent with the expected driver behaviour, and allows for a
faceted and non-trivial description of his/her driving style, leading
to a possibly better personalization of the ACC tuning.

Future work will be devoted to repeat the TDNN training
procedure when the FV is lead by an ACC controller, thus
identifying a model for every ACC parametrization. Exploiting
the discussed features extraction procedure, it will be possible to
characterize each ACC setting and test the subjective matching
of the closest tuning w.r.t. each driver style.
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[9] S. Lefèvre, A. Carvalho, Y. Gao, H. E. Tseng, and F. Borrelli, “Driver models
for personalised driving assistance,” Vehicle System Dynamics, vol. 53,
no. 12, pp. 1705–1720, 2015.
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