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Abstract— In this paper, a brake lights detection and classification
algorithm based on a monocular camera and oriented to collision
warning is described. First, the current driving lane is identified
through a lane detection algorithm. Shrinking the search area
to the actual driving lane, the preceding vehicle is detected
exploiting YOLO object detector. Then, preceding vehicle lateral
and third brake lights are identified in the L∗a∗b colorspace by
harnessing brightness and color information, along with geometrical
considerations. Finally, brake lights status is determined by means
of SVMs classifiers, based on features computed both on light
regions and the overall vehicle image, and the braking status of the
preceding vehicle is determined. The algorithm is designed to work
in different illumination conditions during day time: experimental
results prove the robustness of the proposed strategy with respect
to different illumination conditions and brake lights shape, with an
overall algorithm precision of 96.3%.

I. INTRODUCTION

The acronym ”ADAS” (Advanced Driver Assistance Systems)
refers to a wide variety of devices with the main goal to help the
driver in many challenging driving situations. Due to the undeni-
able benefits in terms of safety and comfort introduced by these
systems, in the late years the diffusion and importance of ADAS
has increased even in low-end vehicles. Moreover, thanks to the
increasing in-vehicle computational power, a growing number of
ADAS relies on information provided by machine vision sensors.

Among all the possible exploitations of camera based strategies
in the automotive field, one of the most relevant application is
related to obstacle detection and collision warning/avoidance
systems. In this setup, the visual detection of a preceding
vehicle braking manoeuver by looking at its brake lights
status is a challenging problem; however such information can
be beneficially harnessed by different ADAS. For example,
considering ACC [1] or collision warning/avoidance strategies (e.g.
[2], [3]) based a single camera sensor, where an obstacle distance
estimation is possible but yet inaccurate, the information on the
braking status of the preceding vehicle could be used to enhance
robustness in braking manoeuvre detection. Also when a distance
sensor is available (e.g. lidar, radar, etc.) such information could be
integrated with the distance measure to make the braking detection
more reactive (visual detection is affected only by camera framer-
ate related delay) in warning the driver about the potential dangers
and/or directly acting on the brakes to avoid possible crashes.

The problem of detecting vehicle tail lights and determine their
status has already been addressed in literature, both in night time
and day time conditions. In the former case, the greater majority
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of the works is focused on rear lights detection, that is often a
mandatory step in vehicle detection strategies when the scenario
lightness is very low (see the work in [4]). In the latter case instead,
tail lights detection along with their status classification are two
strictly related topics, frequently addressed as a single problem.

For instance, in [5] a two step brake lights detection method
is proposed. Firstly, lateral brake light regions are identified in the
YCbCr colorspace through Otsu thresholding and spatial filtering.
Then, brake lights status is classified (on/off) using a Support
Vector Machine trained on features computed over the brake light
regions. Another SVM classifier based approach is proposed
in [6]. For every frame collected by the camera, vehicles are
identified using Deformable Part Model approach and their lateral
tail lights detected in the HSV colorspace. Lights are classified
(off/braking/turning) based on features extracted according to the
Hierarchical Matching Pursuit approach. In [7] and [8], after a
vehicle detection stage, lateral tail lights are extracted in the L∗a∗b
colorspace looking at the a∗ (red) and L∗ (luminance) channels.
In [7], also brake light status is determined (on/off) exploiting
Fast Radial Symmetry Transform, which has the main drawback
of operate effectively on radially symmetric blobs (while the
shape of tail lights may not satisfy this requirement). In [9] a deep
learning approach is exploited. After road area segmentation and
vehicle detection based on HOG features, the extracted vehicle
images are given as input to a convolutional neural network
classifier, able to determine whether the vehicle is braking or not.
Finally, in [10] and [11] two strategies for brake lights detection
and status determination are presented, working both in day time
and night time conditions. In [10], at first vehicles are detected
exploiting symmetrical SURFs descriptors. Then, lateral tail lights
are identified using the so called ”Lamp Response” of each pixel
and their status is determined using an high-pass pixel mask. In
[11] candidate tail lights are extracted in YUV colorspace and
selected using color and brightness thresholds. Lights activation
is then detected through area and intensity tracking of such lights.

In this work, a novel approach to brake lights detection and sta-
tus classification is proposed, specifically developed for collision
warning systems in day time conditions. The first stage of the algo-
rithm is focused on detection the preceding vehicle, which braking
status must be recognised. In this phase, a lane detection algorithm
and YOLO [12], [13] object classifier, as well as object 3D projec-
tion through camera calibration, are exploited so as to achieve the
goal. Notice that this first step is not implemented in the great ma-
jority of literature approaches, which indeed exploit vehicle detec-
tion in order to simplify brake lights extraction procedure but take
into consideration all the found vehicles and not extract the preced-
ing one. Once the preceding vehicle is found, its brake lights are



extracted. Specifically, in addition to the two lateral brake lights of
the vehicle, also the third brake light (i.e. the one usually positioned
at the top or bottom side of the rear window, centred w.r.t. the vehi-
cle chassis) is detected in this phase. Such third light, being turned
on only in the occurrence of a braking manoeuvre, carries precious
information about the braking status of a vehicle and can be used
to enhance robustness of the overall strategy. Despite this fact, as
far as the authors know, such information it has not been harnessed
in the previous works (except indirectly in [9] where, as explained
above, the input to the classifier is the entire vehicle area). Finally,
the identified lights status is determined using SVMs classifiers.

The remainder of the paper is organized as follows. In Section
II and Section III the lane detection strategy and vehicle detection
strategy respectively are explained, aimed to the preceding vehicle
identification. In Section IV the rear brake lights detection strategy
is described. SectionV is devoted to brake lights status classifi-
cation. Finally, in Section VI experimental results are presented,
along with final comments on the algorithm effectiveness.

II. LANE DETECTION

Lane detection phase is a crucial step for the brake light
detection algorithm, since lane boundaries information can be
exploited by the vehicle detection module so as to restrict the
search area for the possible preceding vehicles (see Section III).
Since the topic has been widely discussed in literature (see the
survey [14]), in the following we will briefly describe the main
idea behind the algorithm.

The system is based on Hough Transform, that is widely
exploited in lane detection problems. First of all, for every frame
collected by the RGB camera, a ROI (Region Of Interest, see
Figure 2a) is chosen on the image, which contains the road plane
and thus all the useful information to perform lanes identification.
The ROI is then transformed from RGB colorspace to grayscale
and Canny edge detector is applied, in order to obtain a binary
image containing the edges corresponding to lane markings. Fi-
nally, lines corresponding to lane markings are extracted exploiting
probabilistic Hough Transform (results in Figure 2b).

Once identified the lane marking candidates, a further step is
necessary to distinguish the ones truly defining lane boundaries
from the false positives (i.e. caused by road irregularities, shadows,
etc.). First of all lines are projected from the 2D pixel coordinates
to the 3D camera frame, so as to get rid of perspective effects (see
Figure 1). Given a point PC

i =(Xi,Yi,Zi) in the 3D camera frame, its
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Fig. 1: Reference frames scheme: pixel coordinates (left) and 3D
camera frame (right).

(a) Original Image with ROI (red). (b) Hough Transform output.

(c) Filtered lines. (d) Identified lane boundaries.

Fig. 2: Lane boundaries identification with Hough Transform.

projection PI
i =(ui,vi) in pixel coordinates can be obtained as [15]:{

ui =Cx+ fx · Xi
Zi

vi =Cy+ fy · Yi
Zi

(1)

where fx and fy represent the camera focal length and (Cx,Cy)
are the coordinates of the camera principal point in pixels, which
can be obtained through calibration. Under the assumption of flat
road and small roll and pitch angles, we can know precisely its
height h w.r.t. the ground plane. Now, since the road markings
lie on the road plane, we know the Yi = h coordinates of their
endpoints in the 3D camera frame and hence we can project them
in the (X,Y,Z) coordinate system exploiting the equations in 1 in
the two unknowns Xi and Zi. The projected lines are then filtered,
to discard the ones not corresponding to lane markings, based on
their absolute and relative position and orientation. Indeed filtering
the lines in the 3D frame is much simpler and effective than doing
the same in the image plane, where parallel lines have not zero
relative angles and the same lengths in pixels could corresponds
to different lengths in the real world.

At this point, the length of the filtered lines is normalized
(see Figure 2c) and the ones that share similar position and
orientation are grouped to obtain the identified lane boundaries.
The algorithm, based on the lateral position of the markings
identifies the current driving lane (always) and the left and right
lateral lanes (if any, see Figure 2d).

The steps described so far are applied to every single frame
captured by the camera. In order to correlate the information
between frames, every identified marking is tracked using a
Kalman Filter [14], to obtain noise reduction and robustness with
respect to ambient occlusion.

III. PRECEDING VEHICLE DETECTION

Once identified the driving lane boundaries, possible obstacles
(e.g. cars, trucks, etc.) preceding the ego vehicle in the driving lane
shall be identified. To do so, we rely on an object detector based on
the recently introduced YOLO (You Only Look Once) framework
[12], [13]. The detector has been trained using the COCO
dataset [16], and it is able to detect vehicles in square images
of dimensions 416×416 pixels. Hence, the preliminary step of



vehicle detection consists in decide which are the image portions
(ROIs) to be given as input to the vehicle detector. To do so, we
can rely on the information derived from lane detection, since
we expect the vehicle to be contained in the current driving lane.
Call Pv the vanishing point defined in the image plane by the two
driving lane boundaries, and Pb the middle point of the segment
of length delimited by the two intersections of the lane boundaries
with the bottom line of the image, whose length w` represents the
width of the lane at the bottom of the frame: the segment PvPb
identifies the driving lane center in the image plane. We define two
square-shaped ROIs - a smaller one, with size 416×416 to detect
distant vehicles, and a bigger one, with size 832×832 to detect
near vehicles - both centred in CROI =(uROI,vROI) which lies on
PvPb (see Figure 3a). This way, in every frame the two ROIs are
centred with respect to the identified driving lane, and the only
free parameter is the value of vROI, experimentally tuned.

Once extracted the two ROIs, both images are given as input to
the YOLO detector (indeed the image from the biggest ROI is re-
sized to fit the 416×416 input size of the CNN), obtaining the can-
didate vehicles. Since, doing so, the vehicles contained in the small-
est ROI are identified twice, a merge strategy is necessary. Calling
AVi and AVj the bounding box areas of two vehicles Vi and Vj, the
bounding boxes are merged in a single detection if the index:

IA=
AVi∩AVj

min{AVi,AVj}
≥τA (2)

where the threshold τA is a tuning parameter. The results of vehicle
detection and merging operation are shown in Figure 3b. As for
lane detection, in order to reduce noise and increase the detection
robustness, every vehicle is tracked using Kalman Filters [17].

Now, the algorithm must select among all the detections the
one preceding the ego vehicle an driving in the same lane. Here,
we once again exploit Equation (1). Considering the bottom edge
of the bounding boxes, we assume it to represent the contact line
between the corresponding vehicle and the road plane and thus, to
know its Y =h coordinate in the 3D camera frame. Hence, project-
ing in 3D frame the left and right endpoints of the bottom edge
associated to the i-th detected vehicle vi - namely P`

Bi
=(X`

Bi
,h,Z`

Bi
)

and Pr
Bi
=(Xr

Bi
,h,Zr

Bi
) - we can obtain the distance di=Z`

Bi
=Zr

Bi
between the ego vehicle and vi. Furthermore, X`

Bi
and Xr

Bi
, that

give us information about the width and X direction displacement
(w.r.t. the ego vehicle) of vi, can be merged with the estimate of
the driving lane position and width extracted in Section II. The
preceding vehicle is identified as the closest to the ego vehicle and
completely contained in the current driving lane (Figure 3b).

IV. BRAKE LIGHTS DETECTION

Following the preceding vehicle identification, tail lights are
detected and their status classified. To perform the detection, we
draw inspiration from the works [8] and [7], adding however
significant features. We start from the portion of image containing
the preceding vehicle, as depicted in Figure 4a, that is rescaled to
a dimension of 416×416 pixels for normalization purposes. The
image is then converted into L?a?b? colorspace and the a? channel
- containing red and green color components - is extracted (Figure
4b). The portions of the a? channel characterized by an high red
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(a) Scheme of ROIs center computation.

(b) Overall detections (in red) and preceding vehicle (in green).

Fig. 3: Vehicle detection procedure using YOLO detector and
distance estimation with contact point detection.

chromaticity are identified by image binarization using Otsu thresh-
olding (Figure 4c). Finally, tail light candidates are extracted apply-
ing connected component analysis to the binary image. Such candi-
dates are represented on the original segmented image in Figure 4d.
It can be seen that, in addition to the lateral and third break lights,
also the two areas corresponding to reflectors are erroneously
identified as tail lights. Hence, in the following, a set of rules to
indentify only the true detections will be explained in details.

A. Lateral Brake Lights Detection

The pair of lateral brake light is detected based on geometrical
considerations. We assume that two candidate regions Ri and R j
(i 6= j) - a candidate pair - must be situated at a similar height
in the image plane. Calling Ci

R = (ui
R,v

i
R) and C j

R = (u j
R,v

j
R) the

centers of the two regions respectively, this translates in the
condition: abs(vi

R−v j
R)<τv.

Furthermore, the two candidates Ri and R j, must have similar
dimensions and shape. This can be expressed through the
interception over union score, computed after translating the two
regions so that Ci

R≡C j
R:

Ii, j
S =
|Ri∩R j|
|Ri∪R j|

≥τS (3)

where the operator |·|means the cardinality of a set of pixels. As-
suming the preceding vehicle to have only a single pair of tail lights,
we need to discriminate among the possible multiple detections.
To do so, we introduce two more scores. The first one is related
to the candidate couple dimensions, assuming tail lights to be the
biggest red chromaticity regions in the preceding vehicle image:

Ii, j
D =
|Ri|+|R j|

∑
Np
k=1|Rk|

(4)



where the total area |Ri|+|R j| of the pair itself is normalized w.r.t.
the sum of all the candidate pairs area (Np is the number of high
red chromaticity regions which also form a candidate pair). Finally,
in ideal conditions, we expect the two lateral brake lights center Ci

R
andC j

R to be one to the left, one to the right and equidistant w.r.t. the
vertical axis of symmetry of the image itself. These two conditions
can be summarized with the following score, considering Ri and
R j to be the left and right brake light respectively, namely ui<u j:

Ii, j
U =max

{
0,

min{WI/2−ui
R,u

j
R−WI/2}

max{WI/2−ui
R,u

j
R−WI/2}

}
(5)

where WI is the width in pixels of the vehicle image. Notice that
scores (3) and (4) are inspired by the work [7], while the score (5)
has been added to increase the robustness of the detection strategy.
Finally, we combine all the scores into an overall score for lateral
brake lights detection:

Ii, j
lb =λS ·Ii, j

S +λD ·Ii, j
D +λU ·Ii, j

U (6)

so that, among all the candidate pairs (Ri,R j), we can choose
the one which corresponds to the higher value of Ii, j

lb to define
the couple of lateral brake lights of the preceding vehicle, namely
(Rl,Rr) (see Figure 4e and 4g). The weights λS, λD and λU are
chosen to minimize the number of wrong detections, and satisfy
the relationship λS+λD+λU =1.

B. Third Brake Light Detection

The detection of the third brake light is highly dependent on the
previous lateral lights detection. In fact, we expect such third light
to be found in an higher position on the back of the car w.r.t. the lat-
eral brake lights, and approximately in the middle of these last two.
The first statement is a necessary condition for a detected region
Rk (see Figure 4g) to be considered as a candidate third brake light,
and can be formalized as follows:

vk
R≤

vl
R+vr

R
2

(7)

where Ck
R=(uk

R,v
k
R) is the center of the region Rk and Cl

R and Cr
R

are the centres of the previously identified left and right lateral
brake lights respectively. Regarding the second condition instead,
it can be translated in the following score:

Ik
tb=

min{uk
R,(u

l
R+ur

R)/2}
max{uk

R,(u
l
R+ur

R)/2}
>τtb (8)

that takes value in [0,1] and must be greater than a minimum value
τtb. Finally, by common experience we expect the third stop light
to have a width/heigh ratio bigger than one. Thus, calling wk

R and
hk

R the width and the height of the k− th candidate third brake
light, it must hold: wk

R/hk
R>1. In the case that multiple candidate

regions, the one with the highest score Ik
tb is taken as third stop light

of the preceding vehicle, namely Rt (see Figure 4f and Figure 4g).

V. BRAKE LIGHTS STATUS CLASSIFICATION

For what concerns the light status classification step, it can
be assessed as a two class classification problem (lights can be
on or off). Such problem can be successfully solved by means
of Support Vector Machine classifiers (see [5]) which takes as

(a) Preceding vehicle. (b) a-Channel image. (c) Thresholding.

(d) Candidate lights. (e) Detected lateral
brake lights.

(f) Detected third
brake light.
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(g) Geometrical representation of the detected regions.

Fig. 4: Brake light regions detection overview

input features extracted from the previously identified candidate
regions Rl, Rr and Rt .

Features are computed in the L∗a∗b colorspace, considering the
L∗ and a∗ channels only, which in our setup carry all the useful
information (pixels intensity and red chromaticity respectively).
Calling L∗(ui,vi) and a∗(ui,vi) the L∗ and a∗ channel values of
the generic pixel (ui,vi) in the image plane, the following features
are extracted:
• given the identified light region Rk, the maximum value of

pixels belonging to Rk in the L∗ and a∗ channel:

Lk
max= max

(ui,vi)∈Rk
L∗(ui,vi), ak

max= max
(ui,vi)∈Rk

a∗(ui,vi)

• the minimum value of pixels belonging to Rk in the L∗ and
a∗ channel:

Lk
min= min

(ui,vi)∈Rk
L∗(ui,vi), ak

min= min
(ui,vi)∈Rk

a∗(ui,vi)

• the average value of pixels belonging to Rk in the L∗ and a∗

channel:

Lk
avg= avg

(ui,vi)∈Rk

L∗(ui,vi), ak
avg= avg

(ui,vi)∈Rk

a∗(ui,vi)

These features are very similar to the ones proposed in [5],
with the difference of being computed in the L∗a∗b colorspace
instead of YCbCr. Furthermore, two more features are considered:



• the percentage of pixels belonging to Rk in the L∗ and a∗

channel which value is bigger than a threshold:

Lk
%=

∣∣(ui,vi)∈Rk|L∗(ui,vi)>τL
∣∣/∣∣Rk

∣∣
ak

%=
∣∣(ui,vi)∈Rk|a∗(ui,vi)>τa

∣∣/∣∣Rk
∣∣

where τL and τa are chosen to maximize the true positive
and true negative rate during training phase;

• finally, the average value of pixels in the L∗ and a∗ channel
computed on the whole vehicle image:

Ltot
avg= avg

(ui,vi)

L∗(ui,vi), atot
avg= avg

(ui,vi)

a∗(ui,vi)

Notice that features Ltot
avg and atot

avg, which are computed over
the whole vehicle image and thus are a measure of the average
brightness and red chromaticity of the scenario, guarantee
robustness with respect to lighting changes.

A training set for the SVM classifier can be created based on
the features described so far. To this end, a set of 9700 car images
has been collected in an experimental campaign, of which 5200
have brake lights on. Two different gaussian-kernel SVMs [18] are
trained, one for the lateral brake lights and one for the third brake
light status classification (results in Figure 5a and 5b). This choice
is made bearing in mind that the third brake light has different (and
much more standardized) shape and mounting position w.r.t. the
lateral lights, leading to a different (and less sparse) training data-
points distribution in the feature space. Considering two SVMs
instead of a single one, makes the third stop light classification
more robust and independent from the shape and positioning
variability of the lateral stop lights in the training set. Given that
each brake light status is classified independently, in order to
determine if a vehicle is braking or not, we look at the classification
results as a whole. We consider a vehicle to be braking if more
than a half of his related brake lights are classified as turned on.

(a) Lights ON (Red). (b) Lights OFF (Green).

Fig. 5: Example of brake lights classification using the trained
SVMs.

VI. EXPERIMENTAL RESULTS

The proposed brake lights status classification has been imple-
mented in PythonTM using the OpenCV libraries and its perfor-
mance assessed over a test dataset created using videos acquired
in real driving situations. The values of the algorithm parameters,
outlined in the previous Sections, are summarized in Table I.
The setup for the acquisitions is composed of a single FullHD

(1920x1080 pixels, 30 fps) commercial camera mounted on the
front part of a test car, with zero roll and pitch angles and at a
known height h̄. Data were recorded in car following scenarios

Parameter Units of Measure Value

τA [%] 0.2
τv [pixel] 60
τS [%] 0.3
τtb [-] 0.7
τL [-] 150
τa [-] 155

TABLE I: Algorithm parameters values.

(i.e. the test vehicle was following random cars) on urban and
extra urban structured roads in daytime conditions. In order to
compute the overall performance indices of the whole detection
strategy on a set of frames numerically balanced w.r.t. braking and
non braking situations, the following steps were performed. First
of all, the lane and preceding vehicle detection algorithm, whose
performance are dependent on temporal correlation of frames
because of Kalman Filters exploitation, were executed on the
whole dataset. From the analysed videos, a set of 4570 frames was
randomly extracted. In 2390 frames the preceding vehicle has the
brake lights activated, while in the remaining 2180 the preceding
vehicle is not braking. Finally, the brake lights detection and status
classification algorithm was executed on the extracted frames. The
performances of overall strategy are summarized in Table II, by
means of Precision, Recall and F1 scores. True positives (TP) and
true negatives (TN) refers to frame in which the preceding vehicle
is correctly identified and its brake lights are correctly classified as
ON or OFF respectively. If the preceding vehicle is not detected
because of failure of the lane detection and/or vehicle detection
strategy, such frame is deemed as a false negative and contributes
to lower the performance indices here computed. Looking at
the results, high values of Precision and Recall (96.3% and
93.7% respectively), along with the consequently high F1 score,
confirm the effectiveness of the proposed strategy in detecting the
preceding vehicle and classifying its lights status.

In Figure 6 and 7 some qualitative results of the overall strategy
are shown. More in details, in Figure 6 results of the lane detection
and vehicle detection strategy are depicted. From the images it
can be seen how the lane detection strategy is capable of correctly
identifying the lane markings corresponding to the current driving
lane in different illumination conditions and even in presence of
strong shadows (top left image). Furthermore it can be noticed
how the vehicle detection algorithm is able to correctly choose,
even in presence of multiple vehicles, the one sharing the current
driving lane with the ego vehicle, thanks to the information
retrieved from the lane detection step.

In Figure 7, downstream to the lane and vehicle detection
algorithm execution, some results of the brake light detection
and classification strategy are shown. Looking at the true positive
classification results in Figure 7a, it can be seen how the proposed

n◦ Frames TP TN Precision Recall F1

4570 2292 2025 0.963 0.937 0.950

TABLE II: Overall detection and classification results.



Fig. 6: Results of the lane detection (white lines) and preceding
vehicle detection (green bounding-box) strategy. For the sake of
clarity, frames have been zoomed-in in correspondence of the
preceding vehicle.

strategy is capable of correctly identify and classify vehicle lateral
and third stop lights when the preceding vehicle is braking, despite
of different illumination conditions and losses in resolution due
to higher distances between the preceding and the ego vehicles.
The algorithms shows as well robustness to different shapes,
dimensions and positioning of both lateral an third stop lights
(for example in the case of the detected truck in the lower right
image). Finally, looking at the lower left image, it can be seen
that the strategy works correctly even if the third stop light is
not detected (in this case it is off even if the vehicle is braking,
probably because of a malfunctioning). Similar conclusions can
be drawn looking at the true negative classification results in
Figure 7b, where it is shown how the algorithm is capable of
correctly identify and classify lateral brake lights also when turned
off. In this case it is worth to notice that the third brake light,
when turned off, is very often not recognized by the detection
algorithm. This is because such light is usually positioned behind
the car back window and thus not visible if not active.
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