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Abstract: Nowadays, the reduction of aircraft emissions is one of the industrial targets with a horizon
time until 2050. The recent progresses in electrical drives give the opportunity to modify the aircraft
propulsion based on thermal engine or gas turbine to a hybrid/full electric one. Some problems must
be solved: weight, reliability, and the choice of the best configuration for the electric propulsion.
One of the most important aspects to solve is the thermal behavior of power converters and electric
motors. This paper proposes an optimization procedure for the design of surface permanent magnet
motors used for the aircraft propulsion: the aim of the paper is to investigate the possibility of cooling
the motor with only the air flow due to the aircraft speed. The optimization procedure has been
solved with the integration of analytical model and finite element analysis and using a differential
evolution algorithm.

Keywords: differential evolution algorithm; electric aircraft propulsion; electric motor thermal
problem; differential evolution algorithm; optimization based on FEA

1. Introduction

The rapid growing of civil air traffic in last decades determined the start of different initiatives [1]
with the aim to reduce aircraft emissions in the atmosphere. Considering that the greatest part of aircraft
emissions happens during the phase of take-off and climb, this is also strictly related to the livability of
a city which is often close to the airport. The major contribute of some international researches concerns
the reduction of noise emission and the reduction of CO2 and other type of pollutants. In the field of
aerospace, the first electrification step started with the concept of more electric aircraft [2], where some
hydraulic flight systems were substituted with full electric or electro-hydraulic systems with the
aim to increase the efficiency and reliability of the overall system. The recent progresses in electrical
machines and power electronics have allowed to increases in power density, safety, and the reliability
of the electrical drives. These advancements give the possibility to consider a full electric/hybrid
propulsion system in civil aviation. This paper is focused on the electric propulsion of unmanned
aerial vehicles, adopted for civil application, and in particular on the sizing of propulsion motors.
Many research projects propose the use of full electric propulsion [3] or hybrid electric propulsion [4]
in these kinds of aerial vehicles. Now, the energy storage systems appear to be the most limiting
technologies for the electric propulsion, but the interests of researchers are now focused on the
development of new battery technologies [5,6] and in the use of some optimization procedure for
the weight reduction of optimization distribution of energy storage systems [7–10]. Regarding the
electrical machine, recent investigations propose the design and development of on-board generation
machines, and propulsion electric motors. The researches [11] are carried out with the goal to increase
the power density, the reliability and the efficiency. Many types of electrical machines are considered:
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induction motor [12,13], permanent magnet synchronous motor [14] (the most utilized), and traditional
synchronous machine above all with superconducting characteristics [15,16].

One of the critical aspects of the electrical machine is related to the cooling. The necessity to
reach high values of power density involves the use of a liquid cooling system. Due to many factors,
in aerospace applications the liquid cooling is a delicate system to size because the increased volume
occupation, reduction of reliability, and danger of liquid freezing. An alternative to the liquid cooling
could be the use of forced convection due to the air flow generated by the aircraft speed and the
propellers; obviously, this determines a reduction of power density but with an overall increase of
reliability and reduction of the on-board volume occupation. In this paper is proposed a design
methodology able to investigate the use of forced convection due to the air flow for electric motors used
for the propulsion of hybrid/full electric aircraft. Typical approaches presented in literature [17–19]
provide the design and the analysis of electric motors using a multiphysics approach based on
magneto-thermal analysis. In this case the thermal analyses are carried out using high and low order
in a lumped parameters method, with a reduction of computation time but also with an increase in
the error of temperature estimation. A coupled magneto-thermal sizing procedure based on finite
element analysis is presented in this paper. To reduce the computational cost of thermal analysis,
a discretization of the 3D domain in many 2D analyses is proposed.

The approach starts from the solution of heat problem for the calculation of an appropriate heat
exchange coefficient and using the magneto-thermal finite element analysis, a sizing methodology
for forced air cooled motor is developed. The optimal sizing procedure is solved using a differential
evolution algorithm.

2. Electric Aircraft Propulsion: Thermal Considerations

The electric motors and the power converters used for aircraft application must satisfy specific
requirements due to the extreme environment conditions. According to the military standards
MIL-STD-810H [20] and to other civil standards, the operating range temperature for an aerospace
component must be in the range –55 ◦C–75 ◦C. This temperature interval implies the necessity to
introduce an accurate design methodology and to find an optimal trade-off condition between the
reliability, the weight, and the efficiency of the components. A great impact is related to the type
of cooling systems adopted for the electrical components. As previously mentioned and regarding
the electric motors, recent progresses in aircraft electric propulsion show the use of liquid cooling
machines [21], able to guarantee very high value of power density (kW/kg). For a large range of
temperatures, the liquid cooling also gives the possibility of reducing the dependence between the
external ambient temperature and the cooling efficiency of the electrical machine. The main problems
related to the liquid cooling are inherent:

- the reduction of the overall reliability due to the use of radiator, pipeline, valves, and pumps;
besides, it is necessary to highlight that the complete fault of liquid cooling system determines
the complete or quasi complete reduction of the electrical drive’s performance;

- increase of volume occupation inside the aircraft due to the necessity to install the previous
mentioned devices;

- safety problems: the liquid used for the cooling system must guarantee a low fire hazard and the
cooling properties in the whole temperature range.

A possible solution to avoid the use of liquid cooling systems could be the use of external force
convection, that in aerospace propulsion can be generated through the aircraft speed and propeller
movement. The heat coefficient transfer due to the air movement depends on the air speed and
the angular speed of the propeller, but also on the external temperature condition. In fact, the air
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temperature influences the greatest part of air properties and specifically the mass density. Moreover,
the air temperature, Tair, is strictly related to the altitude, according to the following linear relation:

Tair(z) = Tair(z0) − ksz (1)

where z is the altitude and ks is the lapse rate equal to 0.0065 (◦C/m). The relation air temperature–altitude
determines a variation of cooling effect during the different phase of flight and a correct evaluation of
the heat transfer coefficient is required by an optimal sizing procedure.

The electric motor adopted for the aircraft propulsion is positioned behind the propeller and with
an axis of limited length. The air flow due to aircraft speed (to simplify the approach, the wind speed
is not considered) passes through the propeller: this passage determines an increase of the air flow
speed due to the propeller movement. The calculation of the correct air flow speed is carried out using
the single impulsive theory, where the air flow is considered in steady state condition, irrotational,
and ideal.

The propeller is considered as an actuator disk, which is a disk with infinitesimal thickness. The
thrust is uniformly distributed along the disk and during the rotation, an instantaneous pressure
variation acts through the disk. With the ideal condition that no air stream rotations are introduced by
the disk, is obtained that the pressure at the Point 1 is equal to the pressure in the Point 2 [22]. Using
the concept of flux tube, the thrust on the disk can be calculated in two ways:

(1) applying Bernoulli’s equation to the different sections of Figure 1. In fact, it is possible to write
Bernoulli’s equation for the front face of the disk:

p00 +
1
2
ρV2

00 = p f f +
1
2
ρV00(V00 + vd) (2)

and for the back face:

p00 +
1
2
ρ
(
V00 + v j

)2
= pb f +

1
2
ρV00(V00 + vd) (3)

In (2) and (3), ρ is the air density, V00 is the air flow speed, vd is the induced speed by the propeller
and vj is the increased of airflow speed in the Section 2 (which is ideally located very distant).
The p00, pff, and pbf are the pressions at the Point 1 (equal to the point2) and at the front and back
face of the disk. The difference between relations (3) and (2) gives the pressure drop on the disk:

∆p = pb f − p f f = ρv j

(
V00 +

1
2

v j

)
(4)

From relation (4), if the pressure drop ∆p is constant along the disk, it is possible to calculate the
thrust vector T, using the equation:

T =

∫
Ad

∆p dAd = ρv j

(
V00 +

1
2

v j

)
Ad (5)

where Ad is the frontal area of the propeller;
(2) A second method for the calculation of the thrust T is based on the use of variation of the

momentum M (kgms−1) between Point 1 and Point 2. With the equality of the pressure in these
two points, the thrust is calculated as:

T +
.

mV00 =
.

m
(
V00 + v j

)
(6)
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where
.

m is the mass flow inside the tube of flux. The expression of the mass flow at the disk
stage is:

.
m = ρAd(V00 + vd) (7)

Therefore, joining the (6) with the (7), the following thrust formula is determined:

T = ρAdv j(V00 + vd) (8)

Comparing the two-equivalent expressions (5) and (8), it is easy to note that the increase of speed
due to the disk is the half of the speed increase at infinity (Point 2):

vd =
1
2

v j (9)

Analyzing Equation (5) or Equation (8) and according to the thrust sign in Figure 1, it is highlighted
that the air flux speed backward from the propellers is increased, with an improvement of the cooling
efficiency for the mover of the propeller, as the electric motor. The speed increase can be easily
determined starting from the value of thrust and using relations (5) or (8) together with the formula (9).
The thrust is determined using the mechanical power of the propellers and the speed V00, which is
assumed equal to the aircraft speed.
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Figure 1. Single impulsive theory model adopted for the air flow calculation along the electric motor.

As is well-known, the external surface of the motor is heated by three different heat fluxes,
determining that the heat flux is not constant along the external motor surface: two heat fluxes are
related to the end-winding’s losses, the other one is the heat flux due to the windings located in the
slots and the iron losses. Usually, the end-windings of the most common electrical machines are
cooled through natural convection and therefore they become one of the critical parts. In traction or
propulsion applications, it is preferable to put a resin around the end-windings [23,24], with the aim
of conducting the heat through the resin to the external surface, where a liquid cooling jacket or an
external free stream provide the removal of the heat.

In the paper, the heat exchange problem of the propulsion motor is approached with the case of
constant free-stream velocity flow along a semi-infinite plate (located along the longitudinal axis of the
cylinder), subjected to a variable surface heat flux [25]. In this case, the rise of surface temperature at
length L can be derived by:

Ts(L) − T00 =
0.623

k
Pr−1/3Re−1/2

L

∫ L

0

[
1−

(x
L

)3/4
]−2/3

q(x)dx for laminar flow (10)
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Ts(L) − T00 =
3.42

k
Pr−3/5Re−4/5

L

∫ L

0

[
1−

(x
L

)9/10
]−8/9

q(x)dx for turbulent flow (11)

where T00 is the temperature of the air flow, k is the thermal conductivity of the air (W/(m K)), q(x) is
the heat flux distribution along the surface (W/m2), and Pr and ReL are the Prandtl and Reynolds
numbers defined as:

Pr =
µdcp

k
(12)

ReL =
(V00 + vd)L

µc
(13)

where L is the length of the motor, cp is the specific heat coefficient of the air (J/(kg K)), and µc and
µd are the air kinematic viscosity (m2/s) and dynamic viscosity(kg/(m s)). Due to the limited length
of the motor, the air speed is considered constant and equal to the air speed downstream of the disk
(V00 + vd). For the correct calculation of (12) and (13), the dependence of the parameters cp, k, µc,
and µd by the pressure and temperature is considered, using the available data from literature [26].
The heat flux q(x) is due to the heat exchange determined by the motor losses through the motor
surface and changes between the end-winding regions and the magnetic stack length. The evaluation
of losses and thus of heat flux q(x) is presented in the next chapter. The rise of temperature described
by Equations (10) and (11) is computed using the trapezoidal method to solve the integral. The heat
exchange coefficients are related to the Nusselt number, which can be computed as:

Nux = 0.453Pr1/3Re1/2
x for laminar flow (14)

Nux = 0.03 Pr3/5Re4/5
x for turbulent flow (15)

These values can be used in a thermal finite element analysis, where the following equation must
be solved:

k∇ T + h(T − T00) = 0 (16)

Imposing an appropriate boundary convection condition on the external surface (the symbol
∇ indicates the gradient) through the calculated heat transfer coefficient h and the flux stream
temperature T00.

3. Optimal Design of Propulsion Electric Motor

As previously described, the design of a propulsion motor for hybrid/full electric aircraft is quite
complex with respect to an industrial motor for the thermal problem and the necessity to reduce the
weight. The greatest part of the propellers used in aircraft have a hydraulic system able to modify
the angle pitch and keep the angular speed of the propeller constant. The constant speed (or a strict
variation speed range) is an advantage in the design of propulsion motors with respect to the traction
application [27] where a good performance in terms of efficiency must be guaranteed in a large range
of angular speeds. The optimal solution for a propulsion motor can be obtained using a multiphysics
approach, able to merge the magnetic and thermal problems at the same time. A precise and affordable
solution can be obtained with finite element analysis (FEA), both for the magnetic and thermal analyses.
As it is well-known, the FEA needs a high computational cost and a large simulation time, but it is
feasible for solving an optimization problem by means of heuristic optimizations able to reduce the
number of iterations required for the evaluation of a cost function under given constraints. One of the
most adopted methods is based on the differential evolution (DE) algorithm [28], which is proposed
in many variants and used in the field of electrical machines [29,30]. The DE algorithm starts from
an initial population of a certain number of electric motors with similar characteristics, which can be
generated randomly or using the value of existing motors. In our cases a mixed method is applied.
Starting from an existing electric motor with the same rated speed and with a similar rated power,
and self-ventilated cooling. As it will be shown in the next paragraph, the proposed optimal design
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methodology is based on a low number of considered design variables. This is due to the necessity
of reducing the computational cost: therefore, the use of some characteristics inherited from existing
machines appears necessary. In particular the magnetic stack length, the magnet pole arc, the number
of slots (Q), and the number of turns per pole and per phase (Ns,p) are maintained fixed and extracted
from the existing motor.

3.1. Determination of Initial Population

The initial population is generated following the next steps:

(Step 1) Using the main parameters of an electric motor of rated power P and rated angular speed
ωr,n the external rotor diameter Dr,e, the current density in the conductor J, the rated current In, and
permanent magnet length hm are chosen as random variables:

Dr,e = Dr,e,t + (−1)uni f rndint(np) ∆D uni f rnd(1) (17)

J = Jt + (−1)uni f rndint(np) ∆J uni f rnd(1) (18)

In = In,t + (−1)uni f rndint(np) ∆In uni f rnd(1) (19)

hm = hm,t + (−1)uni f rndint(np) ∆hm uni f rnd(1) (20)

In Equations (17)–(20), the functions unifrndint and unifrnd generate a random integer number
(lower than np, which indicates the number of population elements) and a real random number (lower
than 1) using a uniform distribution. The ranges ∆D, ∆J, ∆In, and ∆hm could be chosen or with the
use of analytical formulation or through some initial simulations able to find an opportune maximum
value of the parameters. The latter solution is adopted in the paper.

The decision to consider as random variables both the current density and the rated current of the
machine comes from the necessity to find possible solutions which satisfy both the thermal problem
and voltage limits: It is necessary to highlight that with respect to the voltage limits, in aerospace
propulsion it could be quite difficult to satisfy due to the limited value of DC bus voltage (in our case it
is considered the value of 270 V), mainly when the requested speed and power are high.

The check of voltage limits passes through the calculation of the back-emf and the synchronous
inductance of the motor. The back-emf is calculated by means of Faraday’s law and determining the
rotor linkage flux Φr. For a 2D finite element analysis, the rotor linkage flux with a single-phase coil is
calculated as [31,32]:

Φr =
L
Sc


∫
Sc

A(z)dSc

∣∣∣∣∣∣∣∣∣
s f

−

∫
Sc

A(z)dSc

∣∣∣∣∣∣∣∣∣
sb

 (21)

where Ss is the slot area, A(z) is the z-component of the potential vector of magnetic flux density, and
L is the stack length of the machine. The integral in (21) is numerically computed on both forward
(sf) and backward (sb) sides of the phase coils. The derivative versus time of expression (21) provides
the back-emf

From a sizing point of view, two variables act on the variation of the back-emf value: the rotor
diameter and the permanent magnet length.

The value of synchronous inductance Ls is calculated with the knowledge of the electromagnetic
energy Emot in the airgap and in the slots [31,32]. Considering the permanent magnet without the
magnetization, the Emot can be determined by imposing a quadrature axis current of amplitude In and
using the following relations: (it was verified that with a d-axis current, the value of mutual inductance
of the considered motor is the same).

Ls =
4
3

Emot

I2
n

(22)
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For the machine with a superficial permanent magnet, it is often verified that the direct and
quadrature axis inductances are very similar. Therefore, only the computation of Ls with the quadrature
current axis has been performed.

(Step 2) In the second step the complete sizing of the motor is carried out.
(Step 2.1) Therefore, the determination of conductor area Sc, the stator (ys) and rotor (yr) yokes

are carried out using the formula proposed in [33,34]:

Sc =
In

J
(23)

ys =
1
2p

Bg

By,s
(Dr,e + 2hm + 2g) (24)

yr =
1

2p
Bg

By,r
(Dr,e) (25)

where p is the number of pole pairs, g is air gap length, Bg, By,s and By,r are the maximum values of
magnetic flux density in the air-gap, stator yoke, and rotor yoke.

(Step 2.2) The number of pole pairs is chosen as the possible higher number according to the
optimal frequency of the converter (f conv) and the maximum speed of the motor. As previously
mentioned, the range variation speed in the proposed application is very tight, and the maximum
speed equal to the rated speed (ωr,n) of the motor can be imposed. From this, the number of pole pairs
is calculated as:

p =
2π fconv

ωr,n
(26)

In our case, the number of pole pairs is equal to the pole pairs of the initial motor parameters
using for the generation of population. If this value was different, a new reconfiguration of windings
and of the number of slots should be necessary, with an increase in the number of unknown variables.

(Step 2.3) The air-gap length is calculated starting from the optimization variable hm and imposing
an opportune value of maximum flux density in the air gap Bg,max (in this paper is imposed equal to
0.8 T). In particular for a PMSM with sinusoidal air gap flux density, the air gap length is obtained
as [35]:

Bg =
π
2

hm

hm + g
Br (27)

where Br is the residual flux density of the magnet at the design temperature.
(Step 2.4) The slot height depends on:

- the insulation thickness between two conductors is,c and the thickness of the film between the
coils and the slot is,k

- the slot opening length ac;
- the slot opening height pc;
- the wedge thickness bc;
- the insulation between two different layers il;
- the fill factor kcu fixed to 0.60;
- the number of conductors in the slots and their main sizes hc and lc. The dimension of the

conductor is obtained from the area Sc using the dimension available from the commercial
catalogue. The lc is always selected so that:

lc ≤
ac − 2

(
is,c + is,k

)
√

kcu
(28)

- the slot edge;



Energies 2020, 13, 3975 8 of 22

In our case, an open rectangular slot with bar conductors is considered and shown in Figure 2:
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The slot height is determined using the following relations and the feasibility of the slot is verified
through the realization of 2D CAD in the pre-processing of finite element analysis.

The parameters is,c, is,k, and il depend on the type of insulation and their values are below 1 mm.
The wedge thickness and the slot opening are not modified with respect to the reference motor, and in
our case are both 1 mm. Besides the ac depends on the internal diameter of the motor (equal to
Dr,e + 2hm + 2g) and by the maximum value of magnetic flux density inside the tooth.

In the presented paper, two different sizings are carried out and will be presented in Section 3.2:

(a) the first one with conservative values of magnetic flux density peaks in the iron are used in the
paper (1.4 T in the tooth, Bt, and 1.1 T in the rotor and stator yokes). This is due to the necessity of
reducing the iron losses and guarantees an overloadability of the motor; this aspect is not treated
in this paper and will be the topic of further investigations.

(b) In the latter sizing procedure the values of 1.7 T in the tooth and 1.5 T in the yokes are adopted.

(Step 2.5) End windings’ mass calculations: the length of the end winding of the motor is obtained
with the approximated formula:

Ltot,end = 2Ls,end = 1.2
π
2p

(Dr,e + 2hm + 2g)
1

cosβ
(29)

Figure 3 shows a linearization of the machine and of the end-windings.
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The angle β also depends on the manufacturer’s quality and in our case is fixed at 45◦. A safety
factor of 1.2 is adopted in the calculation. The mass of the end windings are calculated as:

mtot,end = 2ρcuNccQScLtot,end (30)

where Ncc is the number of conductors per slot, Q is the number of slots, and ρcu is the mass density
of copper (kg/m3). The weights of the resin and of the insulation are negligible with respect to the
copper’s weight.

(Step 2.6) Calculation of total mass: the total mass of the motor is the sum of the mass of the
end windings, the mass of the active windings, and the iron part. The mass of the end windings is
calculated with relation (30), while the active winding mass and the iron part’s mass are calculated by
evaluating the volume from the 2D CAD of the motor.

(Step 3) The motor obtained with the processes in Steps 1 and 2 is analyzed by means of a
magnetostatic FEA. The outputs of the analysis are the rated electromagnetic torque, the back-emf at
the rated speed, and the synchronous inductance of the machine. With the AC magnetostatic analysis
it is also possible to compute the iron losses and the joule losses in the conductors. For the iron losses,
the five parameters formula is used [36]:

pFe,loss = a1Bα f + Fskina2B2 f 2(1 + a3Ba4) + a5B1.5 f 1.5 (31)

where the parameters Fskin, a1, a2, a3, a4, a5, and α depend on the adopted magnetic sheets and can be
calculated from the specific curve losses of the material or through experimental tests; f is the supply
frequency; and B is the magnetic flux density in the iron.

The joule losses in the conductor are calculated using the following relation:

pc,loss =
1
σ

∫
V

J2
c (x, y, z)dV (32)

where σ is the conductibility of the conductors and the distribution of current density in the conductor
Jc(x,y,z) is calculated taking into account the skin effect of the conductor at the rated supply frequency.
The current density Jc(x,y,z) (which become dependent only by z in 2D geometry) is obtained through
the solution of the following equation:

∇
2Jc = jωσµJc (33)

which permits calculation of the current density distribution Jc = Jc(x,y,z) inside the conductor. Using
the calculated current density, the numerical calculation of (32) on the conductor mesh, gives the total
joule losses. In the proposed approach, the losses in permanent magnets are neglected.

The electromagnetic torque and the losses are used for the calculation of the rated power while
the back-emf and the synchronous inductance are used for the verification of voltage limits. If the
voltage limits are not satisfied, the variables (17–20) are discarded and a new iteration starts using
another initial configuration (see Figure 2).

(Step 4) The last step for the generation of initial population is the verification of thermal limits.
Using the Equations (14) and (15), the heat transfer coefficients are calculated for an altitude of 100 m
and for an appropriate speed of air stream. The solution of thermal problem (16) with the FEA gives
the temperature distribution in the main part of the motor. If the maximum temperatures satisfy the
imposed maximum value in resin and in the windings, a new element of the initial population is found.

3.2. Optimization Problems

The sizing methodology proposed is applied in two different optimization problems: the first is a
single objective problem and the second is a multi objective problem. For each problem, the initial
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populations have been generated using the procedure explained in Section 3.1. The objective functions
are inherent in the following:

Problem 1 Problem 2

min[Motor mass(Dr,e, J, In, hm)] max
[

P
Motormass(Dr,e,J,In,hm)

]
& max[P]

subject to the following inequalities constraints:
Mechanical constraint:

Problem 1 Problem 2

Pmin ≤ P ≤ Pmax −

where Pmin and Pmax are the lower and upper limit allowed for the rated power of the motor
Magnetic constraints:

Problem 1 Problem 2

Bt 1.4 T 1.7 T
By,s, By,r 1.1 T 1.5 T

Electrical constraints:
Due to the integration of optimization problems with FEA, all the equality constraints are

transformed in inequalities, by means of the introduction of a range of variations, as it is shown for the
mechanical constraints:

η ≥ ηtarget (34)

0.9Vl ≤ (pωr,nLsIn)
2 + (pωr,nΦr)

2
≤ Vl (35)

where ηtarget is the lower value of admissible efficiency, while Vl is the maximum value of supply
voltage, Ls is the synchronous inductance, ωr,n is the angular speed, and Φr is the linkage rotor flux.

Thermal constraints: 
Tend−wind ≤ Tmax,wind

Twind ≤ Tmax,wind
Tmag ≤ Tmax,mag

(36)

where Tend-wind and Twind are the maximum temperatures calculated though the 2D FEA in the
end-windings and in the windings inside the magnetic stack, while Tmag is the maximum temperature
in the magnets. The Tmax,wind and Tmax,mag are the limit temperatures imposed by the insulation class
and the type of magnets adopted. In order to apply the 2D FEA, the length of the machine is divided
into three parts; Figure 4: the two parts related to the end-windings (the first part x0–x1 is near the
propeller, the other one is on the opposite side x2–x3) and the last part is the magnetic stack length
(x1–x2). The three parts are further discretized with step ∆x along the axial direction in order to
consider the variation of heat exchange coefficient along the external surface. For each disk obtained,
the local heat exchange coefficient is calculated according to the Nusselt number [14,15].

This procedure permits the reduction of computational cost with respect to the 3D analysis and
gives a good precision compromises with respect to the 3D analysis, though the axial heat distribution
is neglected.
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The DE algorithm used is the type DE/rand/1/bin [28] (DE: differential evolution, rand: indicates
that the individuals selected to compute the trial vectors are chosen as random variables, 1: is the
number of pairs of the initial population chosen for the trial vector generation, bin: the binomial
crossover is used) and the flowchart for the solution of the optimization problem is shown in Figure 5.
Starting from the initial population, the random generation of a basic vector (or trial vector) is performed
using the well-known formulas:

Dr,e,trial = Dr,e(r1) + Fs[Dr,e(r2) −Dr,e(r3)] (37)

Jtrial = J(r1) + Fs[J(r2) − J(r3)] (38)

In,trial = In(r1) + Fs[In(r2) − In(r3)] (39)

hm,trial = hm(r1) + Fs[hm(r2) − hm(r3)] (40)

where the scale factor Fs has been chosen through numerical tests and the parameters r1, r2, and r3 are
random integer numbers between 1 and the number of initial population elements.
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The “trial motor” is analyzed using magnetostatics and thermal FEA. With the magnetostatic
analysis and according to the Section 3.1, the torque, the back-emf, and the losses in the conductor and
in the iron have been calculated. The thermal finite element analysis is carried out at sea-level altitude,
where the heat transfer coefficients have been calculated. If all the electrical and thermal constraints
are verified and at the same time the crossover verification is positive, the obtained “trial motor” could
modify the initial population. The “binomial” crossover check is a further stochastic element adopted
in differential evolution able to simulate the biological evolution. It consists of the generation of two
random numbers, one real and below 1, and the other (nrand) integer with maximum value np. A loop
on the number of initial population np is started and if the real value is lower than the fixed crossover
factor (fixed equal to 0.5 in the paper) or the index of the initial population element coincides with
nrand, the check is satisfied. As previously cited, if the constraints and the crossover check are satisfied,
the trial motor could be a candidate which can substitute the corresponding element of the initial
population substituted with the crossover. In fact, if the value of the objective function is lower (or
higher, depending on the optimization) than the objective function of the corresponding index in the
initial population elements, the trial motor substitutes the element. Otherwise a new iteration with
a new trial motor is performed. The algorithm is repeated for a certain number of substitutions of
initial population elements and the adopted stopping criterion is the distribution-based criteria [37].
In particular, the optimization loop is closed when the difference between the best and the worst values
of the objective function of the actual population is below a certain threshold mth. The threshold mth is
imposed equal to a certain fraction of the difference between the best and worst values of the initial
population. At the end, the optimal value is the minimum (maximum) value of objective function
obtained in the population. The stop in the procedure could also happen under two other conditions:

- the number of times when the constraints are not satisfied (indicated with the counter hconst)
exceed the imposed limit itlim;

- the number of times when no substitutions happen in the initial population (indicated with the
counter hiter) exceed the imposed limit itlim;

These two conditions are usually related to an incorrect generation of initial population and DE
parameters (e.g., the constant Fs). In the paper the number of itlim is imposed equal to two times the
number of elements in the population.

4. Simulation Results and Discussion

The proposed approach is applied for the design of a propulsion motor used for an unmanned full
electric aerial vehicle adopted for civil applications. In particular, Problem 1 is about the propulsion
motor with a rated power of 60 kW and a rated speed of 3000 rpm which could be used in overspeed
conditions and therefore, it is sized with a conservative value of magnetic flux density in the iron in
order to reduce the losses. Problem 2 wants to maximize the power density and the maximum rated
power which can be extracted with the imposed constraints. Both the motor are direct-drive linked to
the propeller, without the use of any mechanical gears. The altitude range of the flight is 100–1000 m.
The main desired features are reported in Table 1 for Problem 1 and Table 2 for Problem 2:
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Table 1. Desired motor characteristics Problem 1.

Parameters Value

Rated Power, Pn 60 kW
Pmin 60 kW
Pmax 61 kW

Rated angular speed, ωr 3000 rpm
Type of windings Distributed

Ambient temperature at s.l., Tair(z0) 40 ◦C
Maximum temperature of resin 210 ◦C

Maximum design temperature of resin 150 ◦C
Number of poles pairs 4

Number of slots 48
Number of phases 3

Number of parallel paths 4
Electrical efficiency target >96%

Type of conductor Rectangular copper
Thermal insulation class >200◦C

Type of magnet Samarium cobalt
Magnetic Steel M270-35A

Magnet coercivity at 200 ◦C 660 kA/m
Magnet residual induction at 200 ◦C 1.07 T

Maximum temperature of the magnet 200 ◦C
Type of external surface No finned

Material of external housing Aluminum
Value of DC link voltage 270 V

Table 2. Desired motor characteristics Problem 2.

Parameters Value

Rated angular speed, ωr 3000 rpm
Type of windings Distributed

Ambient temperature at s.l., Tair(z0) 40 ◦C
Maximum temperature of resin 210 ◦C

Maximum design temperature of resin 210 ◦C
Number of poles pairs 4

Number of slots 48
Number of phases 3

Number of parallel paths 4
Electrical efficiency target >96%

Type of conductor Rectangular copper
Thermal insulation class >200 ◦C

Type of magnet Samarium cobalt
Magnetic steel M270-35A

Magnet coercivity at 200 ◦C 660 kA/m
Magnet residual induction at 200 ◦C 1.07 T

Maximum temperature of the magnet 200 ◦C
Type of external surface No finned

Material of external housing Aluminum
Value of DC link voltage 270 V

(Problem 1) The initial population contains thirty different motors which respect the characteristics
in Table 1 and are generated according to the procedure in Section 3.1. The iterative solution of
Section 3.2 is repeated until the number of substitutions in initial population is about 300 and the
difference of the objective function value of the best and worst case is below 2.5% of the difference
between the best and worst case of initial population. This value is assumed in order to impose
that the mass variation is below 1 kg. Figure 6a–d shows the values of the optimization variables of
initial population and the best value (red circle) obtained at the end of the optimization. The value of
objective function (the total mass of the motor) is depicted in Figure 7. The optimization motor has a
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mass reduction of 4% with respect to the best value in the initial population; this low value is due in
particular to the conservative design value adopted for the magnetic flux density in the iron parts and
also for the conservative maximum values adopted for the temperature in the resin. All the parameters
of the optimum motor are reported in Table 3.
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Table 3. Motor obtained with the optimization.

Parameters Value

Rated power 60 kW
Rated angular speed 3000 rpm

Rated current 257 A
Number of poles pairs 4

Number of slots 48
Number of phases 3

Number of parallel paths 4
Maximum temperature in the end-windings 147 ◦C

External rotor diameter 199.2 mm
Current density in the conductor 6.3 A/mm2

Magnet height 7 mm
Back-emf peak value 110 V
Electrical efficiency 97.5%

Total mass 50.04 kg

The Figures 8 and 9 show the temperature distribution in a 2D section of the front end-windings,
and the other one placed in the opposite site with respect to the propellers: it is evident that the
maximum temperature (in K) are lower than the thermal class adopted and the maximum temperature
in the resin.
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(Problem 2) The number of the initial population is the same for Problem 1 and the iteration was
stopped after about 350 iterations. The multi-objective problem is solved using the penalty function
method, which consists of the transformation of one of the two objective functions into a constraint [38].
In our case the power density objective function is transformed into a constraint, imposing that:

P
Motormass(Dr,e, J, In, hm)

− 1.4 ≥ 0 (41)

In (41) the value 1.4 (kW/kg) indicates the minimum value for the power density. The iterations
are stopped when the difference between the maximum and minimum value of rated power and of
power density are both below 10% of the values in the initial population (besides, the threshold is 3 kW
for the rated power and 0.05 kW/kg for the power density) and respect the constraint (41). The results
are reported in Figure 10a–d and the positions of the element in the plane power density are shown
in Figure 11. From Figure 11 is possible to note that, some elements in the initial population have a
power density greater than 1.6 kW, but the rated power is limited to between 87–107 kW.Energies 2020, 13, x FOR PEER REVIEW 16 of 22 
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Figure 10. Initial population distribution (blue circles), final solution with best power density (red
circle) and with highest rated power (green circle): (a) Rotor external diameter (mm); (b) current density
(A/mm2); (c) magnet height (mm); (d) rated current (A).
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Figure 11. Plane with both objective functions: Initial population distribution (blue circles), final
solution with best power density (red circle), and with highest rated power (green circle).

For the final population, the position of the element with the best value of power (which also
corresponds to the best value of the optimization problem) and the motor with the highest value of
power density are depicted in the previous figures and are reported in Tables 4 and 5:

Table 4. Problem 2: best power density motor.

Parameters Value

Rated power 111.2 kW
Rated angular speed 3000 rpm

Rated current 334.7 A
Number of poles pairs 4

Number of slots 48
Number of phases 3

Number of parallel paths 4
Maximum temperature in the end-windings 209 ◦C

External rotor diameter 239.3 mm
Current density in the conductor 8.2 A/mm2

Magnet height 6.6 mm
Back-emf peak value 110.6 V
Electrical efficiency 96.5%

Total mass 72.9 kg

Table 5. Problem 2: best rated power motor and best solution of the optimization problem.

Parameters Value

Rated power 115.6 kW
Rated angular speed 3000 rpm

Rated current 355.1 A
Number of poles pairs 4

Number of slots 48
Number of phases 3

Number of parallel paths 4
Maximum temperature in the end-windings 176 ◦C

External rotor diameter 243.8 mm
Current density in the conductor 6.3 A/mm2

Magnet height 9.8 mm
Back-emf peak value 110.9 V
Electrical efficiency 96.9%

Total mass 81.2 kg
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Figures 12 and 13 show the temperature in the front and rear end windings for both the solutions
found. The temperature maps highlight that the motor with the best power density reaches a highest
value of temperature with respect to the other one. The results can be easily explained and it is related
to the fact that in the first motor the reduction of the overall mass determines a reduction of sizes and
of heat transfer surface, with an increase of the temperature. In this case the maximum temperature is
209 ◦C and the value is near to the maximum temperature allowable for the resin.
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5. Conclusions

An optimized sizing procedure for an electric propulsion motor has been proposed in the paper.
The goal of the procedure is to investigate the feasibility to use the external force convection of the
air stream to cool the electric motors used in aircraft applications. Using the single impulsive theory
for the propellers and modeling the external surface of the motor as a flat plate, the heat convective
coefficient is calculated.

The optimization procedure is solved by using a differential evolution approach and the finite
element analysis, both for the magnetic and thermal problems. The procedure is applied to two
different problems: one for the design of a 60 kW motor, the other one to maximize the motor power
density and the rated power. The obtained motor is characterized by an appreciable value of power
density, considering also the severe constraints imposed on the maximum temperature and on the
value of magnetic flux density.

Future works will exploit two different possibilities: one is inherent to the determination of
overloadability power of the optimum motor, including this evaluation inside the sizing procedure.
The latter is inherent to the development of a sizing procedure able to stress the temperature and
magnetic flux density constraints to increase the power density of the motor.
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Br (T) Residual magnetic flux density of the permanent magnet
Bt (T) Maximum value of magnetic flux density in the tooth
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By,s (T) Maximum value of magnetic flux density in the stator yoke
By,r (T) Maximum value of magnetic flux density in the rotor yoke
Dr,e (m) External diameter of the rotor
Dr,e,t (m) Initial value of external diameter of the rotor
Emot (J) Electromagnetic energy in the motor
fconv (Hz) Frequency of the converter
Fskin Correction factor for eddy currents term in Iron losses calculation
h (W/(m2K)) Heat exchange coefficient
hconst Counter of the number of iterations without constraints respect
hiter Counter of the number of iterations without population substitution
hm (A) Magnet length
hm,t (A) Initial value of magnet length
g (m) Air gap length
hc (m) Height of bar conductor
is,c (m) Conductor insulation thickness
is,k (m) Slot insulation film thickness
il (m) Insulation element between two layers
itlim Number of iterations without constraints respect or not convergence
In (A) Motor rated current
In,t (A) Initial value of motor rated current
J (A/mm2) Current density in the conductor
Jc (A/m2) Current density distribution in conductor due to the skin effect
Jt (A/mm2) Initial value of current density
k (W/(mK)) Air thermal conductivity
kcu Slot fill factor
ks (◦C/m) Lapse rate
L (m) Plate length
lc (m) Length of the bar conductor
Ls (H) Synchronous inductance
.

m (kg/s) Mass flow
Ns,p Number of turns in series per pole and per phase
Ncc Number of conductors for slot
Nu Nusselt number
p Number of pole pairs
pc (m) Height of slot opening
p00 (Pa) Pressure at point 1 of the tube flux
pff (Pa) Pressure at front face of the propeller
pbf (Pa) Pressure at back face of the propeller
P (W) Rated power of the motor
Pr Prandtl number
Q Number of slots
q(x) (W/m2) Heat flux
Re Reynolds number
Sc (m2) Conductor area
T (N) Trust force
T00 (◦C) Air flux temperature
Tair (◦C) Air temperature
Tend-wind (◦C) End-windings temperature maximum value
Tmag (◦C) Magnet temperature maximum value
Ts (◦C) Surface temperature
Twind (◦C) Windings temperature maximum value
V00 (m/s) Aircraft speed
vd (m/s) Disk tangential speed
vj (m/s) Induction speed
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Vl (V) Voltage limit
ys (m) Stator yoke length
yr (m) Rotor yoke length z
z (m) Altitude
µ (H/m) Magnetic permeability
ρ (kg/m3) Air mass density
ρcu (kg/m3) Copper mass density
Φr (Wb) Rotor flux
σ (S/m) Electrical conductivity
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