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ABSTRACT We implement a three-dimensional formulation for eddy current problems based on the reduced
magnetic scalar potential enforcing a high order surface impedance boundary condition (SIBC) which takes
into account the curvatures of the conductor surface. Based on perturbation theory, the formulation reduces
to three Laplace boundary value problems with Neumann boundary conditions and hence can be easily
implemented in any existing Finite Element Method (FEM) or Boundary Element Method (BEM) code for
the Laplace equation. The appropriate choice of the small parameter in the perturbation approach correctly
represents the order of accuracy of the SIBC. The validation is carried out by comparison with full FEM
solutions of a canonical test problem and of a more realistic example of a non-destructive testing probe. The
validity of the extension of a high order SIBC to lower frequencies is verified and the fields can be obtained
at any frequency in the range of interest once the formulation is solved only once.

INDEX TERMS Surface impedance boundary condition, boundary element method, finite element method,
eddy currents.

I. INTRODUCTION
Three dimensional eddy current problems characterized by
strong skin effect conditions are computationally challenging
due to the appearance of a boundary layer phenomenon. The
SIBC is a standard and efficient tool for this kind of problems
and dates back to the work of Leontovich [1]. It provides
approximate relations between electromagnetic quantities at
the surface of the conductor, so that the conducting region
does not need to be included in the numerical model.

The conditions proposed in [1] only take into account the
local tangential plane at each point of the surface, and for
this reason they are only valid for very thin skin layers.
Rytov proposed, in [2], an extension of Leontovich SIBC
based on the principle of an asymptotic expansion of the
fields in terms of the skin depth. Extension of the Rytov’s
approach to general smooth conductors have been introduced
independently in [3] (and references therein) and [4] and,
moreover, in [4] the mathematics of the related asymptotic
expansions are suitably understood.

SIBCs are widely used in commercial softwares in their
low order degree of approximation (according to [1]) and
many implementations can be found in literature. On the other
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hand, for eddy current problems there are no implementations
of three dimensional BEM or FEM formulations enforcing
SIBC of high order of approximation, which allows for sur-
face curvature. In [5] and [3] theoretical formulations are
presented, but their implementations are carried out only for
2D examples.

Two dimensional implementations of high order SIBCs in
BEM and FEM are described in detail in [6], [7], [9]. In [10]
an experimental validation is also provided. An extension to
the nonlinear case is proposed in [11].

An implementation of Leontovich SIBCwith unstructured-
partial element equivalent circuit (PEEC) is described in [12].
Thanks to the circuit representation, the PEEC formulation
can be easily and naturally coupled with external circuits.
Coupling of low order SIBC with Surface Integral Equa-
tionMethods have been proposed for full wave problems, e.g.
in [13] and references therein.

In this paper three-dimensional FEM and BEM implemen-
tations in terms of the reduced magnetic scalar potential [14]
and enforcing a high order SIBC are analysed. Since the
proposed formulation is formed by a sequence of Neumann
problems for the Laplace equation, its implementation can be
carried out with the help of any BEM or FEM code for the
Laplace equation. This is the main advantage of the proposed
formulation.

186496
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7800-6750
https://orcid.org/0000-0002-8718-1777
https://orcid.org/0000-0001-7084-4071


J. Dong, L. D. Rienzo: FEM and BEM Implementations of a High Order SIBC for Three-Dimensional Eddy Current Problems

FIGURE 1. Local coordinate system on the surface of the conductive
domain.

The accuracy and the conditions of applicability of the
formulation are investigated by solving a canonical test case
and a more applicative example, with the help of a commer-
cial software. The formulation can be applied only in the case
of smooth surfaces. The presence of edges and corners would
introduce local errors.

II. PERTURBATIVE FORMULATION
A. THE PERTURBATION APPROACH
As is well known, the diffusion of a time-harmonic magnetic
field in a good conductor with magnetic permeability
µ = µ0µr is characterized by the skin depth, defined as

δ =

√
2

ωµ0µrσ
=

√
τ

µ0µrσ
, τ =

2
ω

(1)

where ω is the angular frequency and σ the electric
conductivity.

We will follow the perturbation approach described in
[3]–[5]. We introduce a local orthogonal coordinate system
(ξ1, ξ2, η) laying on the surface of the conductor (Fig. 1).
According to perturbation theory we normalize the physical
quantities using scale factors

t̃ =
t
τ
, ξ̃k =

ξk

D
, d̃k =

dk
D
, η̃ =

η

µrδ
(2)

where dk is the local radius of curvature corresponding to ξk ,
D is a characteristic size of the conductor and τ is a character-
istic time, equal to 2

ω
in the time-harmonic case. From now on

all the non-dimensional quantities are indicated with a tilde.
We then define the non-dimensional small parameter as

p̃ =
µrδ

D
(3)

Definition (3) differs from the one used in [3], [5], where
p̃ = δ

D . This improvement is crucial for the correct condition
of applicability of the formulation in the case of magnetic
conductors, as will be shown in Section III.
In the conductive domain the magnetic field h obeys the

diffusion equation, which reads

∇ × (∇ × h) = −µσ
∂h
∂t
= −

µσ

τ

∂h
∂ t̃
= −

1
δ2

∂h
∂ t̃

(4)

We apply the Laplace transform to (4) obtaining

∇ × (∇ ×H) = −
1
δ2
sH (5)

where

H (s) =
∫
+∞

0
h
(
t̃
)
exp

(
−st̃

)
dt̃ (6)

Following [3]–[5] we write (5) in the local coordinate
system.We then expand themagnetic field in the power series
of p̃

H =
+∞∑
m=0

p̃mHm (7)

Introducing expansion (7) into the diffusion equation writ-
ten in the local coordinate system and equating the terms with
equal power of p̃ for m = 0 we obtain

∂2 (H0)ξ̃k

∂η̃2
= µ2

r s (H0)ξ̃k
(8a)

µ2
r s (H0)η̃ = 0 (8b)

where (·)ξ̃k and (·)η̃ are respectively the ξ̃k and η̃ components
of the fields.

Solutions of (8a)-(8b) are given by

(H0)ξ̃k
=

(
Hb

0

)
ξ̃k
exp

(
−µr
√
sη̃
)

(9a)

(H0)η̃ = 0 (9b)

where apex b indicates the fields evaluated at the boundary
between the conductive and the dielectric media.

Following the same approach, for m = 1 we obtain

∂2 (H1)ξ̃k

∂η̃2
− µrs (H1)ξ̃k

=

(
1

d̃k
+

1

d̃3−k

)
∂ (H0)ξ̃k

∂η̃
(10a)

−µ2
r s (H1)η̃=

2∑
k=1

∂2

∂ξ̃k∂η̃
(H0)ξ̃k

(10b)

whose solutions are given by

(H1)ξ̃k
=

[(
Hb

1

)
ξ̃k
+ η̃

(H0)ξ̃k

2

(
1

d̃k
+

1

d̃3−k

)]
× exp

(
−µr η̃

√
s
)

(11a)

(H1)η̃ =
1

µr
√
s

2∑
k=1

∂

∂ξ̃k

((
Hb

0

)
ξ̃k
exp

(
−µr
√
sη̃
))

(11b)

Finaly for m = 2 we have

(H2)η̃ = −
1
µ2
r s

2∑
k=1

∂

∂ξ̃k

×

[
∂ (H1)ξ̃k

∂η̃
+
η̃

d̃k

∂ (H0)ξ̃k

∂η̃
−
(H0)ξ̃k

d̃k

]
(12)
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whose solution is given by

(H2)η̃ =
1

µr
√
s

2∑
k=1

∂

∂ξ̃k[(
Hb

1

)
ξ̃k
+ η̃

d̃k + 3d̃3−k
2d̃k d̃3−k

(
Hb

0

)
ξ̃k

−
1

µr
√
s
d̃k − d̃3−k
2d̃k d̃3−k

(
Hb

0

)
ξ̃k

]
exp

(
−µr η̃

√
s
)

(13)

To switch to the frequency domain it is sufficient to
substitute 2j to s in the previous formulas.

B. REDUCED MAGNETIC SCALAR POTENTIAL
FORMULATION
We want to compute the magnetic field in a dielectric region
with µr = 1 outside a conductor of volume �, with conduc-
tivity σ and magnetic permeability µrµ0, when an external
magnetic field is imposed. Following [14] and [5] we repre-
sent the magnetic field Hext in the dielectric space by means
of the reduced magnetic scalar potential, as follows

Hext
= Hs −∇φ (14)

whereHs is the imposed external magnetic field. Substituting
(14) into ∇ · Hext

= 0, we see that the magnetic scalar
potential obeys Laplace equation

∇
2φ = 0 (15)

We adopt an asymptotic expansion in the same form of (7)
for the magnetic scalar potential

φ =

+∞∑
m=0

p̃mφm (16)

The boundary conditions at the interface between conduc-
tive and dielectric region (characterized by µ = µ0) require
that (

Hb
0

)
ξ̃k
+ p̃

(
Hb

1

)
ξ̃k
+ p̃2

(
Hb

2

)
ξ̃k

=

[
Hs − ∇̃φ0 − p̃∇̃φ1 − p̃2∇̃φ2

]b
ξ̃k

(17a)

µr

[(
Hb

0

)
η̃
+ p̃

(
Hb

1

)
η̃
+ p̃2

(
Hb

2

)
η̃

]
=

[
Hs − ∇̃φ0 − p̃∇̃φ1 − p̃2∇̃φ2

]b
η̃

(17b)

From (17a)-(17b), equating the terms with equal power of
p̃ we obtain (

Hb
0

)
ξ̃k
=

(
Hs − ∇̃φ0

)b
ξ̃k

(18)(
Hb

1

)
ξ̃k
= −

(
∇̃φ1

)b
ξ̃k

(19)(
Hb

2

)
ξ̃k
= −

(
∇̃φ2

)b
ξ̃k

(20)

µr

(
Hb

0

)
η̃
=

(
Hs − ∇̃φ0

)b
η̃

(21)

µr

(
Hb

1

)
η̃
= −

(
∇̃φ1

)b
η̃

(22)

µr

(
Hb

2

)
η̃
= −

(
∇̃φ2

)b
η̃

(23)

Using (9b), (15) and (16) the following boundary value
problem (BVP) is obtained for m = 0

∇̃
2φ0 = 0 (24a)
∂φ0

∂n
=

(
Hb
s

)
η̃

(24b)

Evaluating (11b) at η̃ = 0 we obtain

(H1)η̃=0 =
1

µr
√
s

2∑
k=1

∂

∂ξ̃k

(
Hb

0

)
ξ̃k

(25)

and using (15), (16), and (18) we can write the BVP
corresponding to m = 1

∇̃
2φ1 = 0 (26a)

∂φ1

∂n
= −

1
√
s

2∑
k=1

∂

∂ξ̃k

(
Hs − ∇̃φ0

)b
ξ̃k

(26b)

In the same way evaluating (13) at η̃ = 0 we obtain the
BVP corresponding to m = 2

∇̃
2φ2 = 0 (27a)

∂φ2

∂n
= −

1
√
s

2∑
k=1

∂

∂ξ̃k

(
−∇̃φ1

)b
ξ̃k

−
1

µr
√
s
d̃k − d̃3−k
2d̃k d̃3−k

(
Hs − ∇̃φ0

)b
ξ̃k

(27b)

C. THE BOUNDARY VALUE PROBLEMS
As a first step, BVP (24a) - (24b) must be solved. Being the
boundary condition (24b) of Neumann type, the solution φ0
is defined up to an additive constant and in order to ensure its
uniqueness its value at infinity is set equal to zero.

Once φ0 is computed over the surface of the conduc-
tor, BVP (26a) - (26b) has to be solved, and after it also
BVP (27a) - (27b), still setting φ1 and φ2 to zero at infinity
According to (16) the complete solution for φ is given by

φ = φ0 + p̃φ1 + p̃2φ2 (28)

and the magnetic field in the dielectric space can be
computed by means of (14). Keeping only the first term φ0 in
the right-hand-side of (28) corresponds to the perfect electric
conductor (PEC) approximation. Adding the second term p̃φ1
corresponds to Leontovich correction and finally adding p̃2φ2
gives the more accurate Mitzner approximation [3]. In order
to summarize the implementation of the formulation, this is
described as a pseudocode (Algorithm 1).

A first advantage of the described perturbation approach is
that it guarantees that if the third term in (28) is numerically
below the threshold of the desidered accuracy, then SIBC of
low order can be safely applied. A second advantage is that
if the magnetic field is to be computed at different frequen-
cies, the formulation must be solved only once and then the
field is obtained at any frequency of interest by means of
(28) and (14).
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Algorithm 1: FEM or BEM Implementation of the For-
mulation
Calculate Hs via Biot-Savart’s law from filamentary
currents;
Solve BVP (24a) - (24b) using FEM or BEM;
Compute Hext

PEC from φ0 using (14);
Solve BVP (26a) - (26b) using FEM or BEM;
Compute φLeontovich = φ0 + p̃φ1;
Compute Hext

Leontovich from φLeontovich using (14);
Solve BVP (27a) - (27b) using FEM or BEM;
Compute φMitzner = φ0 + p̃φ1 + p̃2φ2;
Compute Hext

Mitzner from φMitzner using (14);

FIGURE 2. Geometry of the test case.

III. NUMERICAL VALIDATION OF FEM AND BEM
IMPLEMENTATIONS
In order to validate the formulation and investigate
the accuracy of the SIBC approximation, a conductive
(σ = 5.998 · 107 S/m) prolate ellipsoid with different
principal curvatures (Fig. 2) is considered as a test case.
A time-harmonic current of 10 A flows in a circular coil and
the z-component of the magnetic field is computed over an
horizontal line between the coil and the conductive body.
Geometrical dimensions of the test case are summarized
in Table 1. All the simulations in the paper are run on
a PC Inter(R) Core(TM) i7-10510U CPU @1.8GHz with
16 GB memory. Surface derivatives are implemented with
the formulas derived in Appendix. Many methods exist for
the estimation of the curvature of surfaces represented by
triangular meshes and in [15] a systematic review can be
found. Here the values of the surface curvatures are provided
by the used commercial software [16].

A. BEM IMPLEMENTATION
The previous formulation is solved using a Galerkin imple-
mentation of the BEM available in commercial software [16].
Second order 3162 triangular boundary elements are used.
A reference standard FEM solution with a very fine mesh
is computed solving an axisymmetric model with the same
commercial software.

For all the cases discussed in the following, BVP
(24a)-(24b) (PEC approximation) is solved in 60 s using
4.28 GB; BVP (26a)-(26b) (Leontovich approximation)

TABLE 1. Geometrical dimensions of the test case.

FIGURE 3. Real part of the magnetic field @ 1 kHz (µr = 1, δ = 2.055 mm,
p̃ = 4.110 · 10−3) and corresponding errors.

FIGURE 4. Imaginary part of the magnetic field @ 1 kHz (µr = 1,
δ = 2.055 mm, p̃ = 4.110 · 10−3) and corresponding errors.

in 133 s using 4.81 GB; finally BVP (27a)-(27b) (Mitzner
approximation) in 152 s using 4.73 GB.

Let us first consider the case when µr = 1. As can be
seen in Fig. 3 - 4, when frequency is 1 kHz (δ = 2.055 mm,
p̃ = 4.110 · 10−3) we are in strong skin effect conditions and
in fact the application of Leontovich correction is enough to
reach a good accuracy.

Decreasing frequency to 50 Hz (δ = 9.190 mm, p̃ =
1.838·10−2) justifies the use ofMitzner correction (Fig. 5 - 6).
Since the current flowing in the coil is real,Mitzner correction
only changes the imaginary component of the magnetic field,
as can be observed from (27a)-(27b).

In cases when the conductive domain is characterized by
µr > 1, even if skin depth (1) is small, Mitzner correction
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FIGURE 5. Real part of the magnetic field @ 50 Hz (µr = 1, δ = 9.190 mm,
p̃ = 1.838 · 10−2) and corresponding errors.

FIGURE 6. Imaginary part of the magnetic field @ 50 Hz (µr = 1,
δ = 9.190 mm, p̃ = 1.838 · 10−2) and corresponding errors.

FIGURE 7. Real part of the magnetic field @ 1 kHz (µr = 100, δ = 0.2055
mm, p̃ = 4.110 · 10−2) and corresponding errors.

may not give results accurate enough. This can be explained
with the appropriate definition of the small parameter (3).
For example, Fig. 7-8 shows that in the case of µr = 100,
δ = 0.2055 mm and p̃ = 4.110 · 10−2 only Mitzner
approximation gives good results, while Fig. 9-10 shows that
in the case ofµr = 1000, δ = 0.064986mm, p̃ = 1.298·10−1

a higher order approximation would be needed.

B. FEM IMPLEMENTATION
The three BVPs are also solved with FEM using the
same commercial software [16]. The obtained results are

FIGURE 8. Imaginary part of the magnetic field @ 1 kHz (µr = 100,
δ = 0.2055 mm, p̃ = 4.110 · 10−2) and corresponding errors.

FIGURE 9. Real part of the magnetic field for @ 1 kHz (µr = 1000,
δ = 0.064986 mm, p̃ = 1.298 · 10−1) and corresponding errors.

FIGURE 10. Imaginary part of the magnetic field @ 1 kHz (µr = 1000,
δ = 0.064986 mm, p̃ = 1.298 · 10−1) and corresponding errors.

practically coincident with those of the previous BEM imple-
mentation. To deal with the unbounded nature in the FEM
models, infinite elements are used. Dirichlet boundary con-
dition is imposed on the outer surface of the infinite element
domain to ensure a unique solution.

When using a tetrahedral mesh and second order finite
elements (1341980 degrees of freedom), the computational
times and required memory are the following: 33 s and
5.44 GB for PEC; 52 s and 6.33 GB for Leontovich; 55 s
and 6.45 GB for Mitzner. Hence with this FEM discretization
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FIGURE 11. Relative error on the rms of the the z− component of the
magnetic field with FEM implementation.

the total computational time is shorter than with BEM (2 min,
20 sec).

Fig. 11 summarizes the previous results and is obtained
with the FEM implementation. It reports the relative error
on the magnitude of the z−component of the magnetic field
using Mitzner approximation, at different frequencies and at
different values of µr .

C. COMPUTATION OF THE MAGNETIC FIELD INSIDE THE
CONDUCTOR
After the BVPs have been solved, the formulation also gives
the possibility to compute the analytical expression of the
magnetic field in the boundary layer inside the conductors
in a post-processing phase, which may be required in many
applications. According to (9b) the normal component of
the magnetic field in the PEC approximation is obviously
zero, and (11b) and (13) give the Leotovich and Mitzner
corrections, respectively.

In Fig. (13)-(14) the normal component of the magnetic
field computed according to the above formulas is compared
with the 2D FEM solution over the line depicted in Fig. (12)
and the good agreement can be noted. Furthermore, in the
case of Fig. (14) Mitzner approximation is needed for a good
accuracy, as also noted for the same case in the computation
of the magnetic field outside the conductor (Fig. (7)-(8)).

IV. APPLICATION TO A NON-DESTRUCTIVE SENSOR
SYSTEM
The model of an electromagnetic Helmholtz-coil probe coax-
ial with a tube as described in [17] is considered (Fig. 15).
Each of the two coils (of diameter equal to 140 mm) carries
an AC current of 10 A (rms) at frequency f = 1 kHz. The
distance between the coils is 45 mm. The tube has an outer
diameter of 65 mm and an inner diameter of 35 mm and is
made of alluminum with conductivity σ = 3.774 · 107 S/m
and permeability µr = 1. The length of the considered
specimen is 400 mm. At the given frequency the skin depth
is δ = 2.5907 mm, much lower than the thickness of the
tube so that the strong skin effect condition is fulfilled. Here
an axial-symmetric model is chosen on purpose in order to
have a reference solution given by a 2D axial-symmetric FEM

FIGURE 12. Line going into the conductor where the normal component
of the magnetic field is computed.

FIGURE 13. Real and imaginary part of the normal component of the
magnetic field over line depicted in Fig.(12) @ 50 Hz and µr = 1.

FIGURE 14. Real and imaginary part of the normal component of the
magnetic field over line depicted in Fig.(12) @ 1 kHz and µr = 1000.

formulation solved with commercial software [16] using a
very fine mesh.

The magnetic field over a line (red in the figure) parallel to
the tube and at a distance of 3 mm is computed by means of
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FIGURE 15. Model of the electromagnetic Helmholtz-coil probe.

FIGURE 16. Relative error on the rms of the z− component of the
magnetic field over half of the red line of Fig. 15 in the case without crack.

the 2D axial-symmetric FEM formulation. As can be noted
from Fig. 16, Leontovich and Mitzner approximations give
results of the same accuracy.

BEM implementation is carried out with 19492 unknowns.
PEC approximation is obtained in 87 s using 4.27 GB of
RAM; Leontovich approximation in 158 s with 4.37 GB;
Mitzner solution is performed in 178 s using 5 GB.

FEM implementation is carried out with tetrahedral second
order nodal finite elements and 1981530 degrees of freedom.
PEC approximation is obtained in 65 s using 5.25 GB;
Leontovich approximation in 149 s with 11.16 GB; Mitzner
solution is performed in 150 s using 11.32 GB.

For this case the SIBC already available in [16] is very
accurate, even if at the expenses of a higher computational
burden. As a matter of fact it is based on a magnetic vector
potential formulation and quadratic edge elements. Using
5487088 degrees-of-freedom the computation takes 1266 s
and 11.56 GB.

FIGURE 17. Model of the electromagnetic Helmholtz-coil probe and the
tube with crack.

FIGURE 18. Relative error on the rms of the x− component of the
magnetic field over half of the red line of Fig. 15 in the case with crack.

The same model of above but with the presence of a crack
is then solved with the proposed method (Fig. 17). The crack
length (along the z-axis) is 20 mm, its depth is 5 mm and its
width (along the y-axis) is 0.8 mm.
In this non-destructive testing technique the detectability of

the crack is based on the difference in the magnetic field with
respect to the ideal case without any crack. Unfortunately,
the presence of the edges of the crack does not allow the appli-
cation ofMitzner SIBC, which requires the conductor surface
to be smooth. Hence only Leontovich SIBC is applied and the
results are compared with a reference 3D FEM simulation
obtained with [16].

In this case our formulation at a first order (Leontovich)
approximation is of the same accuracty of the 3D FEM solu-
tion using the SIBC available in [16]. The BVPs with PEC
and Leontovich conditions are solved using BEM in 127 s
(4.97GB) and 276 s (5.32GB) respectively. On the other hand
with FEM they are solved with 2385620 degrees-of-freedom
in 85 s with 7.93 GB and 269 s with 9.23 GB respectively.
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FIGURE 19. Relative error on the rms of the z− component of the
magnetic field over half of the red line of Fig. 15 in the case with crack.

The solution of the three dimensional problem using FEM
and SIBC with [16] uses 5339418 unknowns, 11.63 GB of
RAM and takes 1084 s.

V. CONCLUSION
In the paper FEM and BEM implementations of a three
dimensional formulation for eddy current problems enforcing
a high order SIBC have been proposed for the first time in
three dimensions. The obtained results are compared with a
standard FEM solution of a canonical problem and of a more
realistic application.

It is so verified that the use of a high order SIBC extends
to lower frequencies the range of applicabilty of the surface
impedance concept, by taking into account the curvature of
the conductive surface.

According to the perturbation approach, it is shown that a
good accuracy can be reached only if µr δD � 1 (being D the
characteristic size of the conductive domain), clarifying the
condition of applicability in the case of magnetic materials.

The first advantage of the proposed formulation is that it
reduces to three scalar Laplace boundary value problems so
that any existing FEM or BEM solver for Laplace equation
can be used. Based on a scalar potential formulation the
approach reveals to be much lighter and faster than a 3D
magnetic vector potential FEM formulation enforcing SIBC
available in commercial softwares.

A second advantage is that if a frequency domain analysis
is needed, the formulation must be solved only once and then
the fields are obtained at any frequency in the range of interest
and of applicability, a feature not available in any commercial
software.

APPENDIX
SURFACE DERIVATIVE OF A VECTOR
Let us consider the global cartesian coordinate system
(x, y, z)with unit vectors

(
Eex , Eey, Eez

)
and the local orthogonal

coordinate system (ξ1, ξ2, η) with unit vectors
(
Eeξ1 , Eeξ2 , Eeη

)
.

Lamè coefficients of the local coordinate system are given by

hξ1 = 1− c1η, hξ2 = 1− c2η, hη = 1 (29)

where c1, c2 are the principal curvatures of the two coordinate
lines corresponding to ξ1 and ξ2.

Indicating with Er = xEex + yEey + zEez the position vector
in the global coordinate system, the unit vectors of the local
system are given by

Eeξk =
∂Er
∂ξk∣∣∣ ∂Er∂ξk ∣∣∣ =

1
hξk

∂Er
∂ξk

k = 1, 2; Eeη =
∂Er
∂η∣∣∣ ∂Er∂η ∣∣∣ =

1
hη

∂Er
∂η

(30)

In the formulation presented in the paper the derivatives
of the surface components of a vector with respect to ξk
are needed. Given a vector field V defined on a surface,
this can be represented in the global coordinate system as
V = V1Eex + V2Eey + V3Eez and in the local coordinate system
as V = Vξ1Eeξ1 + Vξ2Eeξ2 + VηEeη. Then

∂Vξk
∂ξk
=
∂
(
V · Eeξk

)
∂ξk

=
∂V
∂ξk
· Eeξk +

∂Eeξk
∂ξk
· V (31)

In order to compute the first term of the RHS of (31),
we observe that

∂V
∂ξk
=
∂V
∂x

∂x
∂ξk
+
∂V
∂y

∂y
∂ξk
+
∂V
∂z

∂z
∂ξk

(32)

so that, using the definition of the gradient of a vector
and (30), we have

∂V
∂ξk
= (∇V) ·

∂Er
∂ξk
= (∇V) · hξk Eeξk (33)

As far as the second term of the right hand side of (31)
is concerned, it is convenient to use the following relation
holding on the surface [18]:

∂Eeξk
∂ξk
= ckEeη (34)

where ck is the curvature of the ξk coordinate line.
To show how the surface derivatives are computed in the

formulation of the paper, we apply previous formulas to the
right-hand-side of (10b). From (9a)

2∑
k=1

∂2

∂ξ̃k∂η̃
(H0)ξ̃k

=

2∑
k=1

∂
(
Hb

0

)
ξ̃k

∂ξ̃k

[(
−µr
√
s
)
exp

(
−µr
√
sη̃
)]

(35)

From (31), (33), and (34) it follows that

∂
(
Hb

0

)
ξ̃k

∂ξ̃k
=
∂Hb

0

∂ξ̃k
· Eeξk +

∂Eeξk
∂ξ̃k
·Hb

0

=

(
∇Hb

0

)
· hξk Eeξk + ckEeη ·H

b
0 (36)

Finally we have
2∑

k=1

∂2

∂ξ̃k∂η̃
(H0)ξ̃k

=

2∑
k=1

[(
∇Hb

0

)
· hξk Eeξk + ckEeη ·H

b
0

] (
−µr
√
s
)

× exp
(
−µr
√
sη̃
)

(37)
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