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Abstract— The kinematic mapping between human arm mo-
tions and anthropomorphic manipulators are introduced to
transfer human skill and to accomplish human-like behavior
for control of anthropomorphic manipulators. The availability
of big data and machine learning facilitates imitation learning
for anthropomorphic robot control. In this paper, a machine
learning-driven human skill transferring for control of an-
thropomorphic manipulators is proposed. The proposed deep
convolutional neural network (DCNN) model utilizes a swivel
motion reconstruction approach to imitate human-like behavior
for fast and efficient learning. Finally, the trained neural
network is translated to manage the redundancy optimization
control of anthropomorphic robot manipulators. This approach
also holds for other redundant robots with anthropomorphic
kinematic structure.

I. INTRODUCTION

Human-like practice imitation has attracted increasing re-
search attention in anthropomorphic robotics control through
the prior decades. It has been demonstrated that the human-
like motion control of anthropomorphic manipulators is
capable of enhancing the quality of Human-Robot Interaction
(HRI) [1] prominently in multiple areas, like industry and
bio-medical engineering purposes [2]-[4]. Especially for the
anthropomorphic serial robot with human-like mechanical
structures, for example, YuMi (ABB, Zurich, Switzerland),
LWR4+ (KUKA, Augsburg, Germany), and Justin robot (In-
stitute of Robotics and Mechatronics, Wessling, Germany). It
is effective to achieve more social, cognitive, and reasonable
in human-like behavior.

There are many investigations into the manipulators in
human-like motion. For example, an autonomous adapta-
tion human-like control for reaching the target of hands-on
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surgical robots was completed by Beretta et al. in [5]. A
human-like reaching motion had been proposed in [6] with
robot-environment interactions. A human-like path planning
of the hand pose was achieved using a feed-forward Artificial
Neural Network (ANN) in [7]. Nevertheless, these achieve-
ments only concentrated on the motion of end-effectors
without considering the arm pose, which cannot achieve
whole-body control [8] of mimicking human-like behavior
on manipulators.

In order to solve the mentioned limitations, Kim et al. [9]
presented the definition of the elbow swivel motion angle
of the human arm, as shown in shown in Fig. 1. A wrist-
elbow-in-line approach was implemented in [10] to project
human-like kinematics resolution on the real robot by map-
ping the human demonstrated elbow angle. Zanchettin et
al. [11] redefined the elbow swivel angle and mapped the
modeled human-like swivel motion to Yumi robot to imitate
human behavior. Moreover, the association between the hand
pose and elbow swivel angle was investigated in [12]. A
human-like delivery was attained using the nonlinear relation
between the hand pose and the elbow swivel angle [11].

A single hidden layer feed-forward neural network
(FFNN) was utilized in our previous work for mapping
the hand pose to the swivel angle; thus imitating human-
like motion in real-time [13]. Moreover, the human-like
performance was demonstrated in a teleoperated surgical sce-
nario [14]. There are many works for data science, including
the machine learning (ML) technique, big data and imitation
learning using for the manipulator system. However, these

Fig. 1: Human elbow swivel motion angle.



Fig. 2: Human-like kinematic mapping on the KUKA an-
thropomorphic manipulator.

processing of vast data set imposes a high computational
burden in real-time system.

Low-speed computation and overfitting of neural networks
(NN) models cannot meet the requirements for efficient
learning in a dynamic circumstance. The big data processing
techniques provide the possibility to make the robot imitating
human-like behavior. They are widely applied on humanoid
robots [15] (e.g., Atlas robots at Boston Dynamics [16]),
evolution of computing (e.g., AlphaGo [17], Internet of
Things (IoT) [18]), and human-robot interaction. Since the
traditional continuous learning procedure is costly and time-
consuming, to design and develop a fast evolution method
in the dynamic human-like learning procedure is necessary.
We utilize machine learning based algorithms to model the
human motion skill [19] and transfer the trained to model to
achieve human-like motion on the robot manipulators. The
Root Mean Square Error (RMSE) using the human motion
data is utilized to validate the effectiveness of the imple-
mented methods. The established model is then translated
to manage whole-body human-like kinematic control of a
manipulator [20].

In this paper, we propose an ML framework based on
the deep convolutional neural network (DCNN) approach
for fast online human-like motion learning and accuracy
enhancement. The designed DCNN structure is to investigate
the nonlinear relation between the human hand pose and
the human swivel angle thus enhancing the quality of the
regression analysis for a human-like movement model.

This paper is structured as follows: Section II intro-
duces methodologies and system architecture. The regres-
sion performance between proposed algorithms and previous
methods are compared, and the demonstration experiment
using a KUKA anthropomorphic manipulator is presented
in Section III. Section IV makes a summary and concludes
further work.

Fig. 3: The kinematic chain of a human upper limb. ¢;,7 =
1,---,7and d;,j =1, 3,5, 7 delegate the joint positions and
the link lengths of each segment, respectively.

II. METHODOLOGY

Firstly, we present a kinematic model of the manipulator
and then analyze the the swivel motion in manipulated tasks.
A machine learning based model online training framework
is then presented. Finally, the trained human-like motion
model is transferred to the robot using a decoupled control
approach.

A. Human upper limb kinematic modeling

To obtain the human-like motion model and achieve a
human-like kinematic mapping on the robot (Fig. 2), the
human arm is modeled as a 7 DoFs rigid kinematic chain as
shown in Fig. 3. The coordination positions of the shoulder,
the elbow, the wrist, and the hand are labeled as S, E, W,
and H, separately. 1) denotes the elbow swivel angle between
the desired way to arm. The expression of the elbow swivel
angle v has been presented in our previous works [13], [21].
As it has been discussed in the previous works [13], [21],
the joint angles (g;,7 = 1,2,---,7) is calculated according
to the geometry relation, and the hand pose is obtained based
on the forward kinematics function using Denavit-Hartenberg
(D-H) parameters [22]. Then, the angle between the reference
plane and the arm plane can be adopted to describe the swivel
angle ¢ [13].

B. Deep learning based regression model

In order to establish the relationship between the angle
and hand pose, there are several approaches are adopted in
our previous works [13], [23], [24], such as curve fitting
(CF), feed-forward neural network (FFNN), and cascade-
forward neural networks (CFNN). The complicated function
structure of ANN-based methods often cause the problems
of overfitting, underfitting, and time-consuming, even if
they demonstrates a promising performance [13]. Hence,
we proposed a novel regression framework based on deep
convolutional neural network (DCNN) for fast computation
and resolving the overfitting [21] by adding batch normaliza-
tion, Rectified Linear Unit (ReLU) activation function, and
dropout layer. Fig. 4 shows the DCNN structure in details,
including two convolutional modules, dropout layer, and a
regression layer. It is worth mentioning that the DCNN model
can adopt multiple layers because it is safe from gradient
vanishing problem.
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Fig. 4: The schematic diagram of DCNN-based framework for control of anthropomorphic manipulators. The obtained input
x; are processed by the DCNN regression model ¢, = f(x], ©).

To reduce the online computational time and obtain high
predictive accuracy, the DCNN model is designed with
several optimization processing. Since convolutive layers
can apply the same filter to different portions of the input
data [25], they are good for pixels or sequences of the
homogenous dataset. Hence, we extend the raw 6-D vector
x into a homogenous matrix x* € R6*3 as:

x" = [x;x — X; ] (1)

where ox and x are the standard deviation and average of x,
respectively. In the DCNN structure, the first convolutional
module (Conv.Module #1) consists of a 2-D convolutive
layer with five kernels of size 2 x 2, a batch normalization
(BN) with five channels and a ReLLU activation function.
The second convolutional module (Conv.Module #2) takes
the output from the first deep convolutional module as the
inputs and filters them with eight kernels of size 2 x 2,
followed by the BN and ReLU layers. The dropout layer
(with 0.3 percentage) is used to reduce the training time.
The fully connected layer vectorizes the previous outputs
into 144-dimensional features. The learning rate is 0.001, and
the corresponding optimization algorithm is used adaptive
moment estimation optimizer (Adam). We set the minimum
batch size as 50 samples, 0.001 drop factor, and 500 drop pe-
riod. The DCNN-based online learning approach works well
with continuous updating but is typically time-consuming
with increasing of the testing dataset.

The supervised machine learning mechanism is used to
validate the performance of the proposed framework. The
built DCNN model ¢ = f (x,©) on the training dataset will
be used to predict the elbow swivel angle on testing dataset.
The overall parameters O include the weights matrix and bias
vectors of each layer. The purpose of nonlinear modeling
is to fine the optimal parameters using the minimum least
squares as follows.

N
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Fig. 5: Control of a 7 DoF robot manipulator with swivel
motion.

The performance of DCNN model is evaluated by Root Mean
Square Error (RMSE) at time ¢ as follows.

N is the length of the whole dataset. A lower RMSE value
is expected.

C. Control of robot manipulator

As it is shown in Fig. 5, given the desired Cartesian
trajectory X, the elbow joint of the robot should be moved
from the actual swivel angle ¢ to the human-like one 7,/;
which can be obtained from the trained neural networks
model. An extension of the analytical inverse kinematic
method was carried out in our previous work [13]. However,
the proposed method is not easy to transfer to other general
robot manipulator. Hence, we achieve the human-like control
with a decoupled control framework which is shown in
Fig. 6. A main task projection [8] using Jacobean matrix
to project the Cartesian velocity X to the joints velocity gis
introduced here. Then an impedance controller is adopted to
generate the task joint torque 77 to drive the manipulator.
After getting the desired joint angles, the adaptive fuzzy
control proposed in [26] is implemented to control the robot
manipulator considering the external interaction force F,
using an adaptive term 7. Above all, the control scheme
is integrated with two layers: an inner layer to guarantee the
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Fig. 6: The control diagram of human-like control scheme.
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control accuracy and an outer layer is introduced to achieve
human-like manipulator control. The other corresponding
detailed definition of control terms can be found in our
previous works [8], [26].

III. EXPERIMENT AND DEMONSTRATION
A. System Setup and Procedures

The overview of the system setup is shown in Fig. 7.
A KINECT V2 is used to collect the human motion data.
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Fig. 9: The human-computer interface (HCI) for skeleton
tracking.

The data is prepossessed on the server and is trained to
model the human-like motion skill. Once the human skill
model is trained, the trained model is applied to control
the teleoperated KUKA manipulator. Sigma 7 is used as
a master manipulator to move the robot manipulator via
teleoperation. An endoscopic camera is placed in front of
the user to enable the remote vision. The whole system has
been developed using OROCOS', with a real-time Xenomai-
patched Linux kernel, and using ROS? Kinetic under Ubuntu.
The operation procedures are shown in Fig. 8. Firstly, human
demonstration are performed to collect the human motion
data. Then data preparation using the human arm kinematic
model to extract the required data for training the human-
like motion model. Finally, the trained model is applied on
the real-time demonstration using robot manipulator.

B. Data Preparation

Fig. 9 shows the acquisition software interface for the
skeleton tracking and swivel angle calculation by using
the KINECT V2 (Microsoft, USA) [27] on Matlab 2018b

1Open Robotic Control Software, http://www.orocos.org/
2Robot Operating System, http:/www.ros.org/
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platform. After activating the visual system at the upward
side of the skeleton viewer by pushing the start” button,
the skeleton information of hand pose and swivel angle can
be captured. The acquired data are saved for building the
human motion model [13].

By adopting the proposed human-like kinematic model in
sub-section II-A, the 6-D inputs (x; = [z, Y, 2,05, 0,,0.]¢)
can be acquired from the 25 joints data. Meanwhile, the
observed swivel angle ¢, is computed by the relationship
of reference plane and arm plane. Finally, we collected
five trajectory datasets to evaluate the performance of the
proposed DCNN-based regression model in sub-section II-
B. Each dataset have more than 2000 samples.

C. Protocol

To improve the evaluation accuracy, we use the leave-one-
out strategy to train the DCNN model based four trajectory
datasets and test on the last one. Furthermore, two ANN-
based models (i.e., FFNN and CFNN) [28] and LSTM model
are chosen for comparing with the DCNN model. According
to our previous work [13], [23], the FFNN and CFNN models
with single hidden layer and 20 neurons are the best structure
for predicting the swivel angle. To validate the effectiveness
of the proposed DCNN framework, we compute three types
of performance, namely root mean squared error (RMSE),
online prediction time (ct) and the total time (> ct) by
quantitative evaluations. The experiments are implemented

on 2.80-GHz Intel i5 CPU processor and 16.0 GB RAM
with MATLAB 2018b platform.

D. Performance comparisons of human motion skill model-
ing

All of the regression models are built on the four training
datasets (about 6000 samples), and the performance of them
are evaluated on the last trajectory groups (about 1500 sam-
ples). Table I shows the comparison RMSEs and cumulative
predictive time ct of DCNN, LSTM, FFNN, and CFNN.
All of the results are averaged over ten runs. For a fair
comparison, the LSTM structure is designed with a 150
neurons LSTM layer, a dropout layer with 0.3 percentage.
We still use Adam as the estimation optimizer with 0.01
learning rate. The minimum batch size is 50. The drop factor
and period are 0.02 and 5, respectively.

TABLE I: The comparative results of DCNN, LSTM, FFNN,
and CFNN models on the four trajectories.

Model RMSE ct Set

DCNN  0.0791 &£ 0.0056  0.08 £ 0.006 162.11 + 2.71
LSTM  0.3114 £ 0.0835 0.71 £ 0.069  1328.21 £ 9.16
FFNN  0.1848 £ 0.0677  0.09 £ 0.005 198.70 + 3.40
CFNN  0.1948 £ 0.0913  0.11 £ 0.007 204.81 + 3.22

As expected, the proposed DCNN framework shows good
performance in terms of accuracy. It only needs around
162.11 seconds to predict all of the results in each trajectory,
and 0.08 second to acquire a single result. Meanwhile,
the DCNN model obtains the lowest RMSE among all the
methods. Although ANN-based approaches can get a lower
computational time, they obtain a higher RMSE values than
DL-based methods.

E. Demonstration of human-like redundancy optimization

In this subsection, a human-like redundancy optimization
combined with the trained model is used to illustrate the
proposed method. The anthropomorphic robot manipulator
pose is controlled via teleoperation and is computed by
utilizing an interpolation algorithm. The robot pose are used
as the inputs for the DCNN model for model training. Then



the trained regression model is used to predict the human-
like swivel motion angle, and the decoupled control strategy
is utilized to obtain the joints configuration. Finally, the
demonstration experiments are performed with both simu-
lation and real robot. As illustrated in Fig. 10 and Fig. 11,
the robotic manipulator with the trained human-like motion
model can imitate the human kinematics strategies when
executing tracking tasks, and achieve human-like arm posture
during manipulating tasks.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a machine learning based on DCNN
structure for the human motion skill transferring. This
scheme can be implemented for human-like motion control
of anthropomorphic manipulators. The experimental results
show the proposed approach features with fast computation
and accuracy enhancement in the online regression procedure
and the trained human-like kinematic model can be utilized
to manage the redundancy control of a 7 DoFs anthropomor-
phic robot manipulator. As a demonstration, the human-like
control of the manipulator is achieved both on simulation and
real robot. Furthermore, the proposed approach can also be
employed to achieve human-like kinematic control on other
similar anthropomorphic manipulators.
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