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An odometry free automatic perpendicular parking strategy for a light
urban vehicle based on a low resolution lidar

Giulio Panzani, Dario Nava and Sergio M. Savaresi

Abstract—In this paper, an automatic perpendicular parking
algorithm for a light urban vehicle with active steer assembly
is presented, designed to help the user when the manoeuvre
has to be performed in a narrow space between two obstacles.
The parking strategy is odometry free and based only on the
measurements from a limited FOV low resolution Lidar, resulting
in a simple and cost effective solution. In the initial phase of
the manoeuvre, the algorithm exploits the Lidar information -
combined with the a priori knowledge of the park structure - to
localize the vehicle in the parking environment and to generate
the steering action accordingly, so as to approach the parking
space. Then, as the vehicle approaches the parking spot entrance,
an obstacle avoidance logic is applied to end the manoeuvre
without crashes. The performance of the proposed strategy has
been assessed through an extensive simulation campaign and
validated by experimental tests using a real instrumented vehicle.

I. INTRODUCTION

In the Advanced Driver Assistance Systems (ADAS) con-
text, automatic parking represents one of the research area of
major interest due to the multiple advantages introduced by
this technology. Related benefits range from the enhancement
of the driver comfort to safety improvements, due to the effec-
tiveness of such systems in perform collision-free manoeuvres
in environments characterized by the possible presence of
obstacles.

In literature, a wide number of examples of autonomous
parking systems for car-like vehicles can be found, based
on the information retrieved from different sensors - from
low cost setups comprising cameras and ultrasonic sensors,
to high end systems based on Lidar and radar scanners - and
exploiting a great variety of planning and control techniques.
Two comprehensive surveys on the topic can be found in the
recent works [1] and [2].

Focusing on the low cost solutions, the most common set-
up choice to perform automatic parking manoeuvres is the
employment of ultrasonic sensors - which can be typically
found on vehicles on the market - to explore the surrounding
environment and detect obstacles. Due to the poor angular
resolution of the measurements, usually parking algorithms
based on such sensing systems exploit the following steps.
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Firstly, the parking area is detected, and the relative pose
between the vehicle and the parking spot reconstructed. One
common approach, especially for parallel parking, is to scan
and map the parking area combining distance measures and
odometry, taking advantage of a low speed transit next to
it, see e.g. [3]–[6]. Alternatively, the detection can be made
directly combining distance measures with additional informa-
tion retrieved from a camera sensor [7]–[9], without the need
for an initial scanning. At this point, to perform the parking
manoeuvre, two approaches are possible. The first one exploits
a path planning phase, where the best path for the vehicle
to enter the parking area is constructed and then tracked to
park the vehicle [3]–[5]. Notice that this approach is strongly
dependent on the vehicle odometry availability, essential in
the tracking phase. On the contrary, the so called skill-based
approaches - mostly based on fuzzy logic controllers [8]–[10]
- tries to mimic the manoeuvre of a skilled driver without the
need for a prior planning phase. In [8] an odometry based
fuzzy logic controller for parallel parking of an AGV vehicle
is presented, exploiting distance measures from ultrasonic
sensors. In [9], a fuzzy logic based parallel and perpendicular
autonomous parking algorithm is derived, that does not need
any odometry information. However, it needs a precise esti-
mate of the relative position between the vehicle and parking
area, and thus the systems relies on sensor fusion of ultrasonic
sensors and a calibrated camera. Finally, in [10], a reverse
parallel parking strategy based only on measurements from
three sonar sensors placed on the front left corner of the car is
presented, with no need for odometry/mapping informations,
based on a neuro-fuzzy controller trained with polynomial
reference paths. However, possible rear and lateral collisions
during the manoeuvre are not considered, making the strategy
suitable for the only case of parallel parking beside a single
obstacle.

In this work, an odometry free forward perpendicular park-
ing strategy between two obstacles for a light vehicle with an
active steer is proposed, based on a frontal low resolution solid
state Lidar sensor only. The latter is very similar (for what
concerns both performance and cost) to arrays of ultrasonic
sensors used for park assist systems on the market. The system
is designed for situations where the vehicle has to be parked
into a very narrow area between two obstacles - e.g. two
vehicles, a vehicle and a wall, etc. - so that it would be
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uncomfortable, even if not impossible, for the driver to get
off. An example of the considered light vehicle is reported in
Figure 1: the wide (compared to the vehicle dimensions) doors
limit the parking of such vehicle between two close obstacles,
which in a dense urban scenario is a desirable possibility,
especially for this kind of transport.

Fig. 1: An example of light electric vehicle, for which the
proposed strategy is designed.

The particular use case scenario and hardware limitations
make the problem slightly different compared to the literature
ones previously described. First of all, due to the non availabil-
ity of odometry information, an initial scanning/mapping of the
parking area cannot be performed and, of course, path planning
and tracking techniques must be discarded. Thus, we have not
any initial clue on the parking dimensions and feasibility of
the manoeuvre. Furthermore, the lack of a priori information,
combined with the fact that we can rely only on the front
Lidar sensor measurements, turns the vehicle pose estimation
during the manoeuvre into a non-trivial problem. Finally, since
we can not exploit reverse motion, the final position must be
reached by a single forward manoeuvre, without possibility of
recover if the vehicle gets stuck against an obstacle.

The remainder of the paper is organized as follows. In
Section II, the experimental setup is described, and the ob-
jectives and simplifying assumptions are explained. In Section
III a modelling for the vehicle low speed motion, as well as
the Lidar sensor and the parking environment are derived. In
Section IV, the autonomous parking is described. Finally, in
Section V the parking algorithm performances are assessed
both in simulation and experimentally.

II. PROBLEM DEFINITION

A. Experimental Setup

The vehicle considered features the following characteris-
tics:

• Active steering assembly: thanks to a steering DC motor,
the steering angle can be autonomously controlled. The
control loop is closed thanks to a rotary position encoder
and the steering angle is saturated, by mechanical design,
to ±40 [deg];

• Longitudinal control: the longitudinal motor is driven to
run the vehicle only at a nominal speed. Given that no
odometry is available an additional wheel encoder has
been mounted on the vehicle for validation purposes only;

• Front Lidar: a low resolution solid-state Lidar based on
the Time of Flight principle with an horizontal Field Of
View (FOV) of 100 [deg] - discretized in eight sectors
of 12.5 [deg] each - and a vertical FOV of 3 [deg]. Each
sector, with a refresh rate of 10Hz, returns the distance
of the closest object that lies in the sector itself, with
an accuracy of 5cm. The sensor is mounted on vehicle
front with null pitch angle, pointing perfectly towards, at
an height of 60 [cm] (Figure 1) in order to avoid ground
detection.

B. Objectives and Problem Description

The objective of this paper is the development of an auto-
matic perpendicular parking system for light urban vehicles.
Due to the previously described limitations, some simplifying
assumption on the manoeuvre and environment structure must
be done, to guarantee the feasibility of the parking strategy.

We suppose the parking slot to have a pseudo-rectangular
shape. The two lateral edges of the parking area are defined
by the two obstacles and have similar length. A third obstacle
limits the depth of the parking area. The obstacles composing
the parking spot are the only ones located in the environment.
We assume the vehicle to start the manoeuvre being oriented
towards the parking spot, with the latter completely contained
into the Lidar FOV. The manoeuvre has to be performed with
the vehicle proceeding at a constant (low) longitudinal speed
value. Finally, due to the lack of knowledge on the parking
spot dimensions, the feasibility of the manoeuvre can not be
assessed a priori, but an arrest is commanded if the risk of a
collision with obstacles is considered too high.

III. SYSTEM MODEL

Based on the assumptions made in Section II-B, the system
has been modelled as follows. Three different subsystems are
isolated: the vehicle, the parking environment and the Lidar
sensor.

Starting from the vehicle, the simple kinematic bicycle
model described in [11], [12] is employed: given the low
speeds and the kinematics of the steer, the bicycle model
still proves to be effective (as the comparison between the
simulated and the experimental trajectories will enforce). The
following nonlinear equations describe the model dynamics,
where the longitudinal speed v is supposed fixed:

ẋ(t) = v · cos(ψ(t)+β (t))
ẏ(t) = v · sin(ψ(t)+β (t))
v̇(t) = 0
ψ̇(t) = (v/lr) · sin

(
β (t)

)
β (t) = tan−1

( lr
lr + l f

· tan
(
δ (t)

))
(1)

In the above equations, (x,y) are the coordinates of the center
of mass referred to the inertial frame (X ,Y ), β is the sideslip
angle, ψ is the yaw angle between the inertial reference and
the vehicle reference frame (xv,yv), and l f , lr are the distances
between the vehicle center of mass and the front and rear axles
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Fig. 2: System modelling schemes: example of binary map
parking area (top) and Lidar measurement scheme (bottom).

respectively. The only input to the system is given by the steer
angle δ .

Regarding the parking environment, an easy and functional
way to represent it is to exploit a 2D binary occupancy map:
an example of is drawn in Figure 2a, where obstacles are
represented in black and free space in white. The proposed
representation matches the hypothesis previously discussed
in Subsection II-B. The available area is characterized by a
certain width wp and equal sides length lp, while the origin of
the (X ,Y ) frame is conventionally located at the intersection
between the longitudinal symmetry axis and the external edge
of the parking spot.

Finally, in Figure 2b the measurement scheme is repre-
sented. The Lidar reference frame (xL,yL) is located at the
front tip of the vehicle, facing the forward longitudinal direc-
tion. At each time instant t the device returns eight different
measures di(t), i= 1, ...,8, one for each available sector, which
obviously depend on the position (x(t),y(t)) and orientation
ψ(t) of the vehicle in the parking environment. Each measure
di(t) reflects the distance of the obstacle that occupies that
particular sector: being impossible to determine its exact
location within the sector itself, the obstacle is conventionally
positioned on the angle bisector, at distance di(t) from the
Lidar frame origin. Thus, eight couples (di(t),αi), i = 1, ...,8,
are obtained, each one defining the polar coordinates of the
obstacle found in the i−th sector, where αi takes the following
values:

αi =−43.75+12.5 · (i−1) [deg], i = 1, ...,8

The conversion of such measures from polar (di(t),αi) to
cartesian coordinates (xi

L(t),y
i
L(t)) in the Lidar reference frame

reads: {
xi

L = di(t) · sinαi

yi
L = di(t) · cosαi.

(2)
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Fig. 3: Definition of the two errors ∆ψ and ∆x.

IV. AUTONOMOUS PARKING STRATEGY

The autonomous parking strategy computes the steering
angle δr(t) and the longitudinal speed command for the
respective low-level controllers. Such strategy exploits two
different algorithms depending on the relative position of
the vehicle w.r.t. the parking area. The discriminating factor
between the two situations is whether or not the two parking
spot external corners are inside the Lidar FOV (i.e. the vehicle
is far from or close to the parking spot). In the following, the
two different strategies are explained in details.

A. Steer Reference Generation - Far From Parking Area

When the vehicle is far from the parking area, the goal
of the parking strategy is to align it w.r.t. the longitudinal
axis of symmetry of the parking spot. Two quantities can thus
be defined: the yaw error ∆ψ , as the angular displacement
between the vehicle reference axis yv and the parking area
symmetry axis (see Figure 3), and the lateral error ∆x, as the
lateral displacement in the X direction between the parking
symmetry axis and the vehicle center of mass. Given these
quantities, similarly to the approach in [13], the control law
is computed as follows:

δr(t) = Kx ·∆x(t)−Kψ ·∆ψ(t) (3)

where Kψ and Kx are positive control gains to be tuned. The
main challenge is to retrieve values of ∆ψ and ∆x from the
sole Lidar measurement. To accomplish this task, the a priori
knowledge on the parking spot structure is exploited.

In Figure 4a, an example of measurements in the Lidar
frame at a certain time t is depicted. When the vehicle is
approaching the parking spot from far distance, its relative
orientation ∆ψ w.r.t. the parking area can be retrieved from
the orientation (in the Lidar frame) of the external parking
edge defined by the two obstacles. The first step is thus to
identify the parking edge from the available Lidar data. To
this end, the Convex Hull of the Lidar detections set Conv(D),
where D = {P1

L , ...,P
8
L} is computed (see Figure 4b). Notice

that Conv(D) is a convex polygon with nL ∈ [3,8] sides, each
defined by S j

L : yL = m j
L · xL + q j

L, j = 1, ...,nL in the Lidar
frame, where m j

L is the slope and q j
L the intercept. As a first



guess, the external parking edge is identified by one of the nL
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(a) Example of Lidar measurement outside the parking spot.

-5 -4 -3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

6

(b) Parking area external edge extraction.

-5 -4 -3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

6

(c) Parking center extraction.

Fig. 4: Steps of the automatic parking strategy to retrieve the
yaw error ∆ψ and the lateral displacement error ∆x starting
from Lidar measurements, when the vehicle is far from the
parking area.

sides of the convex polygon. The choice is done according to
the following steps.

First, given the parking manoeuvre scenario considered, in
between the parking edge and the vehicle tip there shouldn’t
be any other obstacle. Such requirement is mathematically
expressed as:

S j
L |y

i
L ≥ m j

Lxi
L +q j

L, Pi
L ∈D (4)

that enforces the condition that S j
L can represent the external

edge if and only if there are no detections between it and the
vehicle front. E indicates the set of Convex Hull sides that
satisfy such condition.

For each convex hull side ∈ E , the Lidar detections are
divided in two sets, the Inlier I j

L and the Outlier O j
L,

according to:

I j
L =

{
Pi

L ∈D |ri j ≤ thin, S j
L ∈ E

}
(5)

ri j =
|m j

Lxi
L− yi

L +q j
L|√

1+(m j
L)

2
(6)

In other words, Pi
L ∈ I j

L if the Euclidean distance between
Pi

L and S j
L is smaller than a given threshold thin. Otherwise,

Pi
L ∈ O j

L;
The Convex Hull side S?L ∈ E used as external parking edge

initial guess is the one that minimizes:

S?L = argmin
S j

L∈E

{ 1
n2

I
∑

Pi
L∈I

j
L

ri j

}
(7)

which is the average euclidean distance value weighted on
the number of inliers nI = |I j

L |. In Figure 4b, the complete
procedure is shown in the simplified case of unique convex
hull side candidate.

Once S?L is found, a refinement of its location is performed
by a least-square fitting over the inlier set I ?

L . The resulting
line, having equation Se : yL =me ·xL+qe in the Lidar frame, is
the actual identified external parking edge Se. The orientation
error can now be retrieved (see Figure 4c): ∆ψ =− tan−1 (me).
To compute the displacement error ∆x, the parking spot
longitudinal symmetry axis must be found. By definition,
this axis is set to be perpendicular to the parking external
edge, intersecting the latter at the parking spot centre Pc (see
Figure 3). Hence, the problem reduces to retrieve the centre
coordinates Pc = (xc,yc) in the Lidar frame. These are found
starting from the definitions of the inlier and outlier sets I ?

L ,
O?

L . Intuitively, I ?
L represents the set of Lidar detections that

belongs to the parking external edge, while O?
L contains the

detections relative to the internal parking area. Thus, park
corners are identified as two inliers separated by a group of
consecutive outliers (see Figure 4c). The previous intuition can
be formalized as follows. A set of candidates external corners
couples is defined as:

C =
{
(Pi

L,P
j

L) ∈I ?
L | i < j, Pk

L ∈ O?
L ∀k ∈ (i, j)

}
(8)

If more than two candidate couples are found, the couple
(Pi

L,P
j

L) which has the minimum sum of the detection distances
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Fig. 5: Scheme of left and right potential fields calculation
starting from Lidar measurements.

from the vehicle front is chosen. The center of the parking
Pc = (xc,yc) slot is then computed as the midpoint of the
projections of the corners on the parking edge Se (see Figure
4c). Finally, the lateral displacement error ∆x is obtained by
means of trigonometric relations (see the scheme in Figure 3):

∆x = (yc + l f ) · sin∆ψ− xc · cos∆ψ (9)

If no center Pc = (xc,yc) is identified instead - e.g. during the
manoeuvre one of the parking corners exits the Lidar FOV
- ∆x is set to zero. This way, the vehicle corrects only its
orientation, trying to locate again the parking spot at the next
iteration.

B. Steer Reference Generation - Close To Parking Area
While the vehicle approaches the parking spot, at a certain

location the external edges of the obstacles exit the Lidar
FOV, and thus the ∆ψ values computed with the previously
discussed algorithm become meaningless. Hence, a change of
strategy is required.

The first problem to be assessed is how to trigger the
strategy switching. The applied rule is to monitor the external
sector distance values: in fact, as the vehicle moves forward,
the parking edges gradually move towards the outer sector of
the Lidar FOV (see Figure 2b) and get closer to the vehicle
tip. Defining a threshold ds, the switching condition used to
identify the entrance in the parking area is thus di(t) ≤ ds,
where i ∈ {1,2,7,8}.

Now, the control goal becomes to reach the bottom end the
parking slot, avoiding crashes with the lateral obstacles. The
problem is addressed in the obstacle avoidance framework,
exploiting Artificial Potential Fields [14], [15]. Firstly, for
each Lidar detection Pi

L(t), a repulsive potential field Ui(t)
is defined:

Ui(t) =
1
2

Ku ·
( 1

di(t)

)2
(10)

where Ku is a tuning parameter.
Then, Lidar detections are divided in two subsets L and

R:

L (t) =
{

Pi
L(t) ∈D(t) |xi

L(t)≤ 0
}

(11)

R(t) =
{

Pi
L(t) ∈D(t) |xi

L(t)> 0
}

(12)

associated respectively to the left and right obstacles surround-
ing the parking area (see Figure 5). The total repulsive fields
of left and right obstacles are obtained as:

Ul(t) =
1

|L (t)| ∑
Pi

L∈L
Ui(t), Ur(t) =

1
|R(t)| ∑

Pi
L∈R

Ui(t) (13)

Finally, the control action is defined as the difference between
the two repulsive fields relative to the left and right obstacles:

δ (t) =Ul(t)−Ur(t) (14)

This way, the vehicle moves away from the nearest lateral
obstacle, avoiding lateral collisions. Notice that trajectory
convergence towards the end of the parking area is ensured
by convexity its shape.

C. Speed Reference Generation

The parking manoeuvre is performed at low and constant
speed. There are two situations where a stop is requested, and
in both cases the parking manoeuvre ends: when the vehicle
reaches the bottom of the parking spot or if it gets too close
to an obstacle.

The first event is triggered when the average distance
measured by the four central Lidar sectors is lower than a
threshold d̄end :

1
4

6

∑
i=3

di(t)≤ d̄end (15)

The second event instead is detected if one of the Lidar
measures is below the minimum safe distance: ∃di(t) ∈
D(t) | di(t)≤ dmin.

V. SIMULATION AND EXPERIMENTAL RESULTS

The system model, as well as the proposed control strategy,
has been implemented in Matlab/Simulink software environ-
ment, to verify its correct behaviour and tune the parameters.
In such setup, the simplified binary parking environment
shown in Section III has been reproduced as discretized in
cells of fixed dimensions (e.g. 5cm × 5cm, to mimic the
sensor resolution). Furthermore, to model possible crashes
with the obstacles, the vehicle itself is represented as a moving
rectangle whose length and width are defined as the maximum
dimensions of the vehicle, lmax and wmax respectively.

We first focus on the control parameters tuning. Starting
from the two gains Kψ and Kx, as discussed in [13], a trade-
off arises in their choice. Considering the ratio Kψ/Kx, a too
high value leads to an early reduction of the orientation error,
thus heading the vehicle against one of the lateral obstacles.
On the contrary, too small values of Kψ/Kx yields too high
orientation errors causing the parking slot to exit the Lidar
FOV, which is in fact an undesired situation.

Similarly, a trade-off exists on the choice of Ku. Too high
values of such parameter lead to oscillatory behaviour of the
controlled system, while too low values cause the control
action to be insufficient to avoid lateral crashes. Finally,
regarding the strategy switching parameter ds, a conservative
tuning so as to obtain an early switch has to be preferred w.r.t
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Fig. 6: Simulation assessment of the algorithm performance,
the vehicle starts the manoeuvre oriented towards the parking
spot centre.

a late switch between the far and near parking strategies. In
the latter case, the wrong detection of the parking edge will
result in orientation reference errors which can lead the vehicle
towards the obstacles.

The parameter tuning has been performed in the simulation
environment: for a given set of parameters (Kψ ,Kx,Ku,ds)
several (namely 425) parking simulations were performed,
from from different positions. Considering the length of the
vehicle and the 2 meters maximum curvature trajectory (due
to the steer angle limitations), the initial condition range of
interest has been considered to be x∈ [−3,3] and y∈ [−2,−6].
Moreover, an initial vehicle orientation pointing towards the
parking area centre has been set. Then, the following cost
function has been computed:

J =
425

∑
j=1

d̄ j where d̄ j = min di(t), i ∈ 1, · · · ,8 (16)

which represents the sum of the minimum distances from the
obstacles for each simulated parking manoeuvre. If, during a
simulation, the vehicle was not able to successfully complete
the manoeuvre, the minimum distance has been set equal
to zero. The best control parameters set (Kψ ,Kx,Ku,ds) is
found maximizing the proposed cost function. The overall
assessment of the simulated performances, with the obtained
tuning, is shown in Figure 6. Each dot represents a vehicle
initial position and its colour is related to the value of d̄ j
accomplished during the simulation; missing dots represent
initial conditions of unsuccessful parking manoeuvres. The
proposed tuning is capable of producing a feasible and safe
parking manoeuvre when the vehicle initial yaw angle is in
the interval ψ ∈ [−25,25] deg. As expected, performances
improve for higher initial distances from the parking spot,
due to the greater room available for the manoeuvre. The
main limitation to the parking feasibility is due to the fact
that the vehicle, to recover its orientation and lateral error,
should follow a trajectory that causes the parking slot to exit
the FOV of the Lidar.

Parameter Symbol Value UM
System Model

l f Front Axle Length 0.75 [m]

lr Rear Axle Length 0.75 [m]

lmax Total Lenght 2.15 [m]

wmax Total Width 0.8 [m]
Parking Area

lp Park Area Length 2.5 [m]

wp Park Area Width 1.5 [m]
Control Strategy

v̄ Forward Speed 1 [Km/h]
thin Inlier Threshold 0.4 [m]

Kψ ψ Error Gain 45 [−]
Kx x Error Gain 20 [deg/m]

Ku Pot. Field Gain 30 [deg/m2]

ds Switch Distance 1.5 [m]

d̄end End Park Distance 0.3 [m]

dmin Minimum Distance 0.2 [m]

TABLE I: Overall model and control parameters.

The values for all the simulation parameters are summarized
in Table I, where a standard light vehicle parking spot dimen-
sions (regarding Italian legislation [16]) have been considered.

The proposed control strategy has been implemented on the
real system and validation experiments have been conducted
reproducing the simplified parking scenario using cardboard
boxes. Two examples of simulated and real trajectories (recon-
structed thanks to the accessorial odometry) starting from two
different initial poses are depicted in Figure 7. It is worth to
notice the good matching between the simulated and real paths
followed by the vehicle in both cases. This result confirms
the validity of the proposed modelling strategy in reproducing
the behaviour of the real system and the effectiveness of the
simulation based parameter tuning. Furthermore, it can be seen
how the trajectory produced by the algorithm are smooth and
not oscillating (thus not stressing the steering mechanism),
thanks to a correct choice of the control gains. Looking at
the two tests individually, in Figure 7a the vehicle starts the
manoeuvre pointing the center of the parking spot with an
initial position at the edge of the feasibility area (xi = 2 [m],
yi =−4 [m]), and initial inclination of 26 [deg]. During the first
phase of the strategy (Section IV-A) the algorithm reduces the
lateral displacement ∆x w.r.t. the parking spot axis, keeping
bounded the value for ∆ψ . As the strategy switch occurs (i.e.
when the vehicle front reaches the blue dot), the behaviour
slightly changes and the algorithm reduces also the vehicle
angular error in order to avoid collisions with the obstacles.
Finally, the vehicle enters the parking area and arrests its
motion when the parking spot end is detected. During the
manoeuvre, the minimum distance from the obstacles is 4[cm],
which is small but yet not critical, especially when compared
the the overall available parking space.

Figure 7b, shows the parking manoeuvre in a different
scenario, where the vehicle in the initial configuration does
not point towards the center of the parking slot (which is still
inside the Lidar FOV). The minimum distance from obstacles
in this case is 12[cm].
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(a) Simulated and experimental parking manoeuvre starting
from the initial pose: xi = 2 [m], yi =−4 [m], ψi = 26 [deg].
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(b) Simulated and experimental parking manoeuvre starting from
the initial pose: xi =−1.2 [m], yi =−5 [m], ψi = 0 [deg].

Fig. 7: Comparison between simulated and real parking tra-
jectories considering two different vehicle initial poses.

VI. CONCLUSIONS

In this paper an odometry-free parking strategy meant for
light urban vehicles, based on a low resolution Lidar, has been
presented. The core of the algorithm is the inclusion of a priori
information about the parking area which is structured in a
specific - though realistic - way, allowing to retrieve the vehicle
orientation and position w.r.t. the parking area. Experimental
results show the effectiveness of such strategy, allowing for a
wide area of initial vehicle positions that result in a collision-
free parking.
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[12] P. Polack, F. Altché, A. De La, A. De La Fortelle, and A. de La Fortelle,
“The Kinematic Bicycle Model: a Consistent Model for Planning
Feasible Trajectories for Autonomous Vehicles?” in IEEE Intelligent
Vehicles Symposium (IV), 2017.

[13] O. Amidi and C. Thorpe, “Integrated mobile robot control,” in Proc.
SPIE 1388, Mobile Robots V, 1991.

[14] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2. Institute of Electrical and Electronics
Engineers, 1985, pp. 500–505.

[15] Min Cheol Lee and Min Gyu Park, “Artificial potential field based
path planning for mobile robots using a virtual obstacle concept,” in
Proceedings 2003 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM 2003), vol. 2, 2003, pp. 735–740.

[16] M. delle Infrastrutture e dei Trasporti, Italian Traffic Laws, Decreto
Legislativo 30 Aprile 1992 n.285, 1992.


